Abschlussarbeit im Bachelorstudiengang Physik

Epitaktisches Wachstum dünner, ferromagnetischer Schichten aus $Y_3Fe_5O_{12}$ mittels gepulster Laserdeposition

Martin Sebastian Wagner

Garching, den 30. Juni 2011

Betreuer: Prof. Dr. Rudolf Gross
Erstgutachter (Themensteller): Prof. Dr. Rudolf Gross

Zweitgutachter: ..
Abbildungsverzeichnis

2.1 (a) schematische Darstellung der Granatstruktur (Legende für YIG). Aus [1], (b) 3D-Darstellung der Struktur von YIG: Y$^{3+}$-dodekaedrisch koordinierte Yttrium-Kationen, Fe(A) = tetraedrisch koordinierte Eisen-Kationen und Fe(D) = oktaedrisch koordinierte Eisen-Kationen. Aus [2].	3
3.1 Schema zur Funktionsweise von PLD	7
3.2 Lichtmikroskopaufnahmen bei 30-facher Vergrößerung	9
4.1 Schema zur Veranschaulichung des Drehkristallverfahrens (aus [2])	12
4.2 Rockingkurve der Probe YIG #18	13
4.3 2θ-ω-Scan um den GGG (444) - Reflex bei Probe YIG #3 (links) und Probe YIG #10 (rechts)	14
4.4 Röntgenreflektometrie und Fit für Probe YIG #16	15
4.5 Magnetisierung M des YIG-Targets in Abhängigkeit vom externen Feld $\mu_0 H$	16
4.6 Magnetisierung M des YIG-Targets in Abhängigkeit vom externen Feld $\mu_0 H$	17
4.7 Magnetisierung M von GGG in Abhängigkeit vom externen Feld $\mu_0 H$	18
4.8 Magnetisches Moment m der Probe YIG #10 in Abhängigkeit vom externen Feld $\mu_0 H$	19
4.9 Magnetisierung M der YIG-Dünnenschicht bei Probe YIG #10 in Abhängigkeit vom externen Feld $\mu_0 H$	20
4.10 Elektronenspinresonanz [3]	21
4.11 FMR-Signal (willkürliche Einheiten) in Abhängigkeit vom externen Resonanzmagnetfeld $\mu_0 H_{res}$ für verschiedene Probenorientierungen. Zur besseren Übersichtlichkeit sind die Kurven um 0.2 a.u. in vertikaler Richtung gestaffelt dargestellt.	23
4.12 Resonanzmagnetfeld $\mu_0 H_{res}$ in Abhängigkeit von der Orientierung der Probe	24
4.13 Resonanzmagnetfeld $\mu_0 H_{res}$ in Abhängigkeit von der Orientierung der Probe und Simulation	25
Abbildungssverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>Linienbreite der ferromagnetischen Resonanz $\mu_0 \Delta H_{pp}$ in Abhängigkeit von der Orientierung der Probe</td>
<td>27</td>
</tr>
<tr>
<td>5.1</td>
<td>FMR-Signal und Spannung aufgrund von Spinströmen V_{DC} in Abhängigkeit vom äußeren Magnetfeld $\mu_0 H$</td>
<td>30</td>
</tr>
</tbody>
</table>
Kapitel 1
Einleitung

In der Hochfrequenztechnik steigt der Bedarf an Komponenten, die trotz einer kleinen Bauweise im Mikro- und Nanometerbereich sehr gute elektrotechnische Eigenschaften im jeweiligen Anwendungsbereich besitzen sollen. Gerade im Mobilfunkbereich zeigt sich ein Trend zu immer leistungsfähigeren Smartphones, die mit Breitband-Internettechnologien wie UMTS\(^1\), GPRS\(^2\) oder EDGE\(^3\) ausgestattet sind. Diese Datenverbindungen sind wegen der aktuellen Kodierungs- und Modulationstechnik auf das 2 GHz Band beschränkt. Um schnellere Übertragungsgeschwindigkeiten für verschiedene Multimedia-Anwendungen zu erreichen, muss man zu noch höheren Frequenzbereichen gehen [4].

Yttrium-Eisen-Granat oder kurz YIG (von Yttrium Iron Garnet) ist ein ferrimagnetisches Material, das mit großem Interesse seit Jahrzehnten erforscht wird, da es hervorragende magnetooptische Eigenschaften (Faraday-Effekt [5]) und eine sehr schmale Linienbreite von nur 0.02 mT [6] bei der ferromagnetischen Resonanz aufweist [7]. Aus diesem Grund wird YIG aktuell in Form von Einkristall-Kugeln als Mikrowellenresonatoren in Netzwerkanalysatoren verwendet, in denen man durch ein variables externes Magnetfeld verschiedene Frequenzen im Bereich von 0.5 GHz bis 100 GHz ansteuern kann [8].

Dünne Schichten aus YIG fungieren in MSW (Magnetostatic Wave) - Bauteilen als Bandpassfilter oder Phasenschieber [9]. Diese Schichten werden mit dem LPE (Liquid Phase Epitaxy) - Verfahren hergestellt, welches gut kontrollierbar ist und reproduzierbar qualitativ hochwertige Filme liefert. Da es mit dem LPE-Verfahren aber nicht möglich ist, diese Schichten in Halbleitersysteme und Mikrochips zu integrieren, ist es für die oben genannten technischen Anwendungen nicht geeignet [4].
Um ein epitaktisches Wachstum dünner Schichten aus YIG mit hoher kristalliner Qualität und geringer Oberflächenrauigkeit zu erreichen, hat sich bei einigen anderen Arbeitsgruppen [4, 5, 10] die gepulste Laserdeposition oder PLD (von Pulsed Laser Deposition) als Herstellungsprozess bewährt. Allerdings ist es bei diesem Verfahren aufgrund von zahlreichen Parametern schwieriger, die optimalen Bedingungen für ein

\(^{1}\)Universal Mobile Telecommunications System
\(^{2}\)General Package Radio Service
\(^{3}\)Enhanced Data Rates for GSM Evolution
Kapitel 1 Einleitung

In Kapitel 2 werden zunächst die Struktur und die magnetischen Eigenschaften der verwendeten Materialien vorgestellt. Die einzelnen Arbeitsschritte bei der Probenherstellung werden in Kapitel 3 erläutert. Die verwendeten Methoden zur Charakterisierung der Dünnchichten werden in Kapitel 4 präsentiert und die Messergebnisse ausgewertet und diskutiert. Abschließend erfolgt in Kapitel 5 eine Zusammenfassung der zentralen Ergebnisse und ein Ausblick für die weitere Verwendung der hergestellten Proben.
Kapitel 2
Grundlagen

2.1 Die Granatstruktur

Das Mineral Granat mit der Summenformel $Ca_3Al_2Si_3O_{12}$ bildet eine Struktur, die auch für andere Verbindungen derselben Art mit verschiedenen Kationenkombinationen auftritt [1]. Die in dieser Arbeit verwendeten Verbindungen $Y_3Fe_5O_{12}$ (YIG) und $Gd_3Ga_5O_{12}$ (GGG) kristallisieren in dieser Granatstruktur, welche in Abbildung 2.1 dargestellt ist.

Abbildung 2.1: (a) schematische Darstellung der Granatstruktur (Legende für YIG). Aus [1], (b) 3D-Darstellung der Struktur von YIG: $Y^{3+} = $ dodekaedrisch koordinierte Yttrium-Kationen, $Fe(A) = $ tetraedrisch koordinierte Eisen-Kationen und $Fe(D) = $ oktaedrisch koordinierte Eisen-Kationen. Aus [2].
Kapitel 2 Grundlagen

2.2 YIG – ein ferrimagnetisches Oxid

Yttrium-Eisen-Granat Y₃Fe₅O₁₂ (YIG) kristallisiert kubisch mit acht Formeleinheiten pro Elementarzelle und der Gitterkonstanten $a = 1.2376$ nm \[5, 11\]. Wie in Abbildung 2.1 (b) veranschaulicht, werden die Y³⁺-Ionen dodékaedrisch und von den fünf Fe³⁺-Ionen pro Formeleinheit werden zwei oktaedrisch (Fe(D)-Plätze) und drei tetraedrisch (Fe(A)-Plätze) von Sauerstoff-Ionen $O^{2−}$ koordiniert. Aus den Elektronenkonfigurationen der Eisen- und Yttrium-Ionen berechnet sich der Gesamtspin S wie folgt zu:

\[
\text{Fe}^{3+}: \ [\text{Ar}] 3d^5 \rightarrow S = \frac{5}{2} \\
\text{Y}^{3+}: \ [\text{Kr}] \rightarrow S = 0
\]

Durch eine indirekte Superaustausch-Wechselwirkung der Fe³⁺-Ionen über die $O^{2−}$-Ionen sind die Spins auf den 3 Fe(A)- und 2 Fe(D)-Plätzen antiparallel zueinander ausgerichtet und bilden auf diese Weise zwei magnetische Untergitter in YIG. Durch die entgegengesetzte Ausrichtung dieser Untergitter kompensieren sich die magnetischen Momente von vier Fe³⁺-Ionen und die Gesamt magnetisierung resultiert nur aus einem Eisen-Ion. YIG ist demnach also ferrimagnetisch, was eine abgeschwächte Form des Ferromagnetismus ist und die Curie-Temperatur von YIG liegt bei $T_C = 559$ K \[2\]. Die Sättigungsmagnetisierung bei $T = 0$ K berechnet sich mit der Anzahl der magnetischen Momente pro Einheitszelle $N = 8$, dem Volumen dieser Einheitszelle $V = a^3 = (1.2376 \text{nm})^3$, dem gyromagnetischen Faktor $g_J = 2$ und dem Bohrschen Magneton $\mu_B = 9.274 \cdot 10^{-24}$ J/T zu

\[
M_S = \frac{N}{V} g_J \mu_B S = 5 \frac{\mu_B}{\text{Formeleinheit}} = 5 \mu_B \frac{N}{V} = 195.70 \frac{\text{kA}}{\text{m}} \quad (2.1)
\]

(vgl. \[12\]). Im Abschnitt 4.2.1 werden die experimentellen Ergebnisse für das YIG-Targetmaterial genauer diskutiert.

2.3 Paramagnetismus von GGG

Gadolinium-Gallium-Granat Gd₃Ga₅O₁₂ (GGG) kristallisiert ebenso kubisch mit acht Formeleinheiten pro Elementarzelle und einer Gitterkonstanten $a = 1.2383$ nm \[5\]. Der sehr geringe Unterschied in den Gitterkonstanten von weniger als 1 pm, also nur 0.057 %, spielt dabei für das epitaktische Wachstum von YIG auf GGG eine zentrale Rolle, da in diesem Fall durch die geringe Gitterfehlanpassung wenig Ver spannung zwischen den Kristallschichten entsteht und so das Schichtwachstum sehr kohärent verlaufen kann. Im Vergleich zu YIG, nehmen in GGG die Gd³⁺-Ionen die selben Gitterplätze wie die Y³⁺-Ionen ein und die Ga³⁺-Ionen analog die der Fe³⁺-
Ionen. Die Elektronenkonfigurationen der beteiligten Ionen geben wieder Auskunft über die Kopplung zum Gesamtspin S:

$\text{Ga}^{3+}: [\text{Ar}] 3d^{10} \rightarrow S=0$

$\text{Gd}^{3+}: [\text{Xe}] 4f^7 \rightarrow S=7/2$

Da der Bahndrehimpuls verschwindet ($L = 0$) [13], erhält man für den Gesamtdrehimpuls nach den Hundsen Regeln $J = 7/2$. Man erkennt, dass in diesem Fall einzig die Gadolinium-Ionen einen Beitrag zum Magnetismus von GGG leisten können. Da keine Spin-Austauschwechselwirkung eine energetisch günstigere Spineinstellung hervorruft, zeigt dieses Granat paramagnetische Eigenschaften. Um die Messergebnisse in Kapitel 4.2.2 zu verstehen, werden an dieser Stelle einige Ergebnisse der Theorie des Langevin-Paramagnetismus vorgestellt [13].

Die Magnetisierung eines paramagnetischen Isolators mit lokalisierter magnetischer Momente in Abhängigkeit eines äußeren Magnetfelds B wird mit

$$y = \frac{gJ\mu_B B}{k_BT} \cdot J$$

(2.2)

durch folgenden Zusammenhang beschrieben:

$$M = M_S \cdot B_J(y)$$

(2.3)

Die Sättigungsmagnetisierung M_S und die Brillouin-Funktion $B_J(y)$ können aus der Ableitung der Magnetisierung aus der freien Energie eines Systems im äußeren Magnetfeld bestimmt werden (wird in [13] durchgeführt). Mit Gleichung (2.2), dem Volumen der Probe V, der Anzahl der magnetischen Momente N und dem Gesamtdrehimpuls J erhält man für die Sättigungsmagnetisierung

$$M_S = \frac{N}{V} gJ\mu_B J = ngJ\mu_B J$$

(2.4)

und für die Brillouin-Funktion

$$B_J(y) = \frac{2J+1}{2J} \coth \left(\frac{2J+1}{2J} \right) - \frac{1}{2J} \coth \left(\frac{y}{2J} \right).$$

(2.5)

Die Dichte der magnetischen Momente $n = N/V$ aus Gleichung (2.4) erhält man auch aus dem Volumen der Einheitszelle V_{GGG} (analog zu Gleichung (2.1)) und der Anzahl der Gd$^{3+}$-Ionen in der Einheitszelle $N_{\text{Gd}^{3+}}$ zu

$$n = \frac{N_{\text{Gd}^{3+}}}{V_{\text{GGG}}} = \frac{3 \cdot 8}{(1.2383\text{nm})^3} = 1.2648 \cdot 10^{28}\text{m}^{-3}$$

(2.6)
und damit schließlich für die Sättigungsmagnetisierung von GGG mit Gleichung (2.4)

\[M_S = 821.08 \, \text{kA/m} \quad (2.7) \]

Der Vergleich dieser theoretischen Vorhersagen mit dem Experiment erfolgt in Abschnitt 4.2.2.
Kapitel 3
Probenherstellung

In diesem Kapitel soll erläutert werden, wie dünne YIG-Schichten epitaktisch auf einkristalline GGG-Substrate abgeschieden wurden. Dabei wird zunächst der Herstellungsprozess, die gepulste Laserdeposition, detailliert erklärt und anschließend eine erste Bewertung der verschiedenen Parameter bei der Schichtherstellung vorgenommen.

3.1 Gepulste Laserdeposition

Abbildung 3.1: Schema zur Funktionsweise von PLD

In diesem Abschnitt soll die grundlegende Funktionsweise der gepulsten Laserdeposition dargelegt werden (siehe Abbildung 3.1).

Dieser Aufbau befindet sich in einer evakuierten Kammer bei einem Druck im 10^{-8} mbar - Bereich, also im Ultraschlußvakuum. Bei der Herstellung von dünnen Oxid- schichten hat es sich bewährt [3, 11], den Beschichtungsprozess in Sauerstoffatmosphäre durchzuführen. Der Sauerstoffdruck wurde in einem großen Bereich von 1 µbar bis 50 µbar variiert und hat großen Einfluss auf die Qualität der erstellten Dünnschichten.

3.2 Lichtmikroskop

3.2 Lichtmikroskop

Abbildung 3.2: Lichtmikroskopaufnahmen bei 50-facher Vergrößerung

Die hergestellten Proben wurden bei 50-facher Vergrößerung unter dem Lichtmikroskop untersucht, um erste Hinweise auf die Beschaffenheit der Schichtoberfläche
Kapitel 4
Ergebnisse und Diskussion

In diesem Kapitel soll das weitere experimentelle Vorgehen zur Charakterisierung der hergestellten Dünnsschichten beschrieben werden. Dabei werden zunächst die verwendeten Messtechniken vorgestellt, um dann einige repräsentative Ergebnisse vorzustellen und diskutieren zu können. Von großem Interesse sind dabei die kristalline Struktur, charakteristische Größen der ferromagnetischen Resonanz und die Konsistenz der magnetischen Eigenschaften der dünnen YIG-Schichten mit denen der Ausgangsmaterialien.

4.1 Röntgendiffрактометрия

Die Grundlage für die Röntgenbeugung ist die Erfüllung der Bragg-Bedingung

\[2d_{hkl} \sin \omega = n \cdot \lambda. \] (4.1)

Dabei wird der Abstand der Netzebenen im Kristall in der Kristallrichtung mit den Miller'schen Indizes \([hkl]\) mit \(d_{hkl}\) bezeichnet und kann bei Materialien mit kubischer Gitterstruktur mit der Gitterkonstanten \(a\) durch

\[d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \] (4.2)

berechnet werden [21]. Diese Wellenlänge der Röntgenstrahlung \(\lambda\) wird beim Drehkristallverfahren konstant gehalten und beträgt für Cu-Kα1-Strahlung 0.15406 nm. Wenn für einen Winkel \(\omega\) die Bedingung (4.1) für konstruktive Interferenz erfüllt ist, erhält man ein Intensitätsmaximum \(n\)-ter Ordnung unter einem Winkel von 2θ.
Abbildung 4.1: Schema zur Veranschaulichung des Drehkristallverfahrens (aus [2])

4.1.1 Rockingkurve

Beim Drehkristallverfahren wird nur deswegen ein variabler Einfallswinkel ω eingeführt, da wegen Fehlschliffen des Kristalls der Ein- und Ausfallswinkel bezogen auf die Orientierung der Netzebene nie exakt gleich ist und wegen der hohen Winkelauflösung von bis 0.001° eine genaue Einstellung nötig ist. Diese Kalibrierung wird durch eine sogenannte Rockingkurve realisiert. Dabei wird der Detektor fest auf einen Winkel θ, bei dem ein intensitätsstarker Röntgenreflex erwartet wird, fixiert und der Winkel ω in einem kleinen Bereich um θ variiert. Aufgrund von statistisch verteilten Verkippungen der Netzebenen zur idealen Richtung erhält man als Resultat eine gaußförmige Intensitätsverteilung in Abhängigkeit des Winkels ω. Somit kann man zum einen durch den Winkel bei maximaler Intensität ω_0 eine Ausrichtung der Probe vornehmen (Alignment) und zum anderen erhält man mit der FWHM-Breite\(^1\) ein Maß für die Mosaizität im Kristall. Diese Größe gibt an, wie stark die Netzebenen im Mittel gegen die ideale Richtung verkippt sind, wobei eine schmale FWHM-Breite ein Anzeichen für geringe Mosaizität und damit für eine gleichmäßige Kristallstruktur der dünnen Schicht ist [16].

In Abbildung 4.2 ist exemplarisch eine Rockingkurve eines YIG-Reflexes der Probe YIG #18 zu sehen, der aus der Netzebene mit $h = k = l = 4$ (YIG (444) - Reflex) resultiert. Durch den Fit mit einer Gauss-Funktion wurde eine FWHM-Breite von 0.034° um den Winkel $\omega_0 = 25.467°$ bestimmt. FWHM-Werte, die kleiner als 0.1° sind, zeigen bereits von geringer Mosaizität und damit gleichmäßigem Schichtwachstum. Bei allen Proben wurde die anfängliche Kalibrierung mit dem GGG (444) - Reflex durchgeführt, da dieser sehr intensitätsstark ist. Bei den meisten Proben konnte

\(^1\)Full Width at Half Maximum
4.1 Röntgendiffraktometrie

Abbildung 4.2: Rockingkurve der Probe YIG #18

man allerdings aufgrund der nur sehr geringen Differenz der Gitterkonstanten von YIG und GGG die YIG-Reflexe nicht von den intensitätsstarken Substratreflexen unterscheiden und damit auch keine Rockingkurven aufnehmen.

4.1.2 2θ - ω - Scan

Nach der Kalibrierung mit der Rockingkurve wird für alle Proben ein 2θ - ω - Scan im Bereich $2\theta = 10^\circ$ bis 130° unter Berücksichtigung des Offsets aufgrund der Mosaiizität des Kristalls durchgeführt. Das verwendete Substrat wurde so geschliffen, dass die Oberflächennormale parallel zur [111] - Richtung verläuft, deshalb sollte im Fall von epitaktischem Wachstum die YIG-Dünnsschicht die gleiche Orientierung aufweisen. Man erhält also bei diesem Scan im Wesentlichen zwei intensitätsstarke Reflexe, die aus den Netzebenen mit den Miller'schen Indizes (444) und (888) stammen. Die Reflexe mit Indizes $h = k = l = 2n + 1$ und $h = k = l = 4n - 2$ mit $n \in \mathbb{N}$ sind sogenaunte verbotene Reflexe. Diese entstehen durch destruktive Interferenz aufgrund der bcc-Symmetrie und Zwischenlagen in der kubischen Einheitszelle, die insgesamt aus acht Formeleinheiten von YIG bzw. GGG besteht.

In Abbildung 4.3 ist ein vergrößerter Scan um den GGG (444) - Reflex der Proben YIG #3 und YIG #10 zum Vergleich gezeigt. Diese Aufnahmen wurden mit hoher Auflösung aufgenommen, aber wie in Abschnitt 4.1.1 diskutiert, kann man keinen YIG (444) - Reflex erkennen. Die etwas kleinere Gitterkonstante von YIG führt zu
Kapitel 4 Ergebnisse und Diskussion

Abbildung 4.3: $2\theta - \omega$ - Scan um den GGG (444) - Reflex bei Probe YIG #3 (links) und Probe YIG #10 (rechts)

4.1.3 Reflektometrie

Wird ein $2\theta - \omega$ - Scan für kleine Winkel von $2\theta = 0.4^\circ$ bis 5° durchgeführt, spricht man von Röntgenreflektometrie. Die einfallenden Röntgenstrahlen werden an der Probenoberfläche und der Grenzfläche von Dünnfilm und Substrat reflektiert und interferieren aufgrund der verschiedenen Brechungsindizes. Diese Interferenzen erkennt man an Oszillationen in der detektierten Intensität. Durch den Abstand der Extrema dieser Oszillationen kann man die Dicke der Dünnfilmchichten bestimmen. Die Auswertung der Reflektometrie-Daten wurde mit dem Fit-Programm Leptos von Bruker AXS durchgeführt, welches mit einigen Materialkonstanten den Verlauf der Intensitätskurve simulieren und dadurch die Schichtdicke und auch die Oberflächenrauigkeit der Dünnfilmchichten bestimmen kann. Ein Beispiel für diesen Fit ist in
4.2 Magnetische Charakterisierung

4.2.1 YIG-Target

Als erstes wurden Magnetisierungsmessungen des polykristallinen YIG-Targets durchgeführt. In Abbildung 4.5 kann man die Magnetisierungskurve von YIG-Target 1400, das aus verschiedenen Verbindungen mit stöchiometrisch richtiger Zusammensetzung bei 1400 °C getempert wurde, erkennen. Es wurde bis zu 7 T gemessen.

\(^{1}\) Superconducting Quantum Interference Device
und eine Sättigungsmagnetisierung erreicht, die mit dem Literaturwert bei 25 °C von $M_S = 141.65 \text{kA/m}$ [11] bis auf $\pm 0.5 \text{kA/m}$ übereinstimmt. Dieser Wert bei Raumtemperatur ist deshalb niedriger als in Gleichung (2.1) berechnet, da die Sättigungsmagnetisierung aufgrund von Spinwellenanregungen stark temperaturabhängig ist [2]. Man erkennt zusätzlich, dass Werte nahe der Sättigungsmagnetisierung bereits bei Feldern von 50 bis 100 mT erreicht werden.

Abbildung 4.5: Magnetisierung M des YIG-Targets in Abhängigkeit vom externen Feld $\mu_0 H$

In Abbildung [4.6] ist eine Vergrößerung einer Messung von YIG-Target 1400 um den Bereich $\pm 20 \text{mT}$ um $\mu_0 H = 0$ zu erkennen. Eine ferromagnetische Hysterese ist, wenn vorhanden, sehr klein und das Koerzitivfeld ist geringer als 0.1 mT und kann deswegen experimentell nicht aufgelöst werden. Die Fläche, die durch diese Kurve eingeschlossen wird, ist ein Maß für die bei einem Durchlauf dissipierte Energie und sollte für elektrotechnische Anwendungen möglichst gering sein, da hier mit schnell wechselnden Feldern gearbeitet wird und der Energieverlust durch Wärmendissipation möglichst gering gehalten werden soll. Deshalb ist YIG aufgrund der geringen Koerzitivfeldstärke von $B_C < 0.1 \text{mT}$ ein geeignetes Material für den Einsatz in der Hochfrequenztechnik.
4.2 Magnetische Charakterisierung

Abbildung 4.6: Magnetisierung M des YIG-Targets in Abhängigkeit vom externen Feld $\mu_0 H$

4.2.2 GGG

Ein Substrat aus GGG wurde bei $T = 300$ K und $T = 3$ K untersucht (4.7). Die durchgezogenen Linien in diesem Diagramm sind dabei Kurven, die, wie in Abschnitt 2.3 beschrieben, mit Hilfe der Brillouin-Funktion (2.5) und der Sättigungsmagnetisierung (2.4) berechnet wurden.

Man erkennt eine sehr gute Übereinstimmung der experimentell bestimmten Ergebnisse bei $T = 300$ K und einen linearen Verlauf der Magnetisierung in Abhängigkeit vom externen Magnetfeld B, da bei hohen Temperaturen die thermische Unordnung der Ausrichtung der Spins parallel zum externen Feld stark entgegenwirkt. Um die Sättigungsmagnetisierung zu erreichen, wären technisch unerreichbar starke Magnetfelder von mehr als 1000 T nötig. Bei $T = 3$ K erkennt man einen annähernd linearen Verlauf der Magnetisierung im Bereich bis zu $B = 2$ T. Bei stärkeren Feldern wird hier die Sättigungsmagnetisierung von $M_S = 821.08$ kA/m bis auf ± 0.70 kA/m genau erreicht. Bei tiefen Temperaturen wird also die Entropie minimal und die Spins können bereits bei Feldstärken von $6 - 7$ T vollständig parallel ausgerichtet werden.
Kapitel 4 Ergebnisse und Diskussion

Abbildung 4.7: Magnetisierung M von GGG in Abhängigkeit vom externen Feld $\mu_0 H$

4.2.3 YIG-Dünnschichten

Einige Dünnschicht-Proben wurden mit dem SQUID-Magnetometer genauer auf ihre magnetischen Eigenschaften untersucht. Dabei erhält man eine Magnetisierungscurve, in der das paramagnetische Signal des GGG-Substrats und das ferromagnetische Signal der YIG-Dünnschicht überlagert sind. Den paramagnetischen Anteil des Substrats erhält man mit den in Abschnitt 2.3 dargelegten und im vorhergehenden Abschnitt 4.2.2 diskutierten Zusammenhängen des Langevin-Paramagnetismus. Um die Magnetisierung der Dünnschicht zu extrahieren, wird also die mit Gleichung (2.3) berechnete Magnetisierung des Substrats vom Messsignal subtrahiert.

In Abbildung 4.8 ist das Messsignal (schwarze Kurve), das berechnete paramagnetische Signal (in rot) und die Differenz, also das magnetische Moment des YIG-Films (in blau) exemplarisch für Probe YIG #10 zu sehen. Da das magnetische Moment des Substrats bei $T = 300$ K linear mit dem angelegten Magnetfeld wächst und die Magnetisierung des Dünnsfilms sehr schnell sättigt, ist die Magnetisierungskurve der Dünnschicht nur bei sehr kleinen Magnetfeldern im mT-Bereich von der gemessenen Kurve zu unterscheiden. In Abbildung 4.8 erkennt man desweiteren, dass die Remanenzfelder betragsmäßig unterschiedlich je nach Richtung des Magnetfelds sind. Da dieser Effekt bei mehreren Proben aufgetaucht ist, wurde ein systematischer Fehler
4.2 Magnetische Charakterisierung

Abbildung 4.8: Magnetisches Moment m der Probe YIG #10 in Abhängigkeit vom externen Feld $\mu_0 H$

angenommen und im Folgenden die Kurven in y-Richtung so verschoben, dass die erwartete Punktsymmetrie um den Ursprung gegeben ist.

In Abbildung 4.9 ist die extrahierte Magnetisierungskurve der YIG-Dünnsschicht von Probe YIG #10 bei $T = 300$ K zu sehen. Die Magnetisierung wurde dabei mit der Schichtdicke aus der Reflektometrie von (43.0 ± 2.2) nm und der beschichteten Oberfläche von (22.0 ± 1.1) mm2 mit Unsicherheiten von je 5% auf das Volumen des Films normiert. Eine weitere Toleranz von 10% wurde aufgrund von Abweichungen der Sättigungsmagnetisierung von GGG vom Literaturwert berücksichtigt. Diese wurde zusätzlich unabhängig von der theoretischen Herleitung durch die Masse, das Volumen und die Dichte eines GGG-Substrats berechnet und so skaliert, dass die Magnetisierungskurve des Dünnfilms nicht durch einen linearen Anstieg der Magnetisierung bei höheren Feldern überlagert wird. Diese Unsicherheiten wurden bei den Fehlerbalken in Abbildung 4.9 berücksichtigt. Die Sättigungsmagnetisierung vom YIG-Targetmaterial lässt sich also für Probe YIG #10 innerhalb dieser Fehlertoleranzen reproduzieren, das Koerzitivfeld liegt dagegen mit $B_C = 3$ mT um zwei Größenordnungen darüber.

Die Ergebnisse der anderen untersuchten Proben sind in Tabelle A.1 im Anhang zusammengefasst. Die Ergebnisse für andere Temperaturen wurden ebenso ausgewertet,
Kapitel 4 Ergebnisse und Diskussion

Abbildung 4.9: Magnetisierung M der YIG-Dünnschicht bei Probe YIG #10 in Abhängigkeit vom externen Feld $\mu_0 H$

aber diese sind wegen der stark steigenden Magnetisierung von GGG bei fallender Temperatur schwieriger zu bestimmen und deshalb auch mit größeren Messunsicherheiten behaftet. Allerdings erkennt man die zu erwartende steigende Tendenz der Sättigungsmagnetisierung bei fallender Temperatur und bei manchen Proben auch eine Annäherung an den in Abschnitt 2.2 hergeleiteten Wert von 195.70 kA/m für $T = 0$ K. Insgesamt erhält man bei diesen Messungen für YIG #8 und YIG #10 die Ergebnisse, die am besten mit denen von polykristallinem YIG übereinstimmen und damit weitere Indizien, dass das Schichtwachstum bei den in Kapitel 3 genannten Parametern am besten verläuft.

4.3 Ferromagnetische Resonanz

Winkelabhängige FMR-Spektroskopie ist eine akkurate Methode, die magnetische Anisotropie in ultradünnen, ferromagnetischen Schichten zu untersuchen und Materialien für Anwendungen in der Elektrotechnik zu überprüfen. Ferromagnetische Resonanz basiert dabei analog zur Elektronenspinresonanz auf der resonanten Absorption von Mikrowellenstrahlung in Abhängigkeit von einem äußeren Magnetfeld.
4.3 Ferromagnetische Resonanz

In Abbildung 4.10 ist die Zeeman-Energieaufspaltung für ein Elektron nach der magnetischen Quantenzahl \(m_S \) skizziert, die durch ein äußeres Magnetfeld \(H_0 \) hervorgerufen wird. Resonante Absorption von Mikrowellenstrahlung mit konstanter Frequenz \(\nu \) erreicht man bei einem Wert \(H_{\text{res}} \), bei dem der Unterschied zwischen den Zeeman-Niveaus genau der Energie der Mikrowellen entspricht, also wenn folgende Bedingung erfüllt ist:

\[
h\nu = g_J \mu_B \mu_0 H_{\text{res}}
\]

(4.3)

In einem paramagnetischen Material führen die nicht-wechselwirkenden magnetischen Momente beim Anlegen eines externen Magnetfelds \(H_0 \) zu einer makroskopischen Magnetisierung \(M \). Dieser Vektor wird durch \(H_0 \) parallel dazu ausgerichtet und das magnetische Wechselfeld der Mikrowellen bewirkt eine Präzession des Magnetisierungvektors um die Ruhelage \(M_0 \). Diese und folgende Zusammenhänge und die grundlegenden Bewegungsgleichungen werden in [18] genauer diskutiert.

Beim Übergang zur ferromagnetischen Resonanz ist nun zu beachten, dass die magnetischen Momente in einem ferromagnetischen Stoff durch die Austauschwechselwirkung nicht als unabhängig voneinander betrachtet werden können. Zudem muss vor allem bei dünnen, ferromagnetischen Schichten die magnetische Anisotropie mit in Betracht gezogen werden. Das effektive Magnetfeld

\[
H_{\text{eff}} = H_0 + H_{\text{FM}} + H_{\text{Aniso}}
\]

(4.4)

berücksichtigt mit \(H_{\text{FM}} \) das Feld im ferromagnetischen Stoff durch die Austausch-
Kapitel 4 Ergebnisse und Diskussion

Wechselwirkung der Spins und mit H_{Aniso} die magnetische Anisotropie. Es ist zu beachten, dass die Gleichgewichtsrichtung des Magnetisierungsvektors M_0 nun im Allgemeinen nicht mehr parallel zum externen Feld H_0 ist. Die Bedingung für resonante Mikrowellenabsorption verändert sich im Vergleich zu Gleichung (4.3) bei der FMR nur insofern, dass das Resonanzfeld wegen Gleichung (4.4) einen anderen Wert annimmt. Die Dynamik von M wird durch die Landau-Lifshitz-Gilbert Gleichung

$$\frac{dM}{dt} = -\gamma \mu_0 (M \times H_{\text{eff}}) + \frac{\alpha}{M_S} (M \times \frac{dM}{dt})$$

(4.5)

beschrieben. M_S ist dabei die Sättigungsmagnetisierung, γ das gyromagnetische Verhältnis und α ein dimensionsloser Dämpfungsparameter. Die Lösung dieser Gleichung ist im Allgemeinen sehr kompliziert, aber entspricht im Wesentlichen der komplexen magnetischen Suszeptibilität

$$\chi = \chi' + i\chi'' = \frac{\partial M}{\partial H}.$$

(4.6)

In Abbildung 4.11 kann man den Verlauf des Signals bei verschiedenen Winkeln zum äußeren Feld erkennen. Die Probe wird dabei im Magnetfeld von 270°, also einer senkrechten Stellung des Felds zur Schichtoberfläche (out of plane), nach 0° in eine parallele Orientierung (in plane) rotiert. Bei Probe YIG #12 wurde dabei bei einer Mikrowellenfrequenz von 10.29 GHz, der Modulationsfrequenz von 231 Hz und der Modulationsamplitude von ca. 2 mT gemessen. Das Resonanzfeld H_{res} und die Linienbreite des Signals $\mu_0 \Delta H_{pp}$ zeigen eine deutliche Winkelabhängigkeit. Da in der out of plane - Richtung ein stärkeres äußeres Feld für eine Resonanzanregung nötig ist, lässt sich daraus schließen, dass die [111] - Richtung in der YIG-Dünnsschicht eine sogenannte magnetisch harte Achse im Film ist und dass in der in plane - Ebene Vorzugsrichtungen des Magnetisierungsvektors \mathbf{M} liegen. Diese magnetische Formanisotropie lässt sich damit begründen, dass die Orientierung der Magnetisierung senkrecht zur Oberfläche in einer sehr dünnen Schicht (ca. 20 · a_{YIG} bei Probe YIG #12) aufgrund von hohen Entmagnetisierungsfeldern an den Grenzflächen energetisch ungünstig ist.
Abbildung 4.11: FMR-Signal (willkürliche Einheiten) in Abhängigkeit vom externen Magnetfeld $\mu_0 H_0$ für verschiedene Probenorientierungen. Zur besseren Übersichtlichkeit sind die Kurven um 0.2 a.u. in vertikaler Richtung gestaffelt dargestellt.

Diesen Zusammenhang kann man besonders gut in Abbildung 4.12 erkennen, da hier nur das Resonanzmagnetfeld $\mu_0 H_{res}$ gegen die Orientierung für verschiedene Proben aufgetragen wurde. Die Winkelstellung ist dabei analog zu Abbildung 4.11 zu verstehen und reicht von der senkrechten (270°) zur parallelen (360° bzw. 0°) Orientierung des Magnetfelds zur Probenoberfläche. Zur genauen Bestimmung der Werte für das Resonanzmagnetfeld und die Linienbreite wurde ein nichtlinearer Fit mit einer abgeleiteten Lorentzfunktion für alle Proben und Orientierungen durchgeführt. In Abbildung 4.12 kann man außerdem einen qualitativ gleichen Verlauf der Kurven für die verschiedenen Proben erkennen, was wegen der oben genannten magnetischen Formanisotropie auch erwartet wird. Vor allem in der out of plane - Richtung zeigen sich aber Unterschiede im Resonanzfeld von bis zu 0.1 T, was auf unterschiedliche Werte der Magnetisierung der verschiedenen Proben schließen lässt.

Eine alternative theoretische Beschreibung der ferromagnetischen Resonanz kann aus der totalen freien Energiedichte abgeleitet werden. Der Vorteil dieser Methode ist, dass die Effekte der magnetischen Anisotropie implizit berücksichtigt werden...
Kapitel 4 Ergebnisse und Diskussion

Abbildung 4.12: Resonanzmagnetfeld $\mu_0 H_{res}$ in Abhängigkeit von der Orientierung der Probe

und man somit alternative Bewegungsgleichungen der FMR erhält, die experimentell einfacher zugänglich sind. Die Herleitung dieser Gleichungen ist in [19] detailliert beschrieben. Berücksichtigt man nur den Zeeman-Beitrag durch die Wechselwirkung der Magnetisierung \mathbf{M} mit dem äußeren Magnetfeld \mathbf{H} und die magnetische Formanisotropie für dünne Filme in [111]-Richtung, so erhält man den Ausdruck

$$\frac{F}{M_S} = -\mu_0 H (h \cdot m) + \frac{1}{3} B_{111} (m_x + m_y + m_z)^2$$ (4.7)

für die freie Energie dichte, wobei die Magnetisierung $\mathbf{M} = M_S \cdot \mathbf{m}$ mit dem Einheitsvektor der Magnetisierung \mathbf{m} mit den Komponenten m_x, m_y, m_z und dem Betrag M_S dargestellt wird. Das äußere Magnetfeld wird ebenso mit $\mathbf{H} = H \cdot h$ bezeichnet und B_{111} beschreibt das effektive Feld für uniaxiale Anisotropie in [111]-Richtung. Die Annahme, dass die Magnetisierung im Sättigungsbereich liegt, ist berechtigt, da die Dünfilme bereits bei 10 bis 20 mT (siehe Abbildung 4.9) die Sättigungsmagnetisierung erreichen und bei den FMR-Messungen stets Felder > 200 mT angelegt wurden. Mit Gleichung (4.7) kann man eine Bewegungsgleichung herleiten, was in [18] auch durchgeführt wird. Um B_{111} zu bestimmen, wurde für YIG #8 und YIG
#10 eine Simulation mit dieser Gleichung und den Messdaten aus Abbildung 4.12 durchgeführt.

Abbildung 4.13: Resonanzmagnetfeld \(\mu_0 H_{\text{res}} \) in Abhängigkeit von der Orientierung der Probe und Simulation

Die Ergebnisse sind in Abbildung 4.13 dargestellt und ergeben für YIG #8 den Wert \(B_{111} = (78 \pm 4) \) mT und für YIG #10 \(B_{111} = (95 \pm 4) \) mT. Man erkennt, dass die Simulation für YIG #10 deutlich besser konvergiert, aber auch dass die senkrechten und parallelen Orientierungen nicht ganz mit den Extremwerten der Kurven übereinstimmen, was an einer Verkippung der Proben beim Einbau bedingt durch die experimentellen Gegebenheiten liegen könnte.

Eine detaillierte Bestimmung der magnetischen Anisotropie in dünnen, [111] - orientierten YIG-Filmen wird in [9] von Manilov, Khartsev und Grishin durchgeführt. Sie gehen dabei ebenso von der freien Energiedichte aus und leiten daraus einen allgemeinen Zusammenhang zwischen Resonanzfrequenz \(\omega_{\text{res}} \) und effektiven Feldern \(B_u^* \) und \(B_c \) für uniaxiale bzw. kubische Anisotropie her. Für die out of plane - Richtung gilt speziell

\[
\omega_{\text{res}} = \gamma \left(B_\perp - |B_u^*| + \frac{2}{3} |B_c| \right) \tag{4.8}
\]
Kapitel 4 Ergebnisse und Diskussion

und für die in plane - Richtung erhält man die asymptotische Lösung

$$\omega_{\text{res}} = \gamma \sqrt{B_{||} \left(B_{||} + |B_u^*| + \frac{1}{2} |B_c| \right)}.$$ (4.9)

$B_{||}$ und B_{\perp} bezeichnen das Resonanzfeld in paralleler bzw. senkrechter Orientierung der Probe zum äußeren Magnetfeld und γ das gyromagnetische Verhältnis. Die Resonanzfelder bei diesen Orientierungen sind bekannt und können als Extremwerte in Abbildung 4.12 abgelesen werden. Somit kann man mit den Gleichungen (4.8) und (4.9) die effektiven Anisotropiefelder bestimmen. Eine Zusammenfassung für alle gemessenen Proben aus Abbildung 4.12 ist in Tabelle A.2 im Anhang zu finden. In [9] wird für eine Probe, die mit dem LPE-Verfahren hergestellt wurde, eine effektive uniaxiale Anisotropie von $|B_u^*| = (167.4 \pm 1.9)$ mT angegeben. Alle YIG - Proben liegen in einem Bereich von ± 20 mT um diesen Referenzwert. Die mit PLD hergestellten Proben in [9] liegen mit 211.1 mT und 265.8 mT deutlich über diesem Wert.

Mit Hilfe des Zusammenhangs

$$|B_u^*| = 2 \cdot B_{111}$$ (4.10)

lassen sich die uniaxiale Anisotropie aus Simulation und Berechnung vergleichen. Für YIG #8 erhält man aus der Simulation $|B_u^*| = (190 \pm 8)$ mT und für YIG #10 $|B_u^*| = (156 \pm 8)$ mT. Vergleicht man diese Werte mit denen in Tabelle A.2, so erkennt man eine Übereinstimmung innerhalb der Fehlertoleranzen für beide Proben. Diese Ergebnisse untermauern die Annahme, dass epitaktisch gewachsene Dünnfilme aus YIG mit hoher Qualität hergestellt wurden. Um weiteren Aufschluss über die Auswirkungen der Wachstumsparameter auf die Eigenschaften der Dünnfilme zu erhalten, wird im Folgenden noch die Linienbreite der FMR genauer untersucht.

Vergleicht man die Proben in Abbildung 4.14, so erkennt man, dass die Proben YIG #12, YIG #13 und YIG #18 in der out of plane - Richtung die geringsten Linienbreiten erreichen. Der geringste Wert liegt bei 0.78 mT, was im Vergleich zum Wert einer polierten Kugel aus YIG von 0.02 mT [10] noch sehr groß erscheint. Allerdings wurden die Messungen der Dünnfilme bei Mikrowellenfrequenzen von 10.3 GHz durchgeführt. Da die Linienbreite linear von der Mikrowellenfrequenz abhängt [3], muss man die gemessenen Werte mit einem Faktor von 0.323 multiplizieren, um
4.3 Ferromagnetische Resonanz

Abbildung 4.14: Linienbreite der ferromagnetischen Resonanz $\mu_0 \Delta H_{pp}$ in Abhängigkeit von der Orientierung der Probe

Kapitel 5
Zusammenfassung und Ausblick

Abbildung 5.1: FMR-Signal und Spannung aufgrund von Spinströmen \(V_{\text{DC}} \) in Abhängigkeit vom äußeren Magnetfeld \(\mu_0 H \)

Wie in Abschnitt 3.1 erwähnt, wurden bei den letzten vier Proben auf die YIG-Schicht zusätzlich 10 nm Platin aufgedampft. Diese wurden in Experimenten zum Spin-Pumpen untersucht. An einer Metall-Ferromagnet-Grenzfläche wird dabei durch die Dämpfung der ferromagnetischen Resonanz ein Spinstrom in das Metall injiziert und aufgrund des inversen Spin-Hall-Effekts spinabhängig abgelenkt. Aufgrund dieser Ablenkung kann man makroskopisch eine Spannung an der Platinschicht abgreifen. Dieser Effekt ist in Abbildung 5.1 zusammen mit dem FMR-Signal für Probe YIG #22 dargestellt. Beim Resonanzfeld \(\mu_0 H_{\text{res}} \) wird diese Span-
nung maximal und abhängig von der Probenorientierung ändert sich das Vorzeichen der Spannung. Detaillierte Ergebnisse dazu werden derzeit in der Arbeitsgruppe "Magnetismus und Spintronik" am Walther-Meißner-Institut ausgewertet und mit Ergebnissen anderer Materialsysteme verglichen.

Anhang A

Proben und Parameter

| Probe | B_\perp | B_\parallel | $\omega_{\text{res}}/\gamma$ | B_C | $|B_a^*|/\gamma$ |
|---------|-----------|---------------|-------------------------------|-------|-----------------|
| YIG # | [T] | [T] | [T] | [T] | [T] |
| 8 | 0.5130 | 0.2925 | 0.36753 | 0.02043 | 0.15909 |
| 10 | 0.5508 | 0.2896 | 0.36753 | -0.00552 | 0.17959 |
| 12 | 0.5555 | 0.2876 | 0.36753 | -0.00463 | 0.18439 |
| 17 | 0.5366 | 0.2944 | 0.36753 | -0.00398 | 0.16642 |
| 18 | 0.5353 | 0.2864 | 0.36753 | 0.01497 | 0.17775 |

Tabelle A.2: Resonanzmagnetfelder μ_0H_{res} für parallele und senkrechte Probener-
orientierung und effektive uniaxiale und kubische Anisotriepiefelder
Table A.2: Wachstumsparameter aller hergestellten Proben

<table>
<thead>
<tr>
<th>Probe VIC</th>
<th>Temperature [°C]</th>
<th>Pressure [µbar]</th>
<th>Growth Rate [µm/day]</th>
<th>Density [g/cm³]</th>
<th>Thickness [nm]</th>
<th>Wachstumsschicht</th>
<th>Which other Schicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>115</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C2</td>
<td>110</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C3</td>
<td>125</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C4</td>
<td>130</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C5</td>
<td>135</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C6</td>
<td>140</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C7</td>
<td>145</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C8</td>
<td>150</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C9</td>
<td>155</td>
<td>10 Hz</td>
<td>0 x 250</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>120 x 250</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: The table contains data on growth parameters of all synthesized samples.
Literaturverzeichnis

Literaturverzeichnis

Danksagung

Zum Schluss möchte ich mich bei allen bedanken, die mich während meiner Tätigkeit am Walther-Meißner-Institut und der Anfertigung dieser Arbeit unterstützt haben. Ein besonderer Dank geht an:

Prof. Dr. Rudolf Gross für die Möglichkeit, die Bachelorarbeit am Walther-Meißner-Institut durchführen zu können und auch für die Vorlesung zur Einführung in die Festkörperphysik, die einen wesentlichen Beitrag zum Verständnis der theoretischen Grundlagen und der experimentellen Methoden in diesem Bereich geleistet hat.

Dr. Matthias Opel, der mir auch seit Anfang meiner Tätigkeit viel Zeit für meine Fragen und Anliegen zur Verfügung gestellt hat und mir immer dabei geholfen hat, den Überblick über meine Fortschritte zu bewahren. Seine Hilfestellungen bei der Vorbereitung eines Seminarvortrags über das Thema meiner Bachelorarbeit und seine Verbesserungsvorschläge, auch bei der Bachelor-Thesis an sich, waren für mich besonderes hilfreich, genauso wie die zahlreichen Diskussionen über Messergebnisse und deren Interpretation, die auch außerhalb der Arbeitszeit und sogar am Wochenende per E-Mail stattgefunden haben.

Dr. Andreas Erb für die Herstellung des YIG-Targetmaterials.

Allen Mitgliedern der Magnetiker-Gruppe und dem restlichen WMI-Kollegium, die noch nicht erwähnt wurden, die mir in verschiedensten Situationen weitergeholfen haben und für ein insgesamt sehr angenehmes Arbeitsumfeld gesorgt haben.

Bei meiner Familie und meinen Freunden, die mir stets den Rücken gestärkt haben und ganz besonders bei meinen Eltern, die mein Studium ermöglicht und mich in jeglicher Hinsicht unterstützt haben.