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Propagating quantum microwaves

emit

Superconducting quantum circuits
—> Artificial quantum matter
- Confined quantum states of light

Does the emitted microwave radiation exhibit quantum properties?
- Commutation relations, superpositions, entanglement
- Quantum optics
- Yes, expected due to field quantization
- Confirmed by experiments
- Microwaves = Expected in analogy to opics

- Different technology = Experimental proof required!
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(Envisioned) applications of propagating quantum microwaves

microwave quantum distributed novel hybrid CV-discrete quantum
local area networks quantum computing sensing Xrotocols variable protocols radar applications
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Fundamental technological considerations

Microwave losses may inhibit
— Observation of quantum properties of propagating microwaves
— Practical applications such as quantum microwave communication/illumination

Superconducting cables
—> Coherent propagation distance €.}, sufficient?
— In resonators, microwave signals travel back and forth many times before losing
coherence (T; =~ 100 pus — 1 ms)

2> Leon = 3 X 108?T1 ~ 10 — 100 km comparable to optics

— Superconducting cables require cooling!
- Short- or medium-distance applications certainly feasible
- QIP platforms such as SQC also require cooling = Compatible
- Technological compatibility to SQC
- No frequency conversion losses
- Natural candidate for chip-to-chip quantum communication between SQC
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Fundamental technological considerations

Microwave losses may inhibit
— Observation of quantum properties of propagating microwaves
—> Practical applications such as quantum microwave communication/illumination

Free-space propagation
- Atmospheric transparency windows

uv Visible / Reflected IR Thermal {smmitted) IR Microwave

http://www.oneon
ta.edu/faculty/bau
manpr/geosat2/RS
10 20 100pum oiem 10ecm 10m  -Introduction/RS-
Wavelength (not to scale) 20 GHz Introduction.html
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— Classical illumination with microwaves used for radar
- Known to pass through clouds, fog, and rain

gm

3
- Typical frequencies ~ 20 GHz (4 = - 7 =~ 1.5 cm)

- Compatible with SQC (superconducting gap of aluminum still twice as large)
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F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008).
Quantization of the electromagnetic field

- Source-free (free field!) Maxwell equations

VB=0, VXE=-20, FD=0, VxH="2 (B = gH, D = €,E, tigeg = c~2)
- Coulomb gauge (VA =0)2>B =V XA, E= —%
2
> A(r, t) satisfies wave equation VA4 = C12 zt';l

> Separate vector potential A(r,t) = A (r, t) + A7) (1, t) into
- Right-propagating components A (r,t) varying with e 7*“t for w > 0
- Left-propagating components A(_)(r, t) varying with e!®t forw > 0
—> Restrict field to finite volume
> AD(r,t) = T, cpuy (e ikt
—> Fourier coefficients c; constant for free field
—> Vector mode functions u; (1)

- Satisfy wave equations (\72 )uk(r) =0

—> Satisfy transversality condition Vuk(r) =0
- Form orthonormal set [, dr ui (N, (r) = 8y,

- Depend onboundary conditions
AS-Chap. 6.6 -6
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F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008).

Quantization of the electromagnetic field

- General example for boundary conditions
- Periodic (travelling waves)
- Reflecting walls (standing waves)
— Here: Plane wave functions suitable for cubic volume with side lengths L

2> u,(r) = 3—/26(’1)8”"”

— Typically no polarization in microwaves propagating in waveguides
> Polarization vector e = ¢

: 2
> Wave vector k = (ky, ky, k,) with ky,, , = Tnnx,yz and 1, , € Z

- @ perpendicular to k
— Quantization of classical Fourier amplitudes

> ag,ap = Ay, d,t with commutation relations [dk,aAT,] = Oy’

> A(r,t) =3, /2w - [auy (et + alug (r)eit]

-2 E(r,t) = le\/i[akuk(T)e @lui(r)eiwt]

- Hamiltonian H = Ef dr (€oE? + pogH?) = Y, hoy, (@;;@k + %)
—> Quantum states |, ) of each mode can now be discussed independently!
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Q) C . . . . Annihilation operator a4 = WrCP+iq
s Continuos variables (CV) vs. discrete variables (DV) 26;Ch
o Creation operator gt = @xc®-id
g Classical single-mode electromagnetic waves A cos(wt + ¢) V2wrCh
:‘j; —> Equivalent description P cos wyt + Q sin wyt Hyo = Ekin + Epot = % +-mwf £
B with field quadratures Q = Acos¢ and P = Asin ¢ e T o
£ > In engineering, P is often called / PE |oma P U= J5n %
%, — Field quadratures analogous to momentum/position in mechanics

5 -> Field quantization > [Q, ﬁ] =é & (4P)(40) 2%

<§D Single-mode quantum field > Hyo = P? + Q2 = hwy, (&Td + %)

(=]

N

5; Continuous-variable basis Discrete-variable basis

g - Set of eigenstates of either P or Q > Fock basis {|n)}

g also forms basis —> Single photons |1) are the

w — Natural states are Gaussian states natural quantity of interest

E (coherent, squeezed, thermal)

<

4 =2 Any quantum state can be expressed either in CV or in DV

S Any quantum task (QIP, QSim, Qcomm, Qlllu) can be expressed in CV or DV

“ = Nevertheless a particular basis may be more suitable for a particular problem
AS-Chap. 6.6 -8
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. . E. P. Menzel, PhD thesis (Tu Miinchen, 2013).
Expressing quantum microwave states

—> General quantum state described by the desity matrix p = Y@ Py |¥)(¥|
— Py = Classical probability to be in state |¥) 2 Py > 0and ),y Py = 1
- Expectation value of operator 0 > (0) = Tr[@ﬁ]
- Normalization 2 Tr[p] = 1
- Complex matrix entries = Not easy to visualize

- Phase space representation of a quantum state

- ldeal classical states = Points in phase space

- Noisy classical states
—> Ordinary probability distribution P(g, p) in phase space
—> q, p are the phase space variables associated with Q, P
- P(q,p)dqdp is the probability to find the system in state (g, p)

- Quantum states
- Heisenberg uncertainty relation (4P)(4Q) > i as “quantum noise”
- In general requires also negative probability densities
-> Quasi-probability distribution W (q, p) with f_oooo ffooo W(q,p)dqdp = 1
- Wigner function W(q,p) = ifoo (q — g 1plq + §> e?dland { € R

27T Y — 0
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. . E. P. Menzel, PhD thesis (TU Miinchen, 2013).
Wigner function examples

e l-contours

1
—
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> Walgp) =——xe ™2 >0
TL'(TL+E)
= In the high-temperature limit kgT > hw,,, thermal states can usually be considered

to be classical
- Thermal states are aslo classical in the sense that they do not generate
entanglement when applied to a beam splitter with vacuum in the other input
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. . E. P. Menzel, PhD thesis (TU Miinchen, 2013).
Wigner function examples

e l-contours
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Coherent state |a) = |Q + iP) = D(a)|0)

- Produced by the displacement operator D («)
2 _ —N)2 _p)2

- Wcoh(q,p) = ;e 2[(61 Q)*+(p—P) ] >0

— Coherent states are classical in the sense that the expectation values of the field

operators obey the equations of motions for the actual field operators in the
Heisenberg picture

adt

gad'-ad applied to the vacuum
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. . E. P. Menzel, PhD thesis (Tu Miinchen, 2013).
Wigner function examples

e l-contours
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Squeezed vacuum determined by complex squeezing parameter & = re'?

() = ellea-s@)]
- Produced by the squeezing operator S(¢) = e applied to the vacuum

—> r determines the amount of squeezing and ¢ the squeezing direction in phase space
2 —(e?T+e~2T)|q+i |2_1 @27 _p—27 e—i<p| +i |2+ei<p| —ip|?
> Wig(g,p) = Ze™ (e arplim(eem e larip e la-ol) >

2 o1 2 =
~ Because (4P)“ <7, one must have (4Q)“ = 2(4P)?

- Squeezed states are nonclassical in the sense that they produce entanglement when
applied to a beamsplitter with vacuum at the other input port

to satsify the Heisenberg relation
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Wigner function examples

10)

15)

Number states
— Have a radially symmetric Wigner function
—> The vacuum |0) is a Gaussian state with the
vacuum variace of 0.5Aw_k
- Finite number states [n = 1) are nonclassical
— Because their Wigner function can become
negative
— Because they when applied to a
beamsplitter with vacuum at the other input
port

AS-Chap. 6.6-13
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State reconstruction of propagating quantum microwaves

No efficient photon detectors ’\/V\f;%

Difficult -
task! ) Off-the-shelf linear amplifiers e

Add nn = 10 of noise to signal

Two approaches: 1. Parametric amplifiers
2. Signal recovery methods (measure signal moments)

/ \ Realtime data processing

Advanced microwave technology

= '
: - Yy ' 4

tttttttt
vvvvvvv

PeNTERNN ot

AS-Chap. 6.6 -14



6.6 Propagating quantum microwaves

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBner-Institut (2001 - 2018)

Kowledge of all moments
Dual-path state reconstruction of propagating quantum microwaves is equivalent to knowlege
of the Wigner function or
density matrix.

Expectation values of all
sighal moment up to order n

(CT71Cy)
l
("), (') (x2)

Iteratively obtain all
signal & detector noise
moments

Nondeterministic & quantum signals up to

[’WWW\MMN a] order n = Record all moments (Q{Qé‘Pf)sz)
withj+k+f+m<nandj k¥, meN,

E.P. Menzel et al., PRL 105, 100401 (2010). AS-Chap. 6.6 - 15
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6.6 Propagating quantum microwaves

Dual-path state reconstruction of propagating quantum microwaves

E.P. Menzel et al., PRL 105, 100401 (2010).

Intuition for order n = 2

- Use statistical
independence of
amplifier noise signals in
different paths
(X1x2) = (xa)x2) =0

2 (C1p) =(a+ x12) =
(a) + (x12) = (@)

2
- (C12,2) = ((a +X1,2) ) =
(@® + ayi, + x120 +
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