

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Technische Universität München

Superconductivity and Low Temperature Physics I

Lecture Notes Winter Semester 2022/2023

R. Gross © Walther-Meißner-Institut

Chapter 1

Basic Properties of Superconductors

1. Basic Properties of Superconductors

- 1.1 History of Superconductivity
 - **1.2 Perfect Conductivity**
 - **1.3** Perfect Diamagnetism
 - **1.4 Type-I and Type-II Superconductors**
 - **1.5** Flux Quantization
 - **1.6 Superconducting Materials**
 - **1.7** Transition Temperatures

1.1 History of Superconductivity

Discovery and explanation of the phenomena of superconductivity and superfluidity was honored by many Nobel Prizes

1908	Liquefaction of Helium, 4.2 K (Kamerlingh Onnes)	
1911	Discovery of zero resistance (Kamerlingh Onnes)	
1933	Discovery of the Meißner-Ochsenfeld effect (Meißner & Ochsenfeld)	
1935	London theory (Fritz & Heinz London)	
1936	type-II superconductivity (Shubnikov)	
1939	Discovery of superfluid ⁴ Helium (Kapitza, Allen, and Misener)	
1952	Ginzburg-Landau theory (Ginzburg & Landau)	
1957	Abrikosov theory of type-II superconductivity (Abrikosov)	
1957	Bardeen-Cooper-Schrieffer (BCS) theory (Bardeen, Cooper & Schrieffer)	
1961	Discovery of flux quantization (Doll/Näbauer & Deaver/Fairbank)	
1962	Cooper pair tunneling: Josephson effect (Josephson, Giaever)	ue:
1966	Development of Superconducting Quantum Interference Devices (Clarke)	q
1971	Discovery of superfluid ³ Helium (Lee, Richardson, Osheroff)	
1975	Theory of superfluid ³ Helium (Leggett)	
1979:	Discovery of heavy fermion superconductors (Steglich)	
1981	Discovery of organic superconductors (Bechgaard)	
1986	Discovery of high-temperature superconductivity (Bednorz, Müller)	
2000		

Prize winners

Nobel

what was the basic interest ?

temperature dependence of very pure metals for $T \rightarrow 0$??

$$-R \rightarrow 0$$

 $-R \rightarrow const.$
 $-R \rightarrow \infty$

use of Hg, since very pure Hg was available

H. K. Onnes

".. Mercury has passed into a new state, which on account of its extraordinary electrical properties may be called the superconductive state"

note: Heike = first name, Kammerlingh = "Hofrat"
• Helium liquefaction: 1908

• discovery of superconductivity: 1911

Nobel Price in Physics 1913

"for his investigations on the properties of matter at low temperatures which led, inter alia to the production of liquid helium"

choice of name: *infinite electrical conductivity* **> superconductivity**

H. K. Onnes, Comm. Leiden 120b, 122b, 124c (1911)

Kammerlingh Onnes and Technician Flim

Kammerlingh Onnes and van der Waals

Kamerlingh Onnes Laboratory, 1924

an early picture of the Onnes Laboratory

Heike Kamerlingh Onnes (far right) shows his helium liquefactor to three theoretical physicists: Niels Bohr (visiting from Kopenhagen), Hendrik Lorentz, and Paul Ehrenfest (far left).

Prof. Heike Kamerlingh Onnes and his wife with some colleagues among them their friend Albert Einstein (*standing behind Mrs. Kamerlingh Onnes*), ca. 1920.

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2022)

1.1 Discovery of the Meißner-Ochsenfeld Effect (1933)

Robert Ochsenfeld (1901 - 1993)

W. Meißner, R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwissenschaften 21, 787 (1933).

Superconductivity and Low Temperature Physics I

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2022)

1.1 Discovery of the Meißner-Ochsenfeld Effect (1933)

superconductors perfectly expel magnetic field

 $B_{\text{in}} = (1 + \chi) B_{\text{ex}} = 0$ (χ = magnetic susceptibility

ideal diamagnetism, $\chi = -1$

choice of name for perfect diamagnetism:

Meißner-Ochsenfeld Effect

Walther Meißner (1882 – 1974)

1913 – 1934 building and heading of low temperature laboratory at the Physikalisch-Technischen-Reichsanstalt, liquefaction of H₂ (20K)

7.3.1925 first liquefaction of He in Germany (4.2 K, 200 ml), 3rd system world-wide besides Leiden and Toronto

1933 discovery of perfect diamagnetism of superconductors together with Ochsenfeld
 → Meißner-Ochsenfeld Effect

1934 offer of chair at the Technische Hochschule München (now TUM)

- **1946 1950** president of the Bayerischen Akademie der Wissenschaften
- 1946 foundation of the commission for Low Temperature Research → Walther-Meißner-Institut

Walther Meißner * 16. Dezember 1882 in Berlin † 15. November 1974 in Munich

London Theory of Superconductivity (1935)

1935 Fritz and Heinz London

first "quantum mechanical" theory of superconductivity (purely phenomenological)

 \rightarrow macroscopic wave function

Fritz London (1900 – 1954)

Shubnikov Phase, Type-I and Type-II SCs (1936)

1936 Lev W. Shubnikov

discovery of the Shubnikov phase in superconductors

→ type-I and type-II superconductivity

Lev Wassiljevitsch Shubnikov (1901 – 1937)

Discovery of Superfluid 4Helium (1939)

PL. Kapitza with his assistant S.I. Filimonov carrying out an experiment with superfluid helium. IPP, Moscow, 1940.

phenomenon analogous to superconductivity is found in an uncharged system

Pyotr Leonidovich Kapitza (1894-1984)

Nobel Prize in Physics 1978

"for his basic inventions and discoveries in the area of low-temperature physics"

Ginzburg-Landau Theory (1952)

Lev Landau

Vitaly Ginzburg

application of Landau's theory for phase transitions to superconductors using a complex order parameter

Lev Davidovich Landau Nobel Prize in Physics 1962

"for his pioneering theories for condensed matter, especially liquid helium"

Vitaly Ginzburg Nobel Prize in Physics 2003

(together with Alexei Abrikosov and Anthony Leggett) *"for their pioneering contributions to the theory of superconductors and superfluids"*

Non-local London Theory (1953)

Pippard observed a dependence of the penetration depth on the purity of a material

- non-local electrodynamics must be used for a proper explanation
- → response at position r depends on the perturbation in a material dependent volume $\sim |r \xi_0|^3$

Abrikosov Theory of Type-II Superconductivity (1957)

Abrikosov used the Ginzburg-Landau phenomenology to derive the existence of a "mixed-state"

Alexei Abrikosov

Nobel Prize in Physics 2003

"for their pioneering contributions to the theory of superconductors and superfluids"

(together with Vitaly Ginzburg and Anthony Leggett)

Alexei A. Abrikosov

The Nobel Prize in Physics 2003

Alexei A. Abrikosov

Vitaly L. Ginzburg

Anthony J. Leggett

..... for their pioneering contributions to the theory of superconductors and superfluids.

Lev Landau

Vitaly L. Ginzburg

Tag der Physik

1 A 1

STATISTICS IN CONTRACTOR

1.0124.00-

È

07.07.2000

Microscopic (BCS) Theory (1957)

J. Bardeen

R. Schrieffer

Nobel Prize in Physics 1972

L. N. Cooper

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

John Bardeen

* 23 May 1908, Madison, Wisconsin
+ 30 January 1991, Boston two-times Nobel Price winner

Leon Neil Cooper

Pioneers of superconductivity honored at BCS@50 From left: Dale J. Van Harlingen, Lev Gor'kov, Charles P. Slichter, Leo Kadanoff, David Pines, Leon Cooper, Marvin Cohen, Michael Tinkham

John Robert Schrieffer

* 31 May 1931, Oak Park, Illinois Nobel Prize in Physics 1972

Discovery of Flux Quantization (1961)

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2022)

Discovery of Flux Quantization (1961)

Measuring the flux quantum. Graduate student Bascom Deaver refills his apparatus with liquid nitrogen at Stanford University in 1961, a necessary step in maintaining a superconductor at liquid helium temperature. He and William Fairbank used this setup to show that the magnetic field threading a superconducting loop is always quantized. [Credit: J. Mercado/Stanford News Service]

Superconductivity and Low Temperature Physics I

Prediction of the Josephson Effect (1962)

Brian David Josephson (geb. 1940)

Nobel Prize in Physics 1973

"for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

(together with Leo Esaki and Ivar Giaever)

Discovery of Superfluid ³Helium (1971/72)

Douglas D. Osheroff, Stanford University, Stanford, California, USA

David M. Lee, New York, USA

Robert C. Richardson, Cornell University, Ithaca, Cornell University, Ithaca, New York, USA

Nobel Prize in Physics 1996

"for their discovery of superfluidity in helium-3"

 $T_{c} = 2.6 \, \mathrm{mK}$

1966 ³He/⁴He dilution refrigerator: Hall, Neganov 2 mK 500 mK

Development of SQUID (1966)

John Clarke

When it comes to SQUIDs, Berkeley physicist John Clarke has been a master for the past three decades. In the background is an image of a high-T_c superconducting coil deposited on a high-T, SQUID.

Superconducting Quantum Interference Devices

Theory of Superfluid ³Helium (1975)

Anthony J. Leggett

Nobel Prize in Physics 2003

..... for their pioneering contributions to the theory of superconductors and superfluids.

(together with Alexey A. Abrikosov and Vitaly Ginzburg)

Discovery of the High T_c **Superconductivity (1986)**

J. Georg Bednorz (b. 1950) K. Alexander Müller (b. 1927)

Nobel Prize in Physics 1987

"for their important break-through in the discovery of superconductivity in ceramic materials"

Discovery of the High T_c Superconductivity (1986)

Karl Alexander Müller * 20. April 1927 in Basel

Johannes Georg Bednorz * 16. Mai 1950 in Neuenkirchen im Kreis Steinfurt

Summary of Lecture No. 1

- information on contents and structure of the lectures on superconductivity and low temperature physics I & II related lectures and seminars
- general introduction into the field of low temperature physics important research fields, related Nobel prizes information on related research at WMI
- A brief history of superconductivity and low temperature physics important discoveries, key researchers,

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Technische Universität München

Superconductivity and Low Temperature Physics I

Lecture No. 2

R. Gross © Walther-Meißner-Institut

- **1. Basic Properties of Superconductors**
- **1.1 History of Superconductivity**
- 1.2 Perfect Conductivity
 - **1.3 Perfect Diamagnetism**
 - **1.4 Type-I and Type-II Superconductors**
 - **1.5** Flux Quantization
 - **1.6 Superconducting Materials**
 - **1.7** Transition Temperatures

1.2 Perfect Conductivity

- can we measure R = 0 ?
- no, only lower threshold can be obtained in experiment

limited resolution of voltage measurement

 $\Delta R = \Delta V/I \approx 10^{-8} \ \Omega$

@ $\Delta V = 10 \text{ nV}, I = 1 \text{ A}$

H. K. Onnes: resistance drops by about 4 orders of magnitudes (later 14)

1.2 Perfect Conductivity

improvement of resistance mesurement by study of decay of persistent current

in superconductor (or any perfect conductor): $\mathbf{E} = \mathbf{0} \Rightarrow \dot{\Phi} = \mathbf{0}$ or $\dot{\mathbf{B}} = \mathbf{0}$

1.2 Perfect Conductivity

improvement of resistance mesurement by study of decay of persistent current

-> measure decay of magnetic moment generated by frozen in persistent current

loop with inductance *L* and resistance *R*:

$$RI + L\frac{dI}{dt} = 0 \quad \Rightarrow I(t) = I_0 \exp\left(-\frac{R}{L}t\right)$$

example: 10% decay in 1 year observed @ L = 1 nH $\Rightarrow R < 10^{-17} \Omega$

perfect conductor in magnetic field

path dependent final state of the perfect conductor

WM

variation of applied magnetic field for a perfect conductor

Faraday's law:
$$-\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{E}$$
Ohm's law: $\mathbf{J} = \sigma \mathbf{E} \Rightarrow \mathbf{E} = \frac{\mathbf{J}}{\sigma} = \rho \mathbf{J} = 0$ $\mathbf{J} = \sigma \mathbf{E} \Rightarrow \frac{\mathbf{B}}{\sigma} = 0$ $\mathbf{J} = \sigma \mathbf{E} \Rightarrow \frac{\partial \mathbf{B}}{\partial t} = 0$

 $\Rightarrow B_i = const.$ inside a perfect conductor

- field variation \rightarrow screening currents \rightarrow shielding of temporal variation of flux density
- screening current do not decay $\Rightarrow B_i = const.$ forever
- e.g. flux trapping in ring when switching off external field

superconductor in magnetic field

simple experimental technique for determination of B_i:

inner magnetic field B_i and magnetization M of superconductors

perfect diamagnetism survives only up to T-dependent critical field $B_{cth}(T)$

- \rightarrow finite energy available for expelling magnetic field
- condensation energy (discussed later)

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2022)

observation: perfect diamagnetism survives only up to T - dependent critical field $B_{\rm cth}(T)$

interpretation:

superconductor has only finite amount of energy available for expelling field

condensation free enthalpy difference of N and S state energy

$$B_{\rm cth}(T) = B_{\rm cth}(0) \left[1 - \left(\frac{T}{T_c}\right)^2 \right]$$

empirical relation,

good approximation to exact result of BCS theory

phase diagram

temperature dependence of $B_{\rm cth}$:

superconductor: $B_i = 0$ independent of path to position (2)

$$\mathbf{B}_i = \mu_0(\mathbf{H}_{\text{ext}} + \mathbf{M}) = \mu_0(\mathbf{H}_{\text{ext}} + \chi \mathbf{H}_{\text{ext}}) = \mu_0 \mathbf{H}_{\text{ext}}(1 + \chi) = 0$$

- **\rightarrow** perfect diamagnetim: $\chi = -1$
- → superconducting state is *thermodynamic phase*

Meißner effect:

path-independent complete exclusion of magnetic flux from the interior of a bulk superconductor

important remaining questions

- How does the magnetic induction *B* change at the surface? Step-like change?
- How do the screening currents set-off if not according to Faraday's law?
- Can the magnetic flux penetrate partially to reduce the magnetic energy?
- What happens in a superconductor that is not simply connected (e.g. superconductor with hole such as a cylinder)?

levitation of diamagnetic materials

$$\mathbf{B}_i = (1 + \chi) \,\mu_0 \mathbf{H}_{\text{ext}}$$

Faraday

balance

 $(\chi = magnetic susceptibility)$

material becomes "lighter"

material becomes "heavier"

WM

levitation of diamagnetic materials

Levitated tomatos, strawberries,

• organic materials:

$$\rho \simeq \mathbf{1} \ \mathbf{g/cm^3}, \ \boldsymbol{\chi} \simeq -\mathbf{1} \cdot \mathbf{10^{-5}}$$
$$\implies \mathbf{B} \cdot \nabla \mathbf{B} \simeq \mathbf{1} \ \mathbf{000} \ \left[\frac{\mathbf{T}^2}{\mathbf{m}}\right]$$

form alom3 and

• superconductors:

$$p \simeq \text{arew g/cm}^2, \chi \simeq -1$$

 $\square \qquad B \cdot \nabla B \simeq 0.01 \left[\frac{T^2}{m}\right]$

1

Superconductors:

ideal materials for magnetic levitation

- **1. Basic Properties of Superconductors**
- **1.1 History of Superconductivity**
- 1.2 Perfect Conductivity
- **1.3 Perfect Diamagnetism**
- **1.4** Type-I and Type-II Superconductors
 - **1.5** Flux Quantization
 - **1.6 Superconducting Materials**
 - **1.7** Transition Temperatures

1.4 Type-I and Type-II Superconductors

Type-I Superconductor

- Meißner-Phase for $B_{ext} < B_{cth}$ - no Shubnikov-Phase

Type-II Superconductor

- Meißner-Phase for $B_{ext} < B_{c1}$ - Shubnikov-Phase for $B_{c1} < B_{ext} < B_{c2}$

$$B_{c1} < B_{cth} < B_{c2}$$

- **1. Basic Properties of Superconductors**
- **1.1 History of Superconductivity**
- **1.2 Perfect Conductivity**
- **1.3 Perfect Diamagnetism**
- **1.4 Type-I and Type-II Superconductors**
- 1.5 Flux Quantization
 - **1.6 Superconducting Materials**
 - **1.7** Transition Temperatures

1.4 Flux Quantization

• discoverd 1961 by - Robert Doll and Martin Näbauer (WMI) quartz-- B.S. Deaver and W.M. Fairbanks (Stanford University) thread • experiment by Doll and Näbauer (WMI) - trapping of magnetic flux in hollow cylinder - apply torque $\mathbf{D} = \boldsymbol{\mu} imes \mathbf{B}_{\mathrm{p}}$ by probing field \mathbf{B}_{p} B_p Pb - increase sensitivity by resonance technique 'quartz-• number of trapped flux quanta: cylinder $N = B_{\text{cool}} \pi (d/2)^2$ Bcool $l \approx 0.6 \,\mathrm{mm}$ $N \simeq 1$ $@ B_{cool} = 10^{-5} \text{ T}, d = 10 \ \mu\text{m}$ $d \approx 10 \ \mu m$

1.4 Flux Quantization

prediction by F. London: h/e

0 -

0.0

4

3

2

trapped magnetic flux (h/2e)

(b)

0

0.3

0.4

<u>~</u>~

0.2

B_{cool} (Gauss)

 ∞

B.S. Deaver, W.M. Fairbank

Phys. Rev. Lett. 7, 43 (1961)

0.1

 \rightarrow experimental proof for existence of Cooper pairs

Paarweise im Fluss

D. Einzel, R. Gross, Physik Journal 10, No. 6, 45-48 (2011)

1. Basic Properties of Superconductors

- **1.1 History of Superconductivity**
- **1.2 Perfect Conductivity**
- **1.3** Perfect Diamagnetism
- **1.4 Type-I and Type-II Superconductors**
- **1.5** Flux Quantization
- 1.6 Superconducting Materials
 - **1.7** Transition Temperatures

- discovery of superconductivity in chemical element Hg
- since then thousands of further superconducting compounds found
- classification into families:
 - 1. elemental superconductors (Hg, 1911)
 - 2. alloys and intermtellic compounds
 - 3. heavy Fermion superconductors (1979)
 - 4. organic superconductors (1981)
 - 5. fullerides (1991)
 - 6. oxides superconductors , cuprates (1986)
 - 7. iron pnictides (2006)

MgB₂ (2001)

WMI

1.6 Superconducting Materials

elemental superconductors

elemental superconductors

- highest T_c : Nb, 9.2 K
- lowest *T_c*: Rh, 0.32 mK
- many elements become superconducting under pressure
 - e.g. Li: T_c almost 20 K @ p = 0.5 Mbar non-magnetic high pressure Fe phase: $T_c = 2$ K
- problem related to observation of superconductivity in materials with very low T_c:

$$k_{\rm B}T_c = 1.38 \cdot 10^{-26} \,\text{J}$$
 @ $T_c = 1 \,\text{mK}$

requires small pair breaking rate \rightarrow very pure materials

$$\tau^{-1} \le \frac{k_{\rm B} T_c}{\hbar} = 1.38 \cdot 10^{-26} \frac{J}{\hbar} @ T_c = 1 \,\mathrm{mK} \ \Rightarrow \tau \ge 10^{-8} \,s$$

material	T_c
@ 1 bar	
Ru	0.35 K
Al	1.2 K
In	3.4 K
Sn	3.7 K
Hg, Ta	4.2 K
Pb	7.2 K
Nb	9.2 K
@ > 120 kbar	
Si	6.7 K
Ge	5.4 K
S	17 K
Li	16 K

material	T_c
amorphous:	Pt
quenched condensed:	Ga
	Bi

0.6 .. 0.9 K 8.0 K (orthorhombic phase: 1.09 K) 6.0 K (crystalline phase: semimetal, no SC)

- alloys and intermetallic compounds
 - more than 1000 systems found until today
 - some have high relevance for applications:
 - A15 compounds (1953) with with β -tungsten structure e.g. Nb₃Ge: $T_c = 23.2$ K, Nb₃Sn: $T_c = 18$ K, V₃Si: $T_c = 17$ K
 - NbTi: $T_c = 10 11$ K, NbN: $T_c = 13 16$ K e.g.
 - Chevrel phases: $M_x Mo_6 X_8$ M = Ca, Sr, Ba, Sn, Pb, Au, RE X = S, Se, Te (chalcogenides)

e.g.
$$PbMo_6S_8: T_c = 15 K$$

- boron carbides: *RM*₂B₂C R = rare earth elem. (e.g. Tm, Er, Ho)M = Ni, Pd(1994)

 T_c almost 40 K

- $(Lu/Y)Ni_2B_2C: T_c = 16 K$ e.g.
- MgB_2 (2001)

WM

- heavy Fermion superconductors
 - found by *Frank Steglich* et al. in 1979

- $CeCu_2Si_2$ $T_c = 0.5 K$ - today many systems known

- electrons in these compounds have very large effective mass
 - → heavy Fermions: $m^{\star} \sim 100 1000 m_{\rm e}$
- mechanism of superconductivity still under debate

- organic superconductors
 - found by *Jerome* et al. in 1980

BEDT-TTF-molecule:

- TMTSF (tetramethyl-tetraselenafulvalen)
- today many systems known with $T_{\rm c}$ up to 12 K
- e.g. (BEDT-TTF)₂Cu[N(CN)₂]Br bis(ethylenedithio)-tetrathiafulfalene

$$T_c = 11.2 \text{ K}$$

 $T_{c} = 0.9 \text{ K}$

S H C C

WM

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2022)

• fullerides

- doping of C_{60} molecules (fullerene), arrangement in regular structure \rightarrow *fullerides*
- superconductivity found in 1991 by Robert Haddon at Bell Labs

 K_3C_{60} with $T_c = 18$ K

- until today T_c up to 40 K found

 $\begin{array}{ll} {\rm Cs_2RbC_{60}} & T_c = 33 \ {\rm K} \\ {\rm Cs_3C_{60}} & T_c = 40 \ {\rm K} \ @ \ p = 15 \ {\rm kbar} \end{array}$

- oxide superconductors
 - discovered by *Georg Bednorz* and *Alex Müller* in 1986 in La_{2-x}Ba_xCuO₄ (Zurich oxide)
 - until today several compounds found with T_c up to 135 K (165 K under pressure)
 - layered crystal structure formed by CuO₂ planes and charge reservoir layers

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2022)

4 component systems $A_m B_2 Ca_{n-1} Cu_n O_{2+m+2n}$

Bi, Tl, Hg Ba, Sr = alcaline earth metals

examples

Bi₂Sr₂Ca₂Cu₃O₁₀ = Bi-2223 (110 K) Tl₂Ba₂Ca₂Cu₃O₁₀ = Tl-2223 (127 K) HgBa₂Ca₂Cu₃O₉ = Hg-1223 (135 K)

- iron pnictide superconductors
 - discovered in 2006 by *Hideo Hosono* et al. in La[O_{1-x} F_x]FeAs, $T_c = 26$ K
 - until today several compounds/families found with T_c up to 55 K

Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, and Hideo Hosono "Iron-Based Layered Superconductor: LaOFeP". *J. Am. Chem. Soc.* **128** (31): 10012–10013 (2006).

WM

- **1. Basic Properties of Superconductors**
- **1.1 History of Superconductivity**
- **1.2 Perfect Conductivity**
- **1.3** Perfect Diamagnetism
- **1.4 Type-I and Type-II Superconductors**
- **1.5 Flux Quantization**
- **1.6 Superconducting Materials**
- \rightarrow 1.7 Transition Temperatures

recently discoverd materials with very high transition temperatures

- **2015**:

Eremets and co-workers report that H₂S becomes a metallic conductors under high pressure (100–300 GPa) and shows a transition temperature of $T_c = -70$ °C (203 K).

ETTER

doi:10.1038/nature14964

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov¹*, M. I. Eremets¹*, I. A. Troyan¹, V. Ksenofontov² & S. I. Shylin²

– 2019:

Eremets *et al.* measured for LaH₁₀ under high pressure (170 GPa) a transition temperature of $T_c \simeq 250$ K (≈ -23 °C)

LETTER

https://doi.org/10.1038/s41586-019-1201-8

Superconductivity at 250 K in lanthanum hydride under high pressures

A. P. Drozdov^{1,7}, P. P. Kong^{1,7}, V. S. Minkov^{1,7}, S. P. Besedin^{1,7}, M. A. Kuzovnikov^{1,6,7}, S. Mozaffari², L. Balicas², F. F. Balakirev³, D. E. Graf², V. B. Prakapenka⁴, E. Greenberg⁴, D. A. Knyazev¹, M. Tkacz⁵ & M. I. Eremets¹*

• recently discoverd materials with very high transition temperatures

– 2020:

Snider *et al.* measured for CH₈S under high pressure (267 GPa) a transition temperature of $T_c \simeq 288$ K (≈ 15 °C), Nature <u>586</u>, 373 - 377 (2020)

Article

http

Rec

Act Put

Room-temperature superconductivity in a carbonaceous sulfur hydride

os://doi.org/10.1038/s41586-020-2801-z	Elliot Snider ¹⁸ , Na Hiranya Vindana ² , One of the long- room-temperatu superconductivi under high press
eived: 21 July 2020	
epted: 8 September 2020	
blished online: 14 October 2020	
Check for updates	

Elliot Snider¹⁸, Nathan Dasenbrock-Gammon²⁶, Raymond McBride¹⁸, Mathew Debessai³, Hiranya Vindana², Kevin Vencatasamy², Keith V. Lawler⁴, Ashkan Salamat⁵ & Ranga P. Dias¹²⁵¹

One of the long-standing challenges in experimental physics is the observation of room-temperature superconductivity¹². Recently, high-temperature conventional superconductivity in hydrogen-rich materials has been reported in several systems under high pressure¹⁻⁵. An important discovery leading to room-temperature superconductivity is the pressure-driven disproportionation of hydrogen sulfide

→ material with the so far highest transition temperature

relevant material parameters for technical applications:

- \succ high transition temperatures T_c
- \succ high critical current densities J_c
- \succ high critical magnetic fields B_c

