

Superconductivity and Low Temperature Physics I

Lecture Notes
Winter Semester 2022/2023

R. Gross
© Walther-Meißner-Institut

Chapter 2

Thermodynamic Properties of Superconductors

Chapter 2

2. Thermodynamic Properties of Superconductors

- **2.1** Basic Aspects of Thermodynamics
 - 2.1.1 Thermodynamic Potentials
- 2.2 Type-I Superconductor in an External Field
 - 2.2.1 Free Enthalpy
 - **2.2.2 Entropy**
 - 2.2.3 Specific Heat
- 2.3 Type-II Superconductor in an External Field
 - 2.3.1 Free Enthalpy

2. Thermodynamic Properties of Superconductors

• already in 1924:

- → W.H. Keesom tries to describe the superconducting state using basic laws of thermodynamics
- → Meißner effect not known that time: unclear whether superconducting state is a *thermodynamic phase*

• after 1933:

- → after discovery of Meißner effect it is evident that *superconducting state* is real thermodynamic phase
- → this fact is used in development of GLAG theory

questions:

- → what is the suitable thermodynamic potential to describe superconductors?
- → what can we learn on superconductors from their basic thermodynamic properties (e.g. specific heat) ?

- thermodynamics:
 - → describes systems with large particle number by small quantity of variables: T, V, N, ...
- extensive variables: V, S, N, ...
 - → depend on system size (amount of substance)
- intensive variables: T, p, n, ...
 - → do not depend on system size
- thermodynamic potentials:
 - → used for the description of equilibrium states
 - equilibrium state: determined by extremal value of the potential
 - example:
 - S, V and N are the natural variables of a systems, all other fixed by external constraints
 - \rightarrow internal energy U(S, V, N) yields full information on the system
 - $dU = TdS pdV + \mu dN$
 - → adiabatic-isochore processes are characterized by minimum of U
 - other potentials:
 - Helmholtz free energy F(T, V, N)
 - enthalpy H(S, p, N)
 - free enthalpy or Gibb energy G(T, p, N)

• question:

what is the suitable potential to represent the system under consideration?

- → find the set of independent variables
- discussion of magnetic and electronic systems:
 - → additional variables such as **polarization P** and **magnetization M**
- discussion of systems with N = const.

A: Internal Energy

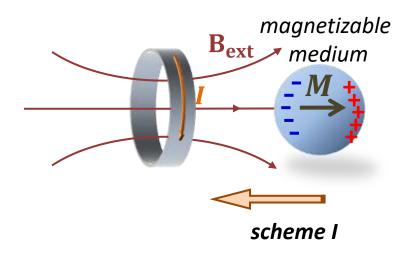
• differential of the internal energy

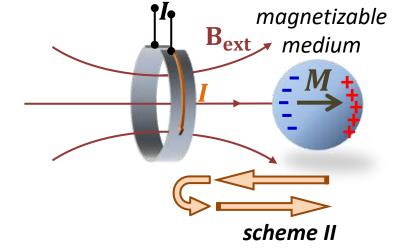
 $\delta W_{\rm em} = \sum_{i} \mathbf{F}_{Z_i} \cdot \mathrm{d}\mathbf{Z}_i$ generalized state
force variable

$$\mathbf{d}U = \delta Q + \delta W_{\mathrm{mech}} + \delta W_{\mathrm{em}} = T \mathbf{d}S - p \mathbf{d}V + \mathbf{B} \cdot \mathbf{dm}$$
 infinitesimal heat flow into the system infinitesimal electromagnetic work done on the system work done on the system work done on the system

 $\mathbf{m} \cdot \mathbf{B} = m \, B$ or $-m \, B$, since magnetization is mostly parallel or anti-parallel to B

- important question:
 - → how to calculate the em work?
 - \rightarrow do we have to use mdB or Bdm in the expression of dU?
- **answer**: depends on experimental situation





closed metallic ring with infinite conductivity:

→ flux density in ring stays constant

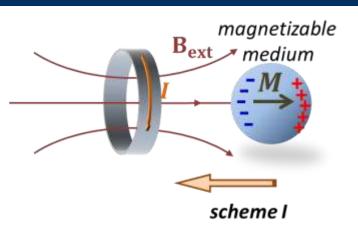
interaction energy of dipole with field has to be taken into account

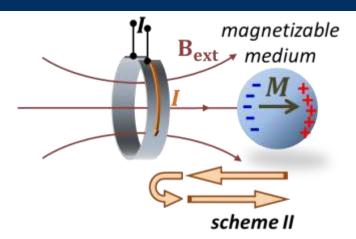
open metallic ring with current source attached:

→ current through ring (magnetic field) stays constant

no interaction energy of dipole and field

bring magnetic moment **m** from ∞ to position r_1 in field $\mathbf{B}_{\mathrm{ext}}$





- bring unmagnetized sample from ∞ to r_1 in field $\mathbf{B}_{\mathrm{ext}}$
- freeze-in magnetic moment **m**₁
- bring magnetic moment \mathbf{m}_1 from r_1 to ∞

$$\mathbf{F}_{\text{mag}} = -\mu_0 \mathbf{m} \cdot \nabla \mathbf{H}_{\text{ext}}$$

$$W_{\rm I} = \int_{\infty}^{r_1} \mathbf{F}_{\rm mag} \cdot d\mathbf{r} = -\int_{0}^{H_1} \mu_0 \mathbf{m} \cdot d\mathbf{H}_{\rm ext} = -\int_{0}^{B_1} \mathbf{m} \cdot d\mathbf{B}_{\rm ext}$$

$$\delta W_{\rm I} = -\mathbf{m} \cdot \mathrm{d}\mathbf{B}_{\rm ext}$$

$$\delta W_{\rm I} = -d(\mathbf{m} \cdot \mathbf{B}_{\rm ext}) + \mathbf{B}_{\rm ext} \cdot d\mathbf{m}$$

change of the interaction energy magnetization work

$$W_{\text{II}}^{(1)} = \int_{\infty}^{1} \mathbf{F}_{\text{mag}} \cdot d\mathbf{r} = -\int_{0}^{1} \mu_{0} \mathbf{m} \cdot d\mathbf{H}_{\text{ext}} = -\int_{0}^{1} \mu_{0} \mathbf{m} \cdot d\mathbf{B}_{\text{ext}}$$

$$W_{\text{II}}^{(3)} = -\int_{H_{1}}^{0} \mu_{0} \mathbf{m}_{1} \cdot d\mathbf{H}_{\text{ext}} = -\mu_{0} \mathbf{m}_{1} \cdot \int_{H_{1}}^{0} d\mathbf{H}_{\text{ext}} = \mu_{0} \mathbf{m}_{1} \cdot \mathbf{H}_{1} = \mathbf{m}_{1} \cdot \mathbf{B}_{1}$$

$$\delta W_{\text{II}}^{(1)} = -d(\mathbf{m}_{1} \cdot \mathbf{B}_{\text{ext}}) + \mathbf{B}_{\text{ext}} \cdot d\mathbf{m}$$

$$\delta W_{\rm II}^{(3)} = + \mathrm{d}(\mathbf{m}_1 \cdot \mathbf{B}_{\rm ext})$$

$$\delta W_{\rm II} = \mathbf{B}_{\rm ext} \cdot \mathbf{dm}$$

$$\delta W_{\rm II} = \mathbf{B}_{\rm ext} \cdot \mathbf{dn}$$

 $\delta W_{\rm I} = -\mathbf{m} \cdot \mathrm{d}\mathbf{B}_{\rm ext}$

www.wmi.badw.de

2.1 Thermodynamic Potentials

A: Internal Energy *U*

$$dU_{\rm I} = TdS - pdV - \mathbf{m} \cdot d\mathbf{B}_{\rm ext}$$

$$dU_{II} = TdS - pdV + \mathbf{B}_{ext} \cdot d\mathbf{m}$$

two different expressions \rightarrow depend on definition of the considered systems

Scheme I: interaction energy $-d(\mathbf{m_1} \cdot \mathbf{B_1})$ is included into the considered systems

Scheme II: interaction energy $-d(\mathbf{m_1} \cdot \mathbf{B_1})$ is not included

→ it is assigned to external circuit which performs work on the system and is not part of the considered system

B: Helmholtz Free Energy F

• definition: F = U - TS

• differential: dF = dU - TdS - SdT

$$dU_{I} = TdS - pdV - \mathbf{m} \cdot d\mathbf{B}_{ext}$$

$$dU_{II} = TdS - pdV + \mathbf{B}_{ext} \cdot d\mathbf{m}$$

$$\mathrm{d}F_{\mathrm{I}} = -S\mathrm{d}T - p\mathrm{d}V - \mathbf{m} \cdot \mathrm{d}\mathbf{B}_{\mathrm{ext}}$$

$$dU_{\rm II} = TdS - pdV + \mathbf{B}_{\rm ext} \cdot d\mathbf{n}$$

$$\mathrm{d}F_{\mathrm{II}} = -S\mathrm{d}T - p\mathrm{d}V + \mathbf{B}_{\mathrm{ext}} \cdot \mathrm{d}\mathbf{m}$$

 $F_{\rm I}$ is potential for the natural variables $T, V, B_{\rm ext}, F_{\rm II}$ for T, V, m

- \rightarrow isothermal-isochore processes at $B_{\rm ext} = const.$ are characterized by minimum of $F_{\rm I}$
- \rightarrow isothermal-isochore processes at m = const. are characterized by minimum of F_{II}
- \rightarrow problem: in experiments it is difficult to keep V and m constant
- → use free enthalpy or Gibbs energy

C: Free Enthalpy G

• definition: $G = U - TS + pV - \mathbf{m} \cdot \mathbf{B}_{\text{ext}}$

• differential: $dG = dU - TdS - SdT + pdV + Vdp - d(\mathbf{m} \cdot d\mathbf{B}_{\text{ext}})$

$$dU_{I} = TdS - pdV - \mathbf{m} \cdot d\mathbf{B}_{ext}$$

$$dU_{II} = TdS - pdV + \mathbf{B}_{ext} \cdot d\mathbf{m}$$

$$dU_{I} = TdS - pdV - d(\mathbf{m} \cdot d\mathbf{B}_{ext}) + \mathbf{B}_{ext} \cdot d\mathbf{m}$$

interaction energy already included in $\mathrm{d}U_{\mathrm{I}}$ and thus has to be omitted in expression for G to avoid double counting

$$dG_{\rm I} = -SdT + Vdp - \mathbf{m} \cdot d\mathbf{B}_{\rm ext}$$

interaction energy not included in $\mathrm{d}U_{\mathrm{II}}$, if it is included into expression for G, we obtain $\mathrm{d}G_{\mathrm{II}}=\mathrm{d}G_{\mathrm{II}}$

$$dG_{II} = -SdT - pdV - \mathbf{m} \cdot d\mathbf{B}_{ext}$$

G is potential for the natural variables T, p, $B_{\mathrm{ext}} = \mu_0 H_{\mathrm{ext}}$

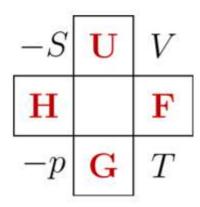
- \rightarrow isothermal-isobaric processes at $B_{\rm ext} = const.$ are characterized by minimum of G
- → this is appropriate for most experimental situations

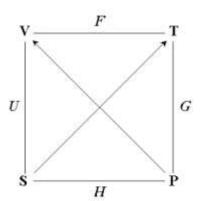
- if the suitable thermodynamic potential is known
 - → derivation of various thermodynamic quantities is obtained by partial differentiation

$$-\left(\frac{\partial G}{\partial T}\right)_{p,B_{\text{ext}}} = S$$

$$\left(\frac{\partial G}{\partial p}\right)_{T,B_{\text{ext}}} = V$$

$$\left(\frac{\partial G}{\partial T}\right)_{p,B_{\rm ext}} = S \qquad \left(\frac{\partial G}{\partial p}\right)_{T,B_{\rm ext}} = V \qquad -\left(\frac{\partial G}{\partial B_{\rm ext}}\right)_{p,T} = m$$





• specific heat $C \equiv \Delta Q/\Delta T$

for
$$p$$
, $B_{\text{ext}} = const.$

$$\rightarrow dU = \delta Q_{\text{rev}} = TdS$$

$$C_p = T \left(\frac{\partial S}{\partial T} \right)_{p, B_{\text{ext}}} = -T \left(\frac{\partial^2 G}{\partial T^2} \right)_{p, B_{\text{ext}}}$$

superconductor in external magnetic field: free energy F

• normal state:
$$F_n = V_s f_n + \frac{1}{2} \mu_0 H_{\text{ext}}^2 V \leftarrow \text{total volume}$$

• superconducting state: $F_S = V_S f_S + \frac{1}{2} \mu_0 H_{\rm ext}^2 V_a$ \leftarrow volume outside SC

$$F_n - F_s = V_s(f_n - f_s) + \frac{1}{2}\mu_0 H_{\text{ext}}^2 V_s \iff \text{volume of SC}$$

with $f_n - f_s = \frac{1}{2}\mu_0 H_{\rm cth}^2$ we obtain for $H_{\rm ext} = H_{\rm cth}$

$$F_n - F_s \Big|_{H_{\text{ext}} = H_{\text{cth}}} = \mu_0 H_{\text{cth}}^2 V_s = \frac{B_{\text{cth}}^2}{\mu_0} V_s$$

- > problem: free energies of normal and superconducting state do not coincide at phase boundary
- \rightarrow origin of discrepancy: interaction energy of magnetic moment of SC with H_{ext}

with
$$\mathbf{M} = -\mathbf{H}_{\mathrm{ext}}$$
 and $\mathbf{m} = V_{\mathrm{s}}\mathbf{M}$ we obtain

$$F_n - F_s \Big|_{H_{\text{ext}} = H_{\text{cth}}} = -\mu_0 \mathbf{m}_{\text{cth}} \cdot \mathbf{H}_{\text{cth}} = -\mathbf{m}_{\text{cth}} \cdot \mathbf{B}_{\text{cth}}$$

- where is the energy coming from ?
 - \rightarrow it is provided by the current source maintaining $B_{\rm ext} = \mu_0 H_{\rm ext} = const.$ by doing work against the back electromotive force induced as the flux is entering the sample
- at $H_{\rm ext} = H_{\rm cth}$, superconductivity collapses \rightarrow flux density $B_{\rm ext} = \mu_0 H_{\rm ext} = B_{\rm cth}$ enters the volume V_s of the superconductor
- work done by current source $W = \int_a^b U I_{\text{coil}} dt = \int_a^b -N\dot{\Phi} I_{\text{coil}} dt = \int_{a'}^{b'} -NI_{\text{coil}} d\Phi$

$$W = NI_{\text{coil}} \int_{0}^{B_{\text{cth}}} A \, dB_{\text{ext}} = N \, I_{coil} A \, B_{\text{cth}}$$

with $B_{\mathrm{ext}} = \mu_0 I_{\mathrm{coil}} N / L$ and $V_{\mathrm{s}} = A L$

$$W = N \frac{B_{\text{cth}}L}{\mu_0 N} A B_{\text{cth}} = V_s \frac{B_{\text{cth}}^2}{\mu_0}$$

superconductor in external field: free enthalpy G

with
$$G = U - TS + pV - \mathbf{m} \cdot \mathbf{B}_{\text{ext}} = F + pV - \mathbf{m} \cdot \mathbf{B}_{\text{ext}}$$
 and $\mathbf{m} = V_S \mathbf{M} = -V_S \mathbf{H}_{\text{ext}}$ we obtain

normal state: $(\mathbf{m} = 0)$

$$G_n = V_s f_n + \frac{1}{2} \mu_0 H_{\text{ext}}^2 V_s + \frac{1}{2} \mu_0 H_{\text{ext}}^2 V_a$$
 (we neglect volume changes)

 $(\mathbf{m} = -V_{\rm S}\mathbf{H}_{\rm ext})$

• superconducting state:
$$G_S = V_S f_S + \frac{1}{2} \mu_0 H_{\text{ext}}^2 V_a + \mu_0 H_{\text{ext}}^2 V_S$$

$$G_n - G_s \Big|_{H_{\text{ext}} = H_{\text{cth}}} = V_s (f_n - f_s) - \frac{1}{2} \mu_0 H_{\text{cth}}^2 V_s$$

with $f_n - f_s = \frac{1}{2}\mu_0 H_{\text{cth}}^2$ we obtain for $H_{\text{ext}} = H_{\text{cth}}$

$$G_n - G_S \Big|_{H_{\text{ext}} = H_{\text{cth}}} = 0$$

Summary of Lecture No. 2 (1)

discussion of basic properties of superconductors

perfect conductivity – perfect diamagnetism – type-I and type-II superconductivity – fluxoid quantization

superconducting materials and transition temperatures

discussion of different families of superconducting materials and their transition temperature

- thermodynamic properties of superconductors
 - > revision of key apsects of thermodynamics
 - > thermodynamic potentials: inner energy, free energy, free enthalpy
 - > free energy is suitable potential for describing situations at constant volume
 - > free enthalpy is suitable potential for describing situations at constant pressure
- free energy and free enthalpy of a superconductor in an applied magnetic field
 - > discussion of pitfalls in deriving the free energy

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN

Superconductivity and Low Temperature Physics I

Lecture No. 3

R. Gross © Walther-Meißner-Institut

Chapter 2

2. Thermodynamic Properties of Superconductors

- **2.1** Basic Aspects of Thermodynamics
 - **2.1.1 Thermodynamic Potentials**

- 2.2 Type-I Superconductor in an External Field
 - 2.2.1 Free Enthalpy
 - **2.2.2 Entropy**
 - 2.2.3 Specific Heat
- 2.3 Type-II Superconductor in an External Field
 - 2.3.1 Free Enthalpy

- perfect diamagnetism $\rightarrow \mathbf{M} = \frac{\mathbf{m}}{V} = -\mathbf{H}_{\text{ext}} = -\frac{\mathbf{B}_{\text{ext}}}{\mu_0}$
- we assume p, T = const.

$$\Rightarrow dG = -SdT + Vdp - \mathbf{m} \cdot d\mathbf{B}_{\text{ext}} = -\mathbf{m} \cdot d\mathbf{B}_{\text{ext}}$$

$$dG_S = \frac{V}{\mu_0} B_{\text{ext}} dB_{\text{ext}} dg_S = dG_S / V$$

integration yields

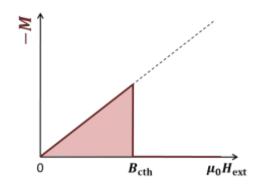
$$g_{s}(B_{\text{ext}}, T) - g_{s}(0, T) = \frac{1}{\mu_{0}} \int_{0}^{B_{\text{ext}}} B' dB' = \frac{B_{\text{ext}}^{2}}{2\mu_{0}}$$

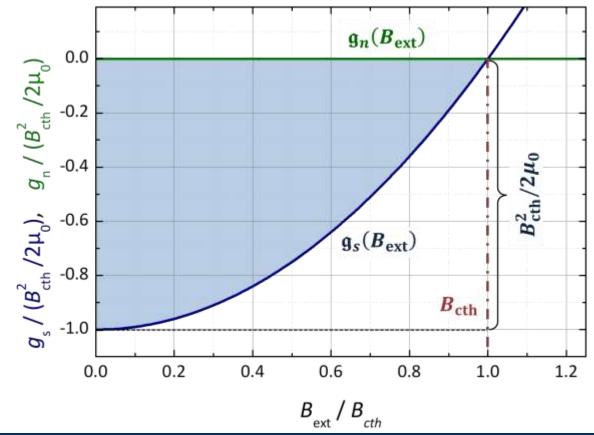
$$g_{s}(B_{\text{ext}}, T) - g_{s}(0, T) = g_{n}(B_{\text{cth}}, T) \simeq g_{n}(0, T)$$

$$@B_{\text{ext}} = B_{\text{cth}}: \ \mathscr{G}_{S}(B_{\text{cth}}, T) = \mathscr{G}_{n}(B_{\text{cth}}, T) \simeq \mathscr{G}_{n}(0, T)$$

$$\Delta g(T) = g_n(0,T) - g_s(0,T)$$

$$= g_s(B_{cth},T) - g_s(0,T) = \frac{B_{cth}^2(T)}{2\mu_0}$$





temperature dependence of the free enthalpy densities g_n and g_s

$$g_s(T) = g_n(T) - \Delta g(T), \quad \text{with } \Delta g(T) = \frac{B_{\text{cth}}^2(T)}{2\mu_0}$$

$$\Rightarrow g_s(T) = g_n(T) - \frac{B_{\text{cth}}^2(T)}{2\mu_0}$$

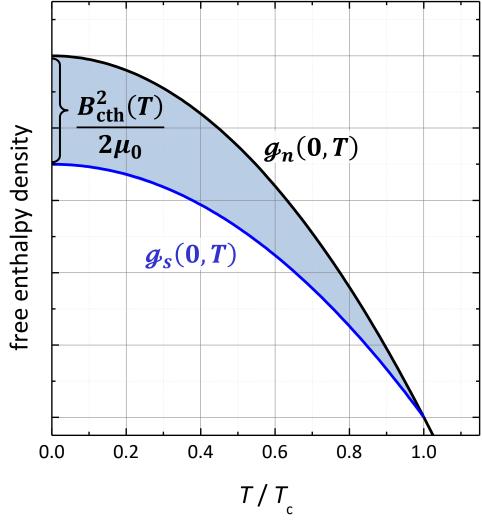
- temperature dependence of B_{cth} :

$$B_{\rm cth}(T) = B_{\rm cth}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

(empirical relation, calculation within BCS theory)

entropy density of normal metal (free electron gas):

$$s_n(T) \propto T$$
, $dg_n = -s_n dT$ (@ $B_{\text{ext}} = 0$)
$$g_n(T) = -\int_0^T s_n(T') dT' \propto -T^2$$



 \rightarrow determination of entropy density $s_s(T)$ and specific heat $c_p(T)$ by calculating the temperature derivative of $g_s(T)$

temperature dependence of the entropy density $s_s = S_s/V$

• with
$$-\left(\frac{\partial G}{\partial T}\right)_{p,B_{\mathrm{ext}}} = S$$
 and $s_S = S_S/V$, $s_n = S_n/V$

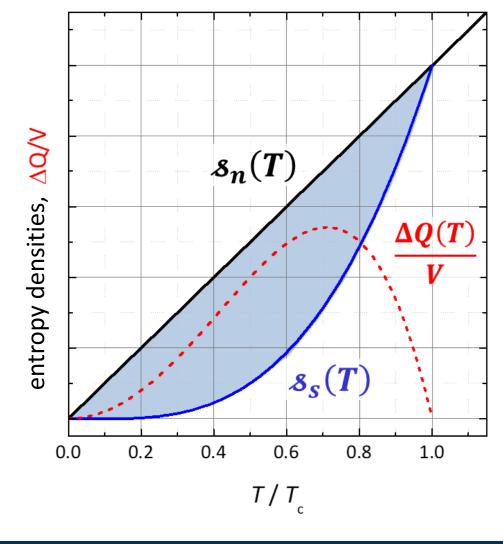
$$s_{s,n}(T) = -\left(\frac{\partial g_{s,n}}{\partial T}\right)_{p,B_{\text{ext}}}$$

$$\Delta s(T) = s_n(T) - s_s(T) = -\left(\frac{\partial \Delta g(T)}{\partial T}\right)_{p,B_{\text{ext}}}$$

• with $\Delta g(T) = \frac{B_{\rm cth}^2(T)}{2\mu_0}$ we obtain

$$\Delta s(T) = -\frac{B_{\rm cth}}{\mu_0} \frac{\partial B_{\rm cth}}{\partial T} \quad \text{with } B_{\rm cth}(T) = B_{\rm cth}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

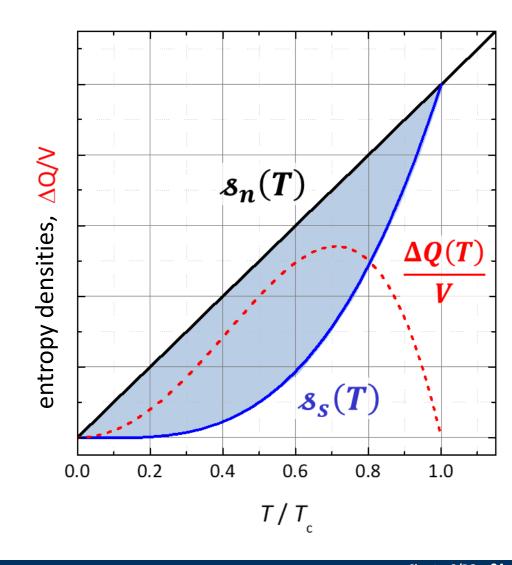
• how does $s_n(T)$ look like? we use $c_p = T \ (\partial s_n/\partial T)_{B_{\mathrm{ext}},p}$ and $c_p = \gamma T$ (free electron gas) s_n proportional T



discussion of the temperature dependence of the entropy difference Δs

$$\Delta s(T) = -\frac{B_{\rm cth}}{\mu_0} \frac{\partial B_{\rm cth}}{\partial T} \quad \text{mit } B_{\rm cth}(T) = B_{\rm cth}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

- i. $T \to T_c$: $B_{\rm cth} \to 0$ and therefore $\Delta s \to 0$ and $\frac{\Delta Q}{V} = T_c \Delta s \to 0$ (no latent heat, 2nd order phase transition)
- ii. $T \to 0$: $\frac{\partial B_{\rm cth}}{\partial T} \to 0 \text{ and therefore } \Delta s \to 0$ (3. law of thermodynamics, Nernst theorem)
- iii. $0 < T < T_c$: $\frac{\partial B_{\rm cth}}{\partial T} < 0$, $B_{\rm cth} > 0$ and therefore $\Delta s > 0$
 - → entropy density larger in N-phase than in S-phase
 - → S-phase is phase with larger order (correlation of electrons to Cooper pairs)
 - ⇒ since $\Delta s > 0$ also $\frac{\Delta Q}{V} = T_c(B_{\rm ext})\Delta s > 0$ (finite latent heat, 1st order phase transition)



temperature dependence of specific heat

we use the general relations

$$C_p = T \left(\frac{\partial S}{\partial T} \right)_{p, B_{\text{ext}}} = -T \left(\frac{\partial^2 G}{\partial T^2} \right)_{p, B_{\text{ext}}}$$

and
$$\Delta g = g_n(T) - g_s(T) = \frac{B_{\rm cth}^2(T)}{2\mu_0}$$

• jump of specific heat at $T = T_c$

$$\Delta c_{T=T_c} = -\frac{T_c}{\mu_0} \left(\frac{\partial B_{\text{cth}}}{\partial T} \right)_{T=T_c}^2$$

- > agrees well with experiment
- $ightharpoonup c_s = c_n$ at temperature, where $\Delta s = s_n s_s = \max$

for
$$B_{\text{cth}}(T) = B_{\text{cth}}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$
: $\Delta c_{T=T_c} = -\frac{8}{T_c} \frac{B_{\text{cth}}^2(0)}{2\mu_0}$

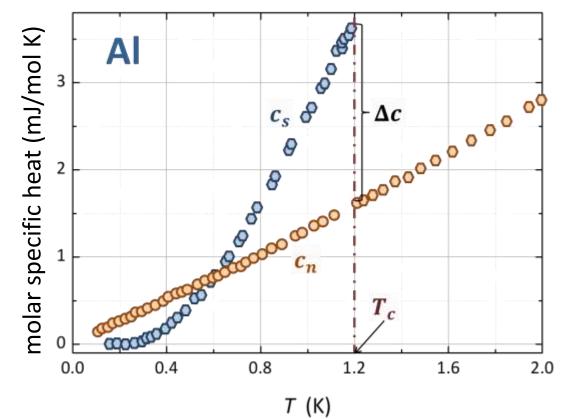
$$\Delta c_{T=T_c} = -\frac{8}{T_c} \frac{B_{\rm cth}^2(0)}{2\mu_0}$$

Rutgers formula

$$\Delta c(T) = c_n(T) - c_s(T) = -\frac{T}{\mu_0} \left[B_{\text{cth}} \frac{\partial^2 B_{\text{cth}}}{\partial T^2} + \left(\frac{\partial B_{\text{cth}}}{\partial T} \right)^2 \right]$$

< 0 for all Tdecreases with T

 $\rightarrow \Delta c$ changes sign



determination of the Sommerfeld coefficient y:

- for $T \ll T_c$, we can neglect c_s compared to c_n
- we use $c_n(T) = \gamma \cdot T$ ($\gamma = \text{Sommerfeld coefficient}$)

• with $B_{\rm cth}(T) = B_{\rm cth}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$, we obtain $\frac{\partial^2 B_{\rm cth}}{\partial T^2} = -2B_{\rm cth}(0)/T_{\rm c}^2$ and hence:

$$\gamma = \frac{4}{T_c^2} \, \frac{B_{\rm cth}^2(0)}{2\mu_0}$$

 \rightarrow by measuring T_c und $B_{cth}(0)$, we can determine γ and, in turn, the density of states at the Fermi level, $D(E_{\rm F})$

$$\gamma = \frac{\pi^2}{3} k_{\rm B}^2 \frac{D(E_{\rm F})}{V}$$
 (free electron gas model)

• with $c_n(T_c) = \gamma T_c$ we obtain

$$\frac{\Delta c_{T=T_c}}{c_n} = -\frac{8}{\gamma T_c^2} \frac{B_{\rm cth}^2(0)}{2\mu_0}$$

• BCS theory predicts $g_n-g_s(0)=\frac{B_{\mathrm{cth}}^2(0)}{2\mu_0}=\frac{1}{4}D(E_F)\Delta^2(0)/V$, then with $\gamma=\frac{\pi^2}{3}~k_{\mathrm{B}}^2\frac{D(E_{\mathrm{F}})}{V}$ we obtain

$$\frac{\Delta c_{T=T_c}}{c_n} = -\frac{8}{\frac{\pi^2}{3} k_{\rm B}^2 \frac{D(E_{\rm F})}{V} T_c^2} \frac{\frac{1}{4} D(E_F) \Delta^2(0)}{V}$$

$$\frac{\Delta c_{T=T_c}}{c_n} = -\frac{6}{\pi^2} \left(\frac{\Delta(0)}{k_{\rm B}T_c}\right)^2$$

note that the factor $\frac{6}{\pi^2} \simeq 0.6079$... comes from $B_{\rm cth}(T) = B_{\rm cth}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$ (phenomenological approximation), BCS theory yields instead 0.4583 ...

$\Delta \mathbf{c}_{T=T_c}/\mathbf{c}_{\mathbf{n}}$	Al	Nb	Pb
direct measurement	1.4	1.9	2.7
derived from measured $B_{\mathrm{cth}}(0)$, T_c , γ	1.6	1.9	2.4
derived from measured $\Delta(0)$, T_c with factor $6/\pi^2$	1.7	2.2	2.9
derived from measured $\Delta(0)$, T_c with factor 0.4583	1.3	1.7	2.2

larger numbers for Pb caused by stronger electron-phonon coupling (discussed later)

calculation of $c_s(T)$ at low temperatures

$$c_n(T) - c_s(T) = -\frac{T}{\mu_0} \left[B_{\rm cth} \frac{\partial^2 B_{\rm cth}}{\partial T^2} + \left(\frac{\partial B_{\rm cth}}{\partial T} \right)^2 \right]$$

$$B_{\text{cth}}(T) = B_{\text{cth}}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

$$\frac{\partial B_{\text{cth}}(T)}{\partial T} = -B_{\text{cth}}(0) \frac{2T}{T_c^2}, \quad \frac{\partial^2 B_{\text{cth}}(T)}{\partial T^2} = -B_{\text{cth}}(0) \frac{2}{T_c^2}$$

$$c_n(T) - c_s(T) = -\frac{T}{\mu_0} \left[B_{\text{cth}}(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right] \left(-B_{\text{cth}}(0) \frac{2}{T_c^2} \right) + \left(-B_{\text{cth}}(0) \frac{2T}{T_c^2} \right)^2 \right]$$

$$c_n(T) - c_s(T) = -\frac{4}{T_c} \frac{B_{\text{cth}}^2(0)}{2\mu_0} \left[-\left[1 - \left(\frac{T}{T_c} \right)^2 \right] \left(\frac{T}{T_c} \right) + 2\left(\frac{T}{T_c} \right)^3 \right] = -\frac{4}{T_c} \frac{B_{\text{cth}}^2(0)}{2\mu_0} \left[3\left(\frac{T}{T_c} \right)^3 - \left(\frac{T}{T_c} \right) \right]$$

• with
$$\gamma=rac{4}{T_c^2}\,rac{B_{
m cth}^2(0)}{2\mu_0}$$
 we obtain $c_n(T)=\gamma T=rac{4T}{T_c^2}\,rac{B_{
m cth}^2(0)}{2\mu_0}$

- obviously, the phenomenological description predicts $c_s(T) \propto T^3$, therefore experimentalists initially tried to fit their data to a power law dependence
- later BCS predicts the correct exponential temperature dependence

volume change at S/N phase transition:

we use the general relation

$$V = \left(\frac{\partial G}{\partial p}\right)_{T, B_{\text{ext}}}$$

and
$$\Delta g = g_n(T) - g_s(T) = \frac{B_{\rm cth}^2(T)}{2\mu_0}$$

$$\qquad \qquad \left(\frac{V_n - V_s}{V_n}\right)_{T, B_{\text{cth}}(T)} = \frac{B_{\text{cth}}(T)}{\mu_0} \left(\frac{\partial B_{\text{cth}}(T)}{\partial p}\right)_{T, B_{\text{cth}}(T)}$$

 \rightarrow volume change approaches zero for $T \rightarrow T_c$ since $B_{\rm cth}(T) \rightarrow 0$

$$ightharpoonup T < T_c$$
: usually $V_s > V_n$ as $\frac{\partial B_{\mathrm{cth}}(T)}{\partial p} < 0 \Rightarrow$ superconductor has a larger volume

typical relative volume change is very small: $\frac{V_n - V_s}{V_n} \approx 10^{-7} - 10^{-8}$

thermodynamic properties of type-II superconductors

- $B_{\rm ext} < B_{c1}$ (Meißner-phase): same behavior of type-I and type-II superconductors
- $B_{c1} < B_{ext} < B_{c2}$ (Shubnikov-phase): different (more complicated) behavior of type-II superconductors
 - \rightarrow functional form of $g_s(T, B_{\text{ext}})$ depends on details

