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6.6 

Propagating

quantum microwaves
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Superconducting quantum circuits
 Artificial quantum matter
 Confined quantum states of light

Does the emitted microwave radiation exhibit quantum properties?

 Commutation relations, superpositions, entanglement

 Quantum optics

 Yes, expected due to field quantization

 Confirmed by experiments

 Microwaves Expected in analogy to opics

 Different technology  Experimental proof required!

Propagating quantum microwaves

6.6 Propagating quantum microwaves

Quantum - -emit
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6.6 Propagating quantum microwaves

(Envisioned) applications of propagating quantum microwaves

Quantum information processing

𝜑



AS-Chap. 6.6 - 4

R
. 

G
ro

s
s
, 

A
. 

M
a

rx
, 

F
. 

D
e

p
p

e
, 

a
n

d
K

. 
F
e

d
o

ro
v
  

©
 W

a
lt

h
e

r-
M

e
iß

n
e

r-
In

s
ti

tu
t

(2
0

0
1

 -
2

0
1

8
)

6.6 Propagating quantum microwaves

Fundamental technological considerations

Microwave losses may inhibit
 Observation of quantum properties of propagating microwaves
 Practical applications such as quantum microwave communication/illumination

Superconducting cables
 Coherent propagation distance ℓcoh sufficient?

 In resonators, microwave signals travel back and forth many times before losing
coherence (𝑇1 ≃ 100 μs − 1 ms)

 ℓcoh ≈ 3 × 108 m

s
𝑇1 ≃ 10 − 100 km comparable to optics

 Superconducting cables require cooling!
 Short- or medium-distance applications certainly feasible
 QIP platforms such as SQC also require cooling  Compatible

 Technological compatibility to SQC
 No frequency conversion losses
 Natural candidate for chip-to-chip quantum communication between SQC
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6.6 Propagating quantum microwaves

Fundamental technological considerations

Microwave losses may inhibit
 Observation of quantum properties of propagating microwaves
 Practical applications such as quantum microwave communication/illumination

Free-space propagation
 Atmospheric transparency windows

http://www.oneon
ta.edu/faculty/bau
manpr/geosat2/RS
-Introduction/RS-
Introduction.html

 Classical illumination with microwaves used for radar
 Known to pass through clouds, fog, and rain

 Typical frequencies ≃ 20 GHz (𝜆 =
3×108m

s

𝑓
≃ 1.5 cm)

 Compatible with SQC (superconducting gap of aluminum still twice as large)

20 GHz
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6.6 Propagating quantum microwaves

Quantization of the electromagnetic field

 Source-free (free field!) Maxwell equations

𝜵𝑩 = 0,   𝜵 × 𝑬 = −
𝜕𝑩

𝜕𝑡
,   𝜵𝑫 = 0,   𝜵 × 𝑯 =

𝜕𝑫

𝜕𝑡
(𝑩 = 𝜇0𝑯, 𝑫 = 𝜖0𝑬, 𝜇0𝜖0 = 𝑐−2)

 Coulomb gauge (𝜵𝑨 = 0) 𝑩 = 𝜵 × 𝑨,   𝑬 = −
𝜕𝑨

𝜕𝑡

 𝑨(𝒓, 𝑡) satisfies wave equation 𝜵2𝑨 =
1

c2

𝜕2𝑨

𝜕𝑡2

 Separate vector potential 𝑨 𝒓, 𝑡 = 𝑨 + 𝒓, 𝑡 + 𝑨 − (𝒓, 𝑡) into

 Right-propagating components 𝑨 + (𝒓, 𝑡) varying with 𝑒−𝑖𝜔𝑡 for 𝜔 > 0

 Left-propagating components 𝑨 − (𝒓, 𝑡) varying with 𝑒𝑖𝜔𝑡 for 𝜔 > 0

 Restrict field to finite volume

 𝑨 + 𝒓, 𝑡 =  𝑘 𝑐𝑘𝒖𝑘 𝒓 𝑒−𝑖𝜔𝑘𝑡

 Fourier coefficients 𝑐𝑘 constant for free field
 Vector mode functions 𝒖𝑘 𝒓

 Satisfy wave equations 𝛻2 +
𝜔𝑘

2

𝑐2 𝒖𝑘 𝒓 = 0

 Satisfy transversality condition 𝜵𝒖𝑘 𝒓 = 0
 Form orthonormal set  𝑉

𝑑𝑟 𝒖𝑘
⋆ 𝒓 𝒖𝑘′ 𝒓 = 𝛿𝑘𝑘′

 Depend onboundary conditions

F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008).
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6.6 Propagating quantum microwaves

Quantization of the electromagnetic field

 General example for boundary conditions
 Periodic (travelling waves)
 Reflecting walls (standing waves)

 Here: Plane wave functions suitable for cubic volume with side lengths 𝐿

 𝒖𝑘 𝒓 =
1

𝐿3/2  𝒆 𝜆 𝑒𝑖𝒌𝒓

 Typically no polarization in microwaves propagating in waveguides

 Polarization vector  𝒆 𝜆 =  𝒆

 Wave vector 𝒌 = 𝑘𝑥, 𝑘𝑦 , 𝑘𝑧 with 𝑘𝑥,𝑦,𝑧 =
2𝜋

𝐿
𝑛𝑥,𝑦,𝑧 and 𝑛𝑥,𝑦,𝑧 ∈ ℤ

  𝒆 perpendicular to 𝒌
 Quantization of classical Fourier amplitudes

 𝑎𝑘 , 𝑎𝑘
⋆ →  𝑎𝑘 ,  𝑎𝑘

† with commutation relations  𝑎𝑘 ,  𝑎
𝑘′
† = 𝛿𝑘𝑘′

 𝑨 𝒓, 𝑡 =  𝒌
ℏ

2𝜔𝑘𝜖0
 𝑎𝑘𝒖𝑘 𝒓 𝑒−𝑖𝜔𝑡 +  𝑎𝑘

†𝒖𝑘
⋆ 𝒓 𝑒𝑖𝜔𝑡

 𝑬 𝒓, 𝑡 = 𝑖  𝒌
ℏ𝜔𝑘

2𝜖0
 𝑎𝑘𝒖𝑘 𝒓 𝑒−𝑖𝜔𝑡 −  𝑎𝑘

†𝒖𝑘
⋆ 𝒓 𝑒𝑖𝜔𝑡

 Hamiltonian  𝐻 =
1

2
 𝑑𝒓 𝜖0𝑬2 + 𝜇0𝑯2 =  𝑘 ℏ𝜔𝑘  𝑎𝑘

†  𝑎𝑘 +
1

2

 Quantum states 𝜓𝑘 of each mode can now be discussed independently!

F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008).
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6.6 Propagating quantum microwaves

Continuos variables (CV) vs. discrete variables (DV)

Single-mode quantum field  𝐻HO =  𝑃2 +  𝑄2 = ℏ𝜔𝑘  𝑎†  𝑎 +
1

2

Annihilation operator  𝑎 ≡
𝜔r𝐶  𝛷+𝑖  𝑞

2𝜔r𝐶ℏ

Creation operator  𝑎† ≡
𝜔r𝐶  𝛷−𝑖  𝑞

2𝜔r𝐶ℏ

Discrete-variable basis
 Fock basis 𝑛
 Single photons |1〉 are the 

natural quantity of interest

Continuous-variable basis

 Set of eigenstates of either  𝑃 or  𝑄
also forms basis

 Natural states are Gaussian states
(coherent, squeezed, thermal)

Classical single-mode electromagnetic waves 𝐴 cos 𝜔𝑡 + 𝜙
 Equivalent description 𝑃 cos 𝜔𝑘𝑡 + Q sin 𝜔𝑘𝑡

with field quadratures 𝑄 = 𝐴 cos 𝜙 and 𝑃 = 𝐴 sin 𝜙
 In engineering, P is often called I
 Field quadratures analogous to momentum/position in mechanics

 Field quantization  𝑄,  𝑃 =
𝑖

2
⇔ 𝛥𝑃 𝛥𝑄 ≥

1

4

 𝐻HO = 𝐸kin + 𝐸pot =
 𝑝2

2𝑚
+

1

2
𝑚𝜔r

2  𝑥2

 𝑃 ≡
1

2ℏ𝑚𝜔r
 𝑝2,  𝑄 ≡

𝑚𝜔r

2ℏ
 𝑥2

 Any quantum state can be expressed either in CV or in DV
 Any quantum task (QIP, QSim, Qcomm, QIllu) can be expressed in CV or DV
 Nevertheless a particular basis may be more suitable for a particular problem
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6.6 Propagating quantum microwaves

Expressing quantum microwave states

 General quantum state described by the desity matrix  𝜌 =  𝛹 𝑃𝛹 𝛹 𝛹
 𝑃𝛹 = Classical probability to be in state 𝛹  𝑃𝛹 > 0 and  𝛹 𝑃𝛹 = 1

 Expectation value of operator  𝑂  𝑂 = Tr  𝑂  𝜌

 Normalization Tr  𝜌 = 1
 Complex matrix entries Not easy to visualize

 Phase space representation of a quantum state
 Ideal classical states Points in phase space
 Noisy classical states

 Ordinary probability distribution 𝑃(𝑞, 𝑝) in phase space
 𝑞, 𝑝 are the phase space variables associated with 𝑄, 𝑃
 𝑃 𝑞, 𝑝 𝑑𝑞𝑑𝑝 is the probability to find the system in state 𝑞, 𝑝

 Quantum states

 Heisenberg uncertainty relation 𝛥𝑃 𝛥𝑄 ≥
1

4
as “quantum noise”

 In general requires also negative probability densities

 Quasi-probability distribution 𝑊 𝑞, 𝑝 with  −∞

∞
 −∞

∞
𝑊 𝑞, 𝑝 𝑑𝑞𝑑𝑝 = 1

 Wigner function 𝑊 𝑞, 𝑝 =
1

2𝜋
 −∞

∞
𝑞 −

𝜁

2
 𝜌 𝑞 +

𝜁

2
𝑒𝑖𝑝𝜁𝑑𝜁 and 𝜁 ∈ ℝ

E. P. Menzel, PhD thesis (Tu München, 2013).
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6.6 Propagating quantum microwaves

Wigner function examples
E. P. Menzel, PhD thesis (TU München, 2013).

Thermal state  𝜌th with  𝑛 ≡ 𝑇𝑟  𝑎†  𝑎  𝜌th = 1

 𝑊th 𝑞, 𝑝 =
1

𝜋  𝑛+
1

2

𝑒
−

q2+p2

 n+
1
2 > 0

 In the high-temperature limit 𝑘B𝑇 ≫ ℏ𝜔𝑘, thermal states can usually be considered
to be classical

 Thermal states are aslo classical in the sense that they do not generate
entanglement when applied to a beam splitter with vacuum in the other input

𝑒−1-contours

 𝑛 = 0  𝑛 = 1
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6.6 Propagating quantum microwaves

Wigner function examples
E. P. Menzel, PhD thesis (TU München, 2013).

Coherent state 𝛼 ≡ 𝑄 + 𝑖𝑃 =  𝐷 𝛼 0

 Produced by the displacement operator  𝐷 𝛼 ≡ e𝛼  𝑎†−𝛼⋆  𝑎 applied to the vacuum

 𝑊coh 𝑞, 𝑝 =
2

𝜋
𝑒−2 𝑞−𝑄 2+ 𝑝−𝑃 2

> 0

 Coherent states are classical in the sense that the expectation values of the field
operators obey the equations of motions for the actual field operators in the
Heisenberg picture

𝑒−1-contours

𝛼 = 0 𝛼 = 4
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6.6 Propagating quantum microwaves

Wigner function examples
E. P. Menzel, PhD thesis (Tu München, 2013).

Squeezed vacuum determined by complex squeezing parameter 𝜉 ≡ 𝑟𝑒𝑖𝜑

 Produced by the squeezing operator  𝑆 𝜉 ≡ e
1

2
𝜉⋆  𝑎2−𝜉  𝑎† 2

applied to the vacuum
 𝑟 determines the amount of squeezing and 𝜑 the squeezing direction in phase space

 𝑊sq 𝑞, 𝑝 =
2

𝜋
𝑒− 𝑒2𝑟+𝑒−2𝑟 𝑞+𝑖𝑝 2−

1

2
𝑒2𝑟−𝑒−2𝑟 𝑒−𝑖𝜑 𝑞+𝑖𝑝 2+𝑒𝑖𝜑 𝑞−𝑖𝑝 2

> 0

 Because 𝛥𝑃 2 <
1

4
, one must have 𝛥𝑄 2 ≥

1

4 𝛥𝑃 2 to satsify the Heisenberg relation

 Squeezed states are nonclassical in the sense that they produce entanglement when
applied to a beamsplitter with vacuum at the other input port

𝑒−1-contours

𝜉 = 0 𝜉 = 𝑖
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6.6 Propagating quantum microwaves

Wigner function examples

Number states
 Have a radially symmetric Wigner function
 The vacuum |0〉 is a Gaussian state with the 

vacuum variace of 0.5ℏ𝜔_𝑘
 Finite number states 𝑛 ≥ 1 are nonclassical

 Because their Wigner function can become
negative

 Because they when applied to a 
beamsplitter with vacuum at the other input 
port

0

1

5
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6.6 Propagating quantum microwaves

State reconstruction of propagating quantum microwaves

No efficient photon detectors

Off-the-shelf linear amplifiers

Add  𝑛 ≈ 10 of noise to signal

Two approaches: 1. Parametric amplifiers
2. Signal recovery methods (measure signal moments)

Advanced microwave technology  
Realtime data processing

FPGA

extremedesignsonline.com

WMI dual-path receiver

Difficult
task!
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6.6 Propagating quantum microwaves

Dual-path state reconstruction of propagating quantum microwaves

𝜒1 𝜒2

𝑎

BS
−𝑎 + 𝑣

2

𝑎 + 𝑣

2

𝑣

E.P. Menzel et al., PRL 105, 100401 (2010).

𝐶1

PC
𝐶2

〈𝐶1
𝑛−1𝐶2〉

↓
𝑎𝑛 , 〈𝜒1

𝑛〉, 〈𝜒2
𝑛〉

Iteratively obtain all
signal & detector noise 

moments 

Expectation values of all 
signal moment up to order 𝑛

Kowledge of all moments
is equivalent to knowlege
of the Wigner function or
density matrix.

Nondeterministic & quantum signals up to

order 𝑛 Record all moments 𝑄1
𝑗
𝑄2

𝑘𝑃1
ℓ𝑃2

𝑚

with j + k + ℓ + 𝑚 ≤ 𝑛 and j, k, ℓ, 𝑚 ∈ ℕ0
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6.6 Propagating quantum microwaves

Dual-path state reconstruction of propagating quantum microwaves

𝜒1 𝜒2

𝑎

BS
−𝑎 + 𝑣

2

𝑎 + 𝑣

2

𝑣

E.P. Menzel et al., PRL 105, 100401 (2010).

𝐶1

PC
𝐶2

Intuition for order 𝑛 = 2

 Use statistical
independence of
amplifier noise signals in 
different paths
𝜒1𝜒2 = 𝜒1 𝜒2 = 0

 𝐶1,2 = 𝑎 + 𝜒1,2 =

𝑎 + 𝜒1,2 = 𝑎

 𝐶1,2
2 = 𝑎 + 𝜒1,2

2
=

〈𝑎2 + 𝑎𝜒1,2 + 𝜒1,2𝑎 +


