WMI Home
about us Research Methods and Techniques Teaching People Publications Master and PhD theses Contact    
   
Research

WMI Research

Superconductivity and Superfluidity
Superconducting Quantum Circuits and Nanomechanics
Magnetism and Spintronics
Organic Metals
Cryogenics
Materials

NIM
SFB 631
TRR 80
SPP 1458
SPP 1538
SPP 1601
ExQM
CCQED

Magnetism & Spintronics: Spin Currents and Spin Transport

 

SMR (png, 31k)

Spin Transport and Spin-Hall Magnetoresistance

Pure spin currents represent the chargeless transport of angular momentum. They give rise to novel interface effects like the recently discovered spin Hall magnetoresistance. We investigate ...

  • spin transport and the spin-Hall magnetoresistance (SMR) effect in Pt in ferro-, ferri-, and antiferromagnetic materials,
  • non-local effects and magnon-mediated magnetoresistance (MMR), and
  • the topological Hall effect and related phenomena in materials with large spin-orbit coupling.
   
Recent publications
Pure spin current transport in gallium doped zinc oxide
Matthias Althammer, Joynarayan Mukherjee, Stephan Geprägs, Sebastian T. B. Goennenwein, Matthias Opel, M.S. Ramachandra Rao, Rudolf Gross
Appl. Phys. Lett. 110, 052403 (2017)
 
Spin Hall Magnetoresistance in a Canted Ferrimagnet
Kathrin Ganzhorn, Joseph Barker, Richard Schlitz, Benjamin A. Piot, Katharina Ollefs, Francois Giullou, Fabrice Wilhelm, Andrei Rogalev, Matthias Opel, Matthias Althammer, Stephan Geprägs, Hans Huebl, Rudolf Gross, Gerrit E. W. Bauer, Sebastian T. B. Goennenwein
Phys. Rev. B 94, 094401 (2016)
 
Non-local magnetoresistance in YIG/Pt nanostructures
Sebastian T.B. Goennenwein, Richard Schlitz, Matthias Pernpeintner, Matthias Althammer, Rudolf Gross, Hans Huebl
Appl. Phys. Lett. 107, 172405 (2015)
 
Anomalous Hall effect in YIG|Pt bilayers
Sibylle Meyer, Richard Schlitz, Stephan Geprägs, Matthias Opel, Hans Huebl, Rudolf Gross, Sebastian T. B. Goennenwein
Appl. Phys. Lett. 106, 132402 (2015)

 

Spin Caloritronics (png, 31k)

Spin Caloritronics

Spin polarized currents in magnetic nanostructures give rise to novel spin caloric effects, modifying thermal transport, magneto-resistance, and possibly even magnetic states. It is long known that e.g., the Wiedemann-Franz law, which connects thermal and electrical conductivities, closely links heat and charge currents to each other. This coupling leads to thermoelectric effects with prominent examples being the Seebeck effect and its inverse, the Peltier effect. In the field of spin caloritronics, we investigate possible spin-dependent thermo-galvanic effects, i.e. links between heat and spin currents. We focus on ...

  • spin-Seebeck effects,
  • spin-dependent Seebeck effects, and
  • spin-Nernst effects.
   
Recent publications
Observation of the spin Nernst effect
Sibylle Meyer, Yan-Ting Chen, Sebastian Wimmer, Matthias Althammer, Stephan Geprägs, Hans Huebl, D. Ködderitzsch, Hubert Ebert, Gerrit E.W. Bauer, Rudolf Gross, Sebastian T.B. Goennenwein
arXiv:1607.02277 (2016)
 
Origin of the spin Seebeck effect probed by temperature dependent measurements in Gd3Fe5O12
Stephan Geprägs, Andreas Kehlberger, Tomek Schulz, Christian Mix, Francesco Della Coletta, Sibylle Meyer, Akashdeep Kamra, Matthias Althammer, Gerhard Jakob, Hans Huebl, Rudolf Gross, Sebastian T.B. Goennenwein, Mathias Kläui
Nature Communications 7 , 10452 (2016)
 
Time resolved spin Seebeck effect experiments
Niklas Roschewsky, Michael Schreier, Akashdeep Kamra, Felix Schade, Kathrin Ganzhorn, Sibylle Meyer, Hans Huebl, Stephan Geprägs, Rudolf Gross, Sebastian T. B. Goennenwein
Appl. Phys. Lett. 104, 202410 (2014)