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6.6 

Propagating

quantum microwaves
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Superconducting quantum circuits
 Artificial quantum matter
 Confined quantum states of light

Does the emitted microwave radiation exhibit quantum properties?

 Commutation relations, superpositions, entanglement

 Quantum optics

 Yes, expected due to field quantization

 Confirmed by experiments

 Microwaves Expected in analogy to opics

 Different technology  Experimental proof required!

Propagating quantum microwaves

6.6 Propagating quantum microwaves

Quantum - -emit
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6.6 Propagating quantum microwaves

(Envisioned) applications of propagating quantum microwaves

Quantum information processing

𝜑
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6.6 Propagating quantum microwaves

Fundamental technological considerations

Microwave losses may inhibit
 Observation of quantum properties of propagating microwaves
 Practical applications such as quantum microwave communication/illumination

Superconducting cables
 Coherent propagation distance ℓcoh sufficient?

 In resonators, microwave signals travel back and forth many times before losing
coherence (𝑇1 ≃ 100 μs − 1 ms)

 ℓcoh ≈ 3 × 108 m

s
𝑇1 ≃ 10 − 100 km comparable to optics

 Superconducting cables require cooling!
 Short- or medium-distance applications certainly feasible
 QIP platforms such as SQC also require cooling  Compatible

 Technological compatibility to SQC
 No frequency conversion losses
 Natural candidate for chip-to-chip quantum communication between SQC
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6.6 Propagating quantum microwaves

Fundamental technological considerations

Microwave losses may inhibit
 Observation of quantum properties of propagating microwaves
 Practical applications such as quantum microwave communication/illumination

Free-space propagation
 Atmospheric transparency windows

http://www.oneon
ta.edu/faculty/bau
manpr/geosat2/RS
-Introduction/RS-
Introduction.html

 Classical illumination with microwaves used for radar
 Known to pass through clouds, fog, and rain

 Typical frequencies ≃ 20 GHz (𝜆 =
3×108m

s

𝑓
≃ 1.5 cm)

 Compatible with SQC (superconducting gap of aluminum still twice as large)

20 GHz
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6.6 Propagating quantum microwaves

Quantization of the electromagnetic field

 Source-free (free field!) Maxwell equations

𝜵𝑩 = 0,   𝜵 × 𝑬 = −
𝜕𝑩

𝜕𝑡
,   𝜵𝑫 = 0,   𝜵 × 𝑯 =

𝜕𝑫

𝜕𝑡
(𝑩 = 𝜇0𝑯, 𝑫 = 𝜖0𝑬, 𝜇0𝜖0 = 𝑐−2)

 Coulomb gauge (𝜵𝑨 = 0) 𝑩 = 𝜵 × 𝑨,   𝑬 = −
𝜕𝑨

𝜕𝑡

 𝑨(𝒓, 𝑡) satisfies wave equation 𝜵2𝑨 =
1

c2

𝜕2𝑨

𝜕𝑡2

 Separate vector potential 𝑨 𝒓, 𝑡 = 𝑨 + 𝒓, 𝑡 + 𝑨 − (𝒓, 𝑡) into

 Right-propagating components 𝑨 + (𝒓, 𝑡) varying with 𝑒−𝑖𝜔𝑡 for 𝜔 > 0

 Left-propagating components 𝑨 − (𝒓, 𝑡) varying with 𝑒𝑖𝜔𝑡 for 𝜔 > 0

 Restrict field to finite volume

 𝑨 + 𝒓, 𝑡 =  𝑘 𝑐𝑘𝒖𝑘 𝒓 𝑒−𝑖𝜔𝑘𝑡

 Fourier coefficients 𝑐𝑘 constant for free field
 Vector mode functions 𝒖𝑘 𝒓

 Satisfy wave equations 𝛻2 +
𝜔𝑘

2

𝑐2 𝒖𝑘 𝒓 = 0

 Satisfy transversality condition 𝜵𝒖𝑘 𝒓 = 0
 Form orthonormal set  𝑉

𝑑𝑟 𝒖𝑘
⋆ 𝒓 𝒖𝑘′ 𝒓 = 𝛿𝑘𝑘′

 Depend onboundary conditions

F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008).
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6.6 Propagating quantum microwaves

Quantization of the electromagnetic field

 General example for boundary conditions
 Periodic (travelling waves)
 Reflecting walls (standing waves)

 Here: Plane wave functions suitable for cubic volume with side lengths 𝐿

 𝒖𝑘 𝒓 =
1

𝐿3/2  𝒆 𝜆 𝑒𝑖𝒌𝒓

 Typically no polarization in microwaves propagating in waveguides

 Polarization vector  𝒆 𝜆 =  𝒆

 Wave vector 𝒌 = 𝑘𝑥, 𝑘𝑦 , 𝑘𝑧 with 𝑘𝑥,𝑦,𝑧 =
2𝜋

𝐿
𝑛𝑥,𝑦,𝑧 and 𝑛𝑥,𝑦,𝑧 ∈ ℤ

  𝒆 perpendicular to 𝒌
 Quantization of classical Fourier amplitudes

 𝑎𝑘 , 𝑎𝑘
⋆ →  𝑎𝑘 ,  𝑎𝑘

† with commutation relations  𝑎𝑘 ,  𝑎
𝑘′
† = 𝛿𝑘𝑘′

 𝑨 𝒓, 𝑡 =  𝒌
ℏ

2𝜔𝑘𝜖0
 𝑎𝑘𝒖𝑘 𝒓 𝑒−𝑖𝜔𝑡 +  𝑎𝑘

†𝒖𝑘
⋆ 𝒓 𝑒𝑖𝜔𝑡

 𝑬 𝒓, 𝑡 = 𝑖  𝒌
ℏ𝜔𝑘

2𝜖0
 𝑎𝑘𝒖𝑘 𝒓 𝑒−𝑖𝜔𝑡 −  𝑎𝑘

†𝒖𝑘
⋆ 𝒓 𝑒𝑖𝜔𝑡

 Hamiltonian  𝐻 =
1

2
 𝑑𝒓 𝜖0𝑬2 + 𝜇0𝑯2 =  𝑘 ℏ𝜔𝑘  𝑎𝑘

†  𝑎𝑘 +
1

2

 Quantum states 𝜓𝑘 of each mode can now be discussed independently!

F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008).
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6.6 Propagating quantum microwaves

Continuos variables (CV) vs. discrete variables (DV)

Single-mode quantum field  𝐻HO =  𝑃2 +  𝑄2 = ℏ𝜔𝑘  𝑎†  𝑎 +
1

2

Annihilation operator  𝑎 ≡
𝜔r𝐶  𝛷+𝑖  𝑞

2𝜔r𝐶ℏ

Creation operator  𝑎† ≡
𝜔r𝐶  𝛷−𝑖  𝑞

2𝜔r𝐶ℏ

Discrete-variable basis
 Fock basis 𝑛
 Single photons |1〉 are the 

natural quantity of interest

Continuous-variable basis

 Set of eigenstates of either  𝑃 or  𝑄
also forms basis

 Natural states are Gaussian states
(coherent, squeezed, thermal)

Classical single-mode electromagnetic waves 𝐴 cos 𝜔𝑡 + 𝜙
 Equivalent description 𝑃 cos 𝜔𝑘𝑡 + Q sin 𝜔𝑘𝑡

with field quadratures 𝑄 = 𝐴 cos 𝜙 and 𝑃 = 𝐴 sin 𝜙
 In engineering, P is often called I
 Field quadratures analogous to momentum/position in mechanics

 Field quantization  𝑄,  𝑃 =
𝑖

2
⇔ 𝛥𝑃 𝛥𝑄 ≥

1

4

 𝐻HO = 𝐸kin + 𝐸pot =
 𝑝2

2𝑚
+

1

2
𝑚𝜔r

2  𝑥2

 𝑃 ≡
1

2ℏ𝑚𝜔r
 𝑝2,  𝑄 ≡

𝑚𝜔r

2ℏ
 𝑥2

 Any quantum state can be expressed either in CV or in DV
 Any quantum task (QIP, QSim, Qcomm, QIllu) can be expressed in CV or DV
 Nevertheless a particular basis may be more suitable for a particular problem
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6.6 Propagating quantum microwaves

Expressing quantum microwave states

 General quantum state described by the desity matrix  𝜌 =  𝛹 𝑃𝛹 𝛹 𝛹
 𝑃𝛹 = Classical probability to be in state 𝛹  𝑃𝛹 > 0 and  𝛹 𝑃𝛹 = 1

 Expectation value of operator  𝑂  𝑂 = Tr  𝑂  𝜌

 Normalization Tr  𝜌 = 1
 Complex matrix entries Not easy to visualize

 Phase space representation of a quantum state
 Ideal classical states Points in phase space
 Noisy classical states

 Ordinary probability distribution 𝑃(𝑞, 𝑝) in phase space
 𝑞, 𝑝 are the phase space variables associated with 𝑄, 𝑃
 𝑃 𝑞, 𝑝 𝑑𝑞𝑑𝑝 is the probability to find the system in state 𝑞, 𝑝

 Quantum states

 Heisenberg uncertainty relation 𝛥𝑃 𝛥𝑄 ≥
1

4
as “quantum noise”

 In general requires also negative probability densities

 Quasi-probability distribution 𝑊 𝑞, 𝑝 with  −∞

∞
 −∞

∞
𝑊 𝑞, 𝑝 𝑑𝑞𝑑𝑝 = 1

 Wigner function 𝑊 𝑞, 𝑝 =
1

2𝜋
 −∞

∞
𝑞 −

𝜁

2
 𝜌 𝑞 +

𝜁

2
𝑒𝑖𝑝𝜁𝑑𝜁 and 𝜁 ∈ ℝ

E. P. Menzel, PhD thesis (Tu München, 2013).
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6.6 Propagating quantum microwaves

Wigner function examples
E. P. Menzel, PhD thesis (TU München, 2013).

Thermal state  𝜌th with  𝑛 ≡ 𝑇𝑟  𝑎†  𝑎  𝜌th = 1

 𝑊th 𝑞, 𝑝 =
1

𝜋  𝑛+
1

2

𝑒
−

q2+p2

 n+
1
2 > 0

 In the high-temperature limit 𝑘B𝑇 ≫ ℏ𝜔𝑘, thermal states can usually be considered
to be classical

 Thermal states are aslo classical in the sense that they do not generate
entanglement when applied to a beam splitter with vacuum in the other input

𝑒−1-contours

 𝑛 = 0  𝑛 = 1
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6.6 Propagating quantum microwaves

Wigner function examples
E. P. Menzel, PhD thesis (TU München, 2013).

Coherent state 𝛼 ≡ 𝑄 + 𝑖𝑃 =  𝐷 𝛼 0

 Produced by the displacement operator  𝐷 𝛼 ≡ e𝛼  𝑎†−𝛼⋆  𝑎 applied to the vacuum

 𝑊coh 𝑞, 𝑝 =
2

𝜋
𝑒−2 𝑞−𝑄 2+ 𝑝−𝑃 2

> 0

 Coherent states are classical in the sense that the expectation values of the field
operators obey the equations of motions for the actual field operators in the
Heisenberg picture

𝑒−1-contours

𝛼 = 0 𝛼 = 4
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6.6 Propagating quantum microwaves

Wigner function examples
E. P. Menzel, PhD thesis (Tu München, 2013).

Squeezed vacuum determined by complex squeezing parameter 𝜉 ≡ 𝑟𝑒𝑖𝜑

 Produced by the squeezing operator  𝑆 𝜉 ≡ e
1

2
𝜉⋆  𝑎2−𝜉  𝑎† 2

applied to the vacuum
 𝑟 determines the amount of squeezing and 𝜑 the squeezing direction in phase space

 𝑊sq 𝑞, 𝑝 =
2

𝜋
𝑒− 𝑒2𝑟+𝑒−2𝑟 𝑞+𝑖𝑝 2−

1

2
𝑒2𝑟−𝑒−2𝑟 𝑒−𝑖𝜑 𝑞+𝑖𝑝 2+𝑒𝑖𝜑 𝑞−𝑖𝑝 2

> 0

 Because 𝛥𝑃 2 <
1

4
, one must have 𝛥𝑄 2 ≥

1

4 𝛥𝑃 2 to satsify the Heisenberg relation

 Squeezed states are nonclassical in the sense that they produce entanglement when
applied to a beamsplitter with vacuum at the other input port

𝑒−1-contours

𝜉 = 0 𝜉 = 𝑖
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6.6 Propagating quantum microwaves

Wigner function examples

Number states
 Have a radially symmetric Wigner function
 The vacuum |0〉 is a Gaussian state with the 

vacuum variace of 0.5ℏ𝜔_𝑘
 Finite number states 𝑛 ≥ 1 are nonclassical

 Because their Wigner function can become
negative

 Because they when applied to a 
beamsplitter with vacuum at the other input 
port

0

1

5
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6.6 Propagating quantum microwaves

State reconstruction of propagating quantum microwaves

No efficient photon detectors

Off-the-shelf linear amplifiers

Add  𝑛 ≈ 10 of noise to signal

Two approaches: 1. Parametric amplifiers
2. Signal recovery methods (measure signal moments)

Advanced microwave technology  
Realtime data processing

FPGA

extremedesignsonline.com

WMI dual-path receiver

Difficult
task!
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6.6 Propagating quantum microwaves

Dual-path state reconstruction of propagating quantum microwaves

𝜒1 𝜒2

𝑎

BS
−𝑎 + 𝑣

2

𝑎 + 𝑣

2

𝑣

E.P. Menzel et al., PRL 105, 100401 (2010).

𝐶1

PC
𝐶2

〈𝐶1
𝑛−1𝐶2〉

↓
𝑎𝑛 , 〈𝜒1

𝑛〉, 〈𝜒2
𝑛〉

Iteratively obtain all
signal & detector noise 

moments 

Expectation values of all 
signal moment up to order 𝑛

Kowledge of all moments
is equivalent to knowlege
of the Wigner function or
density matrix.

Nondeterministic & quantum signals up to

order 𝑛 Record all moments 𝑄1
𝑗
𝑄2

𝑘𝑃1
ℓ𝑃2

𝑚

with j + k + ℓ + 𝑚 ≤ 𝑛 and j, k, ℓ, 𝑚 ∈ ℕ0
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6.6 Propagating quantum microwaves

Dual-path state reconstruction of propagating quantum microwaves

𝜒1 𝜒2

𝑎

BS
−𝑎 + 𝑣

2

𝑎 + 𝑣

2

𝑣

E.P. Menzel et al., PRL 105, 100401 (2010).

𝐶1

PC
𝐶2

Intuition for order 𝑛 = 2

 Use statistical
independence of
amplifier noise signals in 
different paths
𝜒1𝜒2 = 𝜒1 𝜒2 = 0

 𝐶1,2 = 𝑎 + 𝜒1,2 =

𝑎 + 𝜒1,2 = 𝑎

 𝐶1,2
2 = 𝑎 + 𝜒1,2

2
=

〈𝑎2 + 𝑎𝜒1,2 + 𝜒1,2𝑎 +


