Physik der Kondensierten Materie 1

Rudolf Gross WS 2020/2021 Teil 21 Vorlesungsstunde: 26.01.2021

Zusammenfassung: Teil 20, 21.01.2021/1

• Modell stark-gebundener Elektronen (tight binding): gebundene Elektronen + Hüpfen zu NN

$$\mathcal{H}\Psi_{k}^{i}(\mathbf{r}) = \begin{bmatrix} -\frac{\hbar^{2}}{2m} \nabla^{2} + V(\mathbf{r}) \end{bmatrix} \Psi_{k}^{i}(\mathbf{r}) = E^{i}(\mathbf{k})\Psi_{k}^{i}(\mathbf{r}) \qquad Lösungsansatz: \\ \Psi_{k}^{i}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \frac{\phi_{A}^{i}(\mathbf{r}-\mathbf{R})}{\sqrt{N}} \\ \Psi_{k}^{i}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \frac{\phi_{A}^{i}(\mathbf{r}-\mathbf{R})}{\sqrt{N}} \\ \mathcal{V}_{A}(\mathbf{r}-\mathbf{R}_{0}) = \text{atomares}, \tilde{V}(\mathbf{r}-\mathbf{R}_{0}) = \text{zusätzliches Coulomb-Potenzial aller anderen Atome} \\ \text{Linearkombination von atomaren Orbitalen} \\ \bullet Eigenenergien: \\ E(\mathbf{k}) = \frac{E_{A}^{i}}{\sqrt{a^{i}}} + \frac{\beta^{i}}{\beta} \sum_{NN} e^{i\mathbf{k}\cdot(\mathbf{R}_{0}-\mathbf{R}')} \\ \bullet \text{coulomb-Integral} \quad \alpha^{i} = -\int dV(\phi_{A}^{i})^{*}(\mathbf{r}-\mathbf{R}_{0})\tilde{V}(\mathbf{r}-\mathbf{R}_{0})\phi_{A}^{i}(\mathbf{r}-\mathbf{R}_{0}) \\ \text{zusätzliche Coulomb-Energie durch Coulomb-Potenzial \tilde{V} aller anderen Atome Image in *i*-ten Niveau \\ \bullet \tilde{R}$$
 Anderung der Energieniveaus bei Änderung des Atomabstands: \\ \bullet \\ \ddot{A} Anderung des Atomabstands: \\ \bullet \\ \ddot{A} Bildung von Bänder in the formation in the for

 $a^{-1} \frac{1}{r} - \frac{\pi}{a}$

0

 $+\pi/a 2\pi/a k_{11}$

ern mit *N* iveaus durch ren Niveaus

Zusammenfassung: Teil 20, 21.01.2021/2

- Tight Binding Modell:
- $E(\mathbf{k}) = E_A^i \alpha^i \beta^i \sum_{NN} e^{i\mathbf{k}\cdot(\mathbf{R}-\mathbf{R}')}$
- *Beispiel: kubische Gitter* 3D, sc:

12NN, Bandbreite: 24 β

$$\mathbf{R}_{1,2,3,4} = \left(\pm \frac{a}{2}, \pm \frac{a}{2}, 0\right) \qquad \mathbf{R}_{5,6,7,8} = \left(\pm \frac{a}{2}, 0, \pm \frac{a}{2}\right), \qquad \mathbf{R}_{9,10,11,12} = \left(0, \pm \frac{a}{2}, \pm \frac{a}{2}\right)$$

bisher diskutiert:

 \rightarrow Bestimmung der Eigenenergien $E_n(\mathbf{k})$ der Kristallelektronen in der Ein-Elektron-Näherung

- wie bei freien Elektronen:
 - → Auffüllen der Energiezustände unter Berücksichtigung von Pauli-Prinzips
 - \rightarrow bei T = 0 höchste erreichte Energie ist die Fermi-Energie $E_{\rm F}$
- wir unterscheiden zwei grundlegend verschiedene Fälle:
 - i. ein oder mehrere Energiebänder sind vollkommen gefüllt, die weiteren sind alle leer
 - → Fermi-Energie liegt zwischen oberstem gefüllten und unterstem leeren Band
 - → keine Umbesetzung von Zuständen in vollem Band möglich (z.B. durch angelegte E-Feld), Summe über alle Elektronengeschwindigkeiten = null

elektrischer Isolator, Halbleiter

- ii. ein Energieband ist nur teilweise gefüllt
 - → Fermi-Energie liegt in oberstem, nur teilweise gefülltem Band
 - → Umbesetzung von Zuständen innerhalb von Band leicht möglich, Summe über alle Elektronengeschwindigkeiten ≠ null

elektrischer Leiter, Metall, Halbmetall

8.4 Metalle, Halbmetalle, Halbleiter, Isolatoren

- Fermi-Fläche:
 - **→** die Fläche konstanter Energie, $E(\mathbf{k}) = E_{\mathbf{F}}$, trennt bei T = 0 besetzten und unbesetzten Zuständen
 - → Fermi-Fläche ist für Kristallelektronen keine Kugel (3D) oder Kreis (2D) mehr wie bei freien Elektronen
- **Beispiel: 2D Quadratgitter** 10 8 6 4 2 £ (2/3) 0

freie Elektronen (2D): Fermi-Fläche ist immer Kreis

k (7/a)

Kristallelektronen (2D): Fermi-Fläche kann stark von Kreis abweichen

8.4 Metalle, Halbmetalle, Halbleiter, Isolatoren

Lage des Fermi-Niveaus bei Metallen, Halbmetallen und Isolatoren/Halbleitern

Anmerkung:

bei Halbleitern liegt wie bei Isolatoren das Fermi-Niveau in einer Bandlücke

- → kein prinzipieller Unterschied
- → Halbleiter = Isolatoren, die dotiert warden können

unterstes, nur teilweise gefülltes

Valenzband: oberstes, vollkommen gefülltes

• Frage: wann ist ein Festkörper ein Metall, wann ein Isolator?

→ Antwort hängt mit der Zahl der in einem Band verfügbaren Zustände zusammen

- Frage: wie viele Zustände gibt es in einem Band?
 - i. fast freie Elektronen:
 - Zahl der Einheitszellen in Festkörper:
 - Volumen von einem Zustand in k-Raum:
 - > Volumen der Brillouin-Zone in k- Raum:
 - ▶ k-Zustände in Brillouin-Zone pro Band: $V/V_{\text{Zelle}} = N$

→ mit Spin-Freiheitsgrad gibt es 2*N*-Zustände pro Band

ii. stark gebundene Elektronen:

die N Energieniveaus der N Atome des Festkörpers spalten durch Wechselwirkung auf

 $N = V/V_{\text{Zelle}}$

 $(2\pi)^3/V_{\text{Zelle}}$

 $(2\pi)^{3}/V$

- Wechselwirkung führt zu Bändern mit N-Zuständen
- ohne Entartung und mit zusätzlichen Spin-Freiheitsgrad:
 - → es gibt 2*N*-Zustände pro Band

• Folgerung:

→ ob ein Festkörper ein Metall oder Isolator ist, wird durch Zahl der Elektronen pro Einheitszelle bestimmt

- i. Kristalle mit einer ungeraden Zahl von Elektronen pro Einheitszelle
 - → besitzen ein nur teilweise gefülltes oberstes Energieband
 - → Metalle
- ii. Kristalle mit einer geraden Zahl von Elektronen pro Einheitszelle
 - → besitzen ein völlig volles oberstes Energieband
 - → Isolatoren, Halbleiter, Halbmetalle

Beispiel Natrium:

Elektronenkonfiguration: $1s^2$, $2s^2$, $2p^6$, $3s^1$

n gofülltos Band

volle Bänder halb gefülltes Band

ähnlich: Cu $(1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^1)$, Ag $(1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 4d^{10}, 5s^1)$, Au $(1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 4d^{10}, 5s^2, 5p^6, 4f^{14}, 5d^{10}, 6s^1)$,

Metall

• Beispiel Kohlenstoff (etwas komplizierterer Fall):

Elektronenkonfiguration: $1s^2$, $2s^2$, $2p^2 \rightarrow$ aufgrund der Elektronenkonfiguration eines einzelnen Atoms wird Metall erwartet, da in 2p-Band insgesamt 6 Elektronen passen

in Festkörper erfolgt sp^3 -Hybridisierung der 2s- und 2p-Zustände (Basis der starken kovalenten Bindung)

- → $2s^2$ und $2p^2$ -Zustände bilden vier sp^3 -Hybridorbitale (können mit Spin-Freiheitsgrad 8 Elektronen aufnehmen)
- ➔ in Festkörper führt die Wechselwirkung zwischen den Atomen zu einem bindenden und anti-bindenden sp³-Hybridorbital

- das bindende sp^3 -Hybridorbital ist mit 4 Elektronen vollkommen gefüllt - das antibindende sp^3 -Hybridorbital ist vollkommen leer

Verlauf der Energiebänder in Diamant als Funktion von Atomabstand

8.4.2 Halbmetalle

• Halbmetalle: es liegt eine geringfügige Überlappung des Valenzbandes und des Leitungsbandes vor

auch bei gerader Elektronenzahl ist VB nicht vollkommen gefüllt und LB nicht vollkommen leer

→ VB enthält kleine Dichte n_h von fehlenden Elektronen ("Löchern"), LB enthält kleine Dichte n_e von Elektronen

Halbmetalle sind häufig Elemente der 5. Hauptgruppe

- Gitterzelle enthält 2 Atome mit je 5 Valenzelektronen (10 Elektronen pro Einheitszelle)
 - ➔ Isolator oder Halbleiter
 - → wegen Bandüberlappung meist Halbmetall

Halbmetall	$n_{\rm h}~({\rm cm}^{-3})$	$n_{\rm e} ({\rm cm}^{-3})$
Arsen	2.12×10^{20}	2.12×10^{20}
Antimon	5.54×10^{19}	5.49×10^{19}
Bismut	2.88×10^{17}	3.00×10^{17}
Graphit	2.72×10^{18}	2.04×10^{18}

8.4.3 Isolatoren

- Typen von Isolatoren es gibt viele !!
 - i. Bandisolatoren:

vollkommen gefülltes Valenzband und vollkommen leeres Leitungsband

Weitere Typen von Isolatoren mit anderer Ursache für isolierenden Zustand

ii. Anderson-Isolatoren:

Unordnung führt zu Rückstreuung von Elektronenwellen

→ Lokalisierung der Elektronen in Metallen durch Unordnung

iii. Mott-Isolatoren:

Lokalisierung von Elektronen aufgrund von starken Korrelationseffekten

Coulomb-Abstoßung unterbindet Hüpfen von Elektron zum Nachbaratom, wenn dieser Platz bereits durch anderes Elektron besetzt ist

iv. Peierls-Isolatoren:

Instabilität gegenüber der Ausbildung von Ladungsdichtewellen, besonders in niedriddimensionalen Systemen

v. Topologische Isolatoren:

im Innern isolierend, besitzen aber Oberflächenzustände, die zu Leitfähigkeit führen

8.5 Zustandsdichte und Bandstrukturen

- Elektronische Zustandsdichte
 - völlig analoge Diskussion wie bei der Herleitung der Zustandsdichte von Phononen oder freien Elektronen
 - Erhaltung der Zahl von Zuständen:

$$2 \int_{k(E)}^{k(E+\Delta E)} Z(k) d^{3}k = 2 \frac{V}{(2\pi)^{3}} \int_{k(E)}^{k(E+\Delta E)} d^{3}k = \int_{E(k)}^{E(k)+\Delta E} D(E)dE \simeq D(E)\Delta E$$
(Spin)

$$D(E): Zustandsdichte für beide Spin-Richtungen$$

wir benutzen

$$d^{3}k = dS_{E}dk_{\perp} = \frac{dS_{E}}{dE/dk_{\perp}} dE \simeq \frac{dS_{E}}{dE/dk_{\perp}} \Delta E$$

$$D(E) = 2 \frac{V}{(2\pi)^{3}} \int_{E(\mathbf{k})=const} \frac{dS_{E}}{|dE/dk_{\perp}|}$$

$$E(\mathbf{k}) = const.$$

$$E + dE = const.$$

• Zur Erinnerung: für freies Elektronengas sind die Flächen konstanter Energie Kugeloberflächen ($E(k) \propto k^2$) $\implies D(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2}$

8.5 Zustandsdichte und Bandstrukturen

- Qualitative Diskussion der Zustandsdichte von Kristallelektronen
 - die Flächen konstanter Energie können komplizierte Form haben (keine Kugeloberflächen mehr wie bei freien Elektronen)
 - es können k-Raumpunkte auftreten, an denen $|dE/dk_{\perp}| = 0$

➔ kritische Punkte

→ resultieren in van Hove Singularitäten

1D-Systeme:	Wurzel-Singularität logarithmische Singularität	
2D-Systeme:		
3D-Systeme:	für 3D Systeme wird $D(E)$ nicht singulär,	
	aber $D(E)$ besitzt Knick	

Hinweis:

für 3D Systeme wird D(E) in der Nähe der kritischen Punkte nicht singulär, da eine Entwicklung von E(k) um diese kritischen Punkte immer $E(k) \propto k^2$ liefert $\rightarrow |dE/dk_{\perp}|^{-1}$ besitzt eine 1/k Singularität \rightarrow das Integral über die Fläche E(k) = const. besitzt eine lineare k-Abhängigkeit

8.5.1 Zustandsdichte

Form der Dispersion in der Nähe von kritischen Punkten:

$$E(\mathbf{k}) = E_c + \sum_{i=1}^{3} c_i (k - k_{c,i})^2$$

Form von D(E) in Nähe eines kritischen Punktes $D(E) = D_0 + C\sqrt{E - E_c}$ $c_1, c_2, c_3 > 0$ Bandminimum $D(E) = D_0 - C\sqrt{E_c - E}$ $c_1, c_2 > 0, c_3 < 0$ Sattelpunkt I $D(E) = D_0 - C\sqrt{E - E_c}$ $c_1 > 0, c_2, c_3 < 0$ Sattelpunkt II $D(E) = D_0 + C\sqrt{E_c - E}$ $c_1, c_2, c_3 < 0$ Bandmaximum

Ε

8.5.2 Einfache Bandstrukturen

8.5.2 Einfache Bandstrukturen

• Kupfer: 3d-Übergangsmetall, Elektronenkonfiguration [Ar] $3d^{10}$, $4s^1$

- ➤ im Vergleich zu 4s-Elektronen kleiner Überlapp der 3d-Elektronen
 → breites 4s-Band
 → schmale 3d-Bänder
- bei E_F dominiert 4s-Band, das dem von quasi-freien Elektronen gleicht
- ➢ bei Fe, Co, Ni:
 *E*_F liegt im Bereich der 3*d*-Bänder
 → komplexes Verhalten von *D(E)*
 - Beschreibung mit fast freien Elektronen schwierig

8.5.2 Einfache Bandstrukturen

• Germanium: Halbleiter, Elektronenkonfiguration [Ar] $3d^{10}$, $4s^2$, $4p^2$

- Diamantstruktur:
 sp³-Hybridisierung
- zwei energetisch getrennte sp³-Bänder
 - → unteres Band voll, oberes leer
 - ➔ Halbleiter
- kleinste Lücke zwischen Γ- und
 L-Punkt
 - ➔ indirekter Halbleiter

- zahlreiche Methoden, erlauben Untersuchung von verschiedenen Aspekten ٠
 - 1. Energielücke von Halbleitern:
 - Messung der T-Abhängigkeit des Hall-Effekts der elektrischen Leitfähigkeit
 - Messung der optischen Absorption
 - Effektive Masse: 2.
 - Messung der Temperaturabhängigkeit der spezifischen Wärme des Elektronensystems \geq
 - Zustandsdichte am Fermi-Niveau: 3.
 - Messung der Temperaturabhängigkeit der spezifischen Wärme des Elektronensystems
 - Fermi-Fläche: 4.
 - Photoelektronenspektroskopie
 - Messung des de Haas-van Alphén oder Shubnikov-de Haas Effekts \succ
 - Analyse der Magnetotransporteigenschaften

Diskussion erst in Kapitel 9

Diskussion erst in Kapitel 10

Winkelaufgelöste Photoelektronenspektroskopie (ARPES: Angle Resolved Photo Electron Spectroscopy)

Funktionsweise:

- man schießt Photon auf Festkörper und misst die Energie der ausgelösten Photoelektronen Photonenquelle: Laser, Synchrotronstrahlung
- \succ winkelabhängige Messung ergibt Information über k-Abhängigkeit (erfordert aber einigen Aufwand)
- Problem ist geringe Austrittstiefe der Photoelektronen: nur wenige nm (erfordert sehr saubere Probenoberflächen, UHV-Technologie)

• Funktionsweise von ARPES

• PES-Spektren einer Na (110)-Oberfläche

gemessen für senkrechte Emission

E. Jensen, E.W. Plummer, Phys. Rev. Lett. 55, 1912 (1985)

Beispiel: Messung der Fermi-Oberfläche von Hochtemperatur-Supraleiter (Bi,Pb)-2212

PRL 84, 4453 (2000) PRB 64, 094513 (2001) PRB 66, 014502 (2002)

→ Änderung der Fermi-Fläche mit Änderung der Dotierung (Ladungsträgerdichte)

- Fermi Fläche $E(\mathbf{k}) = E_F$ trennt bei T = 0 die besetzten von den unbesetzten Zuständen
- Form der Fermi-Fläche besitzt für die Eigenschaften von Metallen große Bedeutung
 - \rightarrow bei externer Störung findet nur Umverteilung der Elektronenzustände nahe bei $E_{\rm F}$ statt
- für freie Elektronen (3D) war Fermi-Fläche eine Kugel mit Radius $k_{
 m F}$
 - **→** jetzt viel kompliziertere Fermi-Flächen, da komplexere Bandstruktur: $E(\mathbf{k}) \neq \hbar^2 k^2 / 2m$
 - Aufspaltung der Energieeigenwerte am Rand der Brillouin-Zone führt zu starke Abweichung von Kugelgestalt

Beispiel: 2D quadratisches Gitter, freie Elektronen (Wiederholung)

periodisches Zonenschema

25

leichter darstellbar

Elektronen) um das

werden

Fermi-Fläche in der 2. BZ

kann als "Loch" (fehlende

Zonenzentrum aufgefasst

• Beispiel: 2D quadratisches Gitter, Kristallelektronen im periodischen Potenzial (tight binding Modell)

qualitative Änderungen beim Übergang von freien zu Bandelektronen:

- Flächen konstanter Energie sind keine Kreise mehr
- Energielücken an Rändern der Brillouin Zonen
- > $E(\mathbf{k})$ -Kurven schneiden Brillouin-Zone senkrecht (stehende Wellen, $\mathbf{v}_g = 0$)
- scharfe Strukturen am Rand der BZ werden abgerundet
- von Fermi-Fläche eingeschlossenes
 Volumen bleibt gleich
 - → bestimmt durch Elektronenzahl

26

• Beispiel: 2D quadratisches Gitter

qualitative Änderungen beim Übergang von freien zu Bandelektronen:

- Flächen konstanter Energie sind keine Kreise mehr
- Energielücken an Rändern der Brillouin Zonen
- > $E(\mathbf{k})$ -Kurven schneiden Brillouin-Zone senkrecht (stehende Wellen, $\mathbf{v}_g = 0$)
- scharfe Strukturen am Rand der BZ werden abgerundet
- von Fermi-Fläche eingeschlossenes
 Volumen bleibt gleich
 - → bestimmt durch Elektronenzahl

• Vergleich der Fermi-Flächen von Elektronen auf 2D Quadratgitter

- qualitative Diskussion von Fermi-Flächen
 - i. Alkali-Metalle (bcc) sowie Cu, Ag, Au (fcc): nur ein *s*-Elektron in äußerster Schale
 - \rightarrow Zahl der Elektronen im obersten Band beträgt $N \rightarrow$ halbgefülltes Band (wegen Spin-Entartung)

 $V_N = \frac{1}{2} \frac{(2\pi)^3}{V}$

 $k_{\rm F} = (3\pi^2 n)^{1/3}$

 $\frac{1}{2}\frac{2\pi}{a}\sqrt{3} \simeq 5.44/a$

 $k_{\rm F} = (3\pi^2 n)^{1/3} \simeq 4.91/a$

- \succ im k-Raum beanspruchtes Volumen eines Elektrons:
- Fermi-Wellenvektor für freie Elektronen:
- Elektronendichte für fcc-Gitter (4 Atome pro Einheitszelle): $n = N/V = 4/a^3$
- Einsetzen in Ausdruck für $k_{\rm F}$:
- kürzester Abstand zum Zonenrand von fcc-Gitter:
 - → Fermi-Kugel von freiem Elektronengas würde fast den Rand der 1. BZ berühren
 - ➔ Fermi-Fläche sollte fast Kugel sein mit Abweichungen an den Stellen, wo Kugel Rand von 1. BZ nahe kommt
 - → aber: zusätzliche Absenkung der Energie am Zonenrand durch periodisches Potenzial → Aufwölbungen, Ausbildung von Hälsen

(Spin)

• Fermi-Flächen von Alkali-Metallen, Cu, Ag und Au

ww.wmi.bad

- Fermi-Flächen von Erdalkali-Metallen: Ca ([Ar] $4s^2$), Sr ([Kr] $5s^2$) sowie Zn ([Ar] $3d^{10}$, $4s^2$) und Cd ([Kr] $4d^{10}$, $5s^2$)
 - 2 Elektronen pro Einheitszelle, 2N Elektronen im obersten Band, eigentlich Isolatoren
 - → Bandüberlappung resultiert in metallischem Verhalten
 - → ähnliche Fermi-Flächen

• Fermi-Flächen von Aluminium: Al ([Ne] $3s^2$, 3p)

3 Valenzelektronen pro Einheitszelle, 3 Bänder

→ erstes Band voll (nicht gezeigt), 2. Band = gelb, 3. Band = magenta

Fermi-Flächen von Nickel: Ni ([Ar] $3d^8$, $4s^2$)

teilweise gefüllte 3*d*-Bänder

- ➔ ferromagnetisch
- → unterschiedliche Fermi-Fläche für beide Spinrichtungen

Zusammenfassung: Teil 21, 26.01.2021/1

• Metalle, Halbmetalle, Halbleiter, Isolatoren

• Zustandsdichte

Faustregel: gerade Elektronenzahl: Isolator ungerade Elektronenzahl: Metall

$$D(E) = 2 \frac{V}{(2\pi)^3} \int_{E(\mathbf{k})=const} \frac{dS_E}{|dE/dk_{\perp}|} \ll$$

• Beispiele für Bandstrukturen und Zustandsdichten

z.B. Cu $\rightarrow 3d$ Übergangsmetall:

im Vergleich zu den 4s-Elektronen ist der Überlapp der 3d-Elektronen klein

→ breites 4s-Band, geringe Zustandsdichte
 → schmale 3d-Bänder, hohe Zustandsdichte

- Beispiel Natrium:

- Beispiel einfache Metalle:

Cu $(4s^1)$, Ag $(5s^1)$, Au $(6s^1)$

halb gefüllte Bänder 🗲 Metalle

- Beispiel Kohlenstoff (Diamant): $1s^2, 2s^2, 2p^2$

volles Band volles sp^3 Hybrid-Band \rightarrow Isolator

- Singularitäten an Stellen mit waagrechtem
 Bandverlauf → van Hove Singularität
- flacher Bandverlauf ($\nabla_{\mathbf{k}} E(\mathbf{k})$ ist klein) \rightarrow hohe Zustandsdichte

Zusammenfassung: Teil 21, 26.01.2021/2

• Methoden zur Bestimmung der Bandstruktur $E(\mathbf{k})$

ARPES: Angle Resolved Photoelectron Spectroscopy

- Energielücke von Halbleitern (\rightarrow Kapitel 10)
 - *T*-Abhängigkeit von R_H und σ bzw. ρ
 - optische Absorption
- effektive Zustandsdichtemasse
 - T-Abhängigkeit von c_V

- Zustandsdichte bei $E_{\rm F}$
 - T-Abhängigkeit von c_V des Elektronensystems
- Fermi-Fläche (

 Kapitel 9)
 - de Haas van Alphen Effekt, Magnetotransport

- scharfe Strukturen am Rand der BZ werden abgerundet
 - von Fermi-Fläche eingeschlossenes Volumen bleibt gleich — ⇔ 7ahl der Flektronen

Fermi-Flächen von Metallen

- Fermi-Fläche $E(\mathbf{k}) = E_{\rm F}$ trennt bei T = 0 die besetzten von den unbesetzten Zuständen
- Form der Fermi-Fläche besitzt für die Eigenschaften von Metallen große Bedeutung
- für Bandelektronen: Fermi-Flächen \neq Kugeloberflächen