Chapter 2

Physics of Josephson Junctions:

The Zero Voltage State
2.1 Basic properties of lumped Josephson junctions

Small spatial dimensions:

→ Gauge invariant phase diff. & current density are uniform

→ variations of supercurrent density on length scale larger than λ_L

$$\lambda_L = \sqrt{\frac{m_s}{\mu_0 n_s q_s^2}} \approx 10^{-2} \mu m - 1 \mu m$$

Josephson junction: n_s strongly reduced:

$$\lambda_L \rightarrow \lambda_J \approx 10 \mu m - 100 \mu m \text{ (Josephson penetration depth)}$$
2.1 Basic properties of lumped Josephson junctions

2.1.1 The Lumped Josephson Junction

Spatially homogeneous supercurrent density and phase difference → Lumped element JJ

\[I_s = \int_S J_s \cdot ds \]
Region of integration is junction area S

Current-phase relation

\[I_s(t) = I_c \sin \varphi(t) \]

Gauge invariant phase difference

\[\varphi(t) = \theta_2(t) - \theta_1(t) - \frac{2\pi}{\Phi_0} \int_1^2 A(r, t) \cdot dl \]

2-nd Josephson relation

\[\frac{\partial \varphi}{\partial t} = \frac{2\pi}{\Phi_0} \int_1^2 E(r, t) \cdot dl \Rightarrow \frac{d\varphi}{dt} = \frac{2\pi}{\Phi_0} V \]

Uniform phase difference → Total derivative

„0“-junction

\[I = I_c \sin \varphi \]

\[V = \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} \]

„π“-junction

\[I = I_c \sin (\varphi + \pi) \]

\[V = \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} \]
2.1.2 The Josephson coupling energy

Finite energy stored in JJ: overlap of macroscopic wave functions \rightarrow Binding energy

Initial current & phase difference \rightarrow Zero

Increase junction current from zero to a finite value
\rightarrow Phase difference has to change
\rightarrow 2-nd Josephson relation: finite-voltage state in a junction
\rightarrow External source has to supply energy (to accelerate the superelectrons)
\rightarrow Stored kinetic energy of moving superelectrons
\rightarrow Integral of the power $= I_s V$ (voltage during current increase)

$$E_J = \int_0^{t_0} I_s V \, dt = \int_0^{t_0} (I_c \sin \bar{\phi}) \left(\frac{\Phi_0}{2\pi} \frac{d\bar{\phi}}{dt} \right) \, dt = \frac{\Phi_0 I_c}{2\pi} \int_0^\varphi \sin \bar{\phi} \, d\bar{\phi}$$

Integration \rightarrow

$$E_J = \frac{\Phi_0 I_c}{2\pi} (1 - \cos \varphi) = E_{J0} (1 - \cos \varphi)$$

Josephson coupling energy
2.1.2 The Josephson coupling energy

Josephson coupling energy

\[E_J = \frac{\Phi_0 I_c}{2\pi} (1 - \cos \varphi) = E_{J0} (1 - \cos \varphi) \]

Order of magnitude

Traditional applications: \(I_c \approx 1 \text{ mA} \) \(\Rightarrow \) \(E_{J0} \approx 3 \times 10^{-19} \text{ J} \approx k_B \times 20000 \text{ K} \)

Quantum circuits: \(I_c \approx 1 \mu \text{ A} \) \(\Rightarrow \) \(E_{J0} \approx 3 \times 10^{-16} \text{ J} \approx k_B \times 20 \text{ K} \)
2.1.3 The superconducting state

\[|I| < I_c \Rightarrow \text{Constant phase difference } \varphi = \bar{\varphi}_n = \arcsin \frac{I}{I_c} + 2\pi n \]

\[\Rightarrow \text{Zero junction voltage } \Rightarrow \text{Zero-voltage state / ordinary (S) state} \]

In practice \rightarrow \text{Junction + current source} \rightarrow \text{Stability analysis}

\[E_{\text{pot}} = E - F \cdot x \Rightarrow \text{Potential energy} \text{ of the system under action of external force} \]

\[E \Rightarrow \text{Intrinsic free energy of the junction} \]

\[F \leftrightarrow I \Rightarrow \text{Generalized force} \]

\[x \Rightarrow \text{Generalized coordinate} \]

\[F \cdot \frac{\partial x}{\partial t} \leftrightarrow I \cdot V \Rightarrow \text{Power flowing into subsystem} \]

\[x \leftrightarrow \int V dt = \frac{\hbar}{2e} \varphi + c = \frac{\Phi_0}{2\pi} \varphi + c \]

\[\Rightarrow \text{Potential energy}: \]

\[E_{\text{pot}}(\varphi) = E_J - I \left(\frac{\Phi_0}{2\pi} \varphi + c \right) = E_{J0} \left(1 - \cos \varphi - \frac{I}{I_c} \varphi \right) + \tilde{c} \]

\[\varphi = \bar{\varphi}_n = \pi - \arcsin \left(\frac{I}{I_c} \right) + 2\pi n \]

\[\Rightarrow \text{Tilted washboard potential} \]

\[\text{Stable minima } \varphi_n \]

\[\text{Unstable maxima } \bar{\varphi}_n \]

\[\text{Equivalent states for different } n \]
2.1.3 The superconducting state

Properties of the washboard potential

\[U_0 \equiv E_{\text{pot}}(\phi_{n+1}) - E_{\text{pot}}(\tilde{\phi}_{n+1}) \]

\[= 2E_{J0} \left[\sqrt{1 - \left(\frac{l}{I_c} \right)^2} - \frac{l}{I_c} \arccos\left(\frac{l}{I_c} \right) \right] \]

\[k \equiv \frac{\partial^2 E_{\text{pot}}}{\partial \phi^2} = E_{J0} \sqrt{1 - \left(\frac{l}{I_c} \right)^2} \]

→ 0 for \(l \rightarrow I_c \)

No minima for \(l > I_c \)

Close to \(I_c \) \(\rightarrow \) \(\alpha \equiv 1 - \frac{l}{I_c} \ll 1 \rightarrow \) Simplified approximations

\[\varphi_0 = \frac{\pi}{2} - \sqrt{2\alpha} \quad \tilde{\varphi}_0 = \frac{\pi}{2} + \sqrt{2\alpha} \quad U_0 = \frac{2}{3}E_{J0} (2\alpha)^{2/3} \quad k = E_{J0} (2\alpha)^{1/2} \]

Washboard potential extremely useful in describing junction dynamics for \(l > I_c \)
2.1.4 The Josephson inductance

Energy storage in JJ \to Nonlinear reactance

$$\frac{dl_s}{dt} = l_c \cos \varphi \frac{d\varphi}{dt} \quad \Rightarrow \quad \frac{dl_s}{dt} = l_c \cos \varphi \frac{2\pi}{\Phi_0} V$$

For small variations near $I_s = I_c \sin \varphi \to$ JJ equivalent to inductance

$$L_s = \frac{\Phi_0}{2\pi I_c \cos \varphi} = L_c \frac{1}{\cos \varphi}$$

with $L_c = \frac{\hbar}{2eI_c}$

Josephson inductance

Properties of the Josephson inductance:

Negative for $\pi/2 + 2\pi n < \varphi < 3\pi/2 + 2\pi n$

($V > 0 \to$ Oscillating Josephson current)
2.1.5 Mechanical analogs

The pendulum analog

- Plane mechanical pendulum in uniform gravitational field
- Mass \(m \), length \(\ell \), deflection angle \(\theta \)
- Torque \(D \) parallel to rotation axis
- Restoring torque: \(mg\ell \sin \theta \)

Equation of motion \(D = \Theta\ddot{\Theta} + \Gamma \dot{\Theta} + mg\ell \sin \Theta \)

\(\Theta = m\ell^2 \) Moment of inertia
\(\Gamma \) Damping constant

Analogies

\[
\begin{align*}
I & \leftrightarrow D \\
I_c & \leftrightarrow mg\ell \\
\frac{\Phi_0}{2\pi R} & \leftrightarrow \Gamma \\
\frac{C\Phi_0}{2\pi} & \leftrightarrow \Theta \\
\varphi & \leftrightarrow \Theta
\end{align*}
\]

For \(D = 0 \) \(\rightarrow \) Oscillations around equilibrium with

\[
\omega = \sqrt{\frac{g}{\ell}} \quad \leftrightarrow \text{Plasma frequency } \omega_p = \sqrt{\frac{2\pi I_c}{\Phi_0 C}}
\]

Finite torque \((D > 0) \) \(\rightarrow \) Finite \(\theta_0 \) \(\rightarrow \) Finite, but constant \(\varphi_0 \) \(\rightarrow \) Zero-voltage state
The washboard potential

Particle moving in tilted washboard potential \(E_{\text{pot}}(\phi) = E_{J0} \left(1 - \cos \phi - \frac{l}{l_c} \phi \right) \)

→ Analogies

<table>
<thead>
<tr>
<th>Coordinate (x)</th>
<th>(\phi)</th>
<th>(\frac{d\phi}{dt} \propto V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity (v)</td>
<td>(\frac{d\phi}{dt})</td>
<td>(V)</td>
</tr>
<tr>
<td>Mass (m)</td>
<td>Junction capacitance (C)</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Short Josephson Junctions

So far: zero-dimensional JJ (lumped elements)
→ Homogeneous supercurrent density and phase difference

Now: extended junctions
→ Spatial variations $J_s(r)$ and $\varphi(r)$
→ Consider magnetic field generated by the Josephson current itself ("self-field")

Short Josephson junctions
→ Self-field small compared to external field

Long Josephson junctions
→ Self-field no longer negligible

Relevant length scale for transition from short to long Josephson junction:

Josephson penetration depth $\lambda_J = \sqrt{\frac{m_s}{\mu_0 n_s q^2_s}} \gg \lambda_L$

density in weak coupling region

JJ at finite voltage → Temporal interference → Oscillation of Josephson current

JJ at finite phase gradient → Spatial interference → Magn. field dep. of Josephson current
2.2.1 Quantum interference effects - Short JJ in applied field

External magnetic field

→ **Spatial** change of gauge invariant phase difference \(\phi(r) \)

→ **Spatial** interference of macroscopic wave functions in JJ

Specific geometry

- Insulating barrier thickness \(d \)
- Junction area \(A = L \times W \)
- Edge effects small: \(W, L \gg d \)
- Electrode thickness \(> \lambda_L \)
- Ext. magnetic field \(B_e = (0, B_y, 0) \)
- Magnetic thickness \(t_B = d + \lambda_{L,1} + \lambda_{L,2} \)

Effect of \(B_e \) on \(J_s \)

→ Phase shift \(\phi(P) - \phi(Q) \) between two points \(P \) and \(Q \) separated by \(dz \)

→ **Line integral along red contour** yields total phase change along closed contour
2.2.1 Quantum interference effects - Short JJ in applied field

\[\int_C \nabla \theta \cdot d\mathbf{l} = (\theta_{Q_b} - \theta_{Q_a}) + (\theta_{P_c} - \theta_{Q_b}) + (\theta_{P_d} - \theta_{P_c}) + (\theta_{Q_a} - \theta_{P_d}) = 0 \]

Gauge invariant phase gradient in the bulk superconductor:

\[\nabla \theta = \frac{2\pi}{\Phi_0} (\wedge \mathbf{J}_s + \mathbf{A}) \]

Gauge invariant phase difference across the barrier:

\[\varphi = \theta_2 - \theta_1 - \frac{2\pi}{\Phi_0} \int_1^2 \mathbf{A} \cdot d\mathbf{l} \]

1 & 3 are differences across the junction:

\[\theta_{Q_b} - \theta_{Q_a} = +\varphi(Q) + \frac{2\pi}{\Phi_0} \int_{Q_a}^{Q_b} \mathbf{A} \cdot d\mathbf{l} \]
\[\theta_{P_d} - \theta_{P_c} = -\varphi(P) + \frac{2\pi}{\Phi_0} \int_{P_c}^{P_d} \mathbf{A} \cdot d\mathbf{l} \]

2 & 4 differences in the bulk, supercurrent equation for \(\nabla \theta \):

\[\theta_{P_c} - \theta_{Q_b} = \int_{Q_b}^{P_c} \nabla \theta \cdot d\mathbf{l} = \frac{2\pi}{\Phi_0} \int_{Q_b}^{P_c} \wedge \mathbf{J}_s \cdot d\mathbf{l} + \frac{2\pi}{\Phi_0} \int_{P_c}^{Q_b} \mathbf{A} \cdot d\mathbf{l} \]
\[\theta_{Q_a} - \theta_{P_d} = \int_{P_d}^{Q_a} \nabla \theta \cdot d\mathbf{l} = \frac{2\pi}{\Phi_0} \int_{Q_a}^{P_d} \wedge \mathbf{J}_s \cdot d\mathbf{l} + \frac{2\pi}{\Phi_0} \int_{P_d}^{Q_a} \mathbf{A} \cdot d\mathbf{l} \]
2.2.1 Quantum interference effects - Short JJ in applied field

Substitution \[\varphi(Q) - \varphi(P) = \frac{2\pi}{\Phi_0} \oint_A \mathbf{A} \cdot d\mathbf{l} - \frac{2\pi}{\Phi_0} \oint_{P_c} \mathbf{J}_s \cdot d\mathbf{l} - \frac{2\pi}{\Phi_0} \oint_{P_d} \mathbf{J}_s \cdot d\mathbf{l} \]

Integration of \(\mathbf{A} \) around closed contour \(\Rightarrow \) Enclosed flux \(\Phi \)
Integration of \(\mathbf{J}_s \) excludes insulating barrier \(\Rightarrow \) Incomplete contour \(C' \)

\[\oint_{C'} \mathbf{J}_s \cdot d\mathbf{l} = \oint_{P_c} \mathbf{J}_s \cdot d\mathbf{l} + \oint_{P_d} \mathbf{J}_s \cdot d\mathbf{l} \]

Difference of gauge invariant phase differences \(\varphi(Q) - \varphi(P) \)

\[\varphi(Q) - \varphi(P) = -\frac{2\pi \Phi}{\Phi_0} - \frac{2\pi}{\Phi_0} \oint_{C'} \mathbf{J}_s \cdot d\mathbf{l} \]

Line integral of supercurrent density \(\mathbf{J}_s \)
\(\Rightarrow \) Segments in \(x \)-direction cancel (separation: \(dz \to 0 \))
\(\Rightarrow \) Segments in \(z \)-direction: deep inside SC (\(> \lambda_L \)) \(\Rightarrow \mathbf{J}_s \) exponentially small

\[\varphi(P) - \varphi(Q) = \frac{2\pi \Phi}{\Phi_0} \quad \frac{\varphi(P) - \varphi(Q)}{2\pi} = \frac{\Phi}{\Phi_0} \]

Total flux enclosed by the loop \(\Rightarrow \Phi = B_y (d + \lambda_{L1} + \lambda_{L2}) dz = B_y t_B dz \)

Magnetic thickness \(t_B \)
Similar argument for P and Q separated by dy in y-direction

\[\nabla \varphi(r, t) = \frac{2\pi}{\Phi_0} t_B [B(r, t) \times \hat{x}] \]

Integration gives:

\[\varphi(z) = \frac{2\pi}{\Phi_0} B_y t_B z + \varphi_0 \]

Extended 1-st Josephson (current-phase) relation:

\[J_s(y, z, t) = J_c(y, z) \sin \left(\frac{2\pi}{\Phi_0} t_B B_y z + \varphi_0 \right) = J_c(y, z) \sin (kz + \varphi_0) \]

with

\[k = \frac{2\pi}{\Phi_0} t_B B_y \]

J_s varies periodically with period $\Delta z = \frac{2\pi}{k} = \frac{\Phi_0}{t_B B_y}$

Flux through the junction within one period: Φ_0
2.2.2 The Fraunhofer diffraction pattern

How does \(I_s = \int \int J_s(y,z) \, dy \, dz \) depend on the applied field \(B_e = (0, B_y, 0) \)?

Integration in y-direction:

\[
i_c(z) = \int_{-W/2}^{W/2} J_c(y,z) \, dy
\]

\[
\Rightarrow I_s(B_y) = \int_{-L/2}^{L/2} i_c(z) \sin(kz + \varphi_0) \, dz = \Im \left\{ e^{i\varphi_0} \int_{-\infty}^{\infty} i_c(z)e^{ikz} \, dz \right\}
\]

Integral: complex, multiplication by \(e^{i\varphi_0} \) does not change magnitude

\(\rightarrow \) Magnitude yields maximum Josephson current

\[
I_s^m(B_y) = \left| \int_{-\infty}^{\infty} i_c(z) e^{ikz} \, dz \right|
\]

Magnetic field dependence of \(I_s^m \)

\(\rightarrow \) **Fourier transform** of \(i_c(z) \)

\(\rightarrow \) Analogy to optics

\(J_c(y,z) \) homogeneous \(\rightarrow i_c(z) \) constant \(\rightarrow \) Diffraction pattern of a slit \(\rightarrow \) **Fraunhofer pattern**

\[
I_s^m(\Phi) = I_c \left| \frac{\sin \frac{kL}{2}}{\frac{kL}{2}} \right| = I_c \left| \frac{\sin \frac{\pi\Phi}{\Phi_0}}{\frac{\pi\Phi}{\Phi_0}} \right|
\]

\(\Phi = B_y t_B L \) \hspace{1cm} Flux though the junction

\(I_c = i_c L \)

Experimental observation of \(I_s^m(\Phi) \) \(\rightarrow \) Proof of Josephson tunneling of pairs
2.2.2 The Fraunhofer diffraction pattern

Spatially homogeneous maximum current density $J_c(y, z)$

→ Fraunhofer diffraction pattern

Maximum current density integrated along y-direction

Experiment → Study the homogeneity of the supercurrent flow in JJ
2.2.2 The Fraunhofer diffraction pattern

Interpretation of the shape of $I_s^m(\Phi)$

→ Spatial distribution $i_s(z) = \int J_s(y, z) dy$
 for different applied fields

$\Phi = 0$

→ $\varphi(z) = \varphi_0$
→ $i_s(z) = \text{const.}$
→ Josephson current maximum for $\varphi_0 = -\frac{\pi}{2}$
→ $J_s(y, z) = -J_c(y, z)$

$\Phi = \Phi_0/2$

$$\varphi(z) = \frac{2\pi \Phi}{\Phi_0} \frac{z}{L} + \varphi_0 = \frac{\pi z}{L} + \varphi_0$$

→ Sinusoidal supercurrent variation with z
 difference between edges:

$$\varphi(L/2) - \varphi(-L/2) = \pi$$

→ Half of an oscillation period
→ Josephson current maximum for $\varphi_0 = -\frac{\pi}{2}$
→ Linear increase of the phase from $-\pi$ at $z = -\frac{L}{2}$ to 0 at $z = +\frac{L}{2}$
2.2.2 The Fraunhofer diffraction pattern

Local Josephson current density in negative and positive x-direction, but no net total current

→ Josephson current tends to decrease with increasing field
2.2.2 The Fraunhofer diffraction pattern

Spatial interference effect of macroscopic wave functions

→ Plane of constant phase in superconductor 2 is tilted by

$$\delta \varphi(z) = \frac{2\pi}{\Phi_0} B_y t_B z + \varphi_0$$

here: destructive interference
2.2.2 The Fraunhofer diffraction pattern

- Closed current loop
- No penetration of applied field into electrodes
- **Josephson vortex**
- No normal core because vortex core naturally in barrier region
2.2.2 The Fraunhofer diffraction pattern

Arbitrary direction of the applied field within barrier plane

\[B_e = B_y \hat{y} + B_z \hat{z} \]

\[\Rightarrow I_s^m(\Phi) = I_c \left| \begin{array}{c|c} \sin \frac{\pi \Phi_y}{\Phi_0} & \sin \frac{\pi \Phi_z}{\Phi_0} \\ \hline \end{array} \right| \]

\[\Phi_y = B_y t_b L \quad \Phi_z = B_z t_b W \]

\[\Rightarrow I_s^m(B_e) = \left| \int_S J_c(y, z) e^{ik \cdot r} dS \right| \]
2.2.3 Determination of the maximum Josephson current density

Inhomogeneous junctions

E.g., spatially varying barrier thickness
Experimental determination of $J_c(y, z)$ by measuring $I^m_s(B)$?
→ No access via inverse Fourier transform
 (Lack of phase information)

→ Approximate $I_c(z)$ under certain assumptions
 Example → Symmetry to junction midpoint

\[
i_c(z - L/2) = \frac{1}{\pi} \int_0^\infty |I^m_s(k)| \cos(kz)(-1)^{n(k)} \, dk
\]
\[
k = \frac{2\pi}{\Phi_0} t_B B_y
\]
\[
n \equiv \text{number of zeros of } |I^m_s(k)| \text{ between 0 and } k
\]

Spatial resolution

→ Information on $J_c(y, z)$ on small length scale?
→ Spatial resolution $\propto B_y^{-1}$

→ High B-fields required!
→ Spatial resolution for fields $\Phi \leq \Phi_0$ → Junction length L
Tailored junctions

Sometimes Frauenhofer sidelobes not desired (X-ray detectors)

\[i_c(z) = i_c(0) \exp \left(-\frac{z^2}{2\sigma^2} \right) \]

\[\text{No side lobes!} \]

→ Junction shape should approach Gauss curve for homogeneous \(J_c(y, z) \)

→ Integrated current density in \(y \)-direction

\[i_c(z) = \int J_c(y, z) \, dy \]

\[I_s^m(\Phi) = \sqrt{\frac{1}{2\pi}} i_c(0) L \exp (-\sigma k^2) = \sqrt{\frac{1}{2\pi}} i_c(0) L \exp \left(-\sigma \frac{4\pi^2 \Phi^2}{L^2 \Phi_0^2} \right) \]
2.2.3 Determination of the maximum Josephson current density

Additional topic: Supercurrent auto-correlation function

Comparison

- Optical diffraction experiment
 - Transmission function $P_0(z)$
 - Square root of light intensity P_t in focal plane
 - BackTransform $\rightarrow P_i$ (spatial resolution given by number of diffraction orders)

- Field dependence of max. Josephson current
 - $i_c(z)$
 - $I_s^m(B_y)$
 - Phase is lost \rightarrow BackTransform of intensity $(I_c^m)^2(B_y)$
 - Autocorrelation function of the supercurrent distribution
2.2.3 Determination of the maximum Josephson current density

Definition of auto-correlation function
→ Overlap of $i_c(z)$ with itself, but shifted by δ

Wiener-Khinchine theorem
→ Autocorrelation function of $i_c(z)$:

$$AC(\delta) = \int_{-\infty}^{\infty} |I_s^m(k)|^2 e^{ik\delta} dk$$

$$k = \frac{2\pi}{\Phi_0} t_B B_y = \frac{1}{L} \frac{2\pi}{\Phi_0} \Phi$$

Spatial information contained in AC-function depends on magnetic field interval

Spatial resolution

$$\frac{2\pi}{k} = L \frac{\Phi_0}{\Phi}$$

Record 100 lobes in $I_s^m(B_y)$ → Spatial resolution $0.01 \times$ junction width

→ Statistical information in envelope of $|I_s^m(B_y)|^2$
2.2.3 Determination of the maximum Josephson current density

Prototypical examples:

→ Inhomogeneities with probability $p(a) \propto 1/a \leftrightarrow p \times a = \text{const.}$
 $\Rightarrow |I_s^m(B_y)|^2 \propto B_y^{-1}$
 $\Rightarrow \text{“Spatial 1/f noise”}$

→ Random distribution of filaments with width a:
 \Rightarrow Envelope constant up to $k = \frac{2\pi}{a}$
 $\Rightarrow |I_s^m(B_y)|^2 \propto B_y^{-2}$
 $\Rightarrow \text{“Spatial shot noise”}$

$\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ grain boundary JJ
Slope of envelop is -0.65

$\Rightarrow |I_s^m(B_y)|^2 \propto B_y^{-1.3}$

$\Rightarrow p(a) \propto \frac{1}{a^{1.5}}$

\Rightarrow Small scale inhomogeneities are more probable

Analysis of autocorrelation function gives statistical information on current density inhomogeneities

![Graph showing current density vs. magnetic field for YBa$_2$Cu$_3$O$_{7-\delta}$ grain boundary JJ](image)
2.2.4 Additional topic:
Direct imaging of the supercurrent distribution

Scanning of JJ by focused electron / laser beam

→ Measure change $\delta I_s^m(y, z)$ as function of beam position (y, z)

$\delta I_s^m(y, z) \propto J_c(y, z) \rightarrow$ 2D image of $J_c(y, z)$

→ Spatial resolution \approx thermal healing length ($\approx 1 \, \mu m$)
2.2.6 The motion of Josephson vortices

Josephson vortices
- Visualize Josephson current density
- Vortices moving in z-direction at constant speed v_z
- Short junction
 - Self-field negligible
 - Flux density in junction given by $\mathbf{B}_e = (0, B_y, 0)$
- Gauge invariant phase difference
 \[
 \frac{\partial \varphi}{\partial z} = \frac{2\pi}{\Phi_0} B_y t_B
 \]
 \[
 \Phi = B_y t_B z
 \]
- Passage of 1 vortex changes phase by 2π
 \[
 \frac{\partial \varphi}{\partial t} = \frac{2\pi}{\Phi_0} \frac{\partial \Phi}{\partial t} = \frac{2\pi}{\Phi_0} B_y t_B \frac{\partial z}{\partial t} = \frac{2\pi}{\Phi_0} B_y t_B v_z
 \]
 \[
 \Rightarrow \varphi(z, t) = \frac{2\pi}{\Phi_0} B_y t_B (z - v_z t) + \varphi(0)
 \]
 \[
 = k (z - v_z t) + \varphi(0)
 \]
2.2.6 The motion of Josephson vortices

\[J_s(y, z, t) = J_c(y, z) \sin[k(z - v_z t)] \]

- Current density pattern: moves at \(v_z \)
- Vortex with period \(p = \frac{L \Phi_0}{\Phi} \)
 - Number of vortices in junction
 \[N_V = \frac{L}{p} = \frac{\Phi}{\Phi_0} \]

- Change of gauge-invariant phase difference
 \[\Delta \varphi = 2\pi \frac{\Phi}{\Phi_0} = 2\pi N_V \]

\[2\pi \times \# \text{ of vortices} \]
2.2.6 The motion of Josephson vortices

→ Rate of vortex passage

\[
\frac{dN_V}{dt} = \frac{1}{2\pi} \frac{d\Delta\varphi}{dt}
\]

with the voltage-phase relation

\[
\frac{dN_V}{dt} = \frac{V}{\Phi_0}
\]

Constant velocity of vortices → Constant junction voltage / vortex rate

→ Application
 → Single flux quantum pump
 → Pump frequency \(f = \frac{dN_V}{dt} \) → \(V = f \cdot \Phi_0 \)
2.2 Summary – Short Josephson Junctions

→ Short JJ = lateral junction dimensions small compared to Josephson penetration depth

→ Effect of magnetic field parallel to junction electrodes

\[\nabla \varphi(r, t) = \frac{2\pi}{\Phi_0} t_B [B(r, t) \times \hat{x}] \]

phase gradient

Josephson current density

\[J_s(y, z, t) = J_c(y, z) \sin \left(\frac{2\pi}{\Phi_0} t_B B_y z + \varphi_0 \right) \]

→ Spatial distribution of \(i_s(z) = \int J_s(y, z) dy \)

→ Josephson vortex
2.2 Summary – Short Josephson Junctions

→ Magnetic field dependence of maximum Josephson current

\[I_s^m(\Phi) = I_c \left| \frac{\sin \frac{kL}{2}}{\frac{kL}{2}} \right| = I_c \left| \frac{\sin \frac{\pi \Phi}{\Phi_0}}{\frac{\pi \Phi}{\Phi_0}} \right| \]

Fraunhofer diffraction pattern

→ Analogy to single slit diffraction in optics, but no inverse Fourier transform (missing phase)

Autocorrelation function

→ Motion of Josephson vortices

Motion of single vortex across junction results in phase change of \(2\pi\)

\[V \propto \frac{\partial \phi}{\partial t} = 2\pi \Phi_0 \frac{\partial \Phi}{\partial t} = 2\pi \Phi_0 B_y t_B \frac{\partial z}{\partial t} = 2\pi \frac{\Phi}{\Phi_0} \frac{v_z}{L} \]

Constant motion of vortices \(\rightarrow\) Constant junction voltage / vortex rate
2.3 Long Josephson junctions

2.3.1 The stationary Sine-Gordon equation

\[\frac{\partial \varphi}{\partial z} = \frac{2\pi}{\Phi_0} B_y t_B, \quad \nabla \varphi(r, t) = \frac{2\pi}{\Phi_0} t_B \left[\mathbf{B}(r, t) \times \hat{x} \right] \]

→ generally valid

Now → Magnetic flux density given by external and self-generated field

Ampere’s law → \[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t} \]

Zero-voltage state:

\[\frac{\partial B_y(z)}{\partial z} = -\mu_0 J_x(z) \]

Spatial derivative:

\[\frac{\partial^2 \varphi(z)}{\partial z^2} = -\frac{2\pi t_B}{\Phi_0} \frac{\partial B_y(z)}{\partial z} = -\frac{2\pi \mu_0 t_B}{\Phi_0} J_x(z) \]

Assume \(J_c(y, z) = \text{const.} \) and use \(J_x(y, z) = -J_s(y, z) \) → \(J_x(z) = -J_c \sin \varphi(z) \)

\[\frac{\partial^2 \varphi(z)}{\partial z^2} = \frac{2\pi \mu_0 t_B J_c}{\Phi_0} \sin \varphi(z) = \frac{1}{\lambda_j^2} \sin \varphi(z) \]

Stationary Sine-Gordon equation (SSGE) (nonlinear differential equation)

Josephson penetration depth \(\lambda_j \equiv \sqrt{\frac{\Phi_0}{2\pi \mu_0 t_B J_c}} \)
2.3.1 The stationary Sine-Gordon equation

Two-dimensional stationary Sine-Gordon equation

\[\frac{\partial^2 \varphi(y, z)}{\partial y^2} + \frac{\partial^2 \varphi(y, z)}{\partial z^2} = \frac{1}{\lambda_J^2} \sin \varphi(y, z) \]

Relation between London and Josephson penetration depth

\[\lambda_L \equiv \sqrt{\frac{m_s}{\mu_0 n_s q_s^2}} \quad \leftrightarrow \quad \lambda_J \equiv \sqrt{\frac{\Phi_0}{2\pi \mu_0 t_B J_c}} \]

with \(J_s = q_s n_s \left\{ \frac{\hbar}{m_s} \nabla \theta(r, t) - \frac{q_s}{m_s} A(r, t) \right\} \)

\[J_c \approx q_s n_s^* \frac{\hbar}{m_s} \frac{2\pi}{t_B} \]

insert into expression for Josephson penetration depth

\[\lambda_J = \sqrt{\frac{\Phi_0}{2\pi \mu_0 t_B J_c}} \approx \sqrt{\frac{\hbar}{q_s \mu_0 t_B} \frac{m_s t_B}{2\pi \hbar q_s n_s^*}} = \sqrt{\frac{m_s}{2\pi \mu_0 n_s^* q_s^2}} \approx \lambda_L(n_s^*) \]

\(\lambda_J \) corresponds to the London penetration depth of the weak coupling region with reduced superelectron density \(n_s^* \)
2.3.1 The stationary Sine-Gordon equation

Additional topic: Analytical solutions of the SSGE

Small $\varphi \rightarrow$ Linearization: $\sin \varphi \approx \varphi \rightarrow \frac{\partial^2 \varphi(z)}{\partial z^2} = \frac{1}{\lambda_J^2} \varphi(z) \Rightarrow \varphi(z) = \varphi(0)e^{-z/\lambda_J}$

Magnetic field along the junction $\Rightarrow B_y(z) = -\frac{\varphi(0)}{2\pi} \frac{\Phi_0}{\lambda_J t_B} e^{-z/\lambda_J}$

$\Rightarrow \lambda_J$ is a decay length

with $\frac{\partial B_y(z)}{\partial z} = -\mu_0 J_x(z) \Rightarrow J_x(z = 0) = \frac{1}{\lambda_J} \frac{B_y(z = 0)}{\mu_0}$

\Rightarrow Current flows at the edges of the junction

\Rightarrow Meißner solution, possible for $J_x < J_c$ or $B_y(z = 0) \leq \mu_0 J_c \lambda_J$

Small junction $L \ll \lambda_J \rightarrow \frac{\partial^2 \varphi(z)}{\partial z^2} \approx 0 \Rightarrow \frac{\partial \varphi(z)}{\partial z} \approx \text{const} \Rightarrow \text{Short junction result}$
Particular solution of the SSGE:

\[
\varphi(z) = \pm 4 \arctan \left\{ \exp \left(\frac{z - z_0}{\lambda_J} \right) \right\} + 2\pi n
\]

\[
B_y(z) = \pm \frac{\Phi_0}{\pi \lambda_L t_B} \frac{1}{\cosh \left(\frac{z - z_0}{\lambda_J} \right)}
\]

\[
J_x(z) = -J_s(z) = \pm \frac{\Phi_0}{\pi \mu_0 \lambda_L^2 t_B} \frac{\sinh \left(\frac{z - z_0}{\lambda_J} \right)}{\cosh \left(\frac{z - z_0}{\lambda_J} \right)} = \pm 2J_c \frac{\sinh \left(\frac{z - z_0}{\lambda_J} \right)}{\cosh \left(\frac{z - z_0}{\lambda_J} \right)}
\]

General solution: particular + homogeneous solution

→ Important case: junction of infinite length, \(\frac{d\varphi}{dz} \) vanishes for \(z \to \pm \infty \)

→ Particular solution = Complete solution
2.3.2 The Josephson Vortex

Decay length for J_s and $B_y \rightarrow \lambda_J$

Maximum of J_s does not coincide with maximum of B_y

Integration

→ Total current = 0
→ Total flux = Φ_0
→ Josephson vortex in an infinitely long junction
2.3.2 The Josephson vortex

Energy per unit length of vortex:

\[E_{\text{Vortex}} = \frac{E_I}{W} = \frac{4\Phi_0 J_c \lambda_J}{\pi} \]

→ \(E_{\text{Vortex}} > 0 \) → We need external field and/or current to supply energy

Magnetic flux density \(B_{c1} \) for first vortex entrance:

\[B_{c1} = \frac{\mu_0}{\Phi_0} E_{\text{Vortex}} = \frac{4\mu_0 J_c \lambda_J}{\pi} = \frac{2\Phi_0}{\pi^2 \lambda_J t_B} \]

\(B_{c1} \approx \) Magnetic flux density of a single flux quantum distributed over an area \(t_B \times \lambda_J \)

Here: Infinitely long junction
→ Simple & Prototypical case (boundary conditions not relevant)
→ Reveals relevant physical principles
→ Real junctions → Boundary conditions → Complex vortex dynamics!
2.3.3 Junction types and boundary conditions

Junction geometry determines current flow \rightarrow Boundary conditions of SSGE
\rightarrow Magnetic flux density at junction edges:

$$
\frac{\partial \varphi}{\partial z} \bigg|_{z=0} = \frac{2\pi t_B}{\Phi_0} B_y \bigg|_{z=0}
$$

$$
\frac{\partial \varphi}{\partial z} \bigg|_{z=L} = \frac{2\pi t_B}{\Phi_0} B_y \bigg|_{z=L}
$$

$$
\frac{\partial \varphi}{\partial y} \bigg|_{y=0} = -\frac{2\pi t_B}{\Phi_0} B_z \bigg|_{y=0}
$$

$$
\frac{\partial \varphi}{\partial y} \bigg|_{y=W} = -\frac{2\pi t_B}{\Phi_0} B_z \bigg|_{y=W}
$$

Problem: $\mathbf{B} = \mathbf{B}^{\text{ex(ternal)}} + \mathbf{B}^{\text{el(ectrode)}}$

$\rightarrow \mathbf{B}^{\text{el}}$ not negligible

\rightarrow Junction geometries are complicated

\rightarrow Current distribution in electrodes depends on current distribution in JJ itself

\rightarrow Boundary conditions depend on solution

\rightarrow Numerical iteration method required

Three basic types of junction geometries

\rightarrow Overlap junction

\rightarrow In-line junction

\rightarrow Grain boundary junctions

J. Mannhart, J. Bosch, R. Gross, R. P. Huebener
2.3.3 Junction Types and Boundary Conditions

Overlap junction
- Overlap of width W
- Junction of length L extends in z-direction
- Perpendicular to current flow
- $B^{el} \parallel z \rightarrow \perp$ to the short side
- $\Phi^{el} = B^{el} \times W \times t_B$ negligibly small

Inline junction
- Overlap of length L
- Junction of length L extends in z-direction
- Parallel to current flow
- $B^{el} \perp z \rightarrow \parallel$ to the short side
- $\Phi^{el} = B^{el} \times L \times t_B$ not negligible
2.3.3 Junction Types and Boundary Conditions

Grain boundary junction

→ Mixture of overlap and inline geometry
→ Junction area is perpendicular to electrode currents
→ Junction area extends in yz-plane
→ Perpendicular to current flow
→ Both y- and z-component of B^el are in junction plane
→ B^el_z has negligible impact since $W \ll L$
→ $\Phi^el_z = B^el_z W t_B \ll \Phi^el_y = B^el_y L t_B$
→ Finite inline admixture $s = \frac{W}{L} \ll 1$
2.3.3 Junction types and boundary conditions

\(I_s^m(B^{ex}) \) for different junction geometries

Overlap junction

\[\rightarrow \text{Highest } I_s^m \propto \text{junction area } A_i = L \times W \text{ at zero field} \]

Inline junction

\[\rightarrow I_s^m \text{ saturates at } 4J_c W \lambda_j \text{ (Meißner screening, current flow at edges)} \]

Asymmetric inline junction

\[\rightarrow \text{Fields generated in bottom and top electrode point in the same direction} \]
\[\rightarrow \text{Adds to/subtracts from external field} \]
\[\rightarrow \text{Increase or decrease of } I_s^m \text{ with field} \]
2.3.4 The Pendulum analog

SSGE equivalent to equation of motion of pendulum (neglecting electrode currents)

\[z \rightarrow t, \varphi \rightarrow \theta, \frac{1}{\lambda_j^2} \rightarrow \omega_0^2 = \frac{g}{\ell} \]

\[\theta \quad \text{Angle of the pendulum measured from the top} \]

\[\omega_0 \quad \text{Natural frequency of the pendulum} \]

Pendulum with very large \(E_{\text{kin}} \)

\[\rightarrow \text{Gravitational acceleration negligible} \]

\[\rightarrow \text{Corresponds to limit of } \lambda_j \rightarrow \infty \]

\[\frac{\partial^2 \varphi}{\partial z^2} = 0 \text{ and } \frac{\partial \varphi}{\partial z} = \text{const.} \]

\[\rightarrow \text{Sinusoidal variation of } J_S(z) \]

Pendulum with less \(E_{\text{kin}} \), but still nonzero kinetic energy at top

\[\rightarrow \theta(t) \text{ anharmonic} \]

\[\rightarrow \text{Corresponds to nonsinusoidal, periodically reversing } J_S(z) \]

\[\rightarrow \text{Each spatial cycle of the oscillating current contains one flux quantum} \]

\[\rightarrow \text{In this case, Josephson vortices are localized entities} \]
2.3.4 The Pendulum analog

Pedulum with E_{kin} just sufficient to go over the top

→ Meißen limit

→ Start at $-\theta_0$ with $\left(\frac{d\theta}{dt}\right)_0$ at time t corresponding to $-\frac{L}{2}$
→ Pendulum moves very slowly for long time while going over the top (interior of junction)
→ Exponential acceleration, recovering initial velocity at θ_0
 (at time t corresponding to $+\frac{L}{2}$)

→ Negligible energy at the top
→ Conservation of energy connects θ_0 and $\left(\frac{d\theta}{dt}\right)_0$

\[
\left(\frac{2\pi B_y t_B}{\Phi_0}\right)^2 = \left(\frac{d\varphi}{dz}\right)_0^2 = \frac{2}{\lambda_J^2}(1 - \cos \varphi_0) \Rightarrow \cos \varphi_0 = 1 - \frac{1}{2} \left(\frac{B_y}{\mu_0 J_c \lambda_J}\right)^2
\]

→ Small fields $\varphi_0 = \frac{B_y}{\mu_0 J_c \lambda_J}$ (Taylor expansion of cosine!)
→ Strongest field that can be screened is $B_{\text{max}} = 2\mu_0 J_c \lambda_J$ (for $\varphi_0 = \pi$)
→ (Screening at B_{max} is only metastable!)
Summary (short junctions)

Josephson penetration depth

\[\lambda_J \equiv \sqrt{\frac{\Phi_0}{2\pi \mu_0 t_B J_c}} \]

(Short – long junctions)

Josephson coupling energy

\[E_J = \frac{\Phi_0 I_c}{2\pi} (1 - \cos \varphi) = E_{J0} (1 - \cos \varphi) \]

Nonlinear inductance

\[L_s = \frac{\Phi_0}{2\pi I_c \cos \varphi} = L_c \frac{1}{\cos \varphi} \quad L_c = \frac{\hbar}{2e I_c} \]

Washboard potential

\[E_{pot}(\varphi) = E_J(\varphi) - \frac{\Phi_0}{2\pi} I \varphi = E_{J0} \left[1 - \cos \varphi - \frac{I}{I_c} \varphi \right] \]

In-plane magnetic field \(B_y \)

\[\frac{\partial \varphi}{\partial z} = \frac{2\pi}{\Phi_0} B_y t_B \]

Spatial oscillations of the Josephson current density:

\[\Rightarrow J_s(y, z, t) = J_c(y, z) \sin \left(\frac{2\pi}{\Phi_0} t_B B_y z + \varphi_0 \right) = J_c(y, z) \sin (kz + \varphi_0) \]

Integral Josephson current \(\rightarrow \) FT of \(i_c(z) \):

\[\Rightarrow I_s^m(B_y) = \left| \int_{-\infty}^{\infty} i_c(z) e^{ikz} dZ \right| \quad \quad i_c(z) = \int_{-W/2}^{W/2} J_c(y, z) dy \]
Summary (long junctions)

SSGE: spatial distribution of gauge invariant phase difference:

\[
\frac{\partial^2 \varphi(y, z)}{\partial y^2} + \frac{\partial^2 \varphi(y, z)}{\partial z^2} = \frac{2\pi \mu_0}{\Phi_0} t_B J_c \sin \varphi(y, z) = \frac{1}{\lambda_j^2} \sin \varphi(y, z)
\]

self-consistent solution: boundary conditions depend on flux density at edges

3 basic types: inline, overlap and grain boundary junctions

particular solution of SSGE: Josephson vortex

\[
\varphi(z) = \pm 4 \arctan \left\{ \exp \left(\frac{z - z_0}{\lambda_J} \right) \right\} + 2\pi n
\]

Insight into the solutions for \(\varphi(z) \) can be found via the pendulum analog

SSGE equivalent to equation of motion of pendulum

\[
z \rightarrow t, \varphi \rightarrow \theta, \frac{1}{\lambda_j^2} \rightarrow \omega_0^2 = \frac{g}{\ell}
\]