Elektronendotierung
und strukturelle Effekte in
ferromagnetischen Doppelperrowskiten

Diplomarbeit
von
Stephan Geprägs

Betreuer: PD Dr. Lambert Alff
München, den 27. Juli 2004
Inhaltsverzeichnis

1 Einleitung 1

2 Physik der Doppelperowskite 3
 2.1 Kristallstruktur 3
 2.2 Grundlagen des Magnetismus 5
 2.3 Hundsche Regeln 7
 2.4 Kristallfeld 8
 2.5 Austauschwechselwirkungen 10
 2.5.1 Magnetische Ordnungsstrukturen 10
 2.5.2 Direkte Austauschwechselwirkung 13
 2.5.3 Indirekte Austauschwechselwirkungen 14
 2.5.4 Quantitative Betrachtung des Austauschprozesses 19
 2.5.5 Das Sarma-Fang-Kanamori-Terakura-Modell 22
 2.6 Bandstrukturrechnungen 26
 2.7 Elektronendotierung 30
 2.8 Stabilität der ferromagnetischen Ordnung 33
 2.9 Effekte nicht-idealer Kristallstrukturen 35
 2.9.1 Strukturelle Effekte 35
 2.9.2 Unordnungseffekte 40

3 Experimentelle Techniken 43
 3.1 Thermische Analyse 43
 3.1.1 Thermogravimetrie 43
 3.1.2 Differenzthermoanalyse und Dynamische Differenz-Kalorimetrie 45
 3.2 Röntgendiffraktometrie 46
 3.3 Neutronenstreuung 49
 3.4 Magnetisierungsmessung 54
 3.5 Magnetotransport 55
Abbildungsverzeichnis

2.1 Schematische Darstellung des Perowskits LaMnO$_3$ und des Doppel-
perowskits Sr$_2$CrWO$_6$.. 4
2.2 Schematische Darstellung der $3d$-Orbitale .. 8
2.3 Hundscbe Kopplungenergie und Kristallfeldauflspaltung von Cr$^{3+}$ und
Fe$^{3+}$ in oktaedrischer Sauerstoffumgebung ... 9
2.4 Mögliche Ordnungszustände von Elektronenspins 10
2.5 Übergang zwischen ferromagnetischer und paramagnetischer Ordnung 11
2.6 Magnetisierung eines Ferromagneten ... 12
2.7 Schematische Darstellung des Superaustausches 15
2.8 Schematische Darstellung des Doppelaustausches in La$_{1-x}$Sr$_x$MnO$_3$ 17
2.9 Schematische Darstellung des Doppelaustausches in Sr$_2$FeMoO$_6$ bzw.
Sr$_2$CrWO$_6$.. 18
2.10 Schematische Darstellung des effektiven Hüpfergusses in Sr$_2$FeMoO$_6$ 21
2.11 SFKT-Modell ... 22
2.12 Schematische Darstellung der Zustandsdichte für Sr$_2$FeMoO$_6$ und
Sr$_2$CrWO$_6$ im SFKT-Modell ... 23
2.13 Schematische Darstellung der magnetischen Ordnung in Sr$_2$CrWO$_6$ 25
2.14 Bandstrukturrechnung von Sr$_2$FeMoO$_6$... 28
2.15 Bandstrukturrechnung von Sr$_2$CrWO$_6$... 29
2.16 Elektronendotierung im SFKT-Modell .. 30
2.17 Curie-Temperatur in Abhängigkeit der Bandfüllung 31
2.18 Stabilität der ferromagnetischen Ordnung in Sr$_2$FeMoO$_6$ 34
2.19 Schematische Darstellung wichtiger Tilt-Gruppen 37
2.20 Übergänge zwischen den Symmetriegruppen ... 38
2.21 Unordnungsdefekte in Sr$_2$FeMoO$_6$... 40
2.22 Curie-Temperatur in Abhängigkeit von der Unordnung 42
3.1 Schematische Darstellung der TG bzw. DSC Apparatur 44
3.2 Messprinzip von TG und DTA bzw. DSC ... 45
3.3 Schematischer Darstellung des 2-Kreis-Röntgendiffraktometers 46
3.4 Schematische Darstellung der Pulverdiffraktometrie 47
3.5 Institut Laue-Langevin (ILL) und European Synchrotron Radiation Fa-
cility (ESRF) .. 50
3.6 Schematische Darstellung des Instrumentes D20 51
3.7 Schematischer Vergleich zwischen der Streuung mit Neutronen und der
Röntgenstreuung .. 52
3.8 Schematischer Darstellung des Gradiometers zweiter Ordnung 54

4.1 TG und DTA des Kalzinierungsprozesses 57
4.2 Stabilitätsmessung von Sr$_2$FeMoO$_6$... 59
4.3 Sauerstoffpartialdrücke verschiedener Wolfram- und Chromvalenzen 61
4.4 Röntgendiffraktometrie-Messung nach den einzelnen Sinterschritten 63
4.5 Konzentrationen der verschiedenen Phasen während des Herstellungs-
prozesses ... 64
4.6 SEM Aufnahme der Sr$_{1.50}$La$_{0.50}$CrWO$_6$ Probe 65
4.7 Thermogravimetrie-Messung des letzten Prozessschrittes 66

5.1 Röntgen-Pulverdiffraktometrie-Messung der Sr$_2$CrWO$_6$ Probe 69
5.2 Bezeichnung der Sauerstoff-Ionen und der Ionenabstände der Oktaeder
CrO$_6$ und WO$_6$.. 73
5.3 Strukturelle Übergänge in A$_2$CrWO$_6$ (A = Ca und Sr) 74
5.4 Schematische Darstellung der Einheitszelle von Ba$_3$Cr$_2$WO$_9$ 76
5.5 Magnetisierung der A$_2$CrWO$_6$ (A = Ca und Sr) Proben als Funktion
der Temperatur .. 77
5.6 Einfluss unterschiedlicher Chrom- bzw. Wolframkonzentrationen auf
das magnetische Verhalten .. 78
5.7 Magnetisierung der A$_2$CrWO$_6$ (A = Ca und Sr) Proben als Funktion
des äußeren Feldes .. 80
5.8 Magnetisierung der Ba$_3$CrWO$_6$ Probe als Funktion der Temperatur 81
5.9 Magnetisierung der Ba$_3$CrWO$_6$ Probe als Funktion des äußeren Feldes 82
5.10 Spezifischer Widerstand der Sr$_2$CrWO$_6$ Probe in Abhängigkeit von der
Temperatur ... 85
Tabellenverzeichnis

4.1	Herstellung von Sr$_2$FeMoO$_6$	58
4.2	Herstellung von Sr$_2$CrWO$_6$	62
5.1	Phasenanalyse	70
5.2	Kristallstruktur von A_2CrWO$_6$ ($A = \text{Ca und Sr}$)	71
5.3	Strukturelle Effekte in Sr$_2$CrWO$_6$	72
5.4	Kristallstruktur von Ba$_2$CrWO$_6$	75
5.5	Korrelation zwischen strukturellem und magnetischem Übergang	83
5.6	Gitterkonstanten und Unordnung der Sr$_{2-x}$La$_x$FeMoO$_6$ Proben	103
Kapitel 1

Einleitung

Der Magnetismus zählt zu den ältesten Phänomenen und Problemen der Festkörperphysik, besitzt aber andererseits höchste Aktualität in der modernen Forschung. Insbesondere der Ferromagnetismus bildet die tragende Säule in neuen Gebieten der Informationstechnologie wie etwa der Spinelektronik. Hierbei wird neben der Ladung der Spin des Elektrons als zusätzlicher Freiheitsgrad ausgenutzt.

Ein viel versprechender Kandidat ist hierbei die Klasse der Doppelperowskite, da sie eine hohe Übergangstemperatur mit einer zumindest theoretisch vollständigen Spinpolarisation vereinen [54]. Im Unterschied zu klassischen elementaren Ferromagneten spielen in den Doppelperowskiten sogenannte starke elektronische Korrelationen eine wichtige Rolle. Dies macht sie auch für grundlagenphysikalische Fragestellungen in diesem aktuellen Forschungsgebiet interessant.

Ferromagnetische Doppelperowskite zeigen ein sehr starkes magnetisches Verhalten [77], obgleich die magnetischen Ionen dieser Verbindungen weit voneinander entfernt sind. Somit ist für diesen ausgeprägten Ferromagnetismus eine starke Wechselwirkung
zwischen den Ionen nötig. Die Ladungsträgerdotierung ist hierbei ein wichtiges Werkzeug zur näheren Untersuchung dieser Wechselwirkung.

Im Falle der Doppelperowskite wurde jüngst durch Elektronendotierung eine dramatische Erhöhung der Übergangstemperatur festgestellt [70]. Diese Beobachtung ist einerseits offensichtlich relevant für Anwendungen, andererseits stellt sie eine Herausforderung für die theoretische Beschreibung dieser Materialien dar. Des Weiteren spielen strukturelle Effekte in diesen Materialsystemen [86] ebenso eine entscheidende Rolle bei der Stärke der beschriebenen Wechselwirkung.

Im Rahmen dieser Diplomarbeit sollten diese Aspekte ausgehend von [82] in den Materialsystemen Sr$_2$CrWO$_6$ und Sr$_2$FeMoO$_6$ näher untersucht werden. Die Elektronendotierung stellte hierbei das Hauptaugenmerk dar.

Kapitel 2

Physik der Doppelperowskite

Die besonderen magnetischen und elektrischen Eigenschaften ferromagnetischer Doppelperowskite werden ausgehend von der Kristallstruktur in diesem Kapitel behandelt.

2.1 Kristallstruktur

Die Perowskitfamilie kann durch Substitution der A- und M-Kationen enorm erweitert werden. Beispielsweise führt die teilweise Ersetzung von M-Kationen durch

Abbildung 2.1 zeigt eine Einheitszelle des Doppelperowskits Sr$_2$CrWO$_6$. Die zwei ineinander gefügten AMO_3 - bzw. $AM'O_5$-Untergitter bewirken eine Verdopplung der Gitterparameter im Vergleich zu denjenigen einer einfachen Perowskitstruktur.

Wegen der unglaublichen Vielfalt der Doppelperowskitverbindungen werden in dieser Diplomarbeit nur Verbindungen $A_2MM'O_6$ betrachtet, wobei A ein Erdalkalimetall (Ca, Sr, Ba), M ein Übergangsmetall der 3. Periode (Cr, Fe) und M' ein Übergangsmetallion der 4. Periode (Mo) oder 5. Periode (W, Re) ist.

In Abbildung 2.1 wurde die Doppelperowskitverbindung Sr$_2$CrWO$_6$ in der idealen Fm$\bar{3}$m-Symmetrie dargestellt. Nur in dieser idealen Doppelperowskitstruktur liegt eine kubische Symmetrie vor. Die Natur bevorzugt aber offenbar strukturelle Verzer-
2.2. GRUNDLAGEN DES MAGNETISMUS

Verzerrungen, so dass eine viel größere Anzahl von Verbindungen mit einer nicht idealen Perowskitstruktur existieren. Die häufigste Verzerrung resultiert aus der Verdrehung der Sauerstoffoktaeder. Nach Goldschmidt kann diese in erster Näherung durch den Toleranzfaktor \(t \) beschrieben werden:

\[
t = \frac{r_A + r_O}{\sqrt{2} \left[\left(\frac{r_M^2}{2} + \frac{r_M'}{2} \right) + r_O \right]} \tag{2.1}
\]

Dabei stellen \(r_A \), \(r_M \) bzw. \(r_M' \) und \(r_O \) die empirischen Ionenradien dar. Ist \(t \approx 1 \), kristallisiert die Verbindung in der idealen kubischen Symmetrie. Ist dies nicht der Fall, ergeben sich verschiedene strukturelle Veränderungen, welche großen Einfluss insbesondere auf die elektronischen und magnetischen Eigenschaften ausüben. Bei der nun folgenden Beschreibung der elektronischen und magnetischen Eigenschaften der Doppelperowskite wird zunächst von der idealen Perowskitstruktur mit \(t \approx 1 \) ausgegangen. Anschließend werden die verschiedenen Einflüsse der nicht-idealen Struktur beschrieben.

\section{2.2 Grundlagen des Magnetismus}

Die Reaktion einer Materie, die eine Störung durch ein äußeres elektromagnetisches Feld erfährt, kann im Grenzfall kleiner Felder durch die sogenannte magnetische Suszeptibilität

\[\chi = \frac{M}{H} \tag{2.2} \]

charakterisiert werden, wobei \(M \) die Magnetisierungsdichte und \(H \) das äußere Feld darstellen. \(\chi \) wird häufig auch als "response-Größe" bezeichnet. Im Allgemeinen ist die Suszeptibilität ein feld- und temperaturabhängiger Tensor.

Die Berechnung der Magnetisierung erfordert die Lösung eines quantenmechanischen Problems, in welchem die Wechselwirkung der Materie mit einem externen Feld im Hamiltonoperator \(\mathcal{H} \) berücksichtigt wird. Im Falle eines Atoms mit \(Z \) Elektronen kann der Hamiltonoperator in einem äußeren Magnetfeld in einen nichtrelativistischen Anteil, relativistische Korrekturen und einer Kopplung mit dem äußeren Feld zerlegt werden:

\[\mathcal{H} = \mathcal{H}_{nr} + \mathcal{H}_{\text{rel}} + \mathcal{H}_{\text{field}} \tag{2.3} \]
Als relativistische Korrektur wird hier nur die Spin-Bahn-Kopplung $H_{SO} = \sum_i I_i s_i$ berücksichtigt, wobei I und s den Bahndrehimpuls bzw. Spin darstellen.

Die weitere Berechnung ergibt:

$$H = H_{B=0} + \mu_B \left(L + 2S \right) B + \frac{e^2}{8m_e} \sum_{i=1}^{Z} \left(B \times r_i \right)^2$$ \hspace{1cm} (2.4)

Der erste Term beschreibt das Atom ohne Magnetfeld. In ihm ist die Coloumbwechselwirkung und die Spin-Bahn-Kopplung berücksichtigt. Der mittlere Term beschreibt den paramagnetischen und der letzte Term den diamagnetischen Anteil. Hierbei ist $\mu_B = \frac{e\hbar}{2m_e c}$ das Bohrsche Magneton, B die magnetische Flussdichte und m_e die Masse des Elektrons.

Bei der Berechnung des Operators des magnetischen Momentes $m = -\frac{\partial H}{\partial B}$ wird deutlich, dass der diamagnetische Term mit einem induzierten Moment, welches proportional zum äußeren Feld ist, korrespondiert. Dieses Moment ist dem äußeren Feld entgegengesetzt. Der paramagnetische Term hingegen beschreibt permanente Momente, welche ohne Feld existieren und durch dieses ausgerichtet werden. Die Magnetisierungskurve $M(H)$ eines Paramagneten steigt im Grenzfall kleiner Felder linear an und geht bei hohen Feldern bzw. kleinen Temperaturen in die Sättigung über. Dieses Verhalten wird durch die Brillouin-Funktion $B_J(x)$ mit $x = \frac{\mu_B B}{k_B T}$ wiedergegeben [2]:

$$B_J(x) = \frac{2J+1}{2J} \coth \left(\frac{2J+1}{2J} x \right) - \frac{1}{2J} \coth \left(\frac{1}{2J} x \right)$$ \hspace{1cm} (2.5)

J bezeichnet hierbei den Gesamtdrehimpuls. Die Entwicklung der Funktion im Grenzfall kleiner x führt zum Curie-Gesetz mit der Curie-Konstanten C:

$$\chi_{\text{para}} = \frac{M}{H} = \frac{C}{T}$$ \hspace{1cm} (2.6)

Hierbei wird deutlich, dass die thermische Energie der Sättigung entgegenwirkt.
2.3 Hundsche Regeln

\[H_C >> H_{SO} \]

(2.7)
gelten einfache Regeln für die Besetzung des Grundzustandes (Hundsche Regeln):

3. Der Gesamtdrehimpuls \(J\) berechnet sich aufgrund der Spin-Bahn-Kopplung zu \(J = |L - S|\) für weniger als halbgefüllte Schalen und sonst zu \(J = L + S\).

KAPITEL 2. PHYSIK DER DOPPELPEROWSKITE

2.4 Kristallfeld

Bis jetzt wurde das magnetische Verhalten isolierter Atome bzw. Ionen behandelt. Im Festkörper können die Ionen natürlich nicht als frei betrachtet werden. Die Eingliederung der Ionen in eine Kristallstruktur hat einen großen Einfluss auf die magnetischen und elektrischen Eigenschaften.

Die Kristallumgebung erzeugt ein nichtzentrales, elektrostatisches Kristallpotenzial \(V_{kr} \), das auf die Elektronen des magnetischen Ions wirkt. So führt zum Beispiel die Coulombabstoßung der \(O^{2-} \)-Ionen der Sauerstoffoktaeder, welche in einer Perowskitstruktur die 3d-Übergangsmetallionen umgeben, zu einer Aufhebung der fünffachen Entartung der 3d-Orbitale. Hierbei wird die Symmetrie erniedrigt und die Zustände werden in zwei Niveaus \(e_g \) und \(t_{2g} \) aufgespalten, wobei \(e_g \) zweifach und \(t_{2g} \) dreifach entartet ist (siehe Abbildung 2.2).

\[\begin{align*}
\text{e}_g & : d_{3z^2-r^2}, \quad d_{x^2-y^2}, \quad d_{xy} \\
\text{t}_{2g} & : d_{yz}, \quad d_{zx}
\end{align*}\]

Abbildung 2.2: Schematische Darstellung der 3d-Orbitale [109]

Aus Abbildung 2.2 geht hervor, dass sich die \(t_{2g} \)-Orbitale auf den Achsendiagonalen befinden, dadurch ist im Vergleich zu den \(e_g \)-Orbitalen der Überlapp mit den \(p \)-Orbitalen der Sauerstoffionen geringer. Somit haben wegen der elektrostatischen Abstoßung die \(e_g \)-Orbitale eine höhere Energie und die \(t_{2g} \)-Orbitale eine niedrigere als die \(d \)-Orbitale einer sphärischen Umgebung. Die \(e_g \)- und \(t_{2g} \)-Orbitale sind untereinander in einer oktaedrischen Kristallumgebung äquivalent und besitzen dadurch dieselbe Energie.

Abbildung 2.3: Hundsche Kopplungsenergie und Kristallfeldaufspaltung von Fe$^{3+}$ und Cr$^{3+}$ in oktaedrischer Sauerstoffumgebung

In Abbildung 2.3 ist die Hundsche Kopplungsenergie und die Kristallfeldaufspaltung für Fe$^{3+}$ und Cr$^{3+}$ in oktaedrischer Sauerstoffumgebung dargestellt. Die intratjonische Austauschenergie J_H ist in diesen zwei Ionen noch größer als die Kristallfeldaufspaltung Δ, somit ist die 1. Hundssche Regel nicht verletzt und der sogenannte high-spin-Zustand mit maximalem Gesamtspin S wird bevorzugt. Bandstrukturrechnungen zeigen, dass die Kristallfeldaufspaltung in Cr$^{3+}$ mit $\Delta_{Cr} \approx 2\text{eV}$ [45] etwas größer ist als in Fe$^{3+}$. Andererseits ist die Hundsche Kopplungsenergie von Cr$^{3+}$ im Vergleich zu Fe$^{3+}$ kleiner. Der Grund hierfür liegt in der Valenzkonfiguration von Cr$^{3+}$ und Fe$^{3+}$. Offensichtlich hat Cr$^{3+}$ weniger Elektronen als Fe$^{3+}$ und damit auch eine schwächere Hundsche Kopplung (vgl. [83]).
2.5 Austauschwechselwirkungen

2.5.1 Magnetische Ordnungsstrukturen

Dia- und Paramagnetismus beruhen auf voneinander unabhängigen magnetischen Momenten. Beim kollektiven Magnetismus hingegen wechselwirken die Momente untereinander. Der zugrundeliegende Mechanismus ist die quantenmechanische Austauschwechselwirkung, die auf der Fermistatistik und der Coulomb-Wechselwirkung beruht. Eine wesentliche Konsequenz dieser Wechselwirkung ist die Ausbildung magneticer Ordnungszustände unterhalb einer kritischen Temperatur (siehe Abbildung 2.4).

\[
\chi_{\text{para}} = \frac{M}{H} = \frac{C}{T - \Theta}
\] (2.8)

Zum Beispiel richten sich die benachbarten Momente in einem Ferromagneten parallel und in einem Antiferromagneten antiparallel aus. Aus dem ferromagnetischen Ordnungszustand resultiert ein spontanes magnetisches Moment, d.h. ein Moment, das auch ohne äußeres Magnetfeld vorhanden ist. Die langreichweitige magnetische Ordnung ist stabil, solange die thermische Energie klein gegenüber der Austauschwechselwirkung ist. Bei genügend hoher Temperatur gewinnt die Entropie und es findet ein Phasenübergang von der magnetisch geordneten Phase in die ungeordnete paramagnetische Phase statt (siehe Abbildung 2.5). Das magnetische Verhalten in dieser ungeordneten paramagnetischen Phase kann durch das Curie-Weiss-Gesetz beschrieben werden.
2.5. AUSTAUSCHWECHSELWIRKUNGEN

Abbildung 2.5: Übergang zwischen ferromagnetischer und paramagnetischer Ordnung [2]

Mittels Gleichung (2.8) kann eine Unterscheidung zwischen Antiferromagnetismus und Ferromagnetismus stattfinden. Θ stellt hierbei die Übergangstemperatur dar und wird bei einer antiferromagnetischen Ordnung als Néel-Temperatur (Θ = −TN) und bei einer ferromagnetischen als Curie-Temperatur (Θ = TC) bezeichnet.

In Abbildung 2.6 (a) ist die Magnetisierung eines Ferromagneten als Funktion der Temperatur dargestellt. Bei T = 0 ist der Ferromagnet vollständig geordnet. Diese Situation ist allerdings, bedingt durch die quantenmechanische Nullpunktsenergie, nicht statisch. Bei endlicher Temperatur werden nicht nur Gitterschwingungen, sondern auch Spinwellen, deren quantisierte Einheiten als Magnonen bezeichnet werden, angeregt. Der Einfluss dieser angeregten Spinwellen auf die makroskopische Magnetisierung wird bei tiefen Temperaturen durch das Blochsche $T^{3/2}$-Gesetz beschrieben:

\[
\frac{M(0) - M(T)}{M(0)} \propto T^{3/2}
\]

(2.9)

Nahe der kritischen Temperatur TC hingegen besitzt die Magnetisierung folgendes Verhalten:

\[
\frac{M(T)}{M(0)} \propto (T_C - T)^\beta
\]

(2.10)
β stellt hierbei einen kritischen Exponenten dar. Kritische Exponenten charakterisieren einen Phasenübergang. Sie hängen nicht vom jeweiligen physikalischen System ab, sondern nur von der Art des Phasenübergangs.

Bei der Klassifizierung des Phasenübergangs kann die Magnetisierung als Ordnungsparameter identifiziert werden. In Abbildung 2.6 (a) ist deutlich zu erkennen, dass der Ordnungsparameter bei der kritischen Temperatur T_C stetig gegen 0 geht. Dieses Verhalten charakterisiert nach Landau einen Phasenübergang zweiter Ordnung.

\[M(T)/M(0) \sim \begin{cases} \alpha (T - T_C) & \text{für } T < T_C \\ 1 - \alpha (T - T_C) & \text{für } T > T_C \end{cases} \]

Abbildung 2.6: Magnetisierung eines Ferromagneten als Funktion der Temperatur (a) und eines äußeren Feldes (b)

Das Verhalten der Magnetisierung eines Ferromagneten in einem äußeren Feld ist ebenfalls in Abbildung 2.6 (b) dargestellt. Die gezeigte Hysterese wird hauptsächlich durch die Domänen beeinflusst. Domänen eines Ferromagneten sind kleine Bereiche, innerhalb derer die lokale Magnetisierung gesättigt ist. Die Richtung der Magnetisierung in verschiedenen Domänen muss aber nicht parallel sein, wie man es aus Abbildung 2.4 erwarten würde.

Die Zunahme der Magnetisierung einer ferromagnetischen Probe unter dem Einfluss eines äußeren Magnetfeldes erfolgt über zwei voneinander unabhängige Prozesse. In schwachen äußeren Feldern wächst das Volumen der Domänen, die in Bezug auf das äußere Feld günstiger orientiert liegen, auf Kosten der ungünstig orientierten. Dies wird als reversible und irreversible Wandverschiebung bezeichnet. In starken äußeren Feldern dreht sich die Magnetisierung der Domänen in die Richtung des Feldes und...

Eine weitere fundamentale Eigenschaft geordneter Phasen ist das Vorhandensein einer gebrochenen Symmetrie, d.h. im ferromagnetischen Zustand besitzt das System durch die Richtung des Magnetisierungsvektors eine ausgezeichnete Richtung.

2.5.2 Direkte Austauschwechselwirkung

Die für die spontane Magnetisierung verantwortliche Austauschwechselwirkung ist rein quantenmechanischen Ursprungs und klassisch nicht erklärbar. Sie ist eine unmittelbare Folge des Pauli-Prinzips: Die Matrixelemente der elektrostatischen Coulomb-Wechselwirkung zwischen den geladenen Teilchen müssen total antisymmetrisch sein. Mittels eines einfachen Zwei-Elektronen-Systems kann gezeigt werden, dass das Pauli-Prinzip zu magnetischen Effekten führen kann, ohne dass der Hamiltonoperator des Systems selbst spinabhängig ist [21]. Entscheidend ist hierbei, dass die beiden Elektronen ununterscheidbare Fermiteilchen sind und deshalb die Gesamtwellenfunktion total antisymmetrisch sein muss. Der spinunabhängige Hamiltonoperator \mathcal{H} kann dann durch einen effektiven Austausch-Hamiltonoperator $\mathcal{H}_{\text{exch}}$ ersetzt und für Viel- elektronensysteme verallgemeinert werden. Daraus folgt der Hamiltonoperator des Heisenberg-Modells:

$$\mathcal{H}_{\text{exch}} = - \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \quad (2.11)$$

J_{ij} wird als Kopplungskonstante bezeichnet. Es entsteht eine antiferromagnetische Kopplung, falls die Kopplungskonstante $J_{ij} < 0$ ist und eine ferromagnetische falls $J_{ij} > 0$ vorliegt.

2.5.3 Indirekte Austauschwechselwirkungen

Das Modell des direkten Austausches kann somit nicht die starke ferromagnetische Wechselwirkung in den Doppelperowskitverbindungen erklären. Es gibt jedoch eine Reihe von indirekten Austauschmechanismen, die nun im Folgenden diskutiert werden.

Superaustausch

Der Hamiltonoperator des Hubbard-Modells lässt sich wie folgt darstellen:

\[
H_{SE} = H_t + H_U = -t_{\text{eff}} \sum_{<i,j>,\sigma} \left(c_{i\sigma}^\dagger c_{j\sigma} + c_{i\sigma} c_{j\sigma}^\dagger \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} \tag{2.12}
\]

\(H_t \) stellt hierbei die kinetische Energie dar. Die Operatoren \(c_{i\sigma} \) und \(c_{j\sigma}^\dagger \) vernichten ein Teilchen mit Spin \(\sigma \) am Ort \(i \), bzw. erzeugen ein Teilchen am Platz \(j \). Summiert wird über alle benachbarten Plätze. Das Übergangsmatrixelement \(t_{\text{eff}} \) wird auch häufig als Hüpfamplitude bezeichnet. \(H_U \) misst die Coulombenergie \(U \), die aufgewendet werden muss, um einen doppelbesetzten Zustand zu erhalten und der Besetzungsnulloperator \(n_{i\sigma} \) zählt die Elektronen mit Spin \(\sigma \) am Ort \(i \).

Im Grenzfall \(t = 0 \) ist der Grundzustand gegeben durch eine einfache Besetzung der Zustände. Dies ist ein isolierender Grundzustand. Die Elektronen können nun aber kinetische Energie gewinnen, indem sie sich delokalisieren \((t > 0)\), müssen aber gleichzeitig potenzielle Energie aufbringen. Die Gesamtenergie kann durch diese angeregten Zustände abgesenkt werden. In Abbildung 2.7 ist ein solcher Hüpfprozess am Beispiel zweier Kationen mit \(d_{3z^2-r^2} \)-Orbitalen und einem dazwischenliegenden Anion mit einem \(p_z \)-Orbital dargestellt. Ein Hüpfprozess kommt nur in einer antiferromagnetischen Spinordnung zustande, da das Pauli-Prinzip einen solchen für eine ferromagnetische Spinordnung verbietet. Der in Abbildung 2.7 dargestellte 180° Superaustausch führt somit zu einer antiferromagnetischen Kopplung.
2.5. Austauschwechselwirkungen

Abbildung 2.7: Superaustausch zwischen zwei Kationen und einem dazwischenliegenden Anion [21].

Wird der Superaustausch in das Heisenberg-Modell übertragen, kann die Kopplungskonstante J_{SE} als

$$J_{SE} = 2v_A - \frac{4t_{eff}^2}{U}$$

ausgedrückt werden [2], wobei v_A die direkte Austauschwechselwirkung, welche ferromagnetische Spinordnung favorisiert und $-\frac{4t_{eff}^2}{U}$ den kinetischen Energiegewinn durch den Superaustausch repräsentiert (Störungsrechnung zweiter Ordnung). Die konkurrierenden Spinordnungen werden hierbei durch die unterschiedlichen Vorzeichen deutlich.

Eine allgemeinere Betrachtung des Superaustausches mit mehreren entarteten Orbitalen zeigt, dass sich je nach Besetzung dieser Orbitale durch Mitberücksichtigung der Hundschens Kopplung ferromagnetische bzw. antiferromagnetische Ordnung ergeben kann (Goodenough-Kanamori-Anderson-Regeln, siehe [34]). Dies verdeutlicht, wie eng die orbitale Struktur mit der magnetischen Struktur verküpfht ist.

Frank K. Patterson et al. [77], wie auch Francis S. Galasso et al. [26, 27] beschreiben das magnetische Verhalten der untersuchten Doppelperowskite $\text{Sr}_2\text{FeMoO}_6$ und Sr_2CrWO_6 mittels des Superaustausch-Modells. Die Spins der zwei paramagnetischen Ionen koppeln dabei über das dazwischen liegende Sauerstoffion. Da die paramagnetischen Ionen unterschiedlich sind, resultiert daraus eine ferrimagnetische Ordnung (vgl. [26]). Auch Ogale et al. [75] nehmen als Grundlage ihrer Monte-Carlo-Simulation eine
antiferromagnetische Kopplung hervorgerufen durch den Superaustausch zwischen Fe und Mo in dem Doppelperowskit Sr$_2$FeMoO$_6$ an.

Das Superaustausch-Modell koppelt die Fe d-Orbitale mit den hochentarteten Mo d-Orbitalen. Diese Wechselwirkung kann auch unter der Annahme einer perfekten Ordnung mit einem idealen Bindungswinkel zwischen Fe-O-Mo-O-Fe von 180° nur sehr schwach sein und damit nicht die hohe Curie-Temperatur erklären (vgl. [93]). Des Weiteren ergaben Leitfähigkeitsmessungen an Sr$_2$MMoO$_6$ polykristallinen Proben ($M = Cr, Mn, Fe$ und Co) eine starke Wechselwirkung zwischen der Raumtemperaturleitfähigkeit σ_{300K} und der Curie-Temperatur T_C. Hierbei zeigte sich, dass eine Korrelation zwischen hoher Curie-Temperatur und guter elektrischer Leitfähigkeit besteht. Dies ist ein wichtiger Hinweis darauf, dass delokalisierte Elektronen die Austauschwechselwirkung vermitteln [65]. Dieses beobachtete Verhalten lässt sich nicht mit dem virtuellen Hüpffprozess des Superaustausches in Einklang bringen.

Das Superaustausch-Modell kann somit nicht allein die Ordnung in den ferromagnetischen Doppelperowskiten erklären, ist aber nach heutiger Erkenntnis [83] verantwortlich für die antiferromagnetische Wechselwirkung in den verwandten Verbindungen Ba$_2$CoMO$_6$ mit ($M = Mo, W$) [59], A$_2$NiMoO$_6$ mit ($A = Sr, Ba$) [60] und Sr$_2$FeWO$_6$ [8]. Hier besitzt das nichtmagnetische Ion M die Valenzkonfiguration M^{6+} und somit eine Edelgaskonfiguration. Es kann dann kein Elektron zur Vermittlung des Austauschprozesses zur Verfügung stellen und die Austauschwechselwirkung wird somit durch den Superaustausch dominiert.

Doppelaustausch

2.5. AUSTAUSCHWECHSELWIRKUNGEN

Antiferromagnetischer Grundzustand

Ferromagnetischer Grundzustand

1. Hundsche Regel nicht erfüllt

1. Hundsche Regel erfüllt

Abbildung 2.8: Schematische Darstellung des Doppelaustausches in La$_{1-x}$Sr$_x$MnO$_3$ [34]. Der graue Pfeil bezeichnet die Endposition des Austauschprozesses.

Der Hamiltonoperator \mathcal{H}_{DE} dieses Doppelaustausches lässt sich im Hubbard-Modell im Grenzfall starker Hundsscher Kopplung $J_H/t >> 1$ und ohne Doppelbesetzung einzelner Plätze wie folgt darstellen:

$$\mathcal{H}_{DE} = \mathcal{H}_t + \mathcal{H}_H = -t \sum_{\langle i,j \rangle} \sum_{\sigma} (c^\dagger_{i\sigma} c_{j\sigma} + c^\dagger_{i\sigma} c_{j\sigma}^\dagger) - J_H \sum_j \mathbf{s}_j \cdot \mathbf{S}_j$$ (2.14)

$c^\dagger_{i\sigma}$ und $c_{j\sigma}$ sind hierbei wiederum die Erzeugungs- und Vernichtungsoperatoren und J_H stellt die Hundsche Kopplungssenergie dar. \mathbf{s}_j bezeichnet den Spin des delokalisierten Elektrons und \mathbf{S}_j den Spin der lokalisierten Elektronen. Diese Darstellung des Doppelaustausches wird auch als ferromagnetisches Kondo-Gitter-Modell bezeichnet.

Der Hamiltonoperator \mathcal{H}_{DE} beschreibt die Bewegung eines itineranten e_g-Elektrons vor dem Hintergrund lokalisierter t_{2g}-Elektronen, die den Rumpfspins bilden, wie es bei den dotierten Manganaten La$_{1-x}$Sr$_x$MnO$_3$ der Fall ist. Diese Situation ist in Abbildung 2.8 für La$_{1-x}$Sr$_x$MnO$_3$ gezeigt, wobei der Pfeil unter den Manganionen den Rumpfspin darstellt. Es wird deutlich, dass der ferromagnetische Zustand wegen der Hundschen Kopplungssenergie energetisch bevorzugt ist. Der dargestellte Hüpfprozess führt somit im ferromagnetischen Zustand zu einem Gewinn an kinetischer Energie und zu einer Absenkung der Gesamtenergie.
Abbildung 2.9: Schematische Darstellung des Doppelaustausches in \(\text{Sr}_2\text{FeMoO}_6 \) bzw. \(\text{Sr}_2\text{CrWO}_6 \) [83].

In Abbildung [2.9] ist der Mechanismus des Doppelaustausches für die Doppelperowskitverbindungen \(\text{Sr}_2\text{FeMoO}_6 \) und \(\text{Sr}_2\text{CrWO}_6 \) dargestellt. In \(\text{Sr}_2\text{FeMoO}_6 \) hat \(\text{Fe}^{3+} \) in der \(3d^5 \)-Konfiguration ohne jeglichen Austauschprozess, wie in Kapitel [2.4] beschrieben, eine große Hundsche Kopplungsenergie \(J_H \) und eine Kristallfeldaufspaltung \(\Delta \) in \(e_g \)-Orbitale und \(t_{2g} \)-Orbitale (vgl. Abbildung [2.3]). Die Mo-\(t_{2g} \)-Bänder haben hingegen eine zu vernachlässigbare Aufspaltung bezüglich der Hundschen Kopplung, aber eine große Kristallfeldaufspaltung. Wegen dieser großen Kristallfeldaufspaltung wurden in Abbildung [2.9] nur die Mo-\(t_{2g} \)-Bänder berücksichtigt.

Die Situation ist vergleichbar mit den oben beschriebenen dotierten Manganaten. Das delokalisierte Mo \(4d^1 \)-Elektron spielt nun die Rolle des initeranten \(e_g \)-Elektrons. Es ist somit keine Dotierung nötig, um einen Doppelaustauschprozess zu realisieren. Da, wie aus Abbildung [2.9] ersichtlich, die \(e_g \)- und \(t_{2g} \)-Orbitale von \(\text{Fe}^{3+} \) voll besetzt sind, kann das Mo \(t_{2g} \)-Elektron nicht über den Sauerstoff zu den Fe-Ionen hüpfen. Ein Hüpfprozess ist nur für ein Mo \(t_{2g} \)-Elektron und somit nur bei einer antiparallelen Spinanordnung zwischen den Mo- und Fe-Ionen möglich. Dies impliziert eine parallele Spinanordnung des Fe- und Mo-Untergitters. Ein ferromagnetischer Grundzustand der Fe-Ionen ist somit energetisch bevorzugt. Der Hüpfprozess des Mo \(t_{2g} \)-Elektrons
führt zu einer Absenkung, Mischung und Verbreiterung des t_{2g}-Bandes. Das Ergebnis ist ein halb-metalliches Verhalten, da an der Fermikante nur Spin-\downarrow-Elektronen vorhanden sind.

Das Ausschluss-Prinzip ("exclusion-principle") ist somit verantwortlich für die Kopplung der itineranten und lokализierten Spins. Dies steht im Gegensatz zu den dotierten Manganaten (vgl. [44]). Hier führt die Hundsche Kopplungsentgie J_H zu einer Stabilisierung des ferromagnetischen Grundzustandes. Da aber ein Zusammenhang zwischen T_C und der berechneten elektronischen Bandbreite in metallischen Doppelperowskiten beobachtet wurde [86], muss die magnetische Wechselwirkung über eine Art Doppelaustausch vermittelt werden (vgl. [70]).

2.5.4 Quantitative Betrachtung des Austauschprozesses

Bei der Beschreibung des Doppelaustauschmodells an Doppelperowskitverbindungen mittels des ferromagnetischen Kondo-Gitter-Modells muss beachtet werden, dass nun eine Doppelbesetzung der t_{2g}-Orbitale zugelassen werden muss. Diese Doppelbesetzung kostet die Coulombenergie U und muss im obigen Hamiltonoperator [2.14] berücksichtigt werden. Des Weiteren befinden sich bei den Manganaten die lokализierten t_{2g}-Elektronen und das delokализierte e_g-Elektron auf dem gleichen Gitterplatz, während zum Beispiel bei Sr$_2$FeMoO$_6$ die lokализierten Fe 3d-Elektronen und das delokalisierte Mo 4d-Elektron an verschiedenen Gitterplätzen existieren. Daraus ergeben sich Hüpfprozesse zwischen den Untergitter (Fe-Mo-Hüpfprozesse) und innerhalb eines Untergitters (Mo-Mo-Hüpfprozess). Der folgende effektive Hamiltonoperator, welcher die Bewegung von Spin-\downarrow-Elektronen zwischen d-Orbitalen beschreibt [3,78], schließt diese Überlegungen ein.
\[H_{\text{DP}} = H_{\text{Band}} + H_{\text{Coulomb}} + H_{\text{Hopping}} \]

\[H_{\text{Band}} = E_{\text{Fe}} \sum_{i,\alpha} n_{i\alpha} + E_{\text{Mo}} \sum_{j,\alpha} n_{j\alpha} \]
(2.15)

\[H_{\text{Coulomb}} = U_{\text{Fe}} \sum_{i,\alpha < \beta} n_{i\alpha}n_{i\beta} \]
(2.16)

\[H_{\text{Hopping}} = -V \sum_{i,\alpha,\delta} \left(c_{i+\delta,\alpha}^\dagger c_{i\alpha} + c_{i+\delta,\alpha} c_{i\alpha}^\dagger \right) - V' \sum_{j,\alpha,\gamma} c_{j+\gamma,\alpha}^\dagger c_{j\alpha} \]
(2.17)

\[H_{\text{Band}} \] gibt hierbei die Bandenergie in der Blochbasis an. \(n_{i\alpha} = c_{i\alpha}^\dagger c_{i\alpha} \) bezeichnet den Besetzungszahloperator und \(c_{i(j)\alpha}^\dagger \) bzw. \(c_{i(j)\alpha} \) die Erzeugungs- und Vernichtungsoperatoren am Gitterplatz \(i \) (\(j \)). \(c_{i\alpha}^\dagger \) erzeugt somit ein Elektron im Orbital \(d_\alpha \) (\(\alpha = (xy, yz, xz) \)) mit Spin \(\downarrow \) am Gitterplatz \(i \). Die starke Coulombabstoßung \(U_{\text{Fe}} \) wird hier nur am Gitterplatz \(i \) also nur in den \(\text{Fe}-t_{2g} \)-Orbitalen berücksichtigt. Die Coulombabstoßung kann bis zu \(U_{\text{Fe}} = 7 \, \text{eV} \) stark sein. Die Vektoren \(\delta_\alpha \) (\(\gamma_\alpha \)) koppeln einen Platz mit seinen 4 nächsten Nachbarn (übernächsten Nachbarn), welche in der \(\alpha \)-Ebene liegen. \(V \) gibt die effektive Hüpffamplitude bezüglich des Hüpfpfzes zwischen den beiden Untergittern an und hängt hauptsächlich von \(t_{\text{FM}} \propto t_{\text{Fe-O}}t_{\text{Mo-O}} \) ab. \(V' \) hingegen beschreibt den Hüpfpfprozess zwischen den übernächsten Nachbarn und bezieht somit die Kopplung innerhalb eines Untergitters mit ein. Die effektive Hüpffamplitude \(V' \) ist dabei proportional zu \(t_{\text{Mo-O}}^2t_{\text{O-O}} \) und stellt damit einen Prozess dritter Ordnung dar. In die effektiven Hüpffamplituden gehen ebenfalls die Energieunterschiede zwischen den Eisen- bzw. Molybdän- und den Sauerstoff-Orbitalen ein. Diese werden auch häufig als Ladungstransfer-Energien bezeichnet und sind entscheidend für die Stärke der Hüpfpfprozesse über die Sauerstoff \(2p \)-Orbitale.

Die Sauerstofffreiheitsgrade können mittels Störungsrechnung eliminiert werden, wenn die Landungstransfer-Energien groß gegenüber den absoluten Werten der Hüpffamplituden \(t_{\text{Mo-O}} \) bzw. \(t_{\text{Fe-O}} \) sind [78].

Symmetriebetrachtungen ergeben nun, dass Elektronen in \(xy \)-Orbitalen keine Hüpfpfprozesse zu \(yz \)- bzw. \(zx \)-Orbitalen durchführen können. Des Weiteren zeigt Abbildung 2.10 dass Elektronen in den \(xy \)-Orbitalen nicht aus der \(xy \)-Ebene hüpfen können. Somit bewegen sich Elektronen, die \(xy \)-Orbitale besetzen, nur in der \(xy \)-Ebene (vgl. [4]).
2.5. AUSTAUSCHWECHSELWIRKUNGEN

Der Hüpfprozess t_{FM} zwischen den beiden Untergittern ist also ein zweidimensionaler Prozess.

2.5.5 Das Sarma-Fang-Kanamori-Terakura-Modell

Im Jahr 2000 schlug Sarma \[94\] einen neuen Mechanismus zur Klärung des Magnetismus in Sr\(_2\)FeMoO\(_6\) vor. Fang, Kanamori und Terakura \[47, 20\] verallgemeinerten diesen Mechanismus auf andere Verbindungen (MnAs, Doppelperowskite und organisiche Verbindungen).

Abbildung 2.11: Schematische Darstellung der Zustandsdichte im SFKT-Modell [17]
2.5. AUSTAUSCHWECHSELWIRKUNGEN

Der Mechanismus, welcher oben beschrieben wurde, funktioniert nur, wenn

- die Bandbreite kleiner ist als die Austauschaufspaltung
- die Fermi-Energie innerhalb des p-Bandes liegt

Eine störungstheoretische Behandlung dieses Prozesses ergibt eine Energie differenz zwischen ferromagnetischer und antiferromagnetischer Ordnung [47] von

$$\Delta E = \frac{t^4 D_p(E_F)}{\delta^2}$$ \hspace{2cm} (2.18)

Hierbei bezeichnet t das Transferintegral, δ die mittlere Energiedifferenz zwischen dem d- und p-Band (siehe Abbildung 2.11) und $D_p(E_F)$ die Zustandsdichte des p-Bandes an der Fermikante.

Hybridisierung führt diese Wechselwirkung zu einer Aufspaltung in bindende und antibindende Zustände. Das heißt, durch die Hybridisierung kommt es nicht nur zu einer Mischung der Fe 3d- und der Mo 4d-Zustände, sondern viel wichtiger zu einer Energieverschiebung der Zustände. So werden z.B. die Mo-t_{2g}^{\uparrow}-Zustände zu höheren und die Mo-t_{2g}^{\downarrow}-Zustände zu niedrigeren Energien verschoben. Da die Fermienergie innerhalb des Mo-t_{2g}-Bandes liegt, kommt es zu einem Elektronentransfer von den Mo-t_{2g}^{\uparrow}-Zustände in die Mo-t_{2g}^{\downarrow}-Zustände. Hieraus resultiert ein Gewinn an kinetischer Energie. Dies führt zu einer negativen 100% Spinpolarisation an der Fermikante und somit zu einem halbmetallischen Verhalten.

Das SFKT-Modell erzeugt durch die 3d(Fe)-4d(Mo) Hybridisierung eine starke antiferromagnetische Kopplung zwischen den delokalisierten Mo 4d und den lokализierten Fe 3d Elektronen und führt zu einem induzierten Moment am Molybdän-Gitterplatz. Dies macht deutlich, dass trotz der antiferromagnetisch gekoppelten Untergitter der Eisen- und Molybdän-Ionen die magnetische Ordnung nicht als ferri- sondern als ferromagnetisch bzw. induziert ferrimagnetisch beschrieben werden sollte.

Wie in Abbildung 2.12 deutlich wird, liegt der größte Unterschied zwischen den Doppelperowskiten Sr$_2$CrWO$_6$ und Sr$_2$FeMoO$_6$ darin, dass bei Sr$_2$CrWO$_6$ das Fermi-Niveau zwischen den kristallfeldaufgespalteten Orbitalen von Cr$^{3+}$ zu liegen kommt. Das SFKT-Modell funktioniert, solange sich das W-t_{2g}-Band zwischen dem Cr-t_{2g}-Band und dem Cr-t_{2g}-Band befindet. Ist dies der Fall, hybridisieren die W-t_{2g}-Zustände mit den Cr-t_{2g}-Zuständen. Hieraus resultiert wiederum ein induziertes Moment am Wolfram-Gitterplatz und eine negative Spinpolarisation an der Fermi-Energie.

Die durch Betrachtung der Ionen Fe$^{3+}$ bzw. Cr$^{3+}$ und Mo$^{5+}$ bzw. W$^{5+}$ erhaltene theoretische Sättigungsmagnetisierung ist $M_{\text{sat}} = 4\, \mu_B$ für Sr$_2$FeMoO$_6$ und $M_{\text{sat}} = 2\, \mu_B$ für Sr$_2$CrWO$_6$.

In [94] wird gezeigt, dass die Stärke der antiferromagnetischen Kopplung zwischen dem Leitungsband und den lokalisierten Elektronen ungefähr 18 meV groß ist und damit größer als in den Manganaten. Dies könnte die größere Curie-Temperatur der Perowskite gegenüber den Manganaten erklären (vgl. [94]).
2.6 Bandstrukturrechnungen

Ausgangspunkt dieser Modelle ist die “Dichtefunktional-Theorie“ (DFT) nach Kohn und Hohenberg [36] (Nobelpreis 1998). Sie besagt, dass die Gesamtenergie eines Systems mit wechselwirkenden Elektronen in einem äußeren Potenzial ein Funktional der Elektronendichte $\rho(r)$ ist. Die Elektronendichte des Grundzustandes $\rho_0(r)$ minimiert dabei die Gesamtenergie:

$$E[\rho] \geq E_0 = E[\rho_0] \quad (2.19)$$

Nun kann die Elektronendichte $\rho(r)$ als Summe über die Einteilchendichten φ_i geschrieben werden und man erhält die Kohn-Sham-Gleichungen:

$$(T + V_{\text{el}}(r) + V_{\text{H}}(r) + V_{\text{XC}}(r)) \varphi_i(r) = \varepsilon_i \varphi_i(r) \quad (2.20)$$

Dabei ist T die kinetische Energie, $V_{\text{el}}(r)$ die Coulomb-Energie der Elektronen im Kernpotenzial und $V_{\text{H}}(r)$ die Coulomb-Wechselwirkung der Elektronen untereinander. Das Problem stellt nun das unbekannte Austausch-Korrelations-Potenzial $V_{\text{XC}}(r)$ dar. Für dieses Potenzial müssen geeignete Näherungen eingesetzt werden. In der “local density approximation“ (LDA)-Theorie wird zum Beispiel $V_{\text{XC}}(r)$ durch ein lokales Austauschpotenzial eines homogenen Elektronengases ersetzt. Diese Näherung führt bei schwach korrellierten Systemen zu guten Vorhersagen. Die GGA-Methode erweitert die LDA-Näherung, indem das Austausch-Korrelations-Potenzial nicht nur von der Elektronendichte $\rho(r)$ alleine abhängt, sondern auch von deren räumlicher Änderung $\nabla \rho(r)$.

Die reine GGA- beziehungsweise LDA-Methode kann den Grundzustand stark korrelierter Systeme nicht befriedigend beschreiben. So ist zum Beispiel die Berechnung des Grundzustandes und damit die Beschreibung des magnetischen und elek-

Abbildung 2.14 zeigt die Bandstrukturrechnung von Sr$_2$FeMoO$_6$ mittels der GGA-Methode. Deutlich ist die Energielücke im Spin-\uparrow-Band an der Fermienergie E_F zu erkennen. In dieser Energielücke sind im Spin-\downarrow-Bands allerdings noch Zustände vorhanden. Dies bewirkt ein halbmetallisches Verhalten und somit eine 100% Spinpolarisation im Grundzustand. Im Spin-\downarrow-Band ist außerdem noch die starke Hybridisierung der Mo-4d-t_{2g}- und der Fe-3d-t_{2g}-Zustände mit den Sauerstoff 2p$_\pi$-Zuständen zu erkennen.

Die mittels Bandstruktur berechneten magnetischen Momente an den einzelnen Gitterplätzen variieren sehr stark. Neuere Berechnungen zeigen allerdings hinsichtlich des magnetischen Momentes am nichtmagnetischen Übergangsmetallion eine Überestimmung der antiferromagnetischen Wechselwirkung zwischen den Fe- (Cr-) und Mo- (W-)Ionen (vgl. zum Beispiel [45, 106]).

Aktuelle Bandstukturrechnungen von Sr$_2$CrWO$_6$ mittels der FP-LMTO Methode und einer vollen relativistischen Einbeziehung der Spin-Bahn-Kopplung zeigen, dass das halbmetallische Verhalten zerstört wird. Wie aus Abbildung 2.15 erkennbar ist, ist noch eine sehr geringe Anzahl an Zuständen im Spin-\uparrow-Band an der Fermi-Energie vorhanden. Das bedeutet, dass durch die vollständige Berücksichtigung der Spin-Bahn-
Kopplung die 100% Spinpolarisation zerstört wird. Allerdings kann dieser Effekt im Gegensatz zu Sr$_2$CrReO$_6$ in Sr$_2$CrWO$_6$ vernachlässigt werden, was eine Besonderheit der Sr$_2$CrWO$_6$-Verbindung darstellt. Sr$_2$CrWO$_6$ kann somit näherungsweise immer noch als halbmetallisch bezeichnet werden.

Das Verhalten von Sr$_2$FeWO$_6$ ist ebenfalls mittels Bandstrukturrechnungen erklärbar. Bei der Betrachtung des Periodensystems der Elemente wird deutlich, dass Sr$_2$FeWO$_6$ sehr ähnlich zu Sr$_2$FeMoO$_6$ ist. Somit würde ebenfalls eine starke ferromagnetische Ordnung erwartet werden. Mittels Bandstrukturrechnungen ist nun
2.7 Elektronendotierung

In vorherigen Kapiteln wurde beschrieben, dass die delokalisierten Elektronen die magnetische Wechselwirkung vermitteln. Hieraus resultiert eine ferromagnetische Ordnung. In [111] wird das magnetische Verhalten von Sr$_2$FeMoO$_6$ oberhalb der Curie-Temperatur im paramagnetischen Bereich mittels einer sogenannten “mean-field“-Näherung beschrieben. Eine direkte Konsequenz dieses Modells ist, dass die Stärke der ferromagnetischen Ordnung bestimmt ist durch die Stärke der antiferromagnetischen Kopplung zwischen den lokalisierten und delokalisierten Elektronen und durch die Elektronendichte an der Fermikante (vgl. [24]).

Dies lässt den Schluss zu, dass das Füllen des Mo(W)-t_{2g}-Bandes mit Ladungsträgern eine Möglichkeit zur Veränderung beziehungsweise eventuell zur Erhöhung der Curie-Temperatur und der elektrischen Leitfähigkeit bietet [24].

Abbildung 2.16: Mögliche Änderung der Curie-Temperatur T_C in Abhängigkeit der Bandfüllung in Sr$_2$FeMoO$_6$ im SFKT-Modell

bestimmten Energie über dem Fermi-Niveau erfolgt, wie aus Abbildung 2.16 ersichtlich ist, eine Dotierung in das Mo-t_{2g}-Band. Dies hat eine plötzliche und starke Verringerung der magnetischen Kopplung und damit ein Absinken der Curie-Temperatur T_C zur Folge. Im SFKT-Modell würde man somit eher eine Reduktion als eine Erhöhung der Curie-Temperatur T_C durch eine Elektronendotierung erwarten (vgl. [83]).

Chattopadhyay et al. [15] entwickelten eine Theorie der Übergangstemperatur T_C in den magnetischen Doppelperowskiten Sr$_2$FeMO$_6$ ($M =$ Mo, Re). Diese Theorie basiert auf der dynamischen “mean field”-Näherung. Hierbei hängt die Übergangstemperatur T_C von der Wechselwirkung zwischen den Ladungsträgern und der Fe-Mo (bzw. Re)-Energiebanddifferenz ab. Abbildung 2.17 zeigt T_C aufgetragen gegen die Ladungstagerdichte n für verschiedene Energieunterschiede $J - \Delta$ der Fe/Mo (bzw. Re)-Bänder. n ist hierbei ein Parameter der Bandfüllung. So ist für Mo $n = 1$ und für Re $n = 2$. W_{AA}, W_{AB} und W_{BB} geben die Stärke der Kopplung verschiedener Plätze an. So koppeln zum Beispiel im Grenzfall $W_{AA} >> W_{AB}$ die Ladungsträger des A-Platzes (Fe) sehr schwach an die Zustände des B-Platzes (Mo). In Abbildung 2.17 wurden folgende Parameter gewählt $W_{AA}/W_{AB} = 0.6$ und $W_{BB} = 0$. Es ist deutlich zu erkennen, dass
sich die maximale Curie-Temperatur T_C für alle Parameter $J - \Delta$ unterhalb von $n = 1$ befindet. Somit würde man die Stärke der ferromagnetischen Kopplung durch eine Lochdotierung von Sr$_2$FeMoO$_6$ erhöhen.

Der berechnete Abfall von T_C in Abbildung 2.17 wird in [15] mit der experimentell nachgewiesenen Verringerung der Curie-Temperatur T_C von Sr$_2$FeMO$_6$ mit $M=\text{Mo}$ ($n=1$) und $M=\text{Re}$ ($n=2$) in Verbindung gebracht. Hierbei wurden aber strukturelle Effekte, welche einen sehr großen Einfluss auf die magnetischen Eigenschaften (siehe Kapitel 2.9) haben, vollständig vernachlässigt.

Die Verringerung der Curie-Temperatur T_C durch Elektronendotierung wird in [4] bestätigt. Bei der Berechnung wurde ebenfalls eine “mean field“-Näherung verwendet und ein Phasendiagramm als Funktion der Dotierung ermittelt. Hierbei wird deutlich, dass bei einer Elektronendotierung von ungefähr 35% die ferromagnetische Phase, in welcher die Spins aller Fe-Ionen parallel ausgerichtet sind, in die antiferromagnetische Phase übergeht. Dies bedeutet, dass nach Alonso et al. ein Phasenübergang erster Ordnung in Sr$_{2-x}$La$_x$FeMoO$_6$ für ($x=0.7$) stattfindet.

In [44] wird ebenfalls von einem Phasenübergang der ferromagnetischen Phase in die antiferromagnetische Phase ab einer bestimmten kritischen Dotierung berichtet. Dabei muss aber beachtet werden, dass hier die in Kapitel 2.5.4 beschriebene Coulomb-Wechselwirkung vernachlässigt wurde.

Mittels einer dynamischen “mean-field“-Methode berechnete Taraphder et al. [107] in Sr$_{2-x}$La$_x$FeMoO$_6$ die Energien der ferromagnetischen und antiferromagnetischen Ordnung als Funktion der Bandfüllung. Dabei wird deutlich, dass für $0 \leq x \leq 1$ die Energie des ferromagnetischen Zustandes mit orbitaler Ordnung deutlich abnimmt und damit mit zunehmender Bandfüllung durch die Elektronendotierung stabilisiert wird. Diese Kalkulation würde somit eine steigende Curie-Temperatur mit höherer Elektronendotierung vorhersagen und steht damit im Widerspruch zu Abbildung 2.17.

2.8 Stabilität der ferromagnetischen Ordnung

Bandstrukturrechnungen in Kapitel 2.6 haben gezeigt, dass \(\text{Sr}_2\text{FeMoO}_6 \) ein halbmetallisches Verhalten aufweist. Solovyev [100, 101] behauptet nun aber, dass dieses halb-metallische Verhalten nicht kompatibel mit der Stabilisierung des ferromagnetischen Grundzustandes in einem idealen Doppelperowskit ist.

Bei seinen Berechnungen berücksichtigt er nicht nur die Wechselwirkung der nächsten Nachbarn \(J_{\text{Fe-Fe}}^1 \), sondern auch die Wechselwirkung der übernächsten Nachbarn \(J_{\text{Fe-Fe}}^2 \) im Unterlattice von Fe. Sein Modell besteht somit aus einer Kombination aus Doppelaustausch und Superaustausch. Die \(J_{\text{Fe-Fe}}^1 \)-Kopplung führt zu einer ferromagnetischen Ordnung während die \(J_{\text{Fe-Fe}}^2 \)-Kopplung eine antiferromagnetische Ordnung bevorzogt. Diese antiferromagnetische Ordnung führt dazu, dass der ferromagnetische Zustand in den Doppelperowskiten instabil wird. Des Weiteren führt er eine Kopplungskonstante \(J_{\text{Fe-Mo}}^1 \) für die Wechselwirkung zwischen den Untergittern ein. Diese Wechselwirkungen sind in Abbildung 2.18 dargestellt.

Der ferromagnetische Zustand des Doppelperowskits ist nun genau dann instabil hinsichtlich einer nicht linearen Spinanordnung, wenn

\[
2(J_{\text{Fe-Fe}}^1 + J_{\text{Fe-Fe}}^2) - J_{\text{Fe-Mo}}^1 < 0
\]

erfüllt ist.

\(J_{\text{Fe-Mo}}^1 \) hängt hierbei von der Stärke der Magnetisierung am Mo-Platz ab. Diese Magnetisierung ist, wie im vorigen Teilkapitel schon erwähnt wurde, durch die Hybridisierung induziert. Somit hängt die Kopplungskonstante \(J_{\text{Fe-Mo}}^1 \) von dem magnetischen Ordnungszustand ab, in dem sie berechnet wurde. Es kann nun gezeigt werden, dass sowohl der ferromagnetische als auch der antiferromagnetische Grundzustand in den LSDA- und GGA-Berechnungen nicht stabil ist. Trotz der Berücksichtigung einer Coulomb-Abstoßung \(U \) in der LDA+U Bandstrukturrechnung zeigt Abbildung 2.18, dass Gleichung (2.21) für den ganzen Bereich der Coulomb-Wechselwirkung \(U \) erfüllt und somit auch hier der ferromagnetische Grundzustand nicht stabil ist.

Unter Beachtung dieser drei Wechselwirkungen \(J_{\text{Fe-Fe}}^1 \), \(J_{\text{Fe-Fe}}^2 \) und \(J_{\text{Fe-Mo}}^1 \) ist ein fer-
Abbildung 2.18: Kopplungskonstanten in Sr$_2$FeMoO$_6$ nach [100] und [101]

romagnetischer Grundzustand in einem idealen Kristall nach Solovyev nicht stabil. Die ferromagnetische Ordnung kann aber laut Solovyev durch eine Verzerrung des Sauerstoffokateders bzw. durch Unordnung der Fe-Mo-Ionen also durch Effekte nicht idealer Doppelperowskitstrukturen stabilisiert werden.
2.9 Effekte nicht-idealer Kristallstrukturen

In diesem Teilkapitel werden die wichtigsten Effekte beschrieben, die solche Veränderungen bedingen.

2.9.1 Strukturelle Effekte

Strukturelle Verzerrungen der idealen Perowskitstruktur können allgemein vier Ursachen zugeschrieben werden:

- Strukturelle Fehlstellen
- Verzerrung des Sauerstoffoktaeders
- Unordnung der Kationen
- Verdrehung des Sauerstoffoktaeders

Der zweite Mechanismus beruht hauptsächlich auf elektronischen Instabilitäten. Der Jahn-Teller-Effekt (siehe [34]) ist eine solche Instabilität und führt zu einer Verzerrung des Oktaeders [58]. Diese Jahn-Teller-Verzerrung ist aber in den betrachteten Doppelperowskitverbindungen $\text{Sr}_2\text{FeMoO}_6$ und Sr_2CrWO_6 nicht vorhanden.
Unordnungseffekte können auch zu strukturellen Verzerrungen führen, haben aber einen weit aus stärkeren Einfluss auf die Austauschwechselwirkung und somit auf die magnetischen Eigenschaften und werden deshalb gesondert behandelt.

Die Rotation eines Oktaeders wird bei Glazers Notation durch zwei Parameter beschrieben. Der erste Parameter beschreibt die Größe der Rotation um eine kartesische Achse in Relation zu den anderen zwei Achsen. Zum Beispiel ist für ein $a^+a^+c^+$-System der Rotationswinkel um die x- und y-Achsen identisch, aber um die z-Achse verschieden. Der Exponent beschreibt, ob die Drehung zweier benachbarter Ebenen in die gleiche oder in die entgegengesetzte Richtung stattfindet. Ein positiver Exponent zeigt hierbei eine Drehung benachbarter Oktaeder in die gleiche und ein negativer Exponent in die entgegengesetzte Richtung an. Ist dieser Parameter 0, findet keine Rotation um diese Achse statt. In Abbildung 2.19 sind fünf wichtige Oktaederverdrehungen dargestellt. Hierbei sind die Sauerstoffoktaeder MO_6 weiß und die $M'O_6$ grau eingefärbt. Die schraffierten Kugeln kennzeichnen die A-Kationen.

Wie am Anfang des Kapitels schon angemerkt, führt ausgehend von der idealen $a^0a^0a^0$-Struktur eine Substitution des A-Kations in den Doppelperowskitverbindungen $A_2MM'O_6$ zu einer Verspannung des Kristallgarters abhängig von der relativen Größe dieses Kations.

<table>
<thead>
<tr>
<th>t</th>
<th>A-Kationengröße</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1</td>
<td>zu groß</td>
<td>Verzerrung der M/M'-O Bindungen</td>
</tr>
<tr>
<td>=1</td>
<td>passend</td>
<td>Kubische Symmetrie</td>
</tr>
<tr>
<td><1</td>
<td>zu klein</td>
<td>Verdrehung des Sauerstoffoktaeders; niedrige Symmetrie</td>
</tr>
</tbody>
</table>

Strukturelle Verzerrungen und damit magnetische und elektrische Änderungen werden nicht nur durch Substitution hervorgerufen, sondern können auch durch thermische Effekte induziert werden. So zeigt zum Beispiel \(\text{Sr}_2\text{FeMoO}_6 \) einen strukturellen Übergang von der tetragonalen \(1/4m \)-Symmetrie (\(a^0a^0c^- \)-Tilt-System) zu der kubischen \(\text{Fm}3\text{m} \)-Symmetrie (\(a^0a^0a^0 \)-Tilt-System) bei der Curie-Temperatur \(T_C \). Mittels einer gruppentheoretischen Betrachtung können die Übergänge zwischen den einzelnen Symmetrien berechnet werden. Es sind natürlich nur Übergänge zwischen...
Abbildung 2.20: Übergänge zwischen den Symmetriegruppen [38]

einer Gruppe und ihren Untergruppen möglich. Abbildung 2.20 zeigt den Zusammenhang zwischen den einzelnen Symmetriegruppen.

In Doppelperowskitverbindungen wird im Vergleich zu einer einfachen Perowskitverbindung durch die doppelte Einheitszelle die Symmetrie erniedrigt. Dies führt dazu, dass zum Beispiel eine ideale, nicht verzerrte $a^0a^0a^0$-Struktur eine $Fm\bar{3}m$-Symmetrie und nicht die höhere $Pm\bar{3}m$-Symmetrie der einfachen Perowskitstruktur besitzt [113]. Dies ist auch der Grund, weshalb Sr_2FeMoO_6 nicht in der $I/4mmm$-Kristallsymmetrie, sondern in der $I/4m$-Symmetrie kristallisiert.

Diese strukturellen Verzerrungen haben nicht nur einen Übergang zu niedriger Symmetrie zur Folge (siehe Abbildung 2.20), sondern haben auch einen starken Einfluss auf die magnetischen und elektrischen Eigenschaften der Doppelperowskite. So führt eine Abweichung des Toleranzfaktors von $t = 1$ zu einer Schwächung der magnetischen Kopplung und dadurch zu einem Absinken der Curie-Temperatur T_C.

In den Doppelperowskiten wird, wie oben beschrieben, das Leitungsband hauptsächlich durch den Überlapp der t_{2g}-Orbitale gebildet. Eine strukturelle Verzerrung führt nun zu einer Änderung des Bindungswinkels $M-O-M'$ und damit zu einer Verringerung des Orbital-Überlapps, wodurch die Hüpfamplitude t und die Bandbreite W des Leitungsbandes abnimmt und somit die Curie-Temperatur T_C reduziert wird. Bandstrukturrechnungen verdeutlichen dies ebenfalls. So führt die A-Kationen substitution in A_2FeMoO_6 zu einer geringeren Hybridisierung und damit zu einem nied-
2.9. Effekte nicht-idealer Kristallstrukturen

rigeren induzierten Moment am nichtmagnetischen Mo-Ion \[106\].
In den Doppelpерowskitverbindungen kann somit nur eine hohe Curie-Temperatur \(T_C \) für einen Toleranzfaktor \(t \approx 1 \) erreicht werden \[81\].

Diese sehr einfache Beschreibung kann aber die sehr hohe Curie-Temperatur \(T_C \) der ferromagnetischen und isolierenden Doppelpерowskitverbindung \(\text{Ca}_2\text{FeReO}_6 \) nicht annähernd erklären \((T_C = 540 \text{ K}) \). Obgleich diese Verbindung einen Toleranzfaktor von \(t = 0,94 \) (siehe \[81\]) besitzt, hat sie in der Doppelpерowskitgruppe \(\text{A}_2\text{FeReO}_6 \) \((\text{A} = \text{Ba, Sr, Ca}) \) die höchste Curie-Temperatur \(T_C \). Des Weiteren besitzt sie einen Phasenübergang von einem ferromagnetischen Isolator zu einem ferromagnetischen Metall bei \(T = 150 \text{ K} \). Dieser Phasenübergang ist bedingt durch die Verzerrung des \(\text{ReO}_6 \)-Oktaeders. Der \(\text{ReO}_6 \)-Oktaeder geht bei \(T = 150 \text{ K} \) von einer Expansion in eine Kompression über. Dies hat zur Folge, dass die \(t_{2g} \)-Orbitale von \(\text{Re}^{5+} \) nicht mehr entartet sind (siehe \[76\]). Es kommt somit zu einer Art Jahn-Teller-Verzerrung. In dieser Verbindung führen folglich Verzerrungen zu einer starken Änderung des elektrischen Verhaltens. Die Ursache der starken magnetische Ordnung ist hingegen bisher ungeklärt.

In Kapitel 2.8 wird beschrieben, dass nach Solovyev \[100, 101\] der ferromagnetische Grundzustand in einem idealen Kristall nicht stabil sein kann. Verdrehungen der Sauerstoffoktaeder \(\text{FeO}_6 \) bzw. \(\text{MoO}_6 \) können nun in \(\text{Sr}_2\text{FeMoO}_6 \) zu einer Stabilisierung der ferromagnetischen Ordnung führen \[100\]. Verringert sich zum Beispiel der Abstand zwischen den Sauerstoff- und den Eisenionen \(d_{\text{Fe-O}}/d_{\text{Fe-Mo}} \leq 0,49 \), verschiebt sich das \(\text{Fe}-e_{g\uparrow} \)-Band an die Fermi-Energie. Dies führt zu einem zusätzlichen Doppelaustausch der \(e_{g} \)-Elektronen und zu einer Stabilisierung der ferromagnetischen Ordnung \[100\]. Durch diese Verschiebung wird aber die vollständige Spinpolarisation zerstört. Somit kann nach Solovyev die Stabilisierung der ferromagnetischen Ordnung durch die Verdrehung des Sauerstoffoktaeders zu einer Zerstörung des halb-metallischen Verhaltens führen.
2.9.2 Unordnungseffekte

Abbildung 2.21: Antisite-Defekte in Sr$_2$FeMoO$_6$ [71]

In einem einfachen Superaustausch-Modell ergibt sich nach den Goodenough-Kanamori-Anderson-Regeln eine antiferromagnetische Ordnung für eine d^5-d^5-Anordnung und eine ferromagnetische für eine d^1-d^1-Anordnung (vgl. [71]). Die Stärke dieser antiferromagnetischen Ordnung der benachbarten Fe-Ionen wird durch die Betrachtung der Verbindung LaFeO$_3$ deutlich. LaFeO$_3$ ordnet antiferromagnetisch mit einer sehr hohen Néel Temperatur von 720 K. Im Folgenden wird deshalb nur die starke antiferromagnetische Ordnung durch die Fe-Fe-Paare betrachtet.

Die antiferromagnetische Ordnung benachbarter Fe-Ionen, bewirkt eine Reduktion der Sättigungsmagnetisierung M_{sat}. Somit würde man in einem ideal geordneten Kristall mit keiner Unordnung $\delta = 0$ die höchste Sättigungsmagnetisierung erhalten.
und in einem vollständig ungeordneten Kristall $\delta = 0,5$ würde bei Vernachlässigung der ferromagnetischen d_1-d_1-Anordnung die Sättigungsmagnetisierung verschwinden. Dieses einfache Modell ist Ausgangspunkt der folgenden empirischen Formel \[10\]:

$$M_{\text{sat}}(\delta) = (1 - 2\delta) m(M^{3+}) - (1 - 2\delta) m(M'^{5+})$$ \hfill (2.22)

$m(M^{3+})$ bzw. $m(M'^{5+})$ bezeichnen hier die magnetischen Momente des M- bzw. des M'-Ions in $A_2MM'O_6$ und δ die Größe der Unordnung. Die obige Formel \(2.22\) kann im Falle einer Elektronendotierung erweitert werden \[70\]:

$$M_{\text{sat}}(\delta, x) = (1 - 2\delta) \left[m(M^{3+}) - m(M'^{5+}) \right] + (1 - 2\delta) x \left[\Delta m(M^{3+}) - \Delta m(M'^{5+}) \right]$$ \hfill (2.23)

$\Delta m(M^{3+})$ bzw. $\Delta m(M'^{5+})$ berücksichtigen die Änderung des magnetischen Momentes durch die Elektronendotierung x. Diese Reduktion der Sättigungsmagnetisierung wurde durch Monte-Carlo-Simulationen, welche auf der Grundlage eines Superaustauschmodells nur die nächste Nachbarwechselwirkung berücksichtigt, bestätigt \[75\].

Neuere Monte-Carlo-Simulationen beziehen die Wechselwirkung der übernächsten Nachbarn ebenfalls in die Berechnung mit ein \[23\]. Als erste Konsequenz reproduziert dieses Modell die beschriebene Reduktion der Sättigungsmagnetisierung durch die empirische Formel \(2.22\). Ein weiteres Resultat dieser Simulation ist die Reduktion der Curie-Temperatur in Anwesenheit von Unordnung. Dies wird in Abbildung \text{2.22} deutlich. Die Curie-Temperatur verringert sich von ungefähr $T_C = 417$ K für ein vollständig geordnetes System (AS = 0%) zu $T_C = 380$ K bei 20% Unordnung. Dies ist in Übereinstimmung mit \[75\].

In \[4\] wird hingegen von einem Anstieg der Curie-Temperatur bei niedrigen Unordnungskonzentrationen berichtet. Des Weiteren untersuchten Frontera et al. mittels ihrer Monte-Carlo-Simulation den Einfluss der Unordnung auf die kritischen Exponenten. Hierbei wurde der kritische Exponent β zu $\beta = 0,37$ bei einer Unordnung von 20% bzw. 40% berechnet.

Bei der Betrachtung dieser theoretischen Ergebnisse stellt sich die Frage, warum fast vollständig ungeordnete Proben immer noch ein sehr starkes ferromagnetisches Verhalten zeigen.
Kapitel 3

Experimentelle Techniken

Im Folgenden werden die experimentellen Techniken, welche während dieser Diplomarbeit angewendet wurden, beschrieben. Hierbei werden zuerst thermische Analyseverfahren, dann Röntgen- und Neutronen-Diffraktometrie, Magnetisierungsmessungen mittels SQUID und Magnetotransportmessungen diskutiert.

3.1 Thermische Analyse

Die Herstellung der Doppelperowskitverbindungen $A_2\text{CrWO}_6$ ($A = \text{Ca, Sr, Ba}$) und $\text{Sr}_2\text{FeMoO}_6$ erfolgt mittels einer Standard-Festkörperreaktion. Zur Charakterisierung dieser Reaktion wurden verschiedene thermische Analyseverfahren verwendet. Bei der Thermogravimetrie (TG) wird die Masse m bzw. die Massenänderung Δm einer Probe in Abhängigkeit von der Temperatur T oder der Zeit t gemessen. Die Differenztethermoanalyse (DTA) misst die Temperaturdifferenz ΔT und die dynamische Differenz-Kalorimetrie (DSC) bestimmt die Differenz der Wärmestrome zwischen der Probe und einer Vergleichsprobe als Funktion der Temperatur T oder der Zeit t. Die Durchführung dieser Analyseverfahren erfolgte mittels der in Abbildung 4.1 schematisch dargestellten Netzsch STA 409. Mit diesem Gerät können Reaktionen unter dem Einfluss verschiedener Gase und bis zu einer Temperatur von $T = 1600^\circ\text{C}$ untersucht werden.

Anschließend werden kurz die verschiedenen Analyseverfahren diskutiert.

3.1.1 Thermogravimetrie

In Abbildung 3.2 (a) ist das Messprinzip der Thermogravimetrie (TG) dargestellt. Der Probenthalter im Ofen steht mit einer kompensierenden Waage in Verbindung, so

3.1. THERMISCHE ANALYSE

Abbildung 3.2: Messprinzip von TG und DTA bzw. DSC (vgl. [35])

Entstehen während des Aufheizens einer Probe Teilreaktionen mit und ohne flüchtige Komponenten, so liefert die thermogravimetrische Messung nur Aussagen über die Reaktionen der flüchtigen Komponenten. Die gesamte Reaktionsfolge wird somit lückenhaft wiedergegeben. Deshalb wird die Thermogravimetrie mit der Differenzthermoanalyse oder der dynamischen Kalorimetrie kombiniert.

3.1.2 Differenzthermoanalyse und Dynamische Differenz-Kalorimetrie

Abbildung 3.2 (b) zeigt die Funktionsweise einer Differenzthermoanalyse (DTA) bzw. einer dynamischen Differenz-Kalorimetrie (DSC). Die DSC kann als Weiterentwicklung der DTA betrachtet werden.

Im Allgemeinen wird bei beiden Verfahren eine Probe neben einer Vergleichssubstanz (Referenz) einem streng linearen Temperaturprogramm unterworfen. Über Temperatursensoren werden jeweils die Proben- und die Referenztemperatur, sowie die Systemtemperatur in Abhängigkeit von der Zeit registriert. Befindet sich das System im thermischen Gleichgewicht, so ist im Idealfall die Temperaturdifferenz zwischen beiden Messstellen gleich Null oder nimmt im realen Fall zumindest einen konstanten Wert an. Eine Änderung der Temperaturdifferenz zwischen Probe und Referenz zeigt eine Veränderung im thermischen Verhalten einer der beiden Substanzen an. Dieser thermische Effekt ist solange beobachtbar, bis er durch den Wärmefluss aus der Umgebung kompensiert wird.
Die DTA liefert lediglich die Differenztemperatur ΔT als Messgröße. Aus der DSC-Messkurve hingegen lassen sich Informationen über die Reaktionswärme q_r, den Wärmestrom Φ_r und, wenn keine Reaktion stattfindet, die Wärmekapazität C_P der Probe gewinnen [35] (siehe Anhang B).

3.2 Röntgendiffraktometrie

Mittels Pulverdiffraktometrie wurde nicht nur die Qualität, sondern auch die Struktur der hergestellten Proben untersucht. In Abbildung 3.3 ist schematisch das verwendete 2-Kreis-Diffraktometer der Firma Bruker-AXS dargestellt.

Abbildung 3.3: Schematischer Darstellung des 2-Kreis-Röntgendiffraktometers

Die von der Röntgenröhre emittierten Cu-K$_{\alpha1/2}$-Strahlen werden mittels eines Göbelspiegels und eines Sollerspalt fokussiert und treffen somit nahezu parallel auf den rotierenden Probenstempel, auf dem sich das mittels Isopropanol auf ein Si-Wafer aufgeschwemmte Pulver befindet. Diese Technik wurde verwendet, um eine möglichst große Anzahl von zufällig orientierten Kristalliten zu erreichen. Die von der Probe ge-
3.2. RÖNTGENDIFFRAKTOMETRIE

-beugten Röntgenstrahlen werden dann mit einem 8° ortsauflösenden Detektor (PSD) detektiert.

Das Prinzip der Beugung von Röntgenstrahlung an den mit Atomen besetzten Netzebenen eines Kristalls wurde von Bragg formuliert

\[n \lambda = 2 d_{hkl} \sin \Theta \]

wobei \(\lambda \) die Wellenlänge der verwendeten Röntgenstrahlung, \(d \) der Netzebenenabstand, \(2 \Theta \) der Beugungswinkel und \(hkl \) die Millerschen Indizes der Netzebende darstellen. Die Beugungsbedingung (3.1) beschreibt die konstruktive Interferenz bei vorgegebenem Netzebenenabstand \(d_{hkl} \) und Wellenlänge \(\lambda \). Konstruktive Interferenz findet somit nur dann statt, wenn der Gangunterschied \(\Delta s = 2d_{hkl} \sin \Theta \) der an den Netzebenen reflektierten Wellen, ein ganzzahliges Vielfaches \(n \) der Wellenlänge \(\lambda \) ist. Eine genauere Beschreibung der Streuung an Kristallen ist in [16] dargestellt.

Abbildung 3.4 (a) zeigt ein ideales Pulver, das als polykristalline Masse mit Ein- kristalliten, welche keine Vorzugsrichtung und ähnliche Größenverhältnisse besitzen, betrachtet werden kann. Das Beugungsbild eines solchen Pulvers entsteht somit als...
Überlagerung der Beugungsbilder einzelner Einkristallite. Die Konsequenz ist eine Reduktion der zugänglichen dreidimensionalen Information bei Einkristallen auf eine Dimension. Wird eine bestimmte Netzebene mit den Millerschen Indizes \(hkl \) betrachtet, so ist die Beugungsbedingung (3.1) für jeden Kristalliten erfüllt, bei dem diese Netzebene einen Winkel \(\Theta \) mit dem Primärstrahl einschließt (siehe Abbildung 3.4(b)). Bei beliebiger Orientierung der betrachteten Netzebene, aber unter Beibehaltung des Beugungswinkels \(2\Theta \), liegen die reflektierten Strahlen auf einem Kegelmantel mit Öffnungswinkel \(4\Theta \). Abbildung 3.4(c) stellt diese Situation schematisch dar. Werden viele Kristallite mit statistischer Orientierung gebeugt, überlagern sich nun diese Kegelmäntel. Abbildung 3.4(d) zeigt Strahlen, welche an unterschiedlichen Netzebenen reflektiert wurden. Es ergeben sich Kreiskegel um den Primärstrahl (sogenannte Debye-Scherrer Kegeln).

Die gemessene Intensität hängt nur noch von dem Beugungswinkel \(\Theta \) ab. Somit geht die Information über die relative Orientierung der unterschiedlichen Netzebenen zueinander verloren. Man erhält also ein eindimensionales Beugungsbild: Reflexintensität \(I \) als Funktion des Beugungswinkels \(2\Theta \).

Die gemessene Intensität \(I_{hkl} \) enthält keine direkte Information über die Phasen der Strukturfaktoren \(F_{hkl} \). Die Phase wird aber benötigt, um die Elektronendichte \(\rho(x,y,z) \) und damit die Kristallstruktur zu rekonstruieren. Dies wird häufig als Phasenproblem der Kristallographie bezeichnet. Zur Lösung dieses Problems der Kristallstrukturermittlung aus Pulverdiffraktometriedaten wird häufig die sogenannte Rietveld Methode verwendet. Hierbei wird das Diffraktogramm auf der Grundlage eines Strukturmodells für die vorkommenden Verbindungen simuliert. Die Rietveld-Verfeinerung
verbessert nun die Simulation durch Iteration nach der Methode der kleinsten Fehlerquadrat. Das Maß für die Güte einer Rietveld-Verfeinerung wird durch die Residual-Werte R angegeben (siehe Anhang A.1).

Die Analyse der Röntgendiagrammen hinsichtlich Phasenidentifikation und Kristallsymmetrie wurde mittels Rietveld-Verfeinerung (TOPAS-Software der Firma Bruker-AXS) durchgeführt. Das Ermitteln der Unordnung in den einzelnen Proben wurde mit Hilfe des Programms PowderCell simuliert und anschließend aufgrund der integrierten Intensitäten der einzelnen Reflexe ausgewertet. Um die systematischen Fehler zu minimieren wurde bei der Messung für die Gitterkonstantenbestimmung MgO der Probe beigefügt. Somit konnten die Reflexe von MgO zur Eichung verwendet werden. Des Weiteren wurden die Gitterkonstanten mittels der Nelsen-Riley Funktion und der analytischen Methode nach Cohen bestimmt (siehe [16]).

3.3 Neutronenstreuung

Neutronenstreuung ist eine der wichtigsten Methoden zur Charakterisierung der Proben und im Speziellen zur Aufklärung der magnetischen Struktur. Nach deBroglie entspricht einem Teilchen mit der Masse m und der Geschwindigkeit v eine Welle mit der Wellenlänge

$$\lambda = \frac{h}{mv} \quad (3.2)$$

Abbildung 3.5: (a) Institut Laue-Langevin (ILL) und European Synchrotron Radiation Facility (ESRF); (b) das Experiment D20

Während der Diplomarbeit wurde ein solches Neutron-Pulverdiffraktometrie-Experiment am Institut Laue-Langevin (ILL) in Grenoble durchgeführt (siehe Abbildung 3.5 (a)). Die technischen Daten des Hochflussreaktors sind in [42] angegeben.

In Abbildung 3.5 (b) und 3.6 sind der bildliche und schematische Aufbau des verwendeten Instrumentes D20 dargestellt. Als Moderator für thermische Neutronen wird am ILL schweres Wasser bei $T = 300\,\text{K}$ eingesetzt. Die Maxwellsche Geschwindigkeitsverteilung besitzt dann ein Maximum bei einer Wellenlänge von ungefähr $\lambda = 1,2\,\text{Å}$. In Abbildung 3.6 ist ersichtlich, dass die thermischen Neutronen das Experiment über den Strahlgang H11 erreichen. Der Neutronenstrahl wird über einen Soller-Kollimator parallelisiert und trifft auf den Monochromator. D20 besitzt drei verschiedene vertikal fokussierende Monochromatoren, den HOPG- ("highly oriented pyrolytic"-Graphit), zwei Kupfer- und einen Germanium-Monochromator. In den Beugungsexperimenten wurde der Germanium-Monochromator mit einer Wellenlänge von $\lambda = 1.89\,\text{Å}$ verwendet. Der Neutronenfluss ϕ, der die Probe erreicht, beträgt mit diesem Monochromator ungefähr $\phi = 5 \cdot 10^7 \frac{n}{\text{s cm}^2}$ und hat eine Fläche von maximal $A = 30 \times 50\,\text{mm}^2$.

Die Proben wurden in einen Vanadium-Zylinder platziert und die Temperatur der
Proben konnte mittels eines Ofens bzw. eines Standardkryostaten von $T = 1.7 \, \text{K}$ bis $T = 800 \, \text{K}$ variiert werden. Die von der Probe gestreuten Neutronen werden in einem positionssensitiven Detektor (PSD) indirekt nachgewiesen. Da es sich bei Neutronen um neutrale Teilchen handelt, können diese nicht direkt über einen Ionisationsprozess detektiert werden. Es muss erst eine Umwandlung in ionisierende Strahlung stattfinden. Der in D20 verwendete PSD ist ein gasförmiger Konverter, in dem folgende Reaktion stattfindet:

$$^3\text{He} + n \rightarrow ^3\text{He} + p + 764 \, \text{keV} \quad (3.3)$$

Abbildung 3.7: Schematischer Vergleich zwischen der Streuung mit Neutronen und der Röntgenstreuung. [79]

aber die Ionen im 3He eine sehr große Reichweite besitzen, wird das 3He ($p = 3,1$ bar) im PSD mit CF$_4$ ($p = 0,8$ bar) gemischt, das die in alle Richtungen emittierten Protonen und Tritonen stärker abbremst. Der im Experiment D20 verwendete PSD besteht aus 1600 Zellen, welche elektrisch leitende Glasplatten, die mit Chrom bedampft wurden, beinhalten und mit dem beschriebenen Gasgemisch gefüllt sind. Um die für die Detektion der Elektronen notwendigen Elektroden zu erhalten, wurden Mikro-Streifen in die Chrombeschichtung geätzt. Der Abstand zwischen Anode und Kathode beträgt hierbei $d = 170 \mu$m. An ihnen liegt eine Spannung von $U = 750$ V an. Der PSD besitzt einen horizontalen Detektionswinkel von 160° und eine Auflösung von $\Delta \Theta = 0,1^\circ$. Die Effizienz der Detektion der Neutronen beträgt 60% bei $\lambda = 0,8 \, \text{Å}$ und 90% bei $\lambda = 2,4 \, \text{Å}$.

Die Streuung der elektrisch neutralen Neutronen an Atomkernen findet aufgrund der starken Kernkraft statt. Die Photonen der Röntgenstreuung hingegen wechselwirken elektromagnetisch mit der Elektronenhülle der Atome. Damit ist die Stärke der Beugung von Röntgenstrahlung eine Funktion der Ordnungszahl, bei der Neutronenstreuung existiert hingegen kein systematischer Zusammenhang. Durch die kurzreichweitige Wechselwirkung der starken Kernkraft ist die Wechselwirkung von Neutronen mit Materie sehr schwach und damit die Eindringtiefe viel größer als bei Röntgen-

Der grösste Vorteil der Neutronenstreuung ist aber die Möglichkeit der Untersuchung magnetischer Eigenschaften von Festkörpern. Da Neutronen ein eigenes magnetisches Moment \(\mu_n \) von

\[
\mu_n = -1.913 \mu_N
\]

besitzen, \(\mu_N = \frac{e \hbar}{2m_p} \) ist hierbei das Kernmagneton, können sie zusätzlich zur Streuung am Kern mit ungepaarten Elektronen in Wechselwirkung treten. Magnetische Ordnung führt dann im Vergleich zu einem magnetisch ungeordneten Zustand zur Ausbildung einer Überstruktur. Die atomaren Bragg Reflexe werden durch diese Überstruktur überlagert mit magnetischen Bragg Reflexen. Aus diesen können wertvolle Informationen über die Art, Stärke und Richtung der magnetischen Wechselwirkung zwischen den Elektronen gewonnen werden. Es sind jedoch im Vergleich zur Kernstreuung zwei Unterschiede zu beachten. Zum einen kann die Momentverteilung, die sich aus der Elektronenverteilung ergibt, im Vergleich zur Neutronenwellenlänge nicht mehr als punktförmig angesehen werden. Diese Tatsache wird durch den magnetischen Formfaktor beschrieben. Zum anderen handelt es sich um eine Dipolwechselwirkung, deren Anisotropie die Berücksichtigung der Momentrichtung relativ zum Streuvektor erfordert (vgl. [104]).

In Abbildung 3.7 sind die unterschiedlichen Wechselwirkungen von Photonen und Neutronen mit Materie schematisch dargestellt.

3.4 Magnetisierungsmessung

Die magnetischen Eigenschaften der hergestellten Proben wurden mit einem SQUID ("Superconducting-Quantum-Interference-Device")-Magnetometer der Firma Quantum Design bei Temperaturen bis $T = 800\,\text{K}$ und Magnetfeldern bis $\mu_0 H = 7\,\text{T}$ bestimmt.

![Diagramm](image)

Abbildung 3.8: Schematischer Darstellung des Gradiometers zweiter Ordnung

Das Magnetometer wurde hauptsächlich zur Messung der Magnetisierung in Abhängigkeit von der Temperatur und des Feldes verwendet. Hochtemperatur-Messungen ($T = 300 \ldots 800$ K) müssen mittels eines Ofeneinsatzes durchgeführt werden. Hierbei wird die Probe an einem paramagnetischen Silberdraht befestigt. Wiederum muss auf die homogene Befestigung geachtet werden. Da der thermische Kontakt zwischen der Probe und dem Ofeneinsatz sehr gering ist und die Temperatur mittels eines Sensors am Ofeneinsatz gemessen wird, ergeben sich erhebliche Abweichungen zwischen der gemessenen und der realen Probentemperatur. Dies muss bei der Auswertung der Messdaten berücksichtigt werden.

3.5 Magnetotransport

Um die Widerstandscharakteristiken der hergestellten Proben zu untersuchen, müssen die polykristallinen Proben geeignet kontaktiert werden. Die Kontaktierung wurde mittels Silberleitlack und dünnen Kupferdrähten realisiert, wobei die Zuleitungswiderstände durch eine Standard 4-Punkt Messung eliminiert wurden.
Kapitel 4

Probenpräparation

Die Probenpräparation stellt ein zentrales Thema in einer experimentellen Arbeit dar. Ohne Proben mit definerter Qualität lassen sich keine befriedigenden Aussagen über die physikalischen Eigenschaften der untersuchten Materialsysteme gewinnen.

In dieser Diplomarbeit wurden polykristalline Probenserien der elektronendotierten Materialsysteme $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ und $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ hergestellt. Des Weiteren wurden die Effekte der A-Kationen-Substitution in $A_2\text{CrWO}_6$ ($A = \text{Ca, Sr und Ba}$) untersucht.

4.1 Herstellungsverfahren

Die Herstellung der polykristallinen Proben $A_2\text{CrWO}_6$ ($A = \text{Ca, Sr und Ba}$) und $\text{Sr}_2\text{FeMoO}_6$ erfolgte mittels folgender Festkörperreaktion.

\[
8\text{ACO}_3 + 2\text{Cr}_2\text{O}_3 + 4\text{WO}_3 \rightarrow 4A_2\text{CrWO}_6 + (8\text{CO}_2 + \text{O}_2) \uparrow \tag{4.1}
\]

\[
8\text{SrCO}_3 + 2\text{Fe}_2\text{O}_3 + 4\text{MoO}_3 \rightarrow 4\text{Sr}_2\text{FeMoO}_6 + (8\text{CO}_2 + \text{O}_2) \uparrow \tag{4.2}
\]

Ausgangsmaterialien sind hierbei die Carbonate ACO_3 ($A = \text{Ca, Sr und Ba}$) und die Oxide Cr_2O_3 und WO_3 bzw. Fe_2O_3 und MoO_3 hoher Reinheit (durchschnittlich 99,98%). Die Elektronendotierung der Proben wurde durch stochiometrisches Ersetzen von SrCO_3 durch La_2O_3 erreicht. Durch die Verwendung von Carbonaten ACO_3 ($A = \text{Ca, Sr und Ba}$) als Ausgangsmaterial findet als Vorreaktion ein Kalzinierungsprozess statt. Hierbei entstehen aus den Carbonaten ACO_3 ($A = \text{Ca, Sr und Ba}$) die Oxide AO ($A = \text{Ca, Sr und Ba}$), wobei CO$_2$ abgespalten wird. Diese Abspaltung des CO$_2$ ist in Abbildung 4.1 zu erkennen. Ab 600°C ist in der Thermogravimetrie ein deutli-
Abbildung 4.1: Thermogravimetrie und Differenzthermoanalyse des Kalzinierungsprozesses von Reaktion \((4.1)\) \cite{81}. Die gestrichelten Linien kennzeichnen die Abkühlungskurven.

Abbildung 4.1: Thermogravimetrie und Differenzthermoanalyse des Kalzinierungsprozesses von Reaktion \((4.1)\) \cite{81}. Die gestrichelten Linien kennzeichnen die Abkühlungskurven.

Im Folgenden wird der Herstellungsprozess am Beispiel von \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6\) und \(\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6\) genauer betrachtet. In \(\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6\) wird zunächst der Standard-
prozess beschrieben, des Weiteren auf die Probleme dieses Prozesses eingegangen und anschließend eine alternative Herstellung diskutiert.

4.1.1 Herstellung von $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$

Die Ausgangsmaterialien SrCO$_3$, Fe$_2$O$_3$, MoO$_3$ und La$_2$O$_3$ werden stöchiometrisch eingewogen, in einem Achatmörser gemischt und in einen Al$_2$O$_3$-Tiegel platziert.

Der Kalzinierungsprozess wird in vielen Veröffentlichungen bei $T = 900^\circ\text{C}$ an Luft durchgeführt (vgl. [54]). Dies führt allerdings zu der Produktion von höherwertigen Eisen- und Molybdän-Ionen. Deshalb wurde der Kalzinierungsprozess in einer Stickstoff-Atmosphäre mit 5% Wasserstoffanteil (Formiergas) durchgeführt. Die Probe wurde dabei mit einer Heizrate von 10°C/min bis zu der Endtemperatur von $T = 1000^\circ\text{C}$ aufgeheizt, $t = 10\text{ h}$ isotherm bei dieser Temperatur gehalten und anschließend wieder mit einer Rate von 10°C/min abgekühlt. Dieses Temperatur-Zeit-Programm mit der jeweiligen Endtemperatur und Haltezeit wurde in den einzelnen Prozessschritten nicht verändert. Wie in Kapitel 4.1 beschrieben, bildet sich bei diesem Kalzinierungsprozess bereits die $\text{Sr}_2\text{FeMoO}_6$ Phase. Zur Vervollständigung der Reaktion wurde die Probe nach dem Kalzinierungsprozess im Achatmörser gemörstert und bei Endtemperaturen von $T = 1100^\circ\text{C}$, $T = 1150^\circ\text{C}$ bzw. $T = 1200^\circ\text{C}$ für jeweils $t = 10\text{ h}$ in Formiergas gesintert. Zwischen den einzelnen Sinterschritten wurde die Probe jeweils wiederum gemörstert. Die Prozessschritte der mit diesem Verfahren hergestellten elektronendotierten $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ Proben sind in Tabelle 4.1 noch einmal zusammengestellt.

<table>
<thead>
<tr>
<th>Prozessschritt</th>
<th>Bemerkung</th>
<th>Endtemperatur</th>
<th>Haltezeit</th>
<th>Atmosphäre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kalzinierung</td>
<td>1000°C</td>
<td>10h</td>
<td>$\text{H}_2 : \frac{5}{95}$</td>
</tr>
<tr>
<td>2</td>
<td>Sintern</td>
<td>1100°C</td>
<td>10h</td>
<td>$\text{H}_2 : \frac{5}{95}$</td>
</tr>
<tr>
<td>3</td>
<td>Sintern</td>
<td>1150°C</td>
<td>10h</td>
<td>$\text{H}_2 : \frac{5}{95}$</td>
</tr>
<tr>
<td>4</td>
<td>Sintern</td>
<td>1200°C</td>
<td>10h</td>
<td>$\text{H}_2 : \frac{5}{95}$</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Herstellungsschritte der $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ Proben
4.1. HERSTELLUNGSVERFAHREN

Das so erhaltene Pulver wurde anschließend mit einem Druck von $p = 1.5$ GPa zu Stäbchen, mit einer Querschnittsfläche von $A = 26$ mm2, gepresst und in Argon bei einer Endtemperatur von $T = 1150$°C und einer Haltezeit von $t = 10$ h gesintert.

Die Stabilität dieser polykristallinen Probe in einer 20 prozentigen Sauerstoffatmosphäre ist in Abbildung 4.2 dargestellt. Hierbei wird Sr$_2$FeMoO$_6$ ab einer Temperatur von $T = 425$°C hauptsächlich in SrMoO$_4$ und SrFeO$_3$ zersetzt.

$$2 \text{Sr}_2\text{FeMoO}_6 + \text{O}_2 \rightarrow 2 \text{SrMoO}_4 + 2 \text{SrFeO}_3$$ \hspace{1cm} (4.3)

Die Masse der Probe nimmt dabei zu und sättigt bei einer Temperatur von $T = 700$°C. Die Steigerung der Probenmasse beträgt $\Delta m = 3\%$. Mit einer Thermogravimetriemessung könnte durch solch ein Experiment die exakte Sauerstoffkonzentration in Sr$_2$FeMoO$_6$ bestimmt werden. Die Auflösung des verwendeten Thermoanalysegerätes verhinderte hierbei allerdings befriedigende Ergebnisse.

4.1.2 Herstellung von Sr$_{2-x}$La$_x$CrWO$_6$

In der Probe werden nun durch schrittweises Erhöhen der Endtemperatur des in Kapitel 4.1.1 beschriebenen Temperatur-Zeit-Programms die 6-wertigen Wolframoxidfremdphasenverbindungen reduziert. Die einzelnen Sinterschritte der durch dieses Verfahren hergestellten Sr$_{2-x}$La$_x$CrWO$_6$ Proben, sind in Tabelle 4.2 dargestellt. Zwischen den einzelnen Schritten wurde die Probe gemörsert, um eine möglichst homogene Verteilung zu erhalten, und die jeweiligen Konzentrationen der Phasen mittels Rönt-
4.1. HERSTELLUNGSVERFAHREN

Abbildung 4.3: Sauerstoffpartialdrücke verschiedener Wolfram- und Chromvalenzen \[31\]

gendiffraktometrie ermittelt. Abschließend wurde das Pulver wiederum mit einem Druck von \(p = 1.5 \) GPa zu Stäbchen gepresst und bei einer Endtemperatur von \(T = 1300^\circ \)C und einer Haltezeit von \(t = 10 \) h gesintert.

Tabelle 4.2: Herstellungsschritte der Probe Sr$_2$CrWO$_6$

<table>
<thead>
<tr>
<th>Prozessschritt</th>
<th>Bemerkung</th>
<th>Endtemperatur</th>
<th>Haltezeit</th>
<th>Atmosphäre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kalzinierung</td>
<td>1000°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>2</td>
<td>Sintern</td>
<td>1100°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>3</td>
<td>Sintern</td>
<td>1200°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>4</td>
<td>Sintern</td>
<td>1250°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>5</td>
<td>Sintern</td>
<td>1300°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>6</td>
<td>Sintern</td>
<td>1300°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>7</td>
<td>Sintern</td>
<td>1350°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>8</td>
<td>Sintern</td>
<td>1350°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>9</td>
<td>Sintern</td>
<td>1380°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>10</td>
<td>Sintern</td>
<td>1380°C</td>
<td>15h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
<tr>
<td>11</td>
<td>Sintern</td>
<td>1380°C</td>
<td>10h</td>
<td>$\text{H}_2:\text{N}_2:5\text{/}95$</td>
</tr>
</tbody>
</table>

$$
\text{SrWO}_4 \leftrightarrow \text{Sr}_2\text{WO}_5 \leftrightarrow \text{Sr}_3\text{WO}_6
$$

(4.4)

Es kommt dabei aber nicht zu einer weiteren Bildung von Sr$_2$CrWO$_6$.

Des Weiteren bildet sich ab ca. $T = 1300\,^\circ\text{C}$ eine Wolframausscheidung. Eine genauere Analyse mittels Röntgendiffraktometrie und energiedispersiver Röntgenmikroanalyse (EDX) ergibt, dass diese Ausscheidung aus Wolfram und einem geringen Anteil Chrom besteht. Dieser Chromanteil verringert nun in der Wolfram-Chrom-Legierung den sehr hohen Schmelzpunkt von Wolfram ($T_s = 3410\,^\circ\text{C}$), so dass sich diese Ausscheidung schon bei verhältnismäßig niedrigen Temperaturen von $T = 1300\,^\circ\text{C}$ bilden kann. In Abbildung 4.6 ist eine Elektronenmikroskopaufnahme (SEM) der Probe Sr$_{1.50}$La$_{0.50}$CrWO$_6$ dargestellt. Deutlich ist die Wolfram-Chrom-Ausscheidung in der

Mitte des Bildes zu erkennen. Des Weiteren ist ein breites Spektrum an Korngrößen von ungefähr 0,5 μm bis 2 μm sichtbar.

Da in der Sr₂CrWO₆ Probe nur Wolframfremdphasen und keine zusätzlichen Chromoxidfremdphasen detektiert wurden, muss es eine unterschiedliche Chrom- und Wolframkonzentration in der Sr₂CrWO₆ Verbindung geben. In [81] wird dies durch Sr₂Cr₁₊ₓW₁₋ₓO₆₊δ beschrieben. Bei genauerer Betrachtung der Thermogravimetrie des letzten Prozessschrittes wird aber deutlich, dass es zu keiner Sättigung in der Massenänderung kommt. Dies bedeutet, dass sich nicht nur Sauerstoff in der reduzierenden
Abbildung 4.5: Konzentrationen der verschiedenen Phasen während des Herstellungsprozesses

Atmosphäre verflüchtigt, sondern wegen des hohen Dampfdruckes \(p_{\text{Cr}} = 990 \text{ Pa bei } T = 2130 \text{ K} \) auch Chrom.

Experimente mittels Chromüberstöchiometrie führten zu einer Erhöhung der Ordnung in \(\text{Sr}_2\text{CrWO}_6 \). Dies ist ebenfalls ein Hinweis auf fehlendes Chrom in den hergestellten \(\text{Sr}_2\text{CrWO}_6 \) Proben. Bei weiteren Experimenten mit verschiedenen Chromoxiden als Ausgangsmaterialien konnte eine Verringerung der Wolframoxidfremdphasen bei der Verwendung von \(\text{CrO}_3 \) erreicht werden. \(\text{CrO}_3 \) kann mit der Wasserstoff-Stickstoffatmosphäre Chromsäure bilden und damit die Wolframoxidfremdphasen beiseitigen. Shikano beschreibt in [96] ein ähnliches Verfahren zur Entfernung von Wolfram- bzw. Molybdänfremdphasen.

Ein weiteres Problem stellten die \(\text{Al}_2\text{O}_3 \)-Tiegel dar. Bei der Herstellung von \(\text{Sr}_2\text{CrWO}_6 \) ist deutlich eine Reaktion der \(\text{Cr}_2\text{O}_3^- \)-Ionen mit den Tiegeln sichtbar. Während es bei der \(\text{Sr}_2\text{FeMoO}_6 \) Herstellung zu keiner Benetzung des Tiegels kommt, sind bei den Tie-
geln, welche für die \(\text{Sr}_2\text{CrWO}_6 \) Herstellung verwendet wurden, Ablagerungen an den Tiegelwänden erkennbar. Hierbei kann eine Diffusion von Al-Ionen in die \(\text{Sr}_2\text{CrWO}_6 \) Verbindung stattfinden.

Die dargestellten Probleme des obigen Herstellungsverfahren können durch einen alternativen Herstellungsprozess verringert werden. In verschiedenen Veröffentlichungen \([49\;84\;85]\) wird die Herstellung von Verbindungen mit flüchtigen Elementen mittels evakuierten Quarzampullen beschrieben. Hierbei handelt es sich um ein geschlossenes System, so dass es zu keiner Änderung der Stöchiometrie während der Reaktion kommt.

Zur Herstellung von \(\text{Sr}_2\text{CrWO}_6 \) wurde während der Diplomarbeit ein ähnliches Vorgehen gewählt, wie es in \([99]\) beschrieben ist. Zuerst wird hierbei der Kalzinierungsprozess ausgenutzt, um die Verbindung \(\text{Sr}_3\text{WO}_6 \) herzustellen.

\[6 \text{SrCO}_3 + 2 \text{WO}_3 \rightarrow 2 \text{Sr}_3\text{WO}_6 + (6 \text{CO}_2) \uparrow \]

Dadurch wird die Verwendung des stark hydrophilien \(\text{SrO} \) vermieden. Die Vorgehensweise zur Herstellung von \(\text{Sr}_3\text{WO}_6 \) ist in \([18]\) beschrieben. Die weitere Herstellung von \(\text{Sr}_2\text{CrWO}_6 \) findet nun in einer evakuierten Quarzampulle statt. Hierbei wird folgende Reaktion ausgenutzt.
Abbildung 4.7: Thermogravimetrie-Messung von Sr_2CrWO_6 des letzten Prozessschrittes

\[2\text{Sr}_3\text{WO}_6 + 3\text{CrO}_2 + \text{W} \rightarrow 3\text{Sr}_2\text{CrWO}_6 \quad (4.6) \]

Elementares Wolfram stellt bei dieser Reaktion das reduzierende Element dar. Die Materialien wurden stöchiometrisch eingewogen, gemischt und zu kleinen Tabletten gepresst. Diese wurden in den evakuierten Quarzampullen bei einer Endtemperatur von $T = 1000^\circ\text{C}$ und einer Haltezeit von insgesamt $t = 110\,\text{h}$ gesintert. Aus zeitlichen Gründen konnte dieser alternative Herstellungsprozess nicht optimiert werden, so dass nur eine Probe mit geringer Qualität für die weiteren Untersuchungen zur Verfügung stand.
4.2 Zusammenfassung der Probenpräparation

Die mittels des Standardverfahrens hergestellten Probenserien $\mathrm{Sr_{2-x}La_xFeMoO_6}$ (S) bzw. $\mathrm{A_{2-x}La_xCrWO_6}$ (S) ($A = \mathrm{Ca}$ und Sr) und $\mathrm{Ba_2CrWO_6}$ (S) wurden für Röntgendiffraktometrie-, Magnetisierungs- und Magnetotransport-Messungen verwendet. Die Notation (S) kennzeichnet diese Proben bei der weiteren Diskussion der experimentellen Ergebnisse. Des Weiteren wurden Probenserien $\mathrm{A_{2-x}La_xCrWO_6}$ (N) ($A = \mathrm{Ca}$ und Sr) für Neutronenstreuexperimente und magnetische Röntgendiffusionsmessungen (XMCD) ebenfalls nach dem Standardverfahren hergestellt. Hierbei wurde das Herstellungsverfahren nur geringfügig hinsichtlich der Endtemperatur und Haltezeit der jeweiligen Sinterschritte verändert. Aus der beschriebenen alternativen Herstellungs methode resultierte eine $\mathrm{Sr_2CrWO_6}$ (A) Probe, welche für Röntgendiffraktometrie- und Magnetisierungsmessungen Verwendung fand.
Kapitel 5

Experimentelle Ergebnisse

Der experimentelle Teil dieser Diplomarbeit gliedert sich in zwei Hauptabschnitte. Der erste Teil widmet sich den Effekten der A-Kationen Substitution in A_2CrWO_6 ($A = \text{Ca, Sr und Ba}$). Hierbei werden hauptsächlich strukturelle Auswirkungen auf die magnetischen und elektrischen Eigenschaften betrachtet. Um das physikalische Verständnis der starken ferromagnetischen Wechselwirkung zu verbessern, werden im zweiten Teil die magnetischen und elektrischen Folgen einer Elektronendotierung in den Sr_2CrWO_6 und $\text{Sr}_2\text{FeMoO}_6$ Doppelperronskitsystemen untersucht.

5.1 A-Kationen Substitution in A_2CrWO_6

$(A = \text{Ca, Sr, Ba})$

5.1.1 Charakterisierung

5.1. A-KATIONEN SUBSTITUTION IN $A_2\text{CrWO}_6$ ($A = \text{Ca, Sr, Ba}$)

Abbildung 5.1: Röntgen-Pulverdiffraktometrie-Messung der Sr$_2$CrWO$_6$ (S) Probe

Phasenanalyse der $A_2\text{CrWO}_6$ ($A = \text{Ca, Sr und Ba}$) Proben

Die Phasenreinheit der einzelnen A_2CrWO_6 ($A = \text{Ca, Sr und Ba}$) Proben ist somit nicht optimal. Dies sollte bei der Interpretation der physikalischen Messergebnisse beachtet werden.

Kristallstrukturbestimmung von A_2CrWO_6 ($A = \text{Ca und Sr}$)

5.1. A-KATIONEN SUBSTITUTION IN A_2CrWO$_6$ ($A = CA, SR, BA$)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Kristallstruktur</th>
<th>Parameter (±0,01 Å bzw. °)</th>
<th>Unordnung (±1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$_2$CrWO$_6$</td>
<td>$P2_1/n$ (monoklin)</td>
<td>$a = 5,44$ Å, $b = 5,38$ Å, $c = 7,65$ Å; $\beta = 89,94^\circ$</td>
<td>Probe (S): 9,5%</td>
</tr>
<tr>
<td>Sr$_2$CrWO$_6$</td>
<td>$Fm\bar{3}m$ (kubisch)</td>
<td>$a = 8,82$ Å</td>
<td>Probe (S): 24,1%</td>
</tr>
</tbody>
</table>

Tabelle 5.2: Kristallstrukturbestimmung mittels Röntgen-Pulverdiffraktometrie der A_2CrWO$_6$ ($A = Ca$ und Sr) Proben

Bei der Betrachtung der Unordnung der Cr- bzw. W-Ionen in Tabelle 5.2 wird deutlich, dass die Sr$_2$CrWO$_6$ Proben eine sehr große Unordnung besitzen. Dies ist erklaarbär mit der Ähnlichkeit der Ionenradien von Cr$^{3+}$ ($< r_{Cr^{3+}} > = 0,615$ Å [95]) und W$^{5+}$ ($< r_{W^{5+}} > = 0,620$ Å [95]). Die Ca$_2$CrWO$_6$ Proben besitzen hingegen eine sehr große Ordnung. Dies kann mit einer Umverteilung der Ladung in Cr und W zusammenhängen. In [87] wird bei Erhöhung des Calcium-Gehaltes in Sr$_{2-x}$Ca$_x$FeMoO$_6$ ein Wachsen des MoO$_6$-Oktaeders und ein Schrumpfen des FeO$_6$-Oktaeders beobachtet. Dies wird als Ladungsumverteilung interpretiert. Durch diese Umverteilung ändern sich auch die jeweiligen Ionenradien und somit könnte die hohe Ordnung in Ca$_2$CrWO$_6$ durch diese Ladungsumverteilung erklärt werden.

Aus den Röntgenbeugungsmessungen lassen sich allerdings keine feinen, strukturellen Abweichungen erkennen. Deswegen muss eine genauere Analyse der Struktur mittels Neutron-Diffraktometrie-Messungen durchgeführt werden.

In den Abbildungen A.2 sind die Refinements der Sr$_2$CrWO$_6$ (N) Probe bei verschiedenen Temperaturen unter der Voraussetzung einer tetragonalen $I/4m$-Symmetrie dargestellt. Hierbei wurde die nukleare und magnetische Phase von Sr$_2$CrWO$_6$ und nur die W-Fremdphase berücksichtigt. Die Ergebnisse dieser Refinements ist in Tabelle 5.3 zusammengefasst. Hierbei ist die Unsicherheit der letzten Stellen in Klammern angegeben. Die Güte des Refinements wird durch den magnetischen und nuklearen R-Faktor ausgedrückt (siehe Anhang A.1). Die Bezeichnungen der Sauerstoffionen sowie der Ionenabstände beziehen sich auf Abbildung 5.2. Um
KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

<table>
<thead>
<tr>
<th>Raumgruppe</th>
<th>(T) (K)</th>
<th>10</th>
<th>110</th>
<th>210</th>
<th>300</th>
<th>445</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ((\text{Å}))</td>
<td>(a_{\text{cubic}}) ((\text{Å}))</td>
<td>(c) ((\text{Å}))</td>
<td>(< d_{\text{Cr-O1}} >) ((\text{Å}))</td>
<td>(< d_{\text{Cr-O3}} >) ((\text{Å}))</td>
<td>(< d_{\text{W-O1}} >) ((\text{Å}))</td>
<td>(< d_{\text{W-O3}} >) ((\text{Å}))</td>
</tr>
<tr>
<td>(I4/m)</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(5,526(1))</td>
<td>(5,526(1))</td>
<td>(5,528(1))</td>
<td>(5,531(2))</td>
<td>(5,530(1))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(7,816(1))</td>
<td>(7,815(1))</td>
<td>(7,820(2))</td>
<td>(7,822(3))</td>
<td>(7,821(3))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(7,814(1))</td>
<td>(7,816(1))</td>
<td>(7,820(4))</td>
<td>(7,822(4))</td>
<td>(7,821(3))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(1,962(2))</td>
<td>(2,005(10))</td>
<td>(1,997(39))</td>
<td>(1,961(73))</td>
<td>(1,965(37))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(1,931(6))</td>
<td>(1,929(28))</td>
<td>(1,934(38))</td>
<td>(1,963(17))</td>
<td>(1,927(70))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(1,946(2))</td>
<td>(1,904(79))</td>
<td>(1,912(39))</td>
<td>(1,945(16))</td>
<td>(1,946(39))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(1,976(6))</td>
<td>(1,979(28))</td>
<td>(1,976(33))</td>
<td>(1,948(17))</td>
<td>(1,983(70))</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CrO}_6}) ((\text{Å}^3))</td>
<td>(V_{\text{WO}_6}) ((\text{Å}^3))</td>
<td>(\Theta_{\text{Cr-O1-W}}) ((^\circ))</td>
<td>(\Theta_{\text{Cr-O3-W}}) ((^\circ))</td>
<td>(R_{\text{nuk.}}) (%)</td>
<td>(R_{\text{mag.}}) (%)</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(9,915(4))</td>
<td>(10,336(568))</td>
<td>(10,283(608))</td>
<td>(10,065(466))</td>
<td>(10,117(464))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(9,975(8))</td>
<td>(9,560(383))</td>
<td>(9,637(327))</td>
<td>(9,878(415))</td>
<td>(10,014(357))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(179,74(3))</td>
<td>(179,97(12))</td>
<td>(179,19(16))</td>
<td>(178,17(16))</td>
<td>(177,75(16))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(180,00(8))</td>
<td>(180,00(43))</td>
<td>(180,00(14))</td>
<td>(180,00(14))</td>
<td>(180,00 (29))</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(5,65)</td>
<td>(8,52)</td>
<td>(8,14)</td>
<td>(5,72)</td>
<td>(7,29)</td>
<td></td>
</tr>
<tr>
<td>(I4/m)</td>
<td>(4,07)</td>
<td>(7,48)</td>
<td>(8,31)</td>
<td>(5,26)</td>
<td>(8,69)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 5.3: Rietveld-Refinement der Neutronen-Pulverdiffraktometrie-Messungen an \(\text{Sr}_2\text{CrWO}_6 \)

Einen möglichen strukturellen Übergang von der tetragonalen \(I4/m \)- in die kubische \(Fm\bar{3}m \)-Symmetrie zu identifizieren, wurde die Gitterkonstante \(a \) für eine kubische Symmetrie berechnet \(a_{\text{cubic}} = \sqrt{2} \cdot a \). Die Ergebnisse sind auf die angegebene Anzahl von Dezimalstellen gerundet.

Aus Tabelle 5.3 wird ersichtlich, dass bei \(T = 10 \text{ K} \) eine Abweichung der Gitterkonstanten \(a_{\text{cubic}} \) und \(c \) existiert. Dies bedeutet, dass bei tiefen Temperaturen die Kristalldichtung eine geringfügige strukturelle Verzerrung besitzt. Es findet dadurch eine Verdrehung der Sauerstoffoktaeder in z-Richtung statt (\(a^0a^0c^-\)-Tilt-System). Neuere Neutronenstreuexperimente (vgl. [50]) zeigen, dass Doppelperowskitverbindungen trotz eines Toleranzfaktors nahe 1 in der tetragonalen \(I4/m \)-Symmetrie kristallisieren. Dies bestätigt obige Betrachtung.
Abbildung 5.3: Strukturelle Übergänge in $A_2\text{CrWO}_6$ ($A = \text{Ca}$ und Sr)

Aus zeitlichen Gründen konnte die Güte der Refinements für $T > 10\, \text{K}$ und damit die Unsicherheiten nicht verringert werden, so dass eine exaktere Untersuchung der strukturellen Effekte mit geringeren Fehlern folgen muss.

In Abbildung 5.3 ist eine Übersicht über die strukturellen Veränderungen in $A_2\text{CrWO}_6$ ($A = \text{Ca}$ und Sr) dargestellt. Die verschiedenen Ionenradien der Erdalkaliionen Ca^{2+} ($< r_{\text{Ca}^{2+}} > = 1,34 \, \text{Å}$ [95]) und Sr^{2+} ($< r_{\text{Sr}^{2+}} > = 1,44 \, \text{Å}$ [95]) bewirken eine Änderung der Kristallsymmetrie. Wie in Kapitel 2.9.1 beschrieben, führt ein zu kleines A-Kation zu einer Verdrehung des Sauerstoffoktaeders und damit zu einer Erniedrigung der Symmetrie. In Glazers Notation kommt es bei der A-Kationensubstitution mit Ca in Sr_2CrWO_6 zu einem Übergang von der idealen $a^0a^0d^-d$- zu einer gestörten $a^+b^-b^-$-Struktur. Dies kann in erster Näherung auch durch den Toleranzfaktor t, wel-
ner sich von $t = 0,999$ im Falle von Sr$_2$CrWO$_6$ zu $t = 0,945$ (Ca$_2$CrWO$_6$) ändert, beschrieben werden.

Die Änderung der Kristallsymmetrie hat, wie nachfolgend gezeigt wird, sehr großen Einfluss auf die magnetischen und elektrischen Eigenschaften.

Kristallstruktur von Ba$_2$CrWO$_6$

Betrachten wir die Verbindung Ba$_2$CrWO$_6$, so müsste das zu große Barium-Ion ($< r_{Ba^{2+}} > = 1,44\text{\AA}$ [95]) ebenfalls zu einer gestörten kubischen Struktur führen (vgl. [86] [108]). Aus Röntgenbeugungsmessungen (siehe Tabelle 5.4) wird aber deutlich, dass Ba$_2$CrWO$_6$ in der hexagonalen $P\bar{6}2c$-Symmetrie kristallisiert. Diese Kristallstruktur ist äquivalent zu der Struktur, welche die 2:1 geordnete Doppelperowskitverbindung Ba$_3$Cr$_2$WO$_9$ besitzt. In Abbildung [5.4] ist die Einheitszelle dieser Verbindung dargestellt. Deutlich sind die Chrom-Paare und die verkippten Sauerstoffoktaeder mit den gemeinsamen Flächen zu erkennen.

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Kristallstruktur</th>
<th>Parameter ($\pm0,01\text{\AA}$)</th>
<th>Unordnung ($\pm1%$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba$_2$CrWO$_6$</td>
<td>$P\bar{6}2c$ (hexagonal)</td>
<td>$a = 5,70\text{\AA}$, $c = 13,99\text{\AA}$</td>
<td>W-Plätze: 2% Cr-Plätze: 1%</td>
</tr>
</tbody>
</table>

Tabelle 5.4: Kristallstrukturbestimmung mittels Röntgen-Pulverdifferfraktometrie der Ba$_2$CrWO$_6$ (S) Probe

Da der Übergang zwischen Ba$_3$Cr$_2$WO$_9$ und Ba$_2$CrWO$_6$ zu keiner Strukturänderung führt, kann Ba$_2$CrWO$_6$ als Ba$_3$Cr$_2$WO$_9$ mit verändertem Cr/W-Verhältnis beschrieben werden:

$$\text{Ba}_3\text{Cr}_2\text{WO}_9 \iff \text{Ba}_2\text{Cr}_{4/3}\text{W}_{2/3}\text{O}_6 \iff \text{Ba}_2(\text{Cr}_{4/3-1/3}\text{W}_{1/3})\text{W}_{2/3}\text{O}_6 \iff \text{Ba}_2\text{CrWO}_6$$

KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

Abbildung 5.4: Schematische Darstellung der Einheitszelle von Ba\textsubscript{3}Cr\textsubscript{2}WO\textsubscript{9}

Aus Tabelle 5.4 wird deutlich, dass die Unordnung der Ba\textsubscript{2}CrWO\textsubscript{6} (S) Probe sehr gering ist. Ebenso ist die Fremdphasenkonzentration in dieser Probe sehr niedrig (siehe Tabelle 5.1), so dass die folgenden experimentellen Ergebnisse der Ba\textsubscript{2}CrWO\textsubscript{6} (S) Probe nicht durch extrinsische Eigenschaften beeinflusst werden.

5.1.2 Magnetische Eigenschaften

Im Folgenden werden die magnetischen Eigenschaften der einzelnen A\textsubscript{2}CrWO\textsubscript{6} (A = Ca, Sr und Ba) Proben diskutiert. Ba\textsubscript{2}CrWO\textsubscript{6} stellt hierbei einen Sonderfall dar und wird gesondert behandelt.

Magnetische Eigenschaften von A\textsubscript{2}CrWO\textsubscript{6} (A = Ca und Sr)

In Abbildung 5.5 (a) ist die normierte Magnetisierung als Funktion der Temperatur für die A\textsubscript{2}CrWO\textsubscript{6} (A = Ca und Sr) (S) Proben dargestellt. Die Magnetisierungsmessungen wurden in einem äußeren Magnetfeld von $\mu_0 H = 1$ T durchgeführt. Dies bedeutet, dass sich die Magnetisierung bei der Curie-Temperatur T_C proportional zur dritten Wurzel aus dem Magnetfeld verhält und die Diskontinuität bzw. Unstetigkeit bei T_C aufgehoben wird (siehe [2]). Deshalb erfolgte die Bestimmung der Curie-Temperatur der SQUID-Magnetisierungsmessungen einerseits durch lineare Extrapolation des stärksten Abfalls (in Abbildung 5.5 (a) durch eine gestrichelte
5.1. A-KATIONEN SUBSTITUTION IN A_2CRWO_6 ($A = Ca, Sr, Ba$)

Linie angedeutet) und andererseits durch Bestimmung des Wendepunktes. Mit dieser Methode erhält man einen Bereich ΔT, in dem sich die wirkliche Curie-Temperatur für $\mu_0H = 0$ T befinden sollte. Eine weitere Möglichkeit der T_C Bestimmung sind sogenannte “Arrott-Plots” (siehe [7]). Hierbei müssen aber viele Hysteresis-Kurven in einem geringen Temperaturintervall um die Curie-Temperatur aufgenommen werden. Dies bedeutet einen erheblichen Mess- und Zeitaufwand.

In Abbildung 5.5 (b) sind die erhaltenen Resultate dargestellt. Dabei wurden die Ergebnisse aller nach dem Standardverfahren hergestellten A_2CRWO_6 ($A = Ca$ und Sr) Proben berücksichtigt. Die systematischen und statistischen Unsicherheiten wurden mittels Fehlerfortpflanzung berechnet.

![Abbildung 5.5: (a) Magnetisierung als Funktion der Temperatur; (b) Curie-Temperatur der A_2CRWO_6 ($A = Ca$ und Sr) Proben](image)

Deutlich ist die um ca. 250 K geringere Curie-Temperatur der Ca$_2$CrWO$_6$ gegenüber den Sr$_2$CrWO$_6$ Proben zu erkennen. Die Ursache hierfür liegt in der in Kapitel 5.1.1 beschriebenen Änderung der Kristallstruktur und damit auch des Toleranzfaktors t durch die isovalente Substitution von Sr mit Ca. Die Verdrehung des Sauerstofffok-
KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

Bei tiefen Temperaturen machen sich außerdem die paramagnetischen Fremdphasen bemerkbar. Auf die Bestimmung der Curie-Temperatur haben sie aber nur einen sehr geringen Einfluss.

Abbildung 5.6: Einfluss unterschiedlicher Chrom- bzw. Wolframkonzentrationen auf das magnetische Verhalten

Unterschiedliche Herstellungsprozesse bewirken hingegen eine Änderung der Stärke des magnetischen Verhaltens. So werden in einigen Veröffentlichungen die unterschiedlichen Curie-Temperaturen von Sr$_2$FeMoO$_6$ auf die Verwendung verschiedener Gasatmosphären während der Herstellung und demzufolge auf die unterschiedlichen Sauerstoffkonzentrationen in der Probe erklärt (siehe [70] bzw. [86]). In Sr$_2$CrWO$_6$ hat ebenfalls der Herstellungsprozess einen großen Einfluss auf die Curie-Temperatur. Hierbei sind aber nicht die verschiedenen Sauerstoffkonzentrationen dominant, sondern vielmehr das unterschiedliche Chrom-Wolfram-Verhältnis in der Sr$_2$CrWO$_6$-Verbindung.
5.1. A-KATIONEN SUBSTITUTION IN A_2CRWO_6 ($A = CA, SR, BA$)

In Abbildung 5.6 (a) ist die normierte Magnetisierung als Funktion der Temperatur dreier Sr_2CrWO_6 Proben, von denen zwei mit dem Standardverfahren (S1) (S2) und eine mit dem in Kapitel 4.1.2 beschriebenen alternativen Verfahren (A) hergestellt wurden, dargestellt. Hierbei wird deutlich, dass sich die Übergangstemperaturen der Proben um bis zu 80 K unterscheiden (siehe Abbildung 5.6 (b)). Proben, welche mit dem Standardverfahren hergestellt wurden, sind zum einen mit Wolframfremdphasen verunreinigt und zum anderen verflüchtigt sich Chrom. Im alternativen Herstellungsverfahren kann es hingegen zu keiner stöchiometrischen Änderung kommen, allerdings besitzt diese Probe ebenfalls Wolframoxidfremdphasen. Die Untersuchung der Gitterkonstanten dieser Fremdphasen zeigen innerhalb der Fehlergrenzen keine Abweichungen von den Literaturwerten, so dass in diesen Wolframfremdphasen nur ein minimaler Chromanteil vorhanden ist. Der in Abbildung 5.6 (b) dargestellten Anstieg der Curie-Temperatur kann somit durch eine größere Chromkonzentration in der Sr_2CrWO_6 Phase bedingt sein: $Sr_2Cr_{1+x}W_{1-x}O_6$.

Abbildung 5.6 macht deutlich, dass einerseits das Chrom-Wolfram-Verhältnis in der Sr_2CrWO_6 Phase entscheidend für die Stärke des magnetischen Verhaltens ist und andererseits, dass nur Proben, welche mit dem selben Herstellungsprozess hergestellt wurden, vergleichbar sind.

Abbildung 5.7 (a) zeigt das Verhalten der Magnetisierung als Funktion des äußeren Feldes. Offensichtlich geht Sr_2CrWO_6 durch die Substitution mit Ca von einem weichmagnetischen zu einem hartmagnetischen Material über. Dies kann qualitativ durch die Erhöhung des Koerzitivfeldes μ_0H_C von 86 mT zu 472 mT beschrieben werden. Die Fläche der Hysteresekurve hat die Einheit einer Energiedichte. Sie stellt die Energie dar, welche in einem Zyklus von einem äußeren Feld im Material deponiert wurde. In Ca_2CrWO_6 muss, wegen der verzerrten Kristallstruktur somit mehr Energie aufgebracht werden, um eine Wandverschiebung der Domänen zu erreichen.

Des Weiteren wird die Sättigungsmagnetisierung deutlich erhöht. Hierbei spielt die Unordnung in den einzelnen Proben neben den strukturellen Effekte eine entscheidende Rolle [71].
KAPITEL 5. EXPERIMENTELLE ERGEBNisse

(a) Hysteresekurve

(b) Sättigungsmagnetisierung

Abbildung 5.7: (a) Magnetisierung als Funktion des äußeren Feldes; (b) Sättigungsmagnetisierung und Unordnung der $A_2\text{CrWO}_6$ ($A = \text{Ca}$ und Sr) Proben

In Abbildung 5.7 (b) ist die Sättigungsmagnetisierung M_{sat} und die Unordnung als Funktion des Toleranzfaktors t aufgetragen. Man erkennt, dass die Sättigungsmagnetisierung von Sr_2CrWO_6 ($M_{\text{sat}} \sim 0,9 \ \mu_B/f.u.$) sehr viel kleiner ist, als die in Kapitel 2.5.5 beschriebene theoretische Sättigungsmagnetisierung ($M_{\text{sat, theo}} = 2 \mu_B/f.u.$). Die empirische Formel (2.22) in Kapitel 2.9.2 berücksichtigt die Reduktion der Sättigungsmagnetisierung durch Unordnungseffekte. Die Berechnung liefert für die Sr_2CrWO_6 (S) bzw. Ca_2CrWO_6 (S) Probe eine Sättigungsmagnetisierung von 1,04 $\mu_B/f.u.$ und 1,81 $\mu_B/f.u.$ In Sr_2CrWO_6 ist die Abweichung des gemessenen Wertes sehr gering, so dass die Reduktion in Sr_2CrWO_6 hauptsächlich durch die große Unordnung erklärt werden kann. In Ca_2CrWO_6 hingegen müssen zusätzlich zur Unordnung die strukturellen Effekte berücksichtigt werden.

Des Weiteren sollten bei der Bestimmung der gemessenen Sättigungsmagnetisierung die vorhandenen Fremdphasen beachtet werden. In die Berechnung der Magnetisierung geht die gesamte Probenmasse ein. Da die gemessenen Proben nicht ferromagnetische Fremdphasen besitzen, sind die effektiven absoluten Werte der Sättigungsmagnetisierung der $A_2\text{CrWO}_6$ ($A = \text{Sr}$ und Ca) Verbindungen größer als oben angegeben.
Die relative Änderung der Sättigungsmagnetisierung wird aber durch die Fremdphasen nicht beeinflusst, da sie ungefähr gleiche Konzentrationen in den einzelnen Proben besitzen.

Magnetische Eigenschaften von Ba$_2$CrWO$_6$

In Abbildung 5.8 ist die normierte Magnetisierung als Funktion der Temperatur von Ba$_2$CrWO$_6$ dargestellt. Aus Kapitel 5.1.1 wurde ersichtlich, dass Ba$_2$CrWO$_6$ nichts anderes als Ba$_3$Cr$_2$WO$_9$ mit unterschiedlichem Cr/W-Verhältnis ist. Deshalb sollte das magnetische Verhalten von Ba$_2$CrWO$_6$ ausgehend von Ba$_3$Cr$_2$WO$_9$ beschrieben werden.

Abbildung 5.8: Normierte Magnetisierung der Ba$_2$CrWO$_6$ (S) Probe als Funktion der Temperatur

In [96] wird der Magnetismus von Ba$_3$Cr$_2$WO$_9$, welcher hauptsächlich durch die Chrom-Paare (siehe Abbildung 5.4) hervorgerufen wird, durch das sogenannte Dimer-Modell (vgl. [51]) erklärt. Mittels eines Curie-Weiss-Terms werden hierbei auch die Effekte der Unordnung auf den Cr/W-Plätzen berücksichtigt. Die magnetische Sus-
KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

Abbildung 5.9: Magnetisierung der Ba$_2$CrWO$_6$ (S) Probe als Funktion des äußeren Feldes

Die Magnetisierung von Ba$_2$CrWO$_6$ in Abhängigkeit vom äußeren Feld zeigt Abbildung 5.9. Deutlich ist das paramagnetische Verhalten des isolierten Cr-Ions zu erkennen. Die Vergrößerung zeigt jedoch eine Hysterese, welche auf ein zusätzliches ferromagnetisches Verhalten schließen lässt.
Dieses könnte durch einen 90° Superaustausch zwischen den Chrom-Ionen verursacht werden, ist aber noch nicht vollständig geklärt.

<table>
<thead>
<tr>
<th></th>
<th>2:1 Ordnung $A_3M_2M'O_9$</th>
<th>1:1 Ordnung $A_2MM'O_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>struktureller Übergang</td>
<td>$P62c$ (hexagonal)</td>
<td>$Fm\bar{3}m$ (kubisch)</td>
</tr>
<tr>
<td>magnetischer Übergang</td>
<td>komplexes Verhalten</td>
<td>ferromagnetisches Verhalten</td>
</tr>
</tbody>
</table>

Tabelle 5.5: Korrelation zwischen strukturellem und magnetischem Übergang

In Tabelle 5.5 ist diese Korrelation zwischen strukturellem und magnetischem Übergang wie sie zum Beispiel in $\text{Ba}_3\text{Fe}_2\text{ReO}_9$ [33, 99] bzw. $\text{Ba}_3\text{Cr}_2\text{ReO}_9$ [49] erfolgen dargestellt. In $\text{Ba}_3\text{Cr}_2\text{WO}_9$ findet dieser Übergang nicht statt und somit kann auch kein reines ferromagnetisches Verhalten mit hoher Curie-Temperatur und hoher Sättigungsmagnetisierung erhalten werden. Diese strukturelle Änderung könnte durch kristallines Filmwachstum auf geeignete Substrate erzwungen und somit die in Tabelle 5.5 dargestellten Korrelation überprüft werden.
5.1.3 Magnetotransport

Die Transporteigenschaften von ferromagnetischen Doppelperowskiten werden immer noch kontrovers diskutiert. Die in Kapitel 2.6 dargestellten Bandstrukturrechnungen zeigen, dass sich die Verbindungen \(\text{Sr}_2\text{FeMoO}_6 \) und \(\text{Sr}_2\text{CrWO}_6 \) wie ein Halbmetall verhalten sollten. Um diese Vorhersage experimentell zu verifizieren, wurden Transportmessungen an den \(A_2\text{CrWO}_6 \) (\(A = \text{Ca}, \text{Sr} \) und \(\text{Ba} \)) Proben durchgeführt.

Transporteigenschaften von \(A_2\text{CrWO}_6 \) (\(A = \text{Ca}, \text{Sr} \) und \(\text{Ba} \))

Abbildung 5.10 zeigt das Temperaturverhalten des spezifischen Widerstandes der \(\text{Sr}_2\text{CrWO}_6 \) (S) Probe. Deutlich ist eine halbleitende Temperaturabhängigkeit erkennbar. Der spezifische Widerstand nimmt mit steigender Temperatur ab. Hierbei muss aber beachtet werden, dass Abbildung 5.10 die Messung einer nicht phasenreinen, polykristallinen Probe zeigt. Das bedeutet, dass die elektrischen Eigenschaften nicht nur durch die intrinsischen Transporteigenschaften der \(\text{Sr}_2\text{CrWO}_6 \) Verbindung, sondern durch Korngrenzen und die an diese angelagerten, isolierenden Fremdphasen bestimmt sind. Dies kann zu einem halbleitenden Temperaturverhalten führen, obwohl \(\text{Sr}_2\text{CrWO}_6 \) halbmetallische Eigenschaften besitzt.

Somit muss zuerst entschieden werden, ob die Messdaten mit einem isolierenden oder metallischen Verhalten korrespondieren. Eine Unterscheidungsmöglichkeit ist dabei der \(T \to 0 \) Grenzfall. Da \(T = 0 \text{K} \) nicht erreicht werden kann, muss eine Extrapolation angewendet werden. Für Isolatoren betrachtet man dabei gewöhnlich eine exponentielle Abhängigkeit der Leitfähigkeit \(\sigma \) von der Temperatur \(T \), ähnlich dem sogenannten “variable range hopping“ (VRH)-Mechanismus von Mott [68]:

\[
\sigma = \sigma_0 \exp \left[-\left(\frac{T_0}{T} \right)^{1/n} \right] \tag{5.2}
\]

wobei \(T_0 \) die charakteristische Mott-Temperatur darstellt. Sie hängt hauptsächlich von der Zustandsdichte \(N(E_F) \) an der Fermi-Energie und einer Lokalisierungslänge \(\xi \) ab. Eine niedrige Mott-Temperatur impliziert eine schwache Lokalisierung der Leitungselektronen. Der Exponent \(n \) ist für einen dreidimensionalen Hüpfprozess \(n = 4 \). Berücksichtigung einer langreichweitigen Coulombwechselwirkung ergibt nach Efros und Shklovskii (ES) [19] eine kleinere Leitfähigkeit mit einem Exponenten \(n = 2 \).
5.1. A-KATIONEN SUBSTITUTION IN $A_2\text{CrWO}_6$ ($A = \text{CA, SR, BA}$)

Abbildung 5.10: Spezifischer Widerstand der Sr_2CrWO_6 (S) Probe in Abhängigkeit von der Temperatur; das Inset zeigt die Ableitung der elektrischen Leitfähigkeit \[w = \frac{d \ln \sigma(T)}{d \ln T} \]

Eine Mott-Leitfähigkeit wird hierbei immer nahe eines Metall-Isolator-Übergangs beobachtet, wenn die Elektronabschirmung größer wird und die Coulomb-Energiefülle zusammenbricht, was zu einer metallischen Phase führt. Exponenten mit $n = 2$ werden gewöhnlich in Systemen mit starker Elektronenwechselwirkung gefunden \[90\]. Für metallische Proben wird hingegen folgende Extrapolation verwendet:

\[\sigma = a + b T^p \quad (5.3) \]

Wobei der Exponent meistens die Werte $p = 1/2$ oder $p = 1/3$ annimmt \[63\].
Bei der Unterscheidung zwischen einem isolierenden und metallischen Verhalten wird nun die Ableitung der elektrischen Leitfähigkeit \(w = \frac{d \ln \sigma(T)}{d \ln T} \) benutzt.

\[
\begin{align*}
 w_I &= n \left(\frac{T_0}{T} \right)^n \\
 w_M &= \frac{p b T^p}{a + b T^p}
\end{align*}
\]

(5.4)

(5.5)

Die Gleichungen (5.4) bzw. (5.5) folgen aus (5.2) und (5.3). Die Extrapolation \(T \to 0 \) liefert nun für ein isolierendes Verhalten \(w_I \to \infty \) und für ein metallisches \(w_M \to 0 \). Somit ist eine eindeutige Unterscheidung zwischen Isolator und Metall möglich.

Im Inset der Abbildung 5.10 ist \(w(T) \) als Funktion der Temperatur aufgetragen. Hierbei geht \(w(T) \) gegen Null. Dies stärkt den Verdacht, dass \(\text{Sr}_2\text{CrWO}_6 \) metallisches Verhalten besitzt und die halbleitenden Eigenschaften durch die Korngrenzen und die isolierenden Fremdphasen begründet sind (vgl. [116]). Exakte Resultate über die intrinsischen Transporteigenschaften können aber nur einkristalline Filme liefern.

Abbildung 5.11 zeigt den spezifischen Widerstand der \(A_2\text{CrWO}_6 \) (\(A = \text{Ca}, \text{Sr} \) und \(\text{Ba} \)) (S) Proben als Funktion der Temperatur. Alle Proben zeigen ein halbleitende Temperaturcharakteristik.

Der Vergleich zwischen \(\text{Sr}_2\text{CrWO}_6 \) und \(\text{Ca}_2\text{CrWO}_6 \) zeigt, dass \(\text{Ca}_2\text{CrWO}_6 \) den maximalen und \(\text{Sr}_2\text{CrWO}_6 \) den minimalen Widerstand besitzt. Unter Berücksichtigung ungefähr gleicher Fremdphasenkonzentrationen kann dies auf die gestörte Doppelperowskitstruktur von \(\text{Ca}_2\text{CrWO}_6 \) zurückgeführt werden. Hierbei führt die Abweichung des Bindungswinkels von Cr-O-W zu einer Reduktion des Orbitalüberlapps und dadurch der Hüpfamplitude \(t \) und der Bandbreite \(W \) des Leitungsbandes. Dies resultiert in einem erhöhten elektrischen Widerstand.

\(\text{Ba}_2\text{CrWO}_6 \) zeigt ein starkes isolierendes Verhalten bei tiefen Temperaturen. In Abbildung 5.11 ist deshalb nur der spezifische Widerstand für \(T > 400 \text{ K} \) dargestellt. Diese Transporteigenschaft ist wiederum auf die hexagonale Kristallstruktur zurückzuführen. Da in \(\text{Ba}_2\text{CrWO}_6 \) nur eine leitende Wolframfremdphase vorhanden ist, kann dieses Verhalten nicht durch isolierende Fremdphasen begründet werden und ist somit eine Überlagerung aus intrinsischen Transporteigenschaften und Eigenschaften der Korngrenze.
5.1. A-KATIONEN SUBSTITUTION IN A_2CrWO_6 $(A = \text{Ca, Sr, Ba})$ 87

Abbildung 5.11: Spezifischer Widerstand der A_2CrWO_6 $(A = \text{Ca, Sr und Ba})$ (S) Proben in Abhängigkeit der Temperatur

Magnetotransporteigenschaften von Sr_2CrWO_6

Im Folgenden werden die Transporteigenschaften der Sr_2CrWO_6 (S) Probe in Abhängigkeit eines äußeren Feldes und der Temperatur untersucht. Der magnetoresistive Effekt MR macht hierbei die Änderung des Widerstandes durch ein äußeres Feld deutlich.

$$MR = \frac{R(H) - R(H_{\text{peak}})}{R(H)}$$ \hspace{1cm} (5.6)

$R(H_{\text{peak}})$ bezeichnet den maximalen Widerstand im $R(H)$ Diagramm. Der magnetoresistive Effekt der Sr_2CrWO_6 (S) Probe ist für verschiedene Temperaturen in Abbildung 5.12 (a) dargestellt.

In Sr_2CrWO_6 beträgt der magnetoresistive Effekt bei einer Temperatur von $T = 5$ K im Bereich kleiner Felder $\mu_0H = 1,5$ T ("low field magnetoresistance" (LFMR)) ungefähr 40% und bei $\mu_0H = 8$ T 80%. Dieser LFMR kann mit spinpolarisier tem Tunneln
KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

Abbildung 5.12: (a) Magnetoresistiver Effekt und (b) “low field magnetoresistance” (LFMR) der Sr$_2$CrWO$_6$ (S) Probe

Bestimmender Faktor des spinpolarisierten Tunnelns ist die Spinpolarisation $P = \frac{N_\uparrow - N_\downarrow}{N_\uparrow + N_\downarrow}$ des ferromagnetischen Materials. Hierbei sind N_\uparrow und N_\downarrow die Zustands-
dichten der Spin-Up bzw. Spin-Down Elektronen an der Fermikante. Theoretische Bandstrukturrechnungen (siehe Kapitel 2.6) zeigen, dass Sr₂CrWO₆ näherungsweise als halbmetall betrachtet werden kann. Somit haben die Fermigeschwindigkeiten keinen Einfluss auf die Abschätzung der Spinpolarisation und wurden bei der Definition dieser vernachlässigt. Das Julliére-Modell \[46\] setzt nun den magnetoresistiven Effekt in Relation zu der Spinpolarisation des Materials. Hierbei wird angenommen, dass der Spin beim Tunnelprozess erhalten bleibt, und dass die Tunnelleitfähigkeit proportional zur Zustandsdichte ist. Die Reduktion des magnetoresistiven Effektes bei steigender Temperatur in Abbildung 5.12 kann somit mit der Abnahme der Spinpolarisation begründet werden (vgl. \[82\]).

Nicht nur intrinsische sondern auch extrinsische Faktoren spielen bei der Größe des magnetoresistiven Effektes eine Rolle. So hat die Korngröße \[103\], die Unordnung \[22\] und damit auch die Sättigungsmagnetisierung \[28\] großen Einfluss auf den magnetoresistiven Effekt. In \[17\] und in \[71\] wird sogar angenommen, dass Proben mit einer vollständigen Ordnung bzw. sehr guten kristallinen Eigenschaften einen sehr kleinen magnetoresistiven Effekt zeigen. Damit würden die extrinsischen Effekte dominieren und die betrachteten ferromagnetischen Doppelperowskite wären damit keine geeigneten Kandidaten für Materialien mit 100% Spinpolarisation.

5.2 Elektronendotierung

Die experimentellen Ergebnisse der Elektronendotierung in den ferromagnetischen Doppelpereowskit-systemen Sr$_2$CrWO$_6$ und Sr$_2$FeMoO$_6$ wurden zu Beginn dieser Diplomarbeit ebenso kontrovers diskutiert wie die in Kapitel 2.7 dargestellten theoretischen Vorhersagen. Navarro et al. [70] untersuchten das magnetische Verhalten von Sr$_{2-x}$La$_x$FeMoO$_6$ und fanden hierbei einen eindeutigen Anstieg der Curie-Temperatur bei zunehmender Dotierung. Im Gegensatz hierzu wurde in Sr$_{2-x}$La$_x$CrWO$_6$ eine Reduktion der Curie-Temperatur beobachtet [81]. Beide Resultate sind in Abbildung 5.13 dargestellt.

Abbildung 5.13: Elektronendotierung in Sr$_2$FeMoO$_6$ [70] bzw. in Sr$_2$CrWO$_6$ [81]

Die Hauptaufgabe der Diplomarbeit bestand nun darin, diese Diskrepanz zu untersuchen.

5.2.1 Magnetische Eigenschaften

Zur Überprüfung des in [70] und [81] beschriebenen magnetischen Verhaltens wurden zuerst die magnetischen Eigenschaften der Sr$_{2-x}$La$_x$CrWO$_6$ und Sr$_{2-x}$La$_x$FeMoO$_6$ Proben untersucht. Die Messungen des SQUID-Magnetometers und die Neutronenstreuexperimente ergaben, die im Folgenden diskutierten Ergebnisse.
Magnetische Eigenschaften der Sr$_{2-x}$La$_x$CrWO$_6$-Probenserien

In Abbildung 5.14 (a) ist die normierte Magnetisierung als Funktion der Temperatur für Sr$_{2-x}$La$_x$CrWO$_6$ ($x = 0.0, 0.1, 0.2, 0.3, 0.5$ und 0.7) dargestellt.

![Normierte Magnetisierung](image1)

![Curie-Temperatur](image2)

Abbildung 5.14: (a) Magnetisierung als Funktion der Temperatur; (b) Curie-Temperatur der Sr$_{2-x}$La$_x$CrWO$_6$ (S) Probenserie

Die exakte Bestimmung der Curie-Temperatur wurde wieder wie in Kapitel 5.1.2 beschrieben mittels linearer Extrapolation und Wendepunktbestimmung durchgeführt. Die Resultate sind in Abbildung 5.14 (b) gezeigt. Bis zu einer Lanthan-Konzentration von $x = 0.3$ kann eine gleichbleibende Übergangstemperatur beobachtet werden. Ab $x = 0.5$ wird ein starker Abfall von ungefähr $T = 100$ K sichtbar. Somit kann das in [81] beschriebene Absinken der Curie-Temperatur mit zunehmender Konzentration der Elektronendotierung bestätigt werden.

KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

(a) Magnetisierung in $\mu_B f.u.$

(b) Sättigungsmagnetisierung

Abbildung 5.15: (a) Magnetisierung als Funktion des äußeren Magnetfeldes; (b) Sättigungsmagnetisierung der $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ (S) Probenserie

Bei hohen äußeren Feldern erkennt man in Abbildung 5.15, dass die Magnetisierung der jeweiligen Probe nicht vollständig sättigt. Dies zeigt den Einfluss paramagnetischer Fremdphasen.

Bei der Bestimmung der magnetischen Eigenschaften mittels eines SQUID-Magnetometers werden bei einer nicht phasenreinen Probe die möglichen magnetischen Signale verschiedener Phasen überlagert, was zu Abweichungen führen kann. Des Weiteren sind antiferromagnetische Phasen bei Vorhandensein einer starken ferromagnetischen schwer zu identifizieren. Mittels Neutronenstreuung hingegen, können selektiv die magnetischen Eigenschaften der zu untersuchenden Verbindung bestimmt werden, indem nur die magnetischen Reflexe dieser Verbindung betrachtet werden.

Magnetische Ordnung, das heißt eine symmetrische Anordnung der Spins ungepaarter Elektronen über die räumliche Ausdehnung eines Kristallits, führt bei Neutronendiffraktometrie im Vergleich zu Röntgen-Diffraktometrie zu zusätzlichen Reflexen. Aus der Theorie der elastischen Neutronenstreuung (vgl. zum Beispiel [9, 104]) geht hervor, dass sich für einen Ferromagneten diese magnetischen Bragg-Reflexe an der selben Position wie die nuklearen befinden. Allerdings ist die magnetische Streuung, welche proportional zur Streufunktion im Quadrat ist, stark temperaturabhängig. Die
Abbildung 5.16: Intensität des magnetischen und nuklearen (111)-Reflexes von \(\text{Sr}_2\text{CrWO}_6 \) in Abhängigkeit von der Temperatur

Streufunktion geht bei der Curie-Temperatur gegen Null, so dass eine Bestimmung der Curie-Temperatur durch Neutronenstreueung möglich ist. Die Temperaturabhängigkeit der nuklearen Streuung wird durch den Debye-Waller-Faktor berücksichtigt. Der Beitrag dieses Faktors ist aber für niedrige Temperaturen gering (siehe [104]).

In Abbildung 5.16 ist die Abnahme der Intensität des magnetischen (111)-Reflexes im Vergleich zu der nahezu konstanten Intensität des (200)-Reflexes von \(\text{Sr}_2\text{CrWO}_6 \) zu erkennen. Weiterhin kann eine gleichbleibende Intensität oberhalb der Curie-Temperatur \(T_C \approx 420 \text{K} \) beobachtet werden, verursacht durch die nukleare Streuung.

Bei der Auswertung der Daten wurde eine Gaussfunktion an den (111)-Reflex angefittet und die integrierte Intensität dieses Peaks bei einer bestimmten Temperatur berechnet. Da die Magnetisierung quadratisch in den differentiellen Wirkungsquer-
schnitt eingeht, zeigt Abbildung 5.17 (a) die Wurzel der berechneten integrierten Intensität als Funktion der Temperatur. Hierbei wurde die Intensität des nuklearen Reflexes bereits abgezogen. Wie oben erwähnt müsste die Temperaturabhängigkeit dieses Reflexes mittels des Debye-Waller-Faktors berücksichtigt werden. Da bei einem Ferromagneten eine Überlagerung von nuklearer und magnetischer Streuung bei allen Reflexen stattfindet, stellt sich die Bestimmung des Debye-Waller-Faktors als etwas schwieriger dar. In erster Näherung müsste man ein harmonisches Modell für die Auslenkung u der Atome verwenden. Da der Debye-Waller-Faktor aber nur einen kleinen Beitrag zu der berechneten Intensität liefert, wurde er bei der Berechnung vernachlässigt und im angegebenen Fehlerintervall berücksichtigt.

Abbildung 5.17: Bestimmung der Curie-Temperatur mittels Neutronenstreuung der $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ ($x = 0.0, 0.3$ und 0.5) (N) Probenserie

Abbildung 5.17 zeigt die relative Intensität der $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ ($x = 0.0, 0.3$ und 0.5) (N) Probenserie. Die Messungen wurden bis zu einer Temperatur von $300\,\text{K}$ in einem Kryostaten und über $300\,\text{K}$ in einem Ofen durchgeführt. In Abbildung 5.17 ist zu erkennen, dass bei $T = 300\,\text{K}$ eine Diskontinuität der berechneten Intensität bei den Proben $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ ($x = 0.0$ und 0.3) vorhanden ist. Dies lässt den Schluss zu, dass die Probentemperaturmessung ab $T = 300\,\text{K}$ nicht exakt durchgeführt wurde. Durch einen großen systematischen Fehler wurde auch dieser Aspekt bei der Berech-
nung des Fehlers berücksichtigt.

Des Weiteren fällt auf, dass der Intensitätsverlauf der Proben mit $x = 0.0$ und 0.3 aus einer Überlagerung zweier magnetischer Phasen besteht. Außergewöhnlich ist hierbei, dass die erste Phase, welche bei tiefen Temperaturen ($T < 300$ K) dominant ist, weder temperatur- noch dotierungsabhängig ist. Ebenfalls lässt sie sich durch SQUID-Messungen nicht beobachten. Es könnte sich somit, um eine antiferromagnetische Phase, welche von einer ferromagnetischen überlagert wird, handeln.

Durch Abbildung 5.17 wird deutlich, dass diese erste magnetische Phase eine Übergangstemperatur von ungefähr $T \approx 300$ K besitzt. LaCrO$_3$ hat eine Neél-Temperatur von $T_N = 290$ K [1] und könnte somit dieses magnetische Verhalten erklären. Wie schon erwähnt wurde aber bei der Auswertung dieser Daten, der (111)-Reflex der Sr$_{2-x}$La$_x$CrWO$_6$-Phase benutzt. In diesem Winkelbereich besitzt allerdings nur die Sr$_{2-x}$La$_x$CrWO$_6$-Verbindung einen Reflex, somit kann eine Fremdphase, welche unter Umständen eine antiferromagnetische Ordnung besitzt, nicht dieses beobachtete Verhalten begründen. Weiterhin wird die Überlagerung ebenfalls bei der undotierten Probe beobachtet. Dies deutet daraufhin, dass Unordnungseffekte, welche antiferromagnetisch koppeln möglicherweise verantwortlich für dieses Verhalten sind. Somit würde die Wechselwirkung der Chrom-Paare Cr-O-Cr dem magnetischen Verhalten von LaCrO$_3$ ähneln und nicht dem paramagnetischen von SrCrO$_3$ [14] und somit die Elektronenkonfiguration Cr$^{3+}$ favorisiert. Da aber die Chrom-Paare in eine SrCrO$_3$-Umgebung eingegliedert sind, muss das delokalisierte Wolfram-\textit{d}1-Elektron für die Ladungsneutralität sorgen (vgl. [92]).

Somit sind die in Abbildung 5.17 gezeigte Ergebnisse eine Bestätigung der via Superaustausch antiferromagnetisch gekoppelten Chrom-Paare (siehe Kapitel 2.9.2).

Wie in Kapitel 2.5.1 beschrieben, kann die Magnetisierung nahe der Curie-Temperatur mittels der Funktion (2.10) beschrieben werden. Zur Bestimmung der Curie-Temperatur wurde nun diese Funktion an die berechneten Intensitäten angefittet. Da sich die Bestimmung der Curie-Temperatur bei den Proben Sr$_{2-x}$La$_x$CrWO$_6$ ($x = 0.0$ und 0.3) als schwierig herausstellte, wurde der kritische Parameter β, welcher bei der Probe Sr$_{1.5}$La$_x$CrWO$_6$ erhalten wurde, als konstant angenommen. Die Resultate sind in Abbildung 5.17 (b) dargestellt. Durch die großen Unsicher-
heiten sind die absoluten Werte wenig aussagekräftig. Die gute Übereinstimmung mit den SQUID-Daten und die Verringerung der Curie-Temperatur mit zunehmender Lanthan-Konzentration in der Probe sind aber deutlich zu erkennen.

Der erhaltene kritische Parameter \(\beta = (0.388 \pm 0.008) \) stimmt sehr gut mit dem an ein-kristallinen \(\text{Sr}_2\text{FeMoO}_6 \)-Proben gemessenen [114] und mittels Monte-Carlo-Simulation (siehe Kapitel 2.9.2) berechneten überein. In [57] wird allerdings ein Parameter von \(\beta = (0.50 \pm 0.03) \) angegeben. Alle Parameter sind jedoch größer als der für das 3-dimensionale Heisenberg-Modell \((\beta_H = 0.365 \text{ [11]}) \). Dies wäre ein Hinweis für eine 3-dimensionale Anordnung der Spins.

Magnetische Eigenschaften der \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) Probenserien

Abbildung 5.18 zeigt die normierte Magnetisierung der \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) Probenserien als Funktion der Temperatur. Mit Ausnahme der Probe mit einer Lanthan-Konzentration von \(x = 0.1 \) ist deutlich ein Anstieg der Curie-Temperatur ab \(x = 0.3 \) zu beobachten. Dies bestätigt das Verhalten, welches unter anderem in [24, 70, 72] beschrieben wird. Das Verhalten der \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) (\(x = 0.1 \)) Probe kann durch Unordnungseffekte bzw. strukturelle Einflüsse beschrieben werden, und wird in Kapitel 5.2.2 diskutiert.

Abbildung 5.18: (a) normierte Magnetisierung, (b) Curie-Temperatur der \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) Probenserien
Des Weiteren ist eine endliche Magnetisierung oberhalb der Curie-Temperatur beobachtbar. Diese kann durch eine Eisenverunreinigungen in der Probe verursacht sein.

Abbildung 5.19: Magnetisierung als Funktion des äußeren Magnetfeldes; (b) Sättigungsmagnetisierung der Sr$_{2-x}$La$_x$FeMoO$_6$ Probenserie

Das magnetische Verhalten der Sr$_{2-x}$La$_x$FeMoO$_6$ Probenserie in Abhängigkeit eines äußeren Feldes ist in Abbildung 5.19 gezeigt. Hierbei existiert kein monotones Absinken der Sättigungsmagnetisierung wie im Falle von Sr$_{2-x}$La$_x$CrWO$_6$. Eine genauere Analyse dieser Daten wird in Kapitel 5.2.2 durchgeführt.

Zusammenfassung

Durch die gezeigten Ergebnisse kann die am Anfang dieses Kapitels beschriebene Kontroverse nicht gelöst werden. Es besteht immer noch eine Diskrepanz zwischen dem magnetischen Verhalten in Sr$_{2-x}$La$_x$CrWO$_6$ und Sr$_{2-x}$La$_x$FeMoO$_6$. Dieses Verhalten beider Verbindungen kann somit auch nicht in Einklang mit einem einheitlichen Modell, welches beide Situationen befriedigend beschreiben kann, gebracht werden. Die Reduktion der Curie-Temperatur in Sr$_{2-x}$La$_x$CrWO$_6$ mit steigender Lanthan-Konzentration würde somit wie in [81] beschrieben das SFKT-Modell favorisieren (siehe Kapitel 2.7), während das magnetische Verhalten von Sr$_{2-x}$La$_x$FeMoO$_6$ eher
einem reinen Doppelaustausch-Modell entspricht [70].
Bevor aber eine Interpretation dieser Messdaten erfolgt, muss eine exakte Charakterisierung der Proben vorausgehen.

5.2.2 Charakterisierung

Die Charakterisierung der hergestellten Proben stellt eine unverzichtbare Voraussetzung für die Interpretation der gemessenen Daten dar. Deshalb werden im Folgenden die Ergebnisse der Röntgen-Pulverdiffraktometrie-, Energie dispersive Röntgenanalyse-(EDX) und Neutronen-Pulverdiffraktometrie-Messungen diskutiert.

Charakterisierung der $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ Probenserie

Abbildung 5.20 zeigt die Röntgen-Pulverdiffraktometrie-Messungen der $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ ($x = 0.0, 0.3, 0.5$ und 0.7) (S) Proben. Die Messdaten zeigen deutlich, dass keine phasenreinen Proben vorliegen. Die intensitätsstärksten Reflexe der beteiligten Fremdphasen Sr_2WO_5 und W sind mit Pfeilen gekennzeichnet. Auffällig ist die ansteigende Konzentration dieser Fremdphasen mit größerem Lanthan-Gehalt. Da die Proben nahezu unter gleichen Bedingungen hergestellt wurden, kann von einer gleichbleibenden Chrom-Konzentration in den einzelnen Proben ausgegangen werden. Somit muss untersucht werden, in welcher Phase sich der fehlende Chrom-Anteil befindet. Hierzu wurden zuerst die Gitterparameter der einzelnen Phasen mittels der analytischen Methode nach Cohen berechnet und zur Minimierung der systematischen Fehler die Nelson-Riedel-Funktion angewendet. Die Ergebnisse sind in Abbildung 5.21 dargestellt.

Hierbei wird deutlich, dass die Fremdphase Sr_2WO_5 keine Veränderung der Gitterparameter a, b und c aufweist und nur eine geringe Abweichung von den Literaturwerten zeigt. Dies bedeutet, dass in den Proben die Fremdphase Sr_2WO_5 ohne Lanthan- bzw. Chromdotierung vorliegt. Die nicht dargestellten Gitterparameter der Wolfram Fremdphase weisen ebenfalls keine signifikanten Veränderungen auf, so dass die mittels Rietveld-Refinement erhaltene Chromkonzentration von 4,8% in der Wolfram-Chromlegierung der undotierten Probe ebenfalls für die dotierten Proben angenommen werden kann. In der Hauptphase $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ hingegen verändert sich die Gitterkonstante a_0 im ersten Dotierungsschritt um $\Delta a_0 = 0,03\,\text{Å}$ und bleibt dann bis zu $x = 0.3$ nahezu unverändert.
5.2. ELEKTRONENDOTIERUNG

Abbildung 5.20: Röntgen-Pulverdiffraktometrie-Messungen der \(\text{Sr}_2\text{CrWO}_6 \) \((x = 0.0, 0.3, 0.5\) und \(0.7)\) (S) Proben; der orange und grüne Pfeil kennzeichnet die \(\text{Sr}_2\text{WO}_5 \)- bzw. W-Fremdphase

Untersuchungen an elektrondotierten \(\text{Sr}_2\text{FeMoO}_6 \) Proben zeigen aber eine Vergrößerung der Gitterkonstanten mit steigender Lanthankonzentration \([66, 70]\). Da das Lanthan-Ion kleiner als das Strontium-Ion ist (siehe \([95]\)), ist die Vergrößerung der Gitterkonstanten ein Elektronendotierungseffekt der Übergangsmetallionen \([24, 70]\). Dies kann in Abbildung 5.21 nicht bestätigt werden. Des Weiteren wird in \([70]\) von einem Phasenübergang bei einer Dotierung von \(x = 0.3\) zu einer niedrigeren Kristallsymmetrie berichtet. Abbildung 5.21 zeigt ebenfalls eine Verkleinerung der Gitterkonstanten bei \(x = 0.3\). Dies könnte aber auch durch unterschiedliche Chromkonzentrationen in der \(\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6 \)-Phase begründet sein.
KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

(a) $\text{Sr}_2-\text{xLa}_\text{xCrWO}_6$-Phase
(b) Sr_2WO_5-Fremdphase

Abbildung 5.21: Gitterkonstanten der $\text{Sr}_2-\text{xLa}_\text{xCrWO}_6$ Phase (kubische Symmetrie) und der Sr_2WO_5 Fremdphase (orthorombische Symmetrie)

Bei genauerer Betrachtung des (440)-Reflexes der $\text{Sr}_{1.50}\text{La}_{0.50}\text{CrWO}_6$ Probe, in Abbildung 5.20 ist dieser durch einen roten Kreis markiert, fällt auf, dass er aus einer Überlagerung aus mehreren Intensitäten besteht. Abbildung 5.22 (a) zeigt eine Vergrößerung dieses Reflexes.

Diese Überlagerung kann durch zwei verschiedene Gründe verursacht werden. Die Dotierung in Sr_2CrWO_6 durch Lanthan kann, wie erwähnt, einerseits einen Phasenübergang zu einer niedrigeren Kristallsymmetrie verursachen, andererseits ist die Bildung einer dritten Fremdphase LaCrO_3 möglich. Diese beiden Möglichkeiten sind leider mittels Röntgen-Pulverdiffraktometrie nicht eindeutig zu unterscheiden.

Ein Hinweis bietet die Bestimmung der effektiven Lanthan-Konzentration und des effektiven Chrom-Wolfram Verhältnisses in der $\text{Sr}_2-\text{xLa}_\text{xCrWO}_6$-Phase.

Diesbezüglich wurde eine energiedispersive Röntgenmikroanalyse (EDX) an 25 Körnern der $\text{Sr}_{1.50}\text{La}_{0.50}\text{CrWO}_6$ Probe durchgeführt (siehe Abbildung 5.22). Die ersten sechs Körner können als SrWO_3-Fremdphase identifiziert werden. Bei den weiteren Körnern ist ein sehr hoher Anteil an Chrom und Lanthan auffällig. Mit der Annahme einer reinen LaCrO_3-Fremdphase können diese durch eine Komposition von LaCrO_3...
und $\text{Sr}_{2-x}\text{La}_x\text{Cr}_z\text{WO}_6$ beschrieben werden. Nur ein Korn lässt sich allein durch die $\text{Sr}_{2-x}\text{La}_x\text{Cr}_z\text{WO}_6$-Verbindung charakterisieren. Bei allen so berechneten $\text{Sr}_{2-x}\text{La}_x\text{Cr}_z\text{WO}_6$-Verbindungen ist die sehr niedrige Dotierung ($x << 0.5$) und ein Mismatch zwischen Wolfram und Chrom ($z < 1$) zu beobachten.

Durch Berücksichtigung der zusätzlichen LaCrO_3-Fremdphase kann somit das durch die Wolfram- bzw. Wolframoxidfremdphasen bedingte fehlen von Chrom erklärt werden. Auch kann damit die nahezu unveränderte Gitterkonstante der $\text{Sr}_{2-x}\text{La}_x\text{Cr}_z\text{WO}_6$-Phase begründet werden. Das als Dopand verwendete Lanthan bildet somit eine eigene Fremdphase und dotiert damit nicht die Sr_2CrWO_6-Phase.

In Kapitel 5.1.2 wurde deutlich, dass das Chrom-Wolfram-Verhältnis einen starken Einfluss auf die magnetischen Eigenschaften hat. Deswegen kann das Chrom-Defizit in den magnetischen $\text{Sr}_{2-x}\text{La}_x\text{Cr}_z\text{WO}_6$-Verbindungen verantwortlich sein für das Absinken der Curie-Temperatur der $\text{Sr}_{2-x}\text{La}_x\text{Cr}_z\text{WO}_6$-Proben. Das beobachtete magnetische Verhalten kann deshalb auch andere Ursachen als durch Dotierungseffekte bedingt sein.
Leider gelang kein direkter Nachweis von LaCrO$_3$ zum Beispiel durch Neutronen-Pulverdiffraktometrie, so dass für die Annahme von LaCrO$_3$ noch keine letzte Gewissheit vorliegt.

Charakterisierung der Sr$_{2-x}$La$_x$FeMoO$_6$ Probenserie

In Abbildung 5.23 sind die Röntgen-Pulverdiffraktometrie-Messungen der Sr$_{2-x}$La$_x$FeMoO$_6$ ($x = 0.0, 0.3, 0.5$ und 0.7) Proben gezeigt.

Abbildung 5.23: Röntgen-Pulverdiffraktometrie-Messungen der Sr$_{2-x}$La$_x$FeMoO$_6$ ($x = 0.0, 0.3, 0.5$ und 0.7) Proben; der blaue Pfeil kennzeichnet die SrMoO$_4$-Fremdphase
Hierbei wird deutlich, dass außer einer kleinen Konzentration von SrMoO$_4$ bei einer Lanthan-Konzentration von $x = 0.7$, in Abbildung 5.23 durch einen blauen Pfeil gekennzeichnet, die Proben nahezu phasenrein hergestellt wurden, da alle der gezeigten Reflexe der tetragonalen $I4/m$ Kristallsymmetrie von Sr$_{2-x}$La$_x$FeMoO$_6$ zugeordnet werden können. Die Analyse der Röntgendetaten ergab die in Tabelle 5.6 dargestellten Ergebnisse. Die Zahlen in Klammern geben die Unsicherheiten der letzten Ziffern an.

<table>
<thead>
<tr>
<th>x</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>5,575(2)</td>
<td>5,577(2)</td>
<td>5,582(2)</td>
<td>5,566(5)</td>
<td>5,573(5)</td>
<td>5,582(9)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>7,874(2)</td>
<td>7,879(2)</td>
<td>7,879(2)</td>
<td>7,877(5)</td>
<td>7,885(5)</td>
<td>7,884(9)</td>
</tr>
<tr>
<td>Unordnung (%)</td>
<td>20,5(7)</td>
<td>32,4(9)</td>
<td>30,6(9)</td>
<td>29,5(7)</td>
<td>34,5(8)</td>
<td>41,4(2)</td>
</tr>
</tbody>
</table>

Tabelle 5.6: Gitterkonstanten und Unordnung der Sr$_{2-x}$La$_x$FeMoO$_6$ Probenserie

Während in den Sr$_{2-x}$La$_x$CrWO$_6$ Proben eine Untersuchung der Unordnung durch die Überlagerung der Sr$_{2-x}$La$_x$CrWO$_6$ Phase mit der möglichen LaCrO$_3$-Fremdphase nicht durchführbar war, können in den Sr$_{2-x}$La$_x$FeMoO$_6$ Proben diese Effekte untersucht werden. Bei Betrachtung der Unordnung in Tabelle 5.6 wird deutlich, dass die hergestellten Proben eine sehr starke Unordnung besitzen und diese mit steigender Lanthan-Konzentration zunimmt. Dies bedeutet, dass die Substitution von Strontium mit Lanthan die Unordnung auf den Eisen- und Molybdän-Plätzen stark erhöht und es entsteht eine nahezu statistische Verteilung der Eisen- und Molybdän-Ionen in der Probe bei hoher Dotierung.
Abbildung 5.24: (a) Einfluss der Unordnung auf die Sättigungsmagnetisierung; (b) Vergleich zwischen den berechneten und gemessenen Sättigungsmagnetisierungen der $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ Probenserien

In Abbildung 5.24 (a) ist die Sättigungsmagnetisierung und die Unordnung als Funktion der Dotierung x dargestellt. Hierbei wird der enge Zusammenhang zwischen Sättigungsmagnetisierung und Unordnung deutlich. Bei steigender Unordnung sinkt die Sättigungsmagnetisierung und umgekehrt. Dies zeigt, dass Unordnungseffekte einen sehr großen Einfluss auf die magnetischen Eigenschaften haben. Die nach Gleichungen 2.22 und 2.23 berechneten Sättigungsmagnetisierungen $M_{\text{sat,cal}}$ sind in Abbildung 5.24 (b) gezeigt. Diese zeigen eine gute Übereinstimmung im qualitativen Verlauf mit der gemessenen Sättigungsmagnetisierung M_{sat}, aber entgegen der Darstellung in [70] und Kapitel 5.1.2 weichen die berechneten Werte von den gemessenen ab. Aus den gemessenen Werten lässt sich folgende Gleichung extrapolieren:

$$M_{\text{sat,cal}} = 5.13 \left(1 - 2AS\right) \mu_B$$

(5.7)

Somit wird deutlich, dass die Reduktion durch eine antiferromagnetische Wechselwirkung via Superaustausch der Eisenpaare Fe-O-Fe beschrieben werden kann. Unübereinstimmung besteht nur bei dem vorangestellten Faktor, welcher im Experiment für die Größe der absoluten Werte und in der Theorie für die Differenz der magnetischen
Momente \(m_{Fe} - m_{Mo} \) (siehe Kapitel 2.9.2) verantwortlich ist \[67, 70\]. Dies verdeutlicht, dass möglicherweise noch weitere Effekte existieren und das in Kapitel 2.9.2 beschriebene einfache Modell nicht ausreicht, um das magnetische Verhalten ausreichend zu beschreiben.

Bei Betrachtung der Curie-Temperatur ist es umso erstaunlicher, dass Proben mit nahezu statistisch verteilten Eisen- und Molybdän-Ionen immer noch ein ferromagnetisches Verhalten zeigen und darüber hinaus die größten Übergangstemperaturen besitzen. Somit könnten Unordnungseffekte auch einen entscheidenden Einfluss auf die Curie-Temperatur ausüben.

Abbildung 5.25: (a) Einfluss der Unordnung auf die Curie-Temperatur der \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) Probenserie und (b) der hergestellten \(\text{Sr}_2\text{CrWO}_6 \) bzw. \(\text{Sr}_2\text{FeMoO}_6 \) Proben

Abbildung 5.25 (a) zeigt den Zusammenhang zwischen der Curie-Temperatur und der Unordnung. Bei größerer Lanthan-Konzentration in \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) dominieren die elektrischen Effekte durch die Elektronendotierung (vgl. \[70\]), aber bei geringer Dotierung könnte die Unordnung eine größere Rolle spielen und für den starken Anstieg bei \(x = 0.1 \) verantwortlich sein. Dies würde bedeuten, dass eine steigende Unordnung die ferromagnetische Kopplung verstärkt, was im Einklang zu der in Kapitel
diskutierten Stabilität der ferromagnetischen Ordnung stehen würde. In [67] wird allerdings von einer Reduktion der Curie-Temperatur in \(\text{Sr}_2\text{FeMoO}_6 \) Einkristallen berichtet.

In Abbildung 5.25 (b) ist die Curie-Temperatur als Funktion der Unordnung der mittels des Standardverfahrens hergestellten \(\text{Sr}_2\text{FeMoO}_6 \) und \(\text{Sr}_2\text{CrWO}_6 \) Proben dargestellt. Hierbei müssen aber mögliche Abweichungen der Chrom-Konzentrationen hervorgerufen durch geringe Änderungen des Herstellungsprozesses in den \(\text{Sr}_2\text{CrWO}_6 \) Verbindungen beachtet werden. Der Anstieg der Curie-Temperatur mit abnehmender Unordnung in den \(\text{Sr}_2\text{FeMoO}_6 \) Proben könnte aber eine Bestätigung der Monte-Carlo-Simulation (siehe Kapitel 2.9.2) darstellen.

Das magnetische Verhalten der \(\text{Sr}_{1.90}\text{La}_{0.50}\text{FeMoO}_6 \) Probe ist somit nicht durch Unordnungseffekte begründbar. Allerdings muss die Abhängigkeit der Curie-Temperatur experimentell noch exakter untersucht, insbesondere natürlich die Statistik durch eine größere Anzahl an Proben erhöht werden.

Zusammenfassung der Charakterisierung

Bei der Charakterisierung der \(\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6 \) Proben wurde deutlich, dass vermutlich durch die Bildung von \(\text{LaCrO}_3 \) eine ausreichende Dotierung der \(\text{Sr}_2\text{CrWO}_6 \) Verbindung verhindert wird. Die beobachteten magnetischen Eigenschaften sind somit nicht durch eine Elektronendotierung bedingt. Des Weiteren zeigen EDX Messungen, dass das Chrom-Wolfram-Verhältnis in diesen Proben unterschiedlich ist. Wie in Kapitel 5.1.2 beschrieben, hat aber dieses Verhältnis einen großen Einfluss auf die Stärke der magnetischen Wechselwirkung und damit auf die Curie-Temperatur. Das Absinken der Curie-Temperatur kann somit auf ein unterschiedliches Chrom-Wolfram-Verhältnis zurückgeführt werden.

Das \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \) Materialsystem hingegen kann nahezu phasenrein hergestellt werden. Somit ist das magnetische Verhalten hierbei unter anderem durch Elektronendotierungseffekte begründet.

Des Weiteren wurde gezeigt, dass Unordnungseffekte ebenfalls einen bestimmenden Einfluss insbesondere auf die Sättigungsmagnetisierung haben. Durch die darge-
stellten Ergebnisse der Neutronenstreuung und durch die gute Übereinstimmung der empirische Formel (2.23) kann gezeigt werden, dass die Unordnung zu einem antiferromagnetischen Verhalten der Chrom-Chrom- bzw. Eisen-Eisen-Paare (siehe Kapitel 2.9.2) zurückgeführt werden kann. Andererseits ist der Einfluss der Unordnung auf die Curie-Temperatur noch nicht hinreichend untersucht. Abbildung 5.25 (b) deutet daraufhin, dass die Curie-Temperatur mit geringerer Unordnung ansteigt. Dies würde die Monte-Carlo-Simulation in Kapitel 2.9.2 bestätigen. Allerdings muss eine exaktere Untersuchung dieses Aspektes noch folgen.

5.2.3 Magnetotransport in \(\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6 \)

In diesem Kapitel wird der Einfluss der Elektronendotierung auf die Magnetotransporteigenschaften untersucht. In \(\text{Sr}_2\text{CrWO}_6 \) ist wie erwähnt keine ausreichende Dotierung möglich, so dass Transportmessungen an diesen Proben hauptsächlich Effekte der isolierenden Fremdphasen, welche sich an den Korngrenzen anlagern, zeigen. Deshalb werden in diesem Kapitel nur die Transporteigenschaften der elektronendotierten \(\text{Sr}_2\text{FeMoO}_6 \) Proben diskutiert.

Abbildung 5.26: Magnetoresistiver Effekt von \(\text{Sr}_2\text{FeMoO}_6 \) bei verschiedenen Temperaturen (a) und unterschiedlicher Dotierung (b)

In Abbildung 5.26 (a) ist der magnetoresistive Effekt von \(\text{Sr}_2\text{FeMoO}_6 \) dargestellt.
Deutlich ist der in Kapitel 5.1.3 beschriebene LFMR zu erkennen. Er beträgt bei $\mu_0 H = 1.5 \, \text{T}$ ungefähr 45% und ist somit größer als in vielen Veröffentlichungen beschrieben (vgl. zum Beispiel [54, 67, 93]). Dies kann wie schon erwähnt auf extrinsische Effekte zurückgeführt werden.

Die Reduktion des in Abbildung 5.26 gezeigten magnetoresistiven Effektes mit steigender Lanthan-Dotierung kann in erster Näherung durch die geringere Sättigungsmagnetisierung und damit durch die größere Unordnung erklärt werden. In [28] wird ein linearer Zusammenhang zwischen LFMR und der Magnetisierung beobachtet. Dies kann aber bei den $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ Proben nicht bestätigt werden. Somit ist der einfache in [28] beschriebene Zusammenhang nicht ausreichend (vgl. [71]).

Abbildung 5.27: Spezifischer Widerstand der $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ ($x = 0.0$, 0.3 und 0.5) Proben als Funktion der Temperatur

Die Widerstandskarakteristik von $\text{Sr}_2\text{FeMoO}_6$ ist ebenfalls noch nicht eindeutig geklärt. In verschiedenen Veröffentlichungen wurde z.B. halbleitendes und metallisches Verhalten von $\text{Sr}_2\text{FeMoO}_6$ beobachtet (vgl. [110, 115]).
Die in dieser Diplomarbeit hergestellten Proben zeigen ein ähnliches halbleitendes Verhalten wie in [74] beschrieben. In dieser Veröffentlichung wurde der Einfluss der Sauerstoffkonzentration in den Proben auf die magnetischen und elektrischen Eigenschaften untersucht. In [74] wird deutlich, dass eine größere Sauerstoffkonzentration $\text{Sr}_2\text{FeMoO}_6+\delta$ in einer Erhöhung des Widerstandes und des magnetoresistiven Effektes resultiert, die magnetischen Eigenschaften aber nicht beeinflusst werden. Der Vergleich mit [74] zeigt, dass die $\text{Sr}_2\text{FeMoO}_6$ Probe möglicherweise ebenfalls eine erhöhte Sauerstoffkonzentration besitzt und damit das hohe Widerstandsverhalten bei niedrigen Temperaturen ($\rho = 6.87 \Omega \text{cm}$ bei $T = 50 \text{K}$) erklärt werden kann. Somit wird deutlich, dass die Sauerstoffkonzentration, welche durch unterschiedliche Herstellungsbedingungen stark variiert, ebenfalls einen starken Einfluss auf die elektrischen Eigenschaften ausübt.

Das Vorhandensein einer geringen Fremdphasenkonzentration kann natürlich auch verantwortlich für das beschriebene Verhalten sein [74, 116].

5.2.4 Elektronendotierung in $\text{Ca}_{2-x}\text{La}_x\text{CrWO}_6$

Wie in Kapitel 5.2.2 dargestellt wurde, verhindert die bevorzugte Bildung von LaCrO_3 eine ausreichende Dotierung in $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$. Um das Entstehen von LaCrO_3 zu unterbinden, wurden während dieser Diplomarbeit mehrere Aspekte untersucht, darunter Modifikationen des Herstellungsprozesses und der Austausch des Dopanden Lanthan mit Neodym (vgl. [56]). Erst die Substitution von Strontium mit Calcium führte zu einer ausreichenden Dotierung.

In Abbildung 5.28 (a) und (b) sind die magnetischen Eigenschaften der $\text{Ca}_{2-x}\text{La}_x\text{CrWO}_6$ ($x = 0.0$, 0.1, 0.2, 0.3 und 0.5) (S) Proben dargestellt. Bei der Bestimmung des Wendepunktes der $\text{Ca}_{1.5}\text{La}_{0.5}\text{CrWO}_6$ (S) Probe wird deutlich, dass diese aus einer Überlagerung verschiedener magnetischer Phasen besteht. Daher wur-
KAPITEL 5. EXPERIMENTELLE ERGEBNISSE

Abbildung 5.28: (a) Magnetisierung als Funktion der Temperatur; (b) Curie-Temperatur der $\text{Ca}_2\text{La}_x\text{CrWO}_6$ Probenserie

den zwei Übergangstemperaturen bestimmt. Dies kann mit einer nicht homogenen Dotierung der $\text{Ca}_2\text{La}_x\text{CrWO}_6$ Phase erklärt werden. Dadurch werden die magnetischen Eigenschaften von gering und stark dotierten Körnern gemessen. Trotz dieser Inhomogenität ist aus Abbildung 5.28 (b) zu erkennen, dass die Curie-Temperatur ab $x = 0.3$ um ungefähr 30K ansteigt. Dies bestätigt das magnetische Verhalten von $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$.

Durch Röntgen-Pulverdiffraktometrie-Messungen der betrachteten $\text{Ca}_2\text{La}_x\text{CrWO}_6$ (S) Proben wird deutlich, dass in diesen Proben ebenfalls die Fremdphase LaCr_xO_3 vorhanden ist. Der geringe Anstieg der Curie-Temperatur kann somit auf eine nicht vollständige Dotierung der $\text{Ca}_2\text{La}_x\text{CrWO}_6$ Phase zurückgeführt werden. Die Bestimmung der effektiven Dotierung mittels Rietveld-Refinement stellte sich aber als sehr schwierig heraus, da die Proben wie schon erwähnt nicht phasenrein sind. Des Weiteren ergab eine Analyse der Gitterkonstanten keine befriedigenden Ergebnisse, so dass die Veränderung durch die Elektronendotierung und damit ebenfalls die Bestimmung der effektiven Dotierung nicht dargestellt werden können.
5.2. ELEKTRONENDOTIERUNG

(a) Relative Intensität

Abbildung 5.29: Bestimmung der Curie-Temperatur mittels Neutronenstreunng der Ca$_{2-x}$La$_x$CrWO$_6$ ($x = 0.0, 0.3$ und 0.5) (N) Probenserie

Abbildung 5.29 (a) zeigt die Intensität des magnetischen Reflexes der Ca$_{2-x}$La$_x$CrWO$_6$ ($x = 0.0, 0.3$ und 0.5) (N) Proben. Hierbei ist wiederum zu erkennen, dass die ferromagnetische Phase durch eine antiferromagnetische, welche durch Unordnungseffekte bedingt ist, überlagert wird. Somit konnte die Curie-Temperatur nicht ohne eine große Unsicherheit bestimmt werden. In Abbildung 5.29 (b) sind die Ergebnisse dargestellt. Die gute Übereinstimmung mit den mittels des SQUID-Magnetometers erhaltenen Ergebnissen der undotierten Probe ist deutlich zu erkennen. Für $x = 0.3$ und $x = 0.5$ wurde in dieser Abbildung ebenfalls die Néel-Temperatur der antiferromagnetischen Phase eingezeichnet.

Durch die Schwierigkeiten der T_C-Bestimmung, kann die beobachtete T_C-Erhöhung der SQUID-Messungen nicht eindeutig bestätigt werden. Wird allerdings der Temperaturbereich unterhalb von 150 K, in welchem die ferromagnetische Phase dominiert, betrachtet, kann eine Erhöhung der Curie-Temperatur mit steigender Lanthan-Dotierung gesehen werden.

Die Untersuchung der magnetischen Eigenschaften der Ca$_{2-x}$La$_x$CrWO$_6$ Probenserien macht deutlich, dass ebenso wie in Sr$_2$FeMoO$_6$ eine Dotierung von Ca$_2$CrWO$_6$ zu einer Erhöhung der Curie-Temperatur führt. Somit kann von einem einheitlichen magnetischen Verhalten der beiden Materialsysteme bei einer Elektronendotierung
gesprochen werden. Somit ist die Kontroverse, welche am Anfang dieses Kapitels darge stellt wurde gelöst.
Kapitel 6
Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurden die physikalischen Eigenschaften der sehr aktuellen und interessanten ferromagnetischen Doppelperowskite untersucht. Das Augenmerk richtete sich hierbei auf den Einfluss struktureller und Elektronendotierungs-Effekte in den Materialsystemen A_2CrWO_6 ($A = \text{Ca, Sr, Ba}$) und $\text{Sr}_2\text{FeMoO}_6$.

Hierzu wurden mehrere Probenserien mittels einer Festkörperreaktion hergestellt. Der hierbei verwendete Herstellungsprozess wurde detailliert untersucht, die Probleme dargestellt und ein alternativer Prozess beschrieben. Das Materialsystem $\text{Sr}_2\text{FeMoO}_6$ konnte phasenrein hergestellt werden, bei $A_2\text{CrWO}_6$ ($A = \text{Ca, Sr, Ba}$) hingegen waren noch geringe Fremdphasen vorhanden.

Verringerung des Orbital-Überlapps, wodurch die Hüpfamplitude t der magnetischen Wechselwirkung und die Bandbreite W des Leitungsbandes abnimmt. Dadurch wird die Curie-Temperatur T_C um $\Delta T_C = 250$ K reduziert und der elektrische spezifische Widerstand bei tiefen Temperaturen um $\Delta \rho_{\text{50K}} = 2.5 \cdot 10^8 \Omega \text{cm}$ stark erhöht.

Die Substitution von Strontium mit Barium in Sr_2CrWO_6 führt dagegen nicht zu einer kubischen Kristallstruktur und stellt damit einen Sonderfall dar. Röntgen-Pulverdiffraktometrie-Messungen zeigen, dass Ba_2CrWO_6 in einer hexagonalen Symmetrie vorliegt. Dies bedeutet, dass keine strukturelle Veränderung zwischen dem 2:1 geordneten Doppelperowskit $\text{Ba}_3\text{Cr}_2\text{WO}_9$ und dem 1:1 geordneten Ba_2CrWO_6 besteht. Somit kann Ba_2CrWO_6 als $\text{Ba}_3\text{Cr}_2\text{WO}_9$ mit unterschiedlichem Chrom-Wolfram-Verhältnis beschrieben werden. Da kein struktureller Übergang zwischen den beschriebenen Doppelperowskiten stattfindet, bleibt das magnetische Verhalten von Ba_2CrWO_6 komplex und sollte noch exakter untersucht werden.

Der zweite Aspekt, welcher in dieser Diplomarbeit untersucht wurde, sind die Einflüsse der Elektronendotierung auf das magnetische und elektrische Verhalten ferromagnetischer Doppelperowskite. Es wurde hierbei gezeigt, dass die Reduktion der Curie-Temperatur in $\text{Sr}_{2-x}\text{La}_x\text{CrWO}_6$ mit steigender Lanthan-Konzentration entgegen der Darstellung in [81] nicht auf Dotierungseffekte zurückzuführen ist. In Ca_2CrWO_6 wurde hingegen eine ausreichende Elektronendotierung erreicht. Die Messung der magnetischen Eigenschaften ergab eine Erhöhung der Curie-Temperatur. Ebenso wurde der in [70] berichtete Anstieg der Curie-Temperatur in $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ bestätigt. Dies lässt den Schluss zu, dass ein einheitliches magnetisches Verhalten bei einer Elektronendotierung in beiden Materialsystemen vorliegt. Damit wurde die Diskrepanz hinsichtlich des Verhaltens bei Elektronendotierung, welche zu Beginn der Diplomarbeit zwischen Sr_2CrWO_6 und $\text{Sr}_2\text{FeMoO}_6$ bestand, gelöst.

In $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ wurde zusätzlich untersucht, bei welcher Dotierung x die maximale Curie-Temperatur vorliegt. In Abbildung 6.1(a) sind die experimentellen Ergebnisse dargestellt. Die Röntgen-Pulverdiffraktometrie-Analyse der Proben zeigt allerdings, dass ab einer Lanthan-Konzentration von $x > 1$ keine Dotierung der $\text{Sr}_2\text{FeMoO}_6$ Verbindung mehr möglich ist. Hierdurch wird deutlich, das im Materialsystem $\text{Sr}_{2-x}\text{La}_x\text{FeMoO}_6$ eine maximale Erhöhung der Curie-Temperatur durch Elektronendotierung von $\Delta T_C = 120$ K erreicht werden kann.

Durch eine partielle Substitution von Wolfram mit Osmium Sr$_{2}$Cr(W$_{1-x}$Os$_x$)O$_6$ könnte ein weiter Bereich der Elektronendotierung untersucht und dadurch Rückschlüsse auf die magnetische Wechselwirkung in diesem Materialsystem gemacht werden.

In dieser Diplomarbeit wurde ebenfalls gezeigt, dass die Effekte der Unordnung, welche verantwortlich für die Reduktion der Sättigungsmagnetisierung sind, durch eine antiferromagnetische Wechselwirkung der Chrom- bzw. Eisen-Paare beschrieben wer-
den können. Der Einfluss auf die Stärke der magnetischen Wechselwirkung und damit auf die Curie-Temperatur ist allerdings noch nicht hinreichend verstanden. Dies stellt aber ein wesentlich Bestandteil im Verständnis der magnetischen Wechselwirkung dar und muss in Zukunft exakter untersucht werden.

Des Weiteren müssen die Transporteigenschaften mittels einkristalliner Filme genauer betrachtet werden. Hierbei ist vor allem das Temperaturverhalten des elektrischen Widerstandes sowie die Messung der Spinpolarisation von großer Bedeutung.
Anhang A

Pulverdiffraktometrie-Messungen

A.1 Rietveld-Methode

Ein Maß für die Qualität bzw. Güte einer Rietveld-Verfeinerung sind die sogenannten Residual-Werte R:

Gewichteter Profil Faktor:

\[R_{wp} = 100 \cdot \frac{\sum_i w_i (y_0 - y_i)^2}{\sum_i w_i y_0^2} \]

Erwarteter gewichteter Profil Faktor:

\[R_{exp} = 100 \cdot \sqrt{\frac{N - P + C}{\sum_i w_i y_0^2}} \]
Indikator für die Güte:

\[S = \frac{R_{wp}}{R_{exp}} \]

Bragg Faktor:

\[R_B = 100 \cdot \frac{\sum_k |I_{k0} - I_{kc}|}{\sum_k |I_{k0}|} \]

Mit

- \(y_{io} \): beobachtete Intensität des Diffraktogramms an der Stelle \(i \)
- \(y_{ic} \): berechnete Intensität des Diffraktogramms an der Stelle \(i \)
- \(w_i = 1/y_{io} \): Gewichtungsfaktor
- \(N \): Anzahl der Messdatenpunkte
- \(P \): Anzahl der Verfeinerten Parameter
- \(C \): Anzahl der Abhängigkeitsgleichungen
- \(I_{k0} \): beobachtete integrierte Intensität des Reflexes \(k \)
- \(I_{kc} \): berechnete integrierte Intensität des Reflexes \(k \)

Umso besser die Simulation gelang, desto geringer sind die Abweichungen von dem gemessenen Diffraktogramm und desto kleiner sind dann natürlich die R-Werte, welche das Refinement charakterisieren.

Im Folgenden werden einige mittels der Rietveld-Methode berechneten Simulations-gezeigt.
A.2 Röntgen-Pulverdiffraktometrie-Messung

In Abbildung A.1 ist die Röntgen-Pulverdiffraktometrie-Messung der Ca$_2$CrWO$_6$ (S) Probe dargestellt. Wie in Abbildung 5.1 wurde auch hier die Rietveld-Verfeinerung mittel der Bruker-AXS Software Topas 2.0 durchgeführt. Hierbei wurde die monokline $P2_1/n$ Kristallsymmetrie für die Ca$_2$CrWO$_6$ Phase verwendet. Des Weiteren wurden die Fremdphasen Ca$_3$WO$_6$ und W in das Refinement miteinbezogen.

Abbildung A.1: Rietveld-Refinement der Röntgen-Pulverdiffraktometrie-Messung an der Ca$_2$CrWO$_6$ (S) Probe. Der Bragg-R-Faktor beträgt bei diesem Refinement 4,75\% für die Ca$_2$CrWO$_6$ Phase.
A.3 Neutron-Pulverdiffraktometrie-Messungen

Abbildung A.2: Neutronen-Pulverdiffraktometrie-Messung der Sr₂CrWO₆ (N) Probe
B.1 Curie-Temperaturbestimmung mittels spezifischer Wärmekapazität

In Kapitel 3.1.2 wurde die Differenzthermoanalyse (DTA) und die Dynamische Differenz-Kalorimetrie (DSC) vorgestellt. Mittels der DSC Messmethode kann die spezifische Wärmekapazität unter bestimmten Voraussetzungen gemessen und somit Phasenübergänge identifiziert werden.

Ehrenfest teilte die Phasenübergänge nach der Unstetigkeit der Ableitung des chemischen Potentials ein:

Wenn die erste, zweite oder dritte Ableitung des chemischen Potentials an der Übergangstemperatur einen Sprung hat, handelt es sich um einen Phasenübergang 1., 2. oder 3. Ordnung. Somit divergiert die Wärmekapazität im Falle eines Phasenübergangs erster Ordnung und besitzt bei einem Phasenübergang zweiter Ordnung eine Unstetigkeit an der Sprungtemperatur.

Bei der Wärmekapazitätsmessung mittels der DSC-Methode ist folgende Gleichung Ausgangspunkt bei der Auswertung der Messdaten (siehe 35).

\[\Delta T = -R \phi_r - R (C_P - C_R) \beta - C_P R \frac{d\Delta T}{dt} \]

\(R \) bezeichnet hierbei den thermischen Widerstand, \(\phi_r \) den Reaktionswärimestrom, \(\beta \) die Heizrate und \(C_P \) bzw. \(C_R \) die Wärmekapazität der Probe bzw. Referenz. Der erste Term berücksichtigt mögliche Reaktionen, der zweite ist der Offset der Basislinie und der dritte gibt die zeitliche Verschmierung des Messsignals \(\Delta T \) und des Wärmebrèmes
\[\Delta T = -R \left(C_P - C_R \right) \beta \]

Abbildung B.1: Spezifische Wärmekapazität von Eisen und Sr₂CrWO₆ bzw. Sr₂FeMoO₆

In Abbildung B.1 ist die spezifische Wärmekapazitätsmessung für Eisen und Sr₂CrWO₆ bzw. Sr₂FeMoO₆ dargestellt. Bei der Eisenprobe ist deutlich ein Phasenübergang 1. Ordnung bei ca. \(T_S = 930 \, ^\circ\text{C} \) zu erkennen. Hier wandelt sich das Eisen von der kubisch raumzentrierten \(\alpha \)-Phase in die flächenzentrierten \(\gamma \)-Phase um. Des Weiteren ist der Übergang von der ferromagnetischen in die paramagnetische Ordnung (Phasenübergang 2. Ordnung) bei \(T_C = 779 \, ^\circ\text{C} \) deutlich erkennbar.

Bei Sr₂CrWO₆ bzw. Sr₂FeMoO₆ hingegen wird die spezifische Wärmekapazität bei \(T = 60 \, ^\circ\text{C} \) negativ. Obwohl die Messungen in einer Argon-Atmosphäre durchgeführt
wurden, findet bei Sr$_2$CrWO$_6$ bzw. Sr$_2$FeMoO$_6$ somit höchstwahrscheinlich eine Reaktion statt, womit das unphysikalische Verhalten in Abbildung B.1 erklärt werden kann. Die Curie-Temperatur-Bestimmung mittels C_P-Messung konnte somit bei den oxidischen Verbindungen Sr$_2$FeMoO$_6$ und Sr$_2$CrWO$_6$ nicht durchgeführt werden.
Literaturverzeichnis

130 Literaturverzeichnis

[112] Vaitheeswaran, MPI Stuttgart, private comment

Danksagung

Besonders möchte ich mich bedanken bei:

Herrn Prof. Dr. Gross, der mir die Möglichkeit gegeben hat, diese Arbeit am Walther-Meissner-Institut anzufertigen. Die Diskussionen mit ihm waren immer sehr lehr- und hilfreich.

Dr. Lambert Alff für die Betreuung meiner Arbeit und für die vielen Diskussionen und Gespräche über physikalische und nicht physikalische Dinge zu jeder Tag und Nachtzeit.

Dr. Andreas Erb für die große Hilfe im und außerhalb des Kristalllabors und für die guten Ratschläge und Gespräche im badischen Teil des oberen Ratsstüberl.

Petra Majewski für die Mitbetreuung meiner Arbeit und großartige Unterstützung in allen Bereichen.

Dr. Matthias Opel für die geduldige und sehr gute Einführung in die Bedienung des SQUID-Magnetometers, sowie für die Beantwortung aller Fragen.

Allen Diplomanden und Doktoranden für die schönen Diskussionen und Gespräche.

Allen technischen Angestellten des Walther-Meissner-Instituts, die mir bei Problemen jeglicher Art schnell und unkompliziert geholfen haben.
Meinen Freunden, ohne sie hätte ich das Studium nicht so gut bewältigen können.

Besonderer Dank gilt meinen Eltern, meiner Freundin und meiner ganzen Familie. Sie haben mir das Studium erst ermöglicht und mich während des Studiums jederzeit und in jeder Hinsicht unterstützt.