Inhaltsverzeichnis

Vorwort xiii

I Physik der Atome und Moleküle 1

1 Einführung in die Quantenphysik 3

1.1 Der Welle-Teilchen Dualismus 4

1.1.1 Dualismus des Lichtes 4

1.1.2 Dualismus der Materie 6

1.2 Materiewellen und Wellenfunktionen 10

1.2.1 Wellenpakete 11

1.2.2 Die Heisenbergsche Unschärferelation 13

1.2.3 Messprozess und Observable 17

1.2.4 Dispersion von Materiewellen 17

1.2.5 Gegenüberstellung Quantenphysik – klassische Physik 19

1.3 Grundlagen der Quantenmechanik 22

1.3.1 Schrödinger-Gleichung und Materiewellen 22

1.3.2 Operatoren 29

1.3.3 Erwartungswerte 33

1.3.4 Eigenwerte und Eigenfunktionen 34

1.3.5 Zulässige Operatoren 36

1.3.6 Vertiefungsthema: Quantenmechanische Bewegungsgleichung 37

1.3.7 Vertiefungsthema: Vertauschungsrelationen und Heisenbergsche Unschärferelation 38

1.3.8 Anwendungen 40

1.4 Ununterscheidbarkeit 41

1.5 Fermionen und Bosonen 45
Inhaltsverzeichnis

1.5.1 Der Spin von Quantenteilchen ... 45
1.5.2 Quantenteilchen mit ganz- und halbzahligem Spin 46
1.6 Austauschsymmetrie und Pauli-Verbot 48
 1.6.1 Die Austauschsymmetrie ... 48
 1.6.2 Das Pauli-Verbot ... 50
1.7 Vertiefungsthema:
 Zur Axiomatik der Quantenmechanik 52

2 Aufbau der Atome .. 57
2.1 Historisches ... 58
2.2 Experimenteller Nachweis der Existenz von Atomen 59
2.3 Größe, Masse und elektrischer Aufbau von Atomen 63
 2.3.1 Größe von Atomen .. 63
 2.3.2 Der elektrische Aufbau von Atomen 64
 2.3.3 Bestimmung der Atommasse .. 65
2.4 Die Struktur von Atomen .. 69
 2.4.1 Geschichtliche Entwicklung .. 69
 2.4.2 Grundlagen zu Streuexperimenten 71

3 Das Einelektronenatom ... 81
3.1 Experimentelle Grundlagen ... 82
 3.1.1 Spektralanalyse .. 82
 3.1.2 Anregung von Atomen .. 83
 3.1.3 Das Spektrum des Wasserstoffs 84
3.2 Das Bohrsche Atommodell ... 88
3.3 Die Schrödinger-Gleichung für Einelektronenatome 94
 3.3.1 Schwerpunkt- und Relativbewegung 94
 3.3.2 Teilchen im kugelsymmetrischen Potenzial 96
 3.3.3 Winkelabhängigkeit .. 98
 3.3.4 Der Drehimpuls .. 106
 3.3.5 Die Radialabhängigkeit ... 113
 3.3.6 Quantenzahlen ... 119
 3.3.7 Aufenthaltswahrscheinlichkeiten 122
3.4 Der Elektronenspin .. 125
 3.4.1 Experimentelle Fakten .. 125
 3.4.2 Vertiefungsthema:
 Theoretische Beschreibung des Spins 127
4 Das Wasserstoffatom 135

4.1 Experimentelle Befunde 136

4.2 Relativistische Korrektur der Energieniveaus 137

4.3 Die Spin-Bahn-Kopplung: Feinstruktur 139

 4.3.1 Der Spin-Bahn-Kopplungsterm 139

 4.3.2 Der Gesamtdrehimpuls 141

 4.3.3 Energieniveaus des Wasserstoffatoms bei Spin-Bahn-Kopplung 143

 4.3.4 Die Feinstruktur beim Wasserstoffatom 145

4.4 Die Lamb-Shift 148

4.5 Die Hyperfeinstruktur 154

4.6 Das Wasserstoffatom im Magnetfeld: Normaler Zeeman-Effekt 159

 4.6.1 Klassisches Teilchen im Magnetfeld 159

 4.6.2 Vertiefungsthema:
 Quantenmechanische Beschreibung 165

4.7 Anomaler Zeeman- und Paschen-Back-Effekt 168

 4.7.1 Der anomale Zeeman-Effekt 168

 4.7.2 Der Paschen-Back-Effekt 172

4.8 Der Stark-Effekt 175

4.9 Vollständiges Termschema des Wasserstoffatoms 176

4.10 Vertiefungsthemen 178

 4.10.1 Das Modell des Elektrons 178

 4.10.2 Vertiefungsthema:
 Das Korrespondenzprinzip 180

5 Wasserstoffähnliche Systeme 185

5.1 He\(^+\), Li\(^++\) und Be\(^{+++}\) 186

5.2 Die schweren Wasserstoffisotope 187

5.3 Rydbergatome 188

5.4 Exotische Atome 191

 5.4.1 Myonische Atome 191

 5.4.2 Anti-Wasserstoff 193

 5.4.3 Positronium 194

5.5 Quarkonium 196

5.6 Exzitonen 196
Inhaltsverzeichnis

6 Übergänge zwischen Energieniveaus 199

6.1 Übergangswahrscheinlichkeiten .. 200
 6.1.1 Spontane und stimulierte Übergänge .. 200

6.2 Lebensdauer angeregter Zustände ... 205

6.3 Linienbreiten von Spektrallinien ... 208
 6.3.1 Natürliche Linienbreite ... 209
 6.3.2 Dopplerverbreiterung ... 211
 6.3.3 Stoßverbreiterung .. 213

6.4 Übergangsmatrixelemente .. 217
 6.4.1 Parität ... 219
 6.4.2 Auswahlregeln .. 221
 6.4.3 Auswahlregeln für die Bahndrehimpulsquantenzahl – Paritätsauswahlregeln .. 222
 6.4.4 Auswahlregeln für die magnetische Quantenzahl 223
 6.4.5 Auswahlregeln für die Spinquantenzahl ... 227
 6.4.6 Stärke des Dipolübergangs ... 228
 6.4.7 Vertiefungsthema: Multipol-Übergänge höherer Ordnung 232
 6.4.8 Vertiefungsthema: Zwei-Photonen-Übergänge 232
 6.4.9 Vertiefungsthema: Spektrales Lochbrennen 234

7 Mehrelektronenatome 237

7.1 Das Heliumatom .. 238
 7.1.1 Die Zentralfeldnäherung ... 239
 7.1.2 Symmetrie der Wellenfunktion ... 243

7.2 Numerische Methoden und Näherungsverfahren 249
 7.2.1 Das Modell unabhängiger Elektronen .. 249
 7.2.2 Das Hartree-Verfahren ... 250

7.3 Der Gesamtdrehimpuls ... 252
 7.3.1 Die L-S- oder Russel-Saunders-Kopplung 252
 7.3.2 Die j-j-Kopplung ... 253
 7.3.3 Termschema bei L-S-Kopplung ... 255
 7.3.4 Beispiele für Drehimpulskopplungen und Termschemata 256

7.4 Der Grundzustand des Vielelektronenatoms – Hundscbe Regeln 258
Inhaltsverzeichnis Physik IV

7.5 Vertiefungsthema: Atomarer Magnetismus 261

7.6 Die Elektronenstruktur von Vielelektronenatomen 262

7.6.1 Schalen und Unterschalen .. 263

7.6.2 Aufbau der Atomhülle mit zunehmender Kernladungszahl 265

7.6.3 Das Periodensystem der Elemente 270

7.7 Spektrten der Mehrelektronenatomen 273

7.7.1 Termschema des Heliumatoms 273

7.7.2 Alkalimetalle .. 275

7.7.3 Erdalkalimetalle .. 278

8 Angeregte Atomzustände .. 281

8.1 Einfachanregungen ... 283

8.1.1 Anregung und Rekombination durch Stoßprozesse 284

8.2 Komplexere Anregungsprozesse 286

8.2.1 Anregung mehrerer Elektronen – Autoionisation 286

8.2.2 Innerschalenanregungen 287

8.3 Röntgenstrahlung .. 289

8.3.1 Erzeugung von Röntgenstrahlung 290

8.3.2 Das Röntgenspektrum 292

8.3.3 Die Feinstruktur der Röntgenlinien 301

8.3.4 Vertiefungsthema: Streuung und Absorption von Röntgenstrahlung ... 303

8.3.5 Vertiefungsthema: Röntgenfluoreszenz 307

8.3.6 Vertiefungsthema: Monochromatisierung von Röntgenstrahlung ... 308

9 Moleküle .. 313

9.1 Das Einelektronen-Molekül — H$^+_2$-Molekül 316

9.1.1 Die Schrödinger-Gleichung des Einelektronenmoleküls 316

9.1.2 Die adiabatische Näherung 317

9.1.3 Lösung der elektronischen Wellengleichung 318

9.2 Das Vielelektronen-Molekül — H$_2$-Molekül 328

9.2.1 Die Molekülorbitalnäherung 328

9.2.2 Die Heitler-London Näherung 330
9.2.3 Vergleich der Näherungen .. 332
9.2.4 Die Molekülbindung ... 334
9.3 Elektronische Zustände zweiatomiger Moleküle 336
9.4 Die Kernbewegung .. 340
 9.4.1 Der starre Rotator .. 340
 9.4.2 Molekülschwingungen ... 343

II Wärmestatistik ... 349
10 Grundlagen der Wärmelehre .. 351
 10.1 Systeme, Phasen und Gleichgewicht .. 352
 10.1.1 Systeme .. 352
 10.1.2 Phasen ... 352
 10.1.3 Gleichgewicht ... 353
 10.2 Zustandsgrößen ... 355
 10.2.1 Definitionen ... 355
 10.2.2 Die Temperatur ... 357
 10.2.3 Der Druck ... 357
 10.2.4 Teilchenzahl, Stoffmenge und Avogadrozahl 358
 10.2.5 Die Entropie ... 359
 10.3 Die thermodynamischen Potenziale .. 360
 10.3.1 Prinzip der maximalen Entropie und minimalen Energie 360
 10.3.2 Innere Energie als Potenzial ... 360
 10.3.3 Entropie als thermodynamisches Potenzial 361
 10.3.4 Die freie Energie oder das Helmholtz-Potenzial 361
 10.3.5 Die Enthalpie ... 362
 10.3.6 Die freie Enthalpie oder das Gibbsche Potenzial 363
 10.3.7 Die Maxwell-Relationen .. 364
 10.3.8 Thermodynamische Stabilität ... 365
 10.4 Die kinetische Gastheorie ... 367
 10.4.1 Druck und Temperatur .. 367
 10.4.2 Die Maxwell-Boltzmann-Verteilung 368
 10.4.3 Freiheitsgrade ... 369
 10.4.4 Der Gleichverteilungssatz .. 370
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>Energieformen, Zustandsänderungen und Hauptsätze</td>
<td>371</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Energieformen</td>
<td>371</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Energieumwandlung</td>
<td>373</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Die Wärmekapazität</td>
<td>374</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Zustandsänderungen</td>
<td>375</td>
</tr>
<tr>
<td>II</td>
<td>Statistische Beschreibung</td>
<td>377</td>
</tr>
<tr>
<td>11.1</td>
<td>Grundbegriffe der Statistik</td>
<td>379</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Wahrscheinlichkeiten</td>
<td>379</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Mittelwert, Mittelwert der Abweichung, Schwankung</td>
<td>380</td>
</tr>
<tr>
<td>11.2</td>
<td>Phasenraum und Verteilungen</td>
<td>382</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Mikro- und Makrozustände</td>
<td>382</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Der Phasenraum</td>
<td>382</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Verteilungen</td>
<td>383</td>
</tr>
<tr>
<td>11.3</td>
<td>Das Spin-1/2 System</td>
<td>386</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Die Magnetisierung</td>
<td>387</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Entartung der Zustände</td>
<td>388</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Statistische Eigenschaften der Magnetisierung</td>
<td>390</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Die Gauß-Verteilung für große N</td>
<td>392</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Die Energie des Spin-1/2-Systems</td>
<td>393</td>
</tr>
<tr>
<td>11.4</td>
<td>Grundlegende Annahmen der Wärmephysik</td>
<td>394</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Zeitmittel und Scharmittel</td>
<td>396</td>
</tr>
<tr>
<td>11.5</td>
<td>Systeme in thermischem Kontakt</td>
<td>399</td>
</tr>
<tr>
<td>11.6</td>
<td>Entropie, Temperatur und chemisches Potenzial</td>
<td>406</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Entropie</td>
<td>406</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Statistische Definition der Temperatur</td>
<td>408</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Statistische Definition des chemischen Potenzials</td>
<td>408</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Der 3. Hauptsatz</td>
<td>409</td>
</tr>
<tr>
<td>11.6.5</td>
<td>Der 2. Hauptsatz</td>
<td>409</td>
</tr>
<tr>
<td>11.6.6</td>
<td>Wärmefluss</td>
<td>410</td>
</tr>
<tr>
<td>11.6.7</td>
<td>Teilchenfluss</td>
<td>411</td>
</tr>
<tr>
<td>11.6.8</td>
<td>Zusammenhang zwischen statistischen und thermodynamischen Größen</td>
<td>412</td>
</tr>
<tr>
<td>11.7</td>
<td>Der Zeitpfeil</td>
<td>415</td>
</tr>
<tr>
<td>11.8</td>
<td>Magnetische Kühlung</td>
<td>416</td>
</tr>
</tbody>
</table>
12 Verteilungsfunktionen

12.1 Repräsentative Ensemble
 12.1.1 Abgeschlossenes System
 12.1.2 System in Kontakt mit einem Wärmereservoir
 12.1.3 System in Kontakt mit einem Wärme- und Teilchenreservoir

12.2 Gibbs- und Boltzmann-Faktoren
 12.2.1 Der Gibbs-Faktor
 12.2.2 Der Boltzmann-Faktor

12.3 Zustandssummen und Mittelwerte
 12.3.1 Große Zustandssumme
 12.3.2 Mittelwerte
 12.3.3 Zustandssumme
 12.3.4 Verteilungsfunktionen und ihre Eigenschaften

12.4 Anwendungen der Verteilungsfunktionen
 12.4.1 Das ideale einatomige Gas
 12.4.2 Gültigkeit der klassischen Näherung
 12.4.3 Der Gleichverteilungssatz

12.5 Die Maxwellsche Geschwindigkeitsverteilung
 12.5.1 Verteilung des Geschwindigkeitsbetrages
 12.5.2 Verteilung einer Geschwindigkeitskomponente
 12.5.3 Die barometrische Höhenformel
 12.5.4 Thermalisierung

13 Quantenstatistik

13.1 Identische Teilchen
 13.1.1 Klassischer Fall: Maxwell-Boltzmann-Statistik
 13.1.2 Quantenmechanischer Fall

13.2 Die quantenmechanischen Verteilungsfunktionen
 13.2.1 Quantenstatistische Beschreibung
 13.2.2 Photonen-Statistik
 13.2.3 Die Fermi-Dirac-Statistik
 13.2.4 Die Bose-Einstein-Statistik
 13.2.5 Quantenstatistik im klassischen Grenzfall

13.3 Die Zustandsdichte
Inhaltsverzeichnis Physik IV

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.1</td>
<td>Das freie Elektronengas</td>
<td>480</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Das Photonengas</td>
<td>484</td>
</tr>
<tr>
<td>13.4</td>
<td>Vertiefungsthema: Die Bose-Einstein Kondensation</td>
<td>487</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Historische Entwicklung</td>
<td>487</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Temperatur der Bose-Einstein Kondensation</td>
<td>488</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Realisierung eines Bose-Einstein Kondensats</td>
<td>494</td>
</tr>
<tr>
<td>13.4.4</td>
<td>Beobachtung der Bose-Einstein Kondensation</td>
<td>498</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Atomlaser und Kohärenz</td>
<td>500</td>
</tr>
</tbody>
</table>

Anhang

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Rutherford’sche Streuformel</td>
<td>507</td>
</tr>
<tr>
<td>B</td>
<td>Krummlinige Koordinaten</td>
<td>512</td>
</tr>
<tr>
<td>C</td>
<td>\hat{L}_i, \hat{L}_2 in Kugelkoordinaten</td>
<td>518</td>
</tr>
<tr>
<td>D</td>
<td>Vertauschungsrelationen \hat{L}_i, \hat{L}_2</td>
<td>520</td>
</tr>
<tr>
<td>E</td>
<td>Heliumatom</td>
<td>522</td>
</tr>
<tr>
<td>F</td>
<td>Literatur</td>
<td>525</td>
</tr>
<tr>
<td>G</td>
<td>SI-Einheiten</td>
<td>527</td>
</tr>
<tr>
<td>G.1</td>
<td>Geschichte des SI Systems</td>
<td>527</td>
</tr>
<tr>
<td>G.2</td>
<td>Die SI Basiseinheiten</td>
<td>529</td>
</tr>
<tr>
<td>G.3</td>
<td>Einige von den SI Einheiten abgeleitete Einheiten</td>
<td>530</td>
</tr>
<tr>
<td>G.4</td>
<td>Vorsätze</td>
<td>532</td>
</tr>
<tr>
<td>G.5</td>
<td>Abgeleitete Einheiten und Umrechnungsfaktoren</td>
<td>533</td>
</tr>
<tr>
<td>H</td>
<td>Physikalische Konstanten</td>
<td>537</td>
</tr>
</tbody>
</table>
Teil I

Physik der Atome und Moleküle
Kapitel 1

Einführung in die Quantenphysik

1.1 Der Welle-Teilchen Dualismus

1.1.1 Dualismus des Lichtes

Licht als klassische elektromagnetische Welle

Im 18. Jahrhundert gab es einen langen Streit über die Natur des Lichtes. Während Isaac Newton und seine Anhänger postulierten, dass Licht aus Partikeln besteht (Erklärung der geradlinigen Ausbreitung und des Brechungsgesetzes), vertraten Christiaan Huygens und andere die Auffassung, dass Licht eine Welle wäre (Erklärung von Beugung, Brechung, und Interferenz). Das Wellenmodell des Lichtes schien sich endgültig durchzusetzen, als Heinrich Hertz die elektromagnetischen Wellen entdeckte und dadurch klar wurde, dass sichtbares Licht nur ein auf den Wellenlängenbereich von etwa 400 bis 700 nm begrenzter Spezialfall elektromagnetischer Wellen ist. Licht wurde als elektromagnetische Welle beschrieben, die eine Lösung der elektromagnetischen Wellengleichungen

\[
\nabla^2 E - \varepsilon \mu \varepsilon_0 \mu_0 \frac{\partial^2 E}{\partial t^2} = \nabla^2 E - \frac{1}{v_{ph}^2} \frac{\partial^2 E}{\partial t^2} = 0 \quad (1.1.1)
\]

\[
\nabla^2 H - \varepsilon \mu \varepsilon_0 \mu_0 \frac{\partial^2 H}{\partial t^2} = \nabla^2 H - \frac{1}{v_{ph}^2} \frac{\partial^2 H}{\partial t^2} = 0 \quad (1.1.2)
\]

ist, die aus den Maxwell-Gleichungen abgeleitet werden können. Hierbei ist \(\varepsilon_0 \) die elektrische Feldkonstante, \(\varepsilon \) die Dielektrizitätskonstante, \(\mu_0 \) die magnetische Feldkonstante, \(\mu \) die Permeabilität, \(E \) die elektrische Feldstärke, \(H \) die magnetische Feldstärke und \(v_{ph} \) die Phasengeschwindigkeit der Welle. Eine Lösung der Wellengleichung ist die ebene Welle

\[
E(\mathbf{r}, t) = E_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)] . \quad (1.1.3)
\]

Hierbei ist \(\mathbf{k} \) der Wellenvektor, \(\omega = 2\pi \nu \) die Kreisfrequenz und \(\phi \) eine Phasenkonstante. Die Wellenlänge ist durch \(\lambda = 2\pi / |\mathbf{k}| = c / \nu = c / 2\pi / \omega = v_{ph} \) gegeben, wobei \(n = \sqrt{\varepsilon \mu} \) der Brechungsindex und \(c = 1 / \sqrt{\varepsilon_0 \mu_0} = 2.9979 \times 10^8 \text{m/s} \) die Vakuum-Lichtgeschwindigkeit ist.

Der Teilchencharakter des Lichtes

Um 1900 wurden experimentelle Ergebnisse bekannt, die der Auffassung von Licht als klassischer Welle widersprachen. Neben dem Spektrum der Hohlraumstrahlung war dies vor allem der Photoeffekt. Es wurde beobachtet, dass die kinetische Energie von Elektronen, die durch Lichteinstrahlung aus der Atomhülle ausgelöst werden, durch

\[\text{Eine ausführliche Behandlung der Hohlraumstrahlung und des Photoeffekts wurde in Physik III gegeben.}\]
Abschnitt 1.1

Physik IV

\[E_{\text{kin}} = \hbar \omega - E_B \]

(1.1.4)

beschrieben werden kann. Hierbei ist \(\omega \) die Frequenz des einfallenden Lichtes, \(E_B \) die atomare Bindungsenergie des Elektrons und \(\hbar = 1.0546 \times 10^{-34} \text{Js} \) die Planck'sche Konstante. Dieses Ergebnis ist unabhängig von der Intensität des eingestrahlten Lichtes und widerspricht klar dem klassischen Wellenbild des Lichts. Hier würde man einen kontinuierlichen Energieübertrag erwarten, der mit wachsender Intensität zunimmt, da sowohl die Energiendichte des elektromagnetischen Feldes

\[u_{\text{em}} = \varepsilon_0 E^2 = \frac{1}{2} \varepsilon_0 (\varepsilon_0 E^2 + \mu_0 H^2) \]

als auch die Intensität

\[I = c \varepsilon_0 E^2 \]

kontinuierliche Funktionen der Feldstärke sind.

Albert Einstein gelang es im Jahr 1905 durch die Einführung der Photonenhypothese eine schlüssige Erklärung für die beobachteten experimentellen Fakten zu liefern. Er knüpfte dabei an Aspekte der Lichttheorie von Newton an und nahm an, dass die vom Licht mitgeführte Energie nicht wie bei einer klassischen Welle kontinuierlich im Raum verteilt ist, sondern diskontinuierlich oder gequantelt. Die physikalischen Objekte, denen die einzelnen Energieportionen oder Energiequanten zuzuordnen sind, nannte Einstein Lichtquanten oder Photon. Er berücksichtigte dabei die Quantenhypothese von Planck, die besagt, dass ein harmonischer Oszillator nur diskrete Energiezustände einnehmen kann, die sich um ganzzahlige Vielfache von \(h \nu \) unterscheiden. Im Photonenmodell wird die "körnige" Energiestruktur des Lichtes und damit die teilchenartige Eigenschaft mit der dem Wellenmodell entlehnten Größe Frequenz verknüpft. Einstein postulierte:

Licht besteht aus Photonen (Lichtquanten) der Energie

\[E = h \nu = \hbar \omega \]

(1.1.5)

mit \(h = 2 \pi \hbar = 6.626 068 76(52) \times 10^{-34} \text{ J s} \)

\[= 4.135 667 27 \times 10^{-15} \text{ eV} . \]

Photonen besitzen keine Ruhemasse und bewegen sich mit Lichtgeschwindigkeit.

Im Einzelprozess kann also Lichtenergie nur als ein Vielfaches des Energiequantes \(E = h \nu \) auf Materie übertragen werden. Dem Lichtquant oder Photon kommen damit Teilcheneigenschaften zu, da den lokalisierteren Energieübertrag auf ein einzelnes Materieteilchen das Wellenbild nicht beschreiben kann. Im Rahmen eines Teilchenbildes lassen sich dagegen die beobachteten experimentellen Tatsachen zwanglos erklären (siehe hierzu Physik III).

Mit \(E = mc^2 \) und \(E = h \nu \) erhält man für die relativistische Masse des Photons

\footnote{Beim Auslösen von Elektronen aus einem Metall tritt an die Stelle der Bindungsenergie \(E_B \) die Austrittsarbeit \(W_A \), siehe hierzu auch Physik III).}
Kapitel 1: Einführung in die Quantenphysik

\[m = \frac{\hbar \omega}{c^2}. \]

(1.1.6)

Mit \(p = m v \) und \(v = c \) ergibt sich für den Impuls des Photons

\[p = \frac{\hbar \omega}{c} \hat{c} = \hbar \frac{2\pi}{\lambda} \hat{c} = \hbar k. \]

(1.1.7)

Es sei hier angemerkt, dass dieser Gedanke Einsteins wissenschaftlich äußerst revolutionär war und zuerst von vielen Physikern strikt abgelehnt wurde.\(^5\) Die Anwendung des relativistischen Energie- und Impulssatzes auf die Streuung eines Photons mit der Energie \(E = \hbar \omega \) und Impuls \(p = \hbar k \) an einem schwach gebundenen Elektron des Streumaterials liefert den bereits im Rahmen von Physik III besprochenen Compton-Effekt.

Komplementarität von Wellen- und Teilcheneigenschaften

Zusammenfassend können wir folgenden Sachverhalt nochmals betonen:

Licht ist weder Welle noch Teilchen. Es ist ein physikalisches Objekt, für das uns die klassischen Vorstellungen fehlen.

1.1.2 Dualismus der Materie

\(^6\) Komplementaritätsprinzip, formuliert von Niels Bohr im Jahr 1927.
Klassische Teilchen

Der Wellencharakter von Teilchen

Louis de Broglie machte 1924 den Vorschlag, die duale Beziehung \(p = \frac{\hbar}{k} \) zwischen Teilchen- und Wellenbild, die sich bei Licht gut bewährte, auch auf mikroskopische Teilchen wie Elektronen oder Neutronen zu übertragen, deren Wellencharakter bis dahin allerdings noch nie beobachtet wurde.\(^7\)

Wendet man die Beziehung \(p = \frac{\hbar}{k} \) auf Teilchen der Masse \(m \) an, die sich mit der Geschwindigkeit \(v_T \) bewegen, so muss man im dualen Modell wegen \(k = \frac{2\pi}{\lambda} \) den Teilchen die de Broglie Wellenlänge

\[
\lambda = \frac{\hbar}{p} = \frac{\hbar}{mv_T} = \frac{\hbar}{\sqrt{2mE_{\text{kin}}}} \quad \text{de Broglie Beziehung} \quad (1.1.8)
\]

Bis heute wurde eine Vielzahl von Beugungs- und Interferenzexperimente mit Materiewellen außer mit Elektronen vor allem mit Neutronen sowie H- und He-Atomen durchgeführt. 1991 gelang es z.B. Mlynek mit Hilfe eines Materiewellen-Interferometers, die Beugung von He-Atomen am Doppelspalt nachzuweisen. Heute wissen wir, dass die Wellenhypothese von de Broglie gleichermaßen für schwere und leichte Atome gilt, wir können deshalb ohne Einschränkung folgende Feststellung treffen:\(^9\)

\(^7\)Für diese Arbeit erhielt de Broglie 1929 den Nobelpreis für Physik.

\(^8\)Clinton Joseph Davisson (1881-1958), Nobelpreis für Physik 1937; Lester Halbert Germer (1896-1971).

\(^9\)Zur Herleitung der Beziehung zwischen Phasen- und Teilchengeschwindigkeit gilt:

(a) nicht-relativistische Teilchen:
Es gilt

\[
v_{\text{ph}} = \omega(k) = \frac{E(k)}{\hbar k} = \frac{E(p)}{p} = \frac{k^2 m}{\hbar^2} = \frac{\hbar k}{2m}
\]

Für die Teilchen (bzw. Gruppengeschwindigkeit) gilt

\[
v_T = \frac{\partial E(p)}{\partial p} = \frac{1}{\hbar} \frac{\partial E(k)}{\partial k} = \frac{p}{m} = \frac{\hbar k}{m} = 2v_{\text{ph}}.
\]

(b) relativistische Teilchen:
Abbildung 1.1: Oben: Vergleich der Elektronenbeugung (a) und der Röntgenbeugung (b) beim Durchstrahlen einer dünnen Metallfolie. Unten: Vergleich der Elektronen (c) und der Lichtbeugung (d) an der Kante eines MgO-Einkristalls. Der Abstand \(r_0 \) zur Photoplatte wurde so eingestellt, dass das Produkt \(r_0 \lambda \) in (c) und (d) gleich groß ist (aus H. Raether: Elektroneninterferenzen, in Handbuch der Physik, Bd. 32, 443 (1957)).

Bewegt sich ein Objekt mit nicht verschwindender Ruhemasse mit dem Impuls \(p = mv_T \), dann kann ihm eine Materiewelle der Wellenlänge \(\lambda \), der Kreisfrequenz \(\omega \) und der Phasengeschwindigkeit \(v_{ph} \) zugeordnet werden:

\[
\begin{align*}
\lambda &= \frac{h}{p} \\
\omega &= \frac{E}{\hbar} \\
v_{ph} &= \frac{c^2}{v_T}.
\end{align*}
\]

Ein überzeugendes Beispiel für den Wellencharakter von mikroskopischen Teilchen ist in Abb. 1.1 gezeigt. In Abb. 1.1a und b wird die Elektronenbeugung und Röntgenbeugung an einer dünnen Metallfolie dargestellt, wobei die Energie \(eU_B \) (\(e \) ist die Ladung des Elektrons, \(U_B \) die Beschleunigungsspannung) Es muss die volle Dispersionsrelation aus der Dirac-Gleichung benutzt werden. Es gilt

\[
E(p) = \sqrt{m_0^2c^4 + p^2c^2} = \sqrt{m_0^2c^4 + \frac{m_0^2v^2}{\beta^2}c^2} = m_0c^2\sqrt{1 + \frac{v^2/c^2}{\beta^2}} = \frac{m_0c^2}{\beta} = mc^2
\]

mit \(\beta^2 = 1 - \frac{v^2}{c^2} \). Für die Phasengeschwindigkeit erhält man damit

\[
v_{ph} = \frac{E(p)}{p} = \frac{mc^2}{mv_T} = \frac{c^2}{v_T}.
\]

Andererseits lässt sich zeigen, dass

\[
v_{gr} = \frac{\partial E}{\partial p} = \frac{p}{m} = v_T.
\]

Das heißt, es gilt

\[
v_{ph}v_{gr} = c^2.
\]
der Elektronen so gewählt wurde, dass die de Broglie Wellenlänge der Elektronen \(\lambda = h/\sqrt{2meU_B} \) der Wellenlänge der Röntgenstrahlung entspricht. Man erkennt, dass mit Materiewellen (Elektronen) und “klassischen elektromagnetischen Wellen” (Röntgenstrahlung) ein identisches Ergebnis erhalten wird.

In Abb.1.1c und d wird die Beugung von Licht und Elektronenwellen an der Kante eines MgO-Kristalls verglichen. Dabei wurde der Abstand \(r_0 \) der Photoplatte so eingestellt, dass in beiden Fällen das Produkt \(r_0 \lambda \) gleich groß ist und damit wiederum für Materiewelle und klassische Welle gleiche Beugungsbilder erhalten werden.

Zum Vergleich sind in Tabelle 1.1 die Teilchen- und Welleneigenschaften von Teilchen mit endlicher Ruhemasse \(m_0 \) und von Photonen gegenübergestellt.

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Teilchen: (m_0 \neq 0)</th>
<th>Photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhemasse</td>
<td>(m_0)</td>
<td>0</td>
</tr>
<tr>
<td>Geschwindigkeit</td>
<td>(v_T)</td>
<td>(c)</td>
</tr>
<tr>
<td>Masse</td>
<td>(m)</td>
<td>(m = E/c^2)</td>
</tr>
<tr>
<td>Impuls</td>
<td>(p = mv_T)</td>
<td>(p = E/c)</td>
</tr>
<tr>
<td>Energie</td>
<td>(E = mc^2 = \sqrt{p^2c^4 + (m_0c^2)^2})</td>
<td>(E = mc^2)</td>
</tr>
<tr>
<td>Drehimpuls</td>
<td>(L = r \times p)</td>
<td>(s = \pm \hbar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Teilchen: (m_0 \neq 0)</th>
<th>Photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequenz</td>
<td>(\omega = E/\hbar = mc^2/\hbar)</td>
<td>(\omega = E/\hbar)</td>
</tr>
<tr>
<td>Wellenlänge</td>
<td>(\lambda = h/p)</td>
<td>(\lambda = hc/E = c/\nu)</td>
</tr>
<tr>
<td>Phasengeschwindigkeit</td>
<td>(v_{ph} = c^2/v_T)</td>
<td>(v_{ph} = c)</td>
</tr>
<tr>
<td>Gruppengeschwindigkeit</td>
<td>(v_{gr} = v_T)</td>
<td>(v_{gr} = c)</td>
</tr>
<tr>
<td>Energie</td>
<td>(E = h\nu)</td>
<td>(E = \hbar\omega)</td>
</tr>
</tbody>
</table>

Tabelle 1.1: Vergleich der Teilchen- und Welleneigenschaften von Teilchen mit endlicher Ruhemasse und von Photonen.
1.2 Materiewellen und Wellenfunktionen

Wir wollen nun zunächst die Wellenbeschreibung eines freien, nichtrelativistischen Teilchens mit der Masse m, dass sich mit der Geschwindigkeit v_T in x-Richtung bewegen soll, vertiefen. Wir wählen für die Materiewelle eine zur Lichtwelle analoge Darstellung:

$$\Psi(x,t) = \Psi_0 \exp \left[i \left(kx - \omega t \right) \right] = \Psi_0 \exp \left[\frac{i}{\hbar} \left(px - Et \right) \right].$$ (1.2.1)

Hierbei ist die Frequenz ω der Materiewelle mit der kinetischen Energie $E = E_{\text{kin}} = \frac{p^2}{2m}$ des Teilchens ($E_{\text{pot}} = 0$ für freies Teilchen) durch $\omega = E/\hbar$ verknüpft. Sowohl für Materiewellen als auch Lichtwellen gelten ferner die Beziehungen

$$E = \hbar \omega \quad \text{und} \quad p = \hbar k$$ (1.2.2)

mit $|k| = 2\pi/\lambda$. Es besteht jedoch ein wichtiger Unterschied bezüglich der Phasengeschwindigkeit v_{ph}, die man aus der Bedingung

$$\frac{d}{dt}(kx - \omega t) = 0 \quad \Rightarrow \quad \frac{dx}{dt} = v_{ph} = \frac{\omega}{k}$$ (1.2.3)

erhält. Während für elektromagnetische Wellen wegen $k = \omega/c$ die Phasengeschwindigkeit $v_{ph} = c = \text{const.}$ ist, d.h. die Dispersion von elektromagnetischen Wellen im Vakuum gleich Null ist, gilt dies für Materiewellen nicht.

Aus (1.2.2) erhält man mit $E = E_{\text{kin}} = \frac{p^2}{2m}$ für ein freies Teilchen (das Teilchen bewegt sich im konstanten Potenzial V) unter Benutzung von $p = \hbar k$ und $\omega = E/\hbar$

$$\omega = \frac{\hbar}{2m} k^2 \quad \Rightarrow \quad v_{ph} = \frac{\omega}{k} = \frac{\hbar}{2m} k$$

$$\Rightarrow \quad \frac{dv_{ph}}{d\omega} = \frac{1}{k} \neq 0$$ (1.2.4)

© Walther-Meißner-Institut
Die Phasengeschwindigkeit der Materiewelle hängt also vom Wellenvektor k, d.h. vom Impuls des Teilchens ab. Mit der Teilchengeschwindigkeit $v_T = p/m = \hbar k/m$ folgt dann

$$v_{ph} = \frac{1}{2} v_T ,$$

ist gleich der halben Teilchengeschwindigkeit.\(^{10}\)

Wir sehen also, dass die Materiewelle (1.2.1) nur sehr eingeschränkt zur Beschreibung der Teilchenbewegung geeignet ist, zumal die ebene Welle (1.2.1) sich ja im ganzen Raum ausbreitet. Im Gegensatz dazu ist das Teilchen wenigstens ungefähr an einer Stelle lokalisiert. Diesen Mangel kann man durch Einführung von Wellenpaketen beheben. Wellenpakete wurden bereits in der Physik III eingeführt. Im folgenden Abschnitt werden die wichtigsten Aspekte kurz rekapituliert.

1.2.1 Wellenpakete

Bei einer Überlagerung von unendlich vielen Wellen, deren Frequenzen ω im Intervall $\omega = \omega_0 \pm \Delta \omega$ und deren Wellenzahlen im Intervall $k = k_0 \pm \Delta k$ liegen, erhält man

$$\Psi(x,t) = \int_{k_0 - \Delta k}^{k_0 + \Delta k} \Psi_0(k) \exp[i(kx - \omega t)] \, dk .$$

Wenn $\Delta k \ll k_0$ gilt, kann man die Funktion $\omega(k)$ in eine Taylorreihe

$$\omega(k) = \omega_0 + \left(\frac{d \omega}{dk} \right)_{k=k_0} (k-k_0) + \ldots$$

entwickeln, deren höhere Glieder vernachlässigt werden können. Wenn sich ferner die Amplitude in dem engen Intervall $2\Delta k$ nicht ändert, können wir $\Psi_0(k)$ durch $\Psi_0(k_0)$ ersetzen und erhalten durch Einsetzen von (1.2.7) in (1.2.6) unter Benutzung der Abkürzungen

$$K = k - k_0 \quad \text{und} \quad u = \left(\frac{d \omega}{dk} \right)_{k=k_0} t - x$$

den Ausdruck

$$\Psi(x,t) = \Psi_0(k_0) \exp[i(k_0 x - \omega_0 t)] \int_{-\Delta k}^{+\Delta k} \exp[iuK] \, dK .$$

Durch Ausführen der Integration erhält man

\(^{10}\)Für den relativistischen Fall erhält man $v_{ph} v_T = c^2$, siehe hierzu Seite 7
Abbildung 1.2: Wellenpaket als Überlagerung von unendlich vielen Wellen mit Frequenzen ω im Bereich $\omega_0 \pm \Delta \omega$ und konstanten Amplituden $\Psi(k) = \Psi_0(k_0)$ (a) und einer Gauss-förmigen Amplitudenverteilung nach (1.2.14).

\[\Psi(x,t) = A(x,t) \exp[i(k_0 x - \omega_0 t)] \]
mit

\[A(x,t) = 2\Psi_0(k_0) \frac{\sin(u\Delta k/2)}{u}. \]

Die Funktion $\Psi(x,t)$ beschreibt also eine ebene Welle, deren Amplitude A bei $u=0$, also bei $x_{\text{max}} = (d\omega/dk)_{k_0} t$, ein Maximum hat (siehe Abb. 1.2). Wir bezeichnen diese Funktion $\Psi(x,t)$ als Wellenpaket. Die Funktion (1.2.10) hat Nullstellen die ersten Nullstellen bei $u\Delta k/2 = \pm \pi$, das heißt der Abstand zwischen den beiden ersten Nullstellen ist $2\Delta u = 4\pi/\Delta k$. Für eine feste Zeit $t = t_0$ erhalten wir damit $2\Delta x = 4\pi/\Delta k$.

Die genaue Form des Wellenpakets hängt von der Größe des Intervals Δk und von der Amplitudenverteilung $\Psi_0(k)$ ab. Sein Maximum bewegt sich mit der Geschwindigkeit

\[v_{\text{gr}} = \left(\frac{d\omega}{dk}\right)_{k=k_0} \]

in x-Richtung. Aus den Relationen

\[\omega = \frac{E}{\hbar} = \frac{p^2}{2m\hbar} = \frac{\hbar k^2}{2m} \]

© Walther-Meißner-Institut
Abschnitt 1.2

folgt dann

\[v_{gr} = \left(\frac{d\omega}{dk} \right)_{k_0} = \frac{\hbar k_0}{m} = \frac{p_T}{m} = v_T. \] (1.2.13)

Wir können damit folgende wichtigen Punkte zusammenfassen:

- Teilchen können durch Wellenpakete beschrieben werden. Die Gruppengeschwindigkeit des Wellenpakets ist gleich der Teilchengeschwindigkeit.
- Der Wellenvektor \(k_0 \) des Gruppenzentrums bestimmt den Teilchenimpuls \(p_T = \hbar k_0 \).
- Im Gegensatz zur ebenen Welle ist das Wellenpaket räumlich lokalisiert. Seine Amplitude hat nur in einem beschränkten Raumgebiet \(\Delta x \) eine große Amplitude. Für die Fußbreite des zentralen Maximums erhält man wegen \(\Delta k \leq 2k_0 \) die Beziehung \(\Delta x = 4\pi/\Delta k \geq 2\pi/k_0 = \lambda \). Die Breite des Wellenpakets ist also mindestens so groß wie die de Broglie Wellenlänge.

Es sei hier noch darauf hingewiesen, dass die zusätzlichen Nebenmaxima in Abb. 1.2a verschwinden, wenn man für die Amplitudenverteilung der Teilwellen eine Gauss-Verteilung

\[\Psi_0(k) = \Psi_0(k_0) \exp \left(-\frac{(k-k_0)^2}{2(\Delta k)^2} \right) \] (1.2.14)

annimmt (siehe Abb. 1.2b).

Obwohl es zunächst so aussieht, als ob wir das Wellenpaket als geeignetes Wellenmodell des Teilchens betrachten können, treten bei näherer Betrachtung doch folgende Probleme auf:

- Die Funktion \(\Psi(x,t) \) kann komplexe und auch negative Werte annehmen, die nicht unmittelbar mit einer Messgröße verknüpft werden können.
- Die Breite des Wellenpakets wird aufgrund der Dispersion der Materiewellen im Laufe der Zeit größer (siehe unten). Es verändert also im Gegensatz zu einem klassischen Teilchen bei der Ausbreitung im Raum seine Form.
- Ein elementares Teilchen wie das Elektron stellen wir uns als unteilbar vor. Ein Wellenpaket kann dagegen mit Hilfe eines Strahlteilers in zwei Komponenten aufgeteilt werden, die sich dann in verschiedene Richtungen weiterbewegen.

Diese Schwierigkeiten bewogen Max Born 1927 dazu, eine statistische Deutung der Materiewellen zu geben, die im Abschnitt 1.3.1 vorgestellt wird.

1.2.2 Die Heisenbergsche Unschärferelation

Wir betrachten ein Wellenpaket mit einer Gauss-förmigen Amplitudenverteilung
\[\Psi_0(k) = \Psi_0 \exp \left[-2\sigma^2 (k - k_0)^2 \right]. \quad (1.2.15) \]

Mit dieser Amplitudenverteilung erhalten wir aus (1.2.6) für den Zeitpunkt \(t = 0 \) die Wellenfunktion

\[\Psi(x,0) = \left(\frac{1}{2\pi\sigma^2} \right)^{1/4} \exp \left(-\frac{x^2}{4\sigma^2} \right) \exp(ik_0x). \quad (1.2.16) \]

Das Absolutquadrat dieser so normierten Wellenfunktion ist

\[|\Psi(x,0)|^2 = \left(\frac{1}{2\pi\sigma^2} \right)^{1/2} \exp \left(-\frac{x^2}{2\sigma^2} \right) \]

und erfüllt die Normierungsbedingung

\[\int_{-\infty}^{+\infty} |\Psi(x,0)|^2 dx = 1. \quad (1.2.18) \]

Das Wellenpaket (1.2.16) hat seine maximale Amplitude bei \(x = 0 \). Bei \(x_{1/e} = \pm \sigma \) ist die Wahrscheinlichkeitsdichte \(|\Psi(x,0)|^2 \) auf \(\frac{1}{\sqrt{\pi}} \) ihres Maximalwertes abgefallen. Man definiert üblicherweise das Intervall \(\Delta x = 2\sigma \) als die volle Breite des Wellenpakets.11

Nach (1.2.15) setzt sich das Wellenpaket aus ebenen Wellen mit einer Amplitudenverteilung \(\Psi_0(k) \) zusammen. Die volle Breite \(\Delta k \) der Amplitudenverteilung beträgt entsprechend \(\Delta k = 1/a \). Damit erhält man das folgende wichtige Ergebnis:

\[\Delta x \Delta k = 1. \quad (1.2.19) \]

Mit der de Broglie Beziehung \(p_x = \hbar k \) für den Impuls des Teilchens, das sich in \(x \)-Richtung bewegt, ergibt sich aus (1.2.19)

\[\Delta p_x \Delta x = \hbar. \quad (1.2.20) \]

Man kann zeigen, dass ein Gauss-förmiges Wellenpaket das minimale Produkt \(\Delta p_x \Delta x \) hat und sich für alle anderen Amplitudenverteilungen größere Werte ergeben. Wir kommen damit zu einer Aussage, die

\footnote{Im Gegensatz dazu bezeichnet die \textit{Full Width at Half Maximum} (FWHM) die volle Breite der Kurve bei halbem Funktionswert. Wir können leicht zeigen, dass FWHM = \(\sqrt{8\ln 2} \sigma \).}

© Walther-Meißner-Institut
Werner Heisenberg (1901 -1976), Nobelpreis für Physik 1932:

Werner Heisenberg starb 1976.

erstamls von Werner Heisenberg formuliert wurde und nach ihm Heisenbergsche Unschärferelation genannt wird:

$$\Delta x \cdot \Delta p_x \geq \hbar.$$ (1.2.21)

Die Beziehung besagt, dass das Produkt aus der Unbestimmtheit Δx der Ortsbestimmung und der Impulsschärfe Δp_x, gegeben durch die Breite der Impulsverteilung der das Wellenpaket aufbauenden Teilwellen, immer größer oder gleich \hbar ist. Entsprechende Unschärferelationen für Ort und Impuls gelten auch für die y- und z-Komponenten.

12Es sei hier darauf hingewiesen, dass als Breite Δx einer Gauss-Verteilung oft auch das Intervall zwischen den beiden Punkten gewählt wird, bei denen die Funktion auf $1/e$ statt auf $1/\sqrt{\pi}$ ihres Maximalwertes abgesunken ist. In diesem Fall ergibt sich $\Delta x \cdot \Delta p_x \geq 4\sqrt{2}\hbar$. Wählt man als Breite des Wellenpakets die Nullstellen auf beiden Seiten des zentralen Maximums (siehe Abb. 1.2a), so erhält man $\Delta x \cdot \Delta p_x \geq \hbar$. Man sieht, dass der Zahlenwert für die untere Grenze des Produkts $\Delta x \cdot \Delta p_x$ von der genauen Definition der Ortsunschärfe und der entsprechenden Impulsschärfe abhängt. Abb. 1.3 zeigt, dass eine große Ortsunschärfe mit einer kleinen Impulsschärfe und umgekehrt verbunden ist.
Abbildung 1.3: Darstellung der Unschärferegelung durch die Orts- und Impulsunschärfen von zwei Wellenpaketen mit kleiner (a) und großer Ortsunschärfe (b).

der Physik, in dem die Heisenbergsche Unschärferegelung berücksichtigt werden muss. Der Bahnbegriff macht hier keinen Sinn mehr.

Wir wollen die Ausführungen zur Makro- und Mikrophysik durch Beispiele belegen. Ein freies Objekt der Masse \(m \) soll zur Zeit \(t = 0 \) auf den Bereich \(x_0 \pm \Delta x_0 \) lokalisiert sein. Die Frage ist nun, auf welchen Bereich \(x_0 \pm \Delta x \) es sich nach der Zeit \(t = 1 \sec \) ausgedehnt hat. Nach Heisenberg gilt \(m\Delta v\Delta x_0 = \hbar \) oder \(\Delta v = \frac{\hbar}{m\Delta x_0} \), woraus für den gesamten Unschärfebereich nach \(t \) Sekunden \(\Delta x = t\Delta v = \frac{\hbar t}{m\Delta x_0} \) folgt. Wählt man \(m = 1 \, \text{g} \) und reduziert \(\Delta x_0 \) durch eine sehr genaue Ortsmessung auf \(1 \, \mu\text{m} \), so wird diese Lokalisierung nach \(1 \, \text{s} \) um \(\Delta x \sim 10^{-25} \, \text{m} \) verändert. Diese Veränderung ist um viele Größenordnungen kleiner als die verfügbare Messgenauigkeit, sie wird also vom Beobachter gar nicht bemerkt. Handelt es sich dagegen bei dem betrachteten Objekt um ein freies Elektron mit Masse \(m = 9.1 \times 10^{-31} \, \text{kg} \), dass zur Zeit \(t = 0 \) auf einen Bereich von \(\Delta x_0 = 10^{-10} \, \text{m} \) (Atomradius) lokalisiert werden kann, so kann man das Elektron nach \(1 \, \text{s} \) im Bereich \(x_0 \pm \Delta x = x_0 \pm 1000 \, \text{km} \) finden. Die Kenntnis über den genauen Aufenthaltsort des mikroskopischen Objekts Elektron geht also im Laufe der Zeit verloren.

Energie-Zeit Unschärferegelung

Betrachtet man ein Wellenpaket wieder als eine Überlagerung von Teilwellen entsprechend (1.1.9), integriert jetzt aber nicht über das \(k \)-Intervall \(\Delta k \) sondern über das Frequenzintervall \(\Delta \omega \), so lässt sich entsprechend zur Ort-Impuls-Unschärferegelung eine Energie-Zeit-Unschärferegelung ableiten (siehe hierzu auch Physik III):

\[
\Delta E \cdot \Delta t \geq \hbar .
\]

(1.2.22)

1.2.3 Messprozess und Observable

Dies trifft für den Bereich der Makrophysik nicht zu. Um diesen Unterschied zwischen Mikro- und Makrophysik herauszuhoben, benutzt man in der Mikrophysik nicht mehr den Begriff *physikalische Größe*, sondern den der *Observablen*. Man unterscheidet dabei verträglich und unverträgliche Observable:

Zwei Observable heißen komplementär oder unverträglich zueinander, wenn bei ihrer gleichzeitigen Messung die Genauigkeit ihrer Messwerte durch die Heisenbergsche Unschärferelation eingeschränkt ist.

Um den Einfluss des Messprozesses klarer zu machen, betrachten wir ein aktuelles Beispiel: die Messung von Gravitationswellen mit Hilfe eines an Federn aufgehängten schweren Metallzylinders (etwa 10 Tonnen). Gravitationswellen, die z.B. bei der Explosion eines Sterns (Supernova) entstehen, würden eine periodische Kontraktion und Expansion des Zylinders um etwa \(10^{-21} \) m bewirken (theoretische Vorhersage). Um diese Längenänderung zu messen, muss die Messungenauigkeit bei der Ortsmessung mindestens \(\Delta x = 10^{-21} \) m sein. Durch diese sehr genau Messung wird aber eine Impulsunschärfe von \(\Delta p = \hbar / \Delta x \) bewirkt. Das heißt, war der Zylinder ursprünglich in Ruhe, so erhält er durch die Messung eine endliche Geschwindigkeit \(v = \Delta p / m = \hbar / \Delta x m \). Die Periode der Gravitationswelle ist etwa \(\tau = 10^{-3} \) sec. In dieser Zeit verursacht die endliche Geschwindigkeit eine Ortsveränderung von \(\Delta x_m = v \tau = \hbar \tau / \Delta x m \). Mit \(m = 10^4 \) kg und \(\tau = 10^{-3} \) sec erhält man \(\Delta x_m \approx 10^{-20} \) m, was oberhalb der erforderlichen Messgenauigkeit liegt. Die durch die Unschärferelation bewirkte Ortsunschärfe ist also größer als die zu erwartende Verschiebung durch die Gravitationswelle. Einen Ausweg bildet die Verwendung einer größeren Masse und die Mittelung über viele Messdaten.

1.2.4 Dispersion von Materiewellen

Nach (1.2.13) besteht zwischen der Gruppengeschwindigkeit \(v_{gr} \) eines Wellenpakets und dem Impuls \(p \) des entsprechenden Teilchens die Beziehung

\[
v_{gr} = \frac{p}{m} . \tag{1.2.23}
\]

Da der Anfangsimpuls des Teilchens nur mit einer Unschärfe \(\Delta p \) bestimmt werden kann, ergibt sich eine Unschärfe...
Abbildung 1.4: Auseinanderlaufen eines Wellenpakets bei anfänglich kleiner (a) und bei größer (b) Ortsunschärfe.

\[\Delta v_{\text{gr}} = \frac{1}{m} \Delta p = \frac{1}{m} \frac{\hbar}{\Delta x_0}, \]

(1.2.24)

wobei \(\Delta x_0 \) die ursprüngliche Breite des Wellenpakets, d.h. die Unschärfe der Ortsbestimmung ist. Die Unschärfe \(\Delta x(t) \), mit der man zu einem späteren Zeitpunkt den Ort des Teilchens bestimmen kann, wächst aufgrund der Unschärfe der Gruppengeschwindigkeit mit der Zeit an:

\[\Delta x(t) = \Delta v_{\text{gr}} \cdot t = \frac{\hbar}{m \Delta x_0} t. \]

(1.2.25)

Die Fläche unter dem Wellenpaket bleibt dabei wegen der Normierungsbedingung gleich (siehe Abb. 1.4). Die Zunahme der Breite \(\Delta x \) ist um so größer, je schmaler die ursprüngliche Breite \(\Delta x_0 \) war, weil dann die ursprüngliche Impulsbreite und damit die Unschärfe der Gruppengeschwindigkeit besonders groß ist. Insgesamt sehen wir, dass die Lokalisierbarkeit des Teilchens im Laufe der Zeit abnimmt. Das Gebiet, in dem es sich aufhalten kann, wird mit der Zeit größer.
Abschnitt 1.2: Physik IV

1.2.5 Gegenüberstellung Quantenphysik – klassische Physik

Wir wollen in diesem Unterabschnitt kurz zusammenfassen, was die klassische Physik von der Quantenphysik unterscheidet. Wir haben bisher an vielen Beispielen vor allem den Welle-Teilchen-Dualismus herausgearbeitet. Wir wollen diesen Dualismus hier zusammenfassend nochmals verdeutlichen, um die Essenz der quantenphysikalischen Beschreibung herauszuarbeiten und um nochmals klarzumachen, dass Wellen- und Teilchen-Modell keine widersprüchlichen, sondern komple mentäre Beschreibungen der Natur sind.

Klassische Teilchenbahnen – quantenphysikalische Wahrscheinlichkeitsdichten

Interferenzerscheinungen

Für Licht und mikroskopische Teilchen können Interferenzerscheinungen beobachtet werden. Die Interferenzerscheinungen bei Licht und Teilchenwellen resultieren aus der prinzipiellen Unkenntnis des genauen Weges durch die Interferenzanordnung.

Für makroskopische Teilchen können Interferenzerscheinungen nicht beobachtet werden. Dies liegt aber an deren extrem kleiner de Broglie Wellenlänge und nicht an einer prinzipiellen physikalischen Ursache.

13Bei nichtlinearen Systemen hängen die Bahnen allerdings sehr empfindlich von den Anfangsbedingungen ab, so dass bereits kleinste Änderungen der Anfangsbedingungen zu exponentiell anwachsenden Abweichungen der Teilchenbahnen führen (chaotische Bahnen).
Abbildung 1.6: Die Rolle des Strahlteilers mit (a) und ohne (b) Interferenz.

Die Rolle des Messprozesses

Bei der quantenmechanischen Beschreibung der Messung von Ort und Impuls beeinflusst der Messprozess den Zustand des zu messenden Systems.

Bedeutung der Quantenphysik für das Naturverständnis

Die Quantenphysik kann viele experimentelle Tatsachen (Stabilität der Atome, Beugung von Elektronen, Photoeffekt, Schwarzkörperstrahlung) befriedigend beantworten. In ihrer Erweiterung zur Quantenelektrodynamik befinden sich ihre Aussagen in völliger Übereinstimmung mit allen bisherigen experimentellen Ergebnissen.

Die Wahrscheinlichkeitsinterpretation und die Unschärferelation in der Quantenphysik haben bedeutsame philosophische Konsequenzen. Das zukünftige Verhalten eines Mikroteilchens ist nicht völlig durch seine Vergangenheit bestimmt, wie dies ja in der klassischen Mechanik der Fall ist. Erstens kann der Anfangszustand nicht exakt bestimmt werden und zweitens hat auch der Endzustand eine Wahrscheinlichkeitsverteilung um den von der klassischen Physik vorausgesagten Wert.

Ein Lichtstrahl wird an einem Strahlteiler \(S \) in zwei gleich intensive Teilstrahlen aufgeteilt und dann von zwei Detektoren \(D_1 \) und \(D_2 \) analysiert (siehe Abb. 1.6). Jeder der Detektoren zählt die statistisch auftreffenden Photonen und misst im zeitlichen Mittel die gleiche Anzahl. Da ein Photon aber nicht teilbar ist, kommt es entweder an Detektor 1 oder Detektor 2 an, d.h. sie müssen statistisch verteilt entweder von \(S \) reflektiert oder durch \(S \) transmittiert werden. Jetzt wird ein zweiter Strahlteiler eingebracht. Durch
unterschiedliche Phasendifferenzen durch die unterschiedlichen Laufwege der Teilstrahlen in Abb. [1.6b] beobachtet man nur eine endliche Intensität an D_1 (konstruktive Interferenz), während D_2 keine Photonen detektiert (destruktive Interferenz). Dies wird auch beobachtet, wenn die Lichtintensität so gering ist, dass immer nur ein Photon sich in der ganzen Anordnung befindet. Es stellt sich dann die Frage, woher die Photonen wissen, dass sie jetzt nur einen Weg, nämlich zum Detektor 1 gehen dürfen. Dieses Experiment zeigt, dass man Photonen keinen Weg zuordnen kann, sondern nur eine Nachweiswahrscheinlichkeit am Detektor. Eine Zuordnung des Weges würde Δx endlich machen und dadurch auch eine endliche Impulsunschärfe der Photonen verursachen, die wiederum die Interferenzerscheinung beeinflussen würde.
1.3 Grundlagen der Quantenmechanik

Wir haben bereits gesehen, dass wir wegen der Unschärferelation Ort und Impuls eines mikroskopischen Teilchens nicht mit beliebiger Genauigkeit gleichzeitig angeben können. Anstelle der klassischen Teilchenbahn, die für einen Massenpunkt durch eine wohldefinierte Raumkurve \(r(t) \) dargestellt werden kann, tritt die Wahrscheinlichkeit, das Teilchen zu einem Zeitpunkt \(t \) in einem Volumenelement \(dV \) zu finden. Wir werden sehen, dass das eigentlich Neue an der Quantenphysik die Beschreibung von klassischen Teilchen durch eine so genannte Zustandsfunktionen ist. Die deterministische Beschreibung der zeitlichen Entwicklung von Ort und Impuls wird dabei ersetzt durch eine statistische Beschreibung, in deren Rahmen man lediglich Wahrscheinlichkeiten für die Ergebnisse von Messungen angeben kann. Wir werden in diesem Abschnitt zeigen, wie die Zustandsfunktion berechnet werden kann. Wir werden ferner anhand von einfachen Beispielen die physikalischen Grundlagen der Quantenmechanik und ihre Unterschiede zur klassischen Mechanik illustrieren.

1.3.1 Schrödinger-Gleichung und Materiewellen

Die Schrödinger-Gleichung

Ausgehend von der Existenz der Materiewellen gab Erwin Schrödinger im Jahr 1926 durch gewisse Analogieschlüsse zur Wellenoptik den Anstoß zur Entwicklung der Wellenmechanik, indem er zunächst versuchte, eine klassische Feldtheorie für Quantenobjekte zu entwickeln. Nach Schrödinger können Materiewellen durch die wellenförmige Ausbreitung einer Zustandsfunktion \(\Psi(r,t) \) beschrieben werden, wobei für diese analog zur Wellenoptik die Beziehungen
\[\Psi(r,t) = A \exp[i(k \cdot r - \omega t)] = A \exp[i(p \cdot r - E t)] \]
\hspace{1cm} (1.3.1)

gilt.

Wir betrachten zunächst den Fall eines freien Teilchens, für das die potentielle Energie \(E_{\text{pot}} \) gleich Null ist und deshalb \(E = E_{\text{kin}} \) gilt. Aufgrund der Analogie zur Wellenoptik liegt es ferner nahe, von der Wellengleichung

\[\nabla^2 \Psi - \frac{1}{v_{\text{ph}}^2} \frac{\partial^2 \Psi}{\partial t^2} = 0 \]
\hspace{1cm} (1.3.2)

für Wellen mit der Phasengeschwindigkeit \(v_{\text{ph}} \) auszugehen. Bei stationären Problemen, bei denen \(p \) und \(E \) nicht von der Zeit abhängen, lässt sich die Wellenfunktion in einen vom Ort abhängigen Anteil \(\Psi(r,0) = A \exp(i k \cdot r) \) und einen von der Zeit abhängigen Phasenfaktor \(\exp(-i \omega t) \) aufspalten, so dass wir

\[\Psi(r,t) = \Psi(r,0) \exp(-i \omega t) \]
\hspace{1cm} (1.3.3)

schreiben können. Geht man mit diesem Ansatz in die Wellengleichung, so erhält man wegen

\[k^2 = \frac{\omega^2}{v_{\text{ph}}^2} = \frac{p^2}{\hbar^2} = \frac{2mE_{\text{kin}}}{\hbar^2} = \frac{2m\omega}{\hbar} \]
\hspace{1cm} (1.3.4)

die Gleichung

\[\nabla^2 \Psi = -k^2 \Psi = -\frac{2mE_{\text{kin}}}{\hbar^2} \Psi \]
\hspace{1cm} (1.3.5)

Im allgemeinen Fall kann sich das Teilchen in einem Potenzial \(V \) bewegen. Ist das Potenzial konservativ, so können wir jedem Raumpunkt eine potentielle Energie \(E_{\text{pot}} \) zuordnen, wobei die Gesamtenergie \(E = E_{\text{kin}} + E_{\text{pot}} \) konstant ist. Mit \(E_{\text{kin}} = E - E_{\text{pot}} \) erhalten wir dann aus (1.3.5) die stationäre Schrödinger-Gleichung \[^{[14]} \]

\[\left(-\frac{\hbar^2}{2m} \nabla^2 + E_{\text{pot}} \right) \Psi(r) = E \Psi(r) \]
\hspace{1cm} (1.3.6)

\[^{[14]} \text{Diese Gleichung stellt das quantenmechanische Analogon zum Energiesatz } E_{\text{kin}} + E_{\text{pot}} = E \text{ dar.} \]
Differenziert man (1.3.1) partiell nach der Zeit, so erhält man

\[i\hbar \frac{\partial}{\partial t} \Psi(r,t) = E_{\text{kin}} \Psi(r,t), \] (1.3.7)

woraus wir mit (1.3.5) die zeitabhängige Gleichung

\[i\hbar \frac{\partial}{\partial t} \Psi(r,t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(r,t). \] (1.3.8)

Für nichtstationäre Probleme (d.h. \(E_{\text{kin}} = E_{\text{kin}}(t) \) und \(p = p(t) \)) lässt sich \(\partial^2 \Psi / \partial t^2 \) nicht mehr als \(-\omega^2 \Psi \) schreiben und damit aus der Wellengleichung für die Materiewellen für Teilchen herleiten. Schrödinger postulierte nun, dass auch bei einer zeitabhängigen potentiellen Energie die Gleichung

\[i\hbar \frac{\partial}{\partial t} \Psi(r,t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + E_{\text{pot}}(r,t)\right) \Psi(r,t) \] (1.3.9)

Es sei hier auf einige wichtige Sachverhalte hingewiesen:

- Ein zweiter wichtiger Punkt ist, dass die Schrödinger-Gleichung die Masse als Parameter enthält. Sie bezieht sich daher auf ein System, in dem die Teilchenzahl erhalten ist.

- Drittens enthält die Schrödinger-Gleichung explizit die Größe \(\hbar \). Dies ist bei der Wellengleichung des elektromagnetischen Feldes nicht der Fall (vergleiche (1.1.1)).

- Im Unterschied zur linearen Dispersionsrelation \(\omega(k) = ck \) elektromagnetischer Wellen gilt für Materiewellen wegen \(E = \hbar \omega = p^2 / 2m \) und \(p = \hbar k \) eine quadratische Dispersionsrelation \(\omega(k) = (\hbar / 2m) \cdot k^2 \).
Erwin Schrödinger (1887 -1961), Nobelpreis für Physik 1933:

Die Schrödinger-Gleichung wurde aus Analogiebetrachtungen gewonnen. Ihre echte Bedeutung wird erst durch die folgenden Abschnitte deutlich. Durch den Grenzübergang \(\hbar \to 0 \) können aus der Schrödinger-Gleichung die Gesetze der klassischen Mechanik hergeleitet werden. D.h. es kann immer dann die klassische Mechanik Anwendung finden, wenn Wirkungen von der Größenordnung der Planck-Konstanten vernachlässigbar sind. Damit ist die klassische Mechanik ein Grenzfall der Quantenmechanik und nicht umgekehrt. Die Gesetze der Quantenmechanik können also nicht aus denjenigen der klassischen Mechanik heraus begründet werden.

Die Schrödinger-Gleichung wurde aus Analogiebetrachtungen gewonnen. Ihre echte Bedeutung wird erst durch die folgenden Abschnitte deutlich. Durch den Grenzübergang \(\hbar \to 0 \) können aus der Schrödinger-Gleichung die Gesetze der klassischen Mechanik hergeleitet werden. D.h. es kann immer dann die klassische Mechanik Anwendung finden, wenn Wirkungen von der Größenordnung der Planck-Konstanten vernachlässigbar sind. Damit ist die klassische Mechanik ein Grenzfall der Quantenmechanik und nicht umgekehrt. Die Gesetze der Quantenmechanik können also nicht aus denjenigen der klassischen Mechanik heraus begründet werden.

\[\Psi(r, t) \] spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).

\[\Psi(r, t) \] spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).

Die komplexe Schreibweise der elektromagnetischen Wellen ist nur zur Vereinfachung der Winkelfunktion und deshalb lediglich eine mathematische Bequemlichkeit aber keine inhärente Eigenschaft. Die komplexe Natur der Zustandsfunktion \(\Psi(r, t) \) spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).

\[\Psi(r, t) \] spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).

\[\Psi(r, t) \] spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).

\[\Psi(r, t) \] spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).

\[\Psi(r, t) \] spiegelt wider, dass \(\Psi(r, t) \) nicht die reale physikalische Bedeutung zukommt wie etwa der elektrischen Feldstärke \(E(r, t) \).
Lösungen der stationären Schrödinger-Gleichung

Die Interpretation der Zustandsfunktion

Bisher wissen wir nur, dass die Zustandsfunktion $\Psi(r,t)$ eine Lösung der Schrödinger-Gleichung ist. Wie aber muss diese Lösung physikalisch interpretiert werden? Die erste Interpretation gab Schrödinger selbst und basiert auf dem Begriffsbild der klassischen Physik. Die Wellenoptik verknüpft nämlich mit dem Absolutquadrat der Amplituden $|E|^2 = E^*E$ die Intensität einer Welle. Es stellte sich deshalb die Frage, ob nicht auch die Größe $|\Psi|^2 = \Psi^*\Psi$ einer messbaren Eigenschaft des mit der Zustandsfunktion beschriebenen Quantenobjekts zugeordnet werden kann. Um diese Frage zu klären, können wir einen Teilchenstrom voneinander unabhängiger, nicht wechselwirkender Teilchen betrachten und uns die Frage stellen, wie viele Objekte dN sich zu einer bestimmten Zeit t in einem bestimmten Volumen dV befinden.

Wir haben bereits in Physik III gesehen, dass wir aus der Schrödinger-Gleichung eine Art Kontinuitätsgleichung

$$\frac{\partial}{\partial t}\rho_T + \nabla \cdot J_T = 0 \quad (1.3.10)$$

mit

$$J_T = \left[\frac{\hbar}{2mi} (\Psi^* \nabla \Psi + \Psi \nabla \Psi^*) \right] \quad (1.3.11)$$

und

$$\rho_T = |\Psi(r,t)|^2 = \Psi^*(r,t)\Psi(r,t) \quad (1.3.12)$$

ableiten können. Interpretiert man J_T als Teilchenstromdichte, das heißt den Teilchenstrom durch die ein Volumen dV einschließende Oberfläche, dann entspricht ρ_T der Kontinuitätsgleichung der Elektrodynamik. Die Größe $\rho_T = \Psi^*\Psi$ entspricht dann der Teilchenzahldichte 17

16Die Schrödinger-Gleichung enthält keine Wechselwirkungsterme.

17Man erkennt dies, wenn man $(1.3.10)$ über ein endliches Volumen integriert

$$\int_V \nabla \cdot J_T dV = -\frac{\partial}{\partial t} \int_V \rho_T dV$$

und das linke Integral mit Hilfe des Gaußschen Satzes in ein Oberflächenintegral über die das Volumen umschließende Oberfläche A überführt:

$$\oint_A J_T dA = -\frac{\partial}{\partial t} \int_V \rho_T dV.$$

Das rechte Integral gibt die zeitliche Änderung der Teilchenzahl im Volumen V an. Diese kann nur durch einen Teilchenfluss durch die das Volumen umschließende Oberfläche erfolgen. Deshalb gibt J_T eine Teilchenströmung und ρ_T eine Teilchendichte an.
Max Born (1882 - 1970), Nobelpreis für Physik 1954:

Am 5. Januar ver stirbt er in Göttingen.

Max Born (1882 - 1970), Nobelpreis für Physik 1954:

Am 5. Januar ver stirbt er in Göttingen.

Aus der eben beschriebenen Interpretation der Zustandsfunktion ergeben sich aber Widersprüche zur Erfahrung. Betrachtet man z.B. einen Strom von Elektronen, so enthält ein Volumen ΔV die Ladung Δq ≈ eΨ⋅ΨΔV. Es lässt sich aber stets ein ΔV finden, so dass Δq < e wird, d.h. ein Ergebnis, das dem experimentellen Befund der Existenz der Elementarladung widerspricht. Auf ähnliche Widersprüche trifft man bei der Analyse von Elektroneninterferenzen (z.B. Beugung am Doppelspalt). Diese Überlegungen zeigen, dass die Zustandsfunktion nicht im klassischen Sinne als Feldfunktion verstanden werden kann und damit das Geschehen im Quantenbereich nicht in einem klassischen Wellenbild zu beschreiben ist. Die Zustandsfunktion Ψ stellt zwar bezüglich des mathematischen Formalismus ein Feld dar, physikalisch fehlen aber Ψ wesentliche Eigenschaften, die ein Feld charakterisieren. Ψ ist insbesondere keine physikalische Größe und damit auch nicht, wie es für eine Feldgröße in jedem Raumpunkt zu fordern ist, messbar. Wir stellen also fest, dass die Interpretation von Ψ*Ψ als Teilchenzahldichte zu Widersprüchen mit der Erfahrung führt.

Wir haben bereits wiederholt darauf hingewiesen, dass im Quantenbereich weder ein Teilchenbild noch ein Wellenbild allein ausreichend ist. So können Beugung und Interferenzerscheinungen von Elektronen oder Neutronen nur im Wellenbild gedeutet werden. Photoeffekt oder Compton-Effekt dagegen nur im Teilchenbild. Weiterhin zeigten Doppelspaltexperimente mit Photonen oder Elektronen (siehe Physik III), dass diese zwar mit sich selbst interferieren können, aber immer nur als ganzes von einem Detektor registriert werden können. Es muss deshalb für den Quantenbereich ein Modell entwickelt werden, in dem nur die der Quantenwelt angepassten Züge der beiden klassischen Modellvorstellungen enthalten sind. Die Doppelspaltexperimente zeigen, dass im Quantenbereich grundsätzlich nur Wahrscheinlichkeitsaussagen gemacht werden können. Es ist deshalb naheliegend, die Zustandsfunktion Ψ nach Max Born (1926) als Wahrscheinlichkeitsdichteamplitude aufzufassen. Der Ausdruck Ψ*ΨdV gibt dann die Wahrscheinlichkeit dafür an, dass man das Quantenobjekt zur Zeit t im Volumen dV findet. Da das
Quantenobjekt sich irgendwo im Raum befinden muss, ergibt sich daraus die Normierungsbedingung

\[\int_{-\infty}^{+\infty} \Psi^* \Psi dV = \int_{-\infty}^{+\infty} |\Psi|^2 dV = 1 \quad (1.3.13) \]

Wir erhalten damit folgende Interpretation der Zustandsfunktion:

\[|\Psi(r,t)|^2 \text{ ist die Wahrscheinlichkeitsdichte dafür, dass man bei einer Ortsmessung zur Zeit } t \text{ das Quantenobjekt am Ort } r \text{ findet. Für die Wahrscheinlichkeit } W(r,t)dV \text{ das Quantenobjekt zur Zeit } t \text{ im Volumen } dV \text{ zu finden gilt:} \]

\[W(r,t)dV = |\Psi(r,t)|^2 dV \quad (1.3.14) \]

Energieeigenwerte und Eigenfunktionen

Die zeitliche Änderung eines quantenmechanischen Systems wird durch die Schrödinger-Gleichung (1.3.9) bestimmt. In vielen Fällen interessieren aber nur stationäre Zustände. Dies gilt insbesondere dann, wenn das Potenzial \(V(r) \) nicht explizit zeitabhängig ist. In diesem Fall faktorisiert die Lösungsfunktion in einen orts- und zeitabhängigen Anteil, d.h. sie lässt sich als Produkt \(\Psi(r,t) = \Psi(r,0) \exp(-i\omega t) \) schreiben (siehe Physik III). Die stationären Zustände werden durch die komplexe Amplitude \(\Psi(r) \) der Zustandsfunktion \(\Psi(r,t) \) beschrieben, die der stationären Schrödinger-Gleichung oder Energieeigenwertgleichung

\[\left(-\frac{\hbar^2}{2m} \triangle + E_{\text{pot}}(r) \right) \Psi(r) = E \Psi(r) \quad (1.3.15) \]

gehorcht.

Die Energieeigenwertgleichung hat vielfach nur für bestimmte, diskret liegende Werte \(E_k \) der Energie physikalisch sinnvolle Lösungen. Dies resultiert daraus, dass die Lösungsfunktionen \(\Psi_k \) zusätzlichen Bedingungen (Randbedingungen) unterliegen. Dadurch werden die Eigenfunktionen und Energieeigenwerte des Systems bestimmt:

Die speziellen Energiewerte \(E_k \), für die stationäre Lösungen der Energieeigenwertgleichung existieren, heißen Energieeigenwerte, die zugehörigen Lösungsfunktionen \(\Psi_k \) Eigenfunktionen.

Es sei hier ohne Beweis festgehalten, dass die zu verschiedenen Energieeigenwerten \(E_k \neq E_l \) gehörenden Eigenfunktionen \(\Psi_k \) und \(\Psi_l \) zueinander orthogonal sind. Bei entsprechender Normierung gilt also
Abschnitt 1.3

Physik IV

\[
\int_{-\infty}^{+\infty} \Psi_k^* \Psi_l dV = \delta_{kl} . \tag{1.3.16}
\]

Dies gilt allerdings nur dann, wenn zu jedem Energieeigenwert \(E_k \) nur eine Eigenfunktion \(\Psi_k \) existiert. Dies kann, muss aber nicht der Fall sein. Aus diesem Grund wird der Begriff *Entartung* eingeführt:

> Existieren zu einem Energieeigenwert \(E_k \) die \(m \) linear unabhängigen Eigenfunktionen \(\Psi_{ki} (i = 1, 2, \ldots, m) \), d.h. existieren \(m \) Eigenfunktionen, für die

\[
\sum_{i=1}^{m} c_i \Psi_{ki} = 0 \tag{1.3.17}
\]

nur dann gilt, wenn sämtliche \(c_i = 0 \) sind, dann heißt der Eigenwert \((m - 1) \)-fach entartet.

Die zu einem \((m - 1) \)-fach entarteten Eigenwert gehörenden Eigenfunktionen lassen sich wegen ihrer linearen Unabhängigkeit orthogonalisieren und normalisieren. Die Gesamtheit aller orthonormierten Eigenfunktionen bildet ein *vollständiges Funktionensystem*, nach dem die Zustandsfunktion entwickelbar ist:

\[
\Psi(r, t) = \sum_{k=0}^{\infty} c_k(t) \Psi_k(r) \tag{1.3.18}
\]

Gegenüberstellung von klassischer Welle und quantenmechanischer Zustandsfunktion

In Tabelle 1.2 sind einige wichtige Eigenschaften der quantenmechanischen Zustandsfunktion \(\Psi(r, t) \) den entsprechenden Eigenschaften einer klassischen Welle \(f(r, t) \) nochmals gegenübergestellt.

1.3.2 Operatoren

Im vorangegangenen Abschnitt wurde zur Beschreibung von Quantenteilchen die Schrödinger-Gleichung abgeleitet. Aus ihrer Lösung lassen sich statistische Aussagen über die Energiezustände von Quantenobjekten machen. Um die Tatsache zu unterstreichen, dass sich bei der Messung an einem mikroskopischen Objekt dessen Zustand selbst beeinflusst wird, haben wir den Begriff “physikalische Größe” durch den Begriff “Observable” ersetzt. Unter einer Observablen \(A \) verstehen wir eine beobachtbare, durch eine Messvorschrift definierte physikalische Größe. Der Formalismus der Quantenmechanik vermittelt uns in die Lage, Angaben über die bei der Messung einer Observablen \(A \) prinzipiell möglichen Messwerte \(A_i \) zu machen und über den zu erwartenden Messwert statistische Aussagen zu treffen. Hierzu ist in der Quantenmechanik die Verwendung von *Operatoren* zur Beschreibung von Observablen charakteristisch. Die in der klassischen Physik übliche Auffassung von einer physikalischen Größe als einer reellen Funktion anderer physikalischer Größe, z.B. \(E_{\text{kin}} = f(p) = p^2/2m \), ist dafür zu eng, weil eine reelle Funktion nur reelle Zahlen miteinander verknüpft. Der übergeordnete Begriff Operator beschreibt dagegen die Zuordnung zwischen zwei Teilmenge aus zwei beliebigen abstrakten Räumen.

In der Schrödingerschen Wellenmechanik geht man davon aus, dass der Zustand eines Systems durch eine komplexe Zustandsfunktion \(\Psi \) beschrieben werden kann. Die Zustandsfunktion stellt aber selbst keine
<table>
<thead>
<tr>
<th>klassische Welle</th>
<th>quantenmechanische Zustandsfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Größe, die sich wellenförmig ausbreitet</td>
<td>Zustandsfunktion</td>
</tr>
<tr>
<td>(f(\mathbf{r},t) = f_0(\mathbf{r}) \exp[i\omega t])</td>
<td>(\Psi(\mathbf{r},t) = \Psi_0(\mathbf{r}) \exp[i\omega t])</td>
</tr>
<tr>
<td>Dispersionsbeziehung</td>
<td>Dispersionsbeziehung</td>
</tr>
<tr>
<td>(k^2 = \frac{\omega^2}{v_{ph}^2} = \frac{4\pi^2}{\lambda^2})</td>
<td>(k^2 = \frac{2m(E-V)}{\hbar^2} = \frac{2m\omega}{\hbar})</td>
</tr>
<tr>
<td>Wellengleichung</td>
<td>Schrödinger-Gleichung</td>
</tr>
<tr>
<td>(\nabla^2 f - \frac{1}{v_{ph}^2} \frac{\partial^2 f}{\partial t^2} = 0)</td>
<td>(\left(\frac{\hbar^2}{2m} \nabla^2 - V \right) \Psi + i\hbar \frac{\partial}{\partial t} \Psi = 0)</td>
</tr>
<tr>
<td>stationäre Wellengleichung</td>
<td>stationäre Schrödinger-Gleichung</td>
</tr>
<tr>
<td>(\nabla^2 f_0 + k^2 f_0 = 0)</td>
<td>(\nabla^2 \Psi_0 + \frac{2m}{\hbar^2} (E-V) \Psi_0 = 0)</td>
</tr>
<tr>
<td>(f_0) ist als Amplitude der Welle eine messbare Größe</td>
<td>(\Psi_0) kann als Wahrscheinlichkeitsamplitude keiner messbaren Größe zugeordnet werden</td>
</tr>
<tr>
<td>(</td>
<td>f</td>
</tr>
</tbody>
</table>

Tabelle 1.2: Gegenüberstellung der Eigenschaften einer klassischen Welle und der quantenmechanischen Zustandsfunktion.

physikalische Größe bzw. Observable dar, sondern wird vielmehr über die Schrödinger-Gleichung mit der physikalischen Begriffswelt verknüpft. Im mathematischen Formalismus der Quantenmechanik wird nun jeder physikalischen Observablen \(A \) ein Operator \(\hat{A} \) zugeordnet, der auf die Wellenfunktion wirkt, um eine möglichst allgemeine und zweckmäßige Beschreibung zu erhalten. Wir werden weiter unten noch sehen, dass aus physikalischen Gründen nur lineare hermitesche Operatoren in Frage kommen. Die Eigenwerte dieser Operatoren sind dann reell und mit den den experimentell zugänglichen Messwerten einer Observablen identisch.

Bevor wir einzelne Operatoren diskutieren, wollen wir uns an den klassischen Hamilton-Formalismus erinnern. Die Hamiltonschen Bewegungsgleichungen eines mechanischen Systems lauten

\[
\frac{\partial q_i}{\partial t} = \frac{\partial H}{\partial p_i}, \quad \frac{\partial p_i}{\partial t} = -\frac{\partial H}{\partial q_i}, \quad i = 1, 2, 3, \ldots, f, \quad (1.3.19)
\]

\[18\] William Rowan Hamilton (1805 - 1865).
wobei \(q_i \) und \(p_i \) die verallgemeinerten Lage- und Impulskoordinaten und \(f \) die Anzahl der mechanischen Freiheitsgrade sind. Die \textit{Hamilton-Funktion} ist durch

\[
H(q_i, p_i, t) = \sum_{i=1}^{f} \frac{\partial q_i}{\partial t} p_i - L(q_i, \frac{\partial q_i}{\partial t}, t)
\]

gegeben, wobei \(L \) die \textit{Lagrange-Funktion}\footnote{Joseph-Louis Lagrange (1736 - 1812).}

\[
L(q_i, \frac{\partial q_i}{\partial t}, t) = E_{\text{kin}} \left(\frac{\partial q_1(t)}{\partial t}, \ldots, \frac{\partial q_f(t)}{\partial t} \right) - E_{\text{pot}}(q_1(t), \ldots, q_f(t))
\]

ist. Liegen nur konservative Kräfte vor, dann ist \(H \) mit der Gesamtenergie \(E \) identisch.\footnote{Die Hamilton-Funktion eines Teilchens mit Impuls \(p \), der kinetischen Energie \(E_{\text{kin}} = p^2 / 2m \) und der potentiellen Energie \(E_{\text{pot}} \) schreibt sich demnach nach dem Energieerhaltungssatz der klassischen Mechanik \(H = E = p^2 / 2m + E_{\text{pot}} \).}

Um von der klassischen Beschreibung zu einer zweckmäßigen Darstellung der Gesetzmäßigkeiten im Bereich der Quantenphysik zu gelangen, führen wir folgende Operatoren ein:

\[
\hat{\mathbf{p}}_i \equiv -i\hbar \frac{\partial}{\partial q_i} \quad \text{Impulsoperator (1.3.22)}
\]
\[
\hat{q}_i \equiv q_i \quad \text{Ortsoperator (1.3.23)}
\]
\[
\hat{H} \equiv H(\hat{q}_i, \hat{\mathbf{p}}_i, t) \quad \text{Hamilton-Operator (1.3.24)}
\]
\[
\hat{E} \equiv -i\hbar \frac{\partial}{\partial t} \quad \text{Energieoperator (1.3.25)}
\]

Der Energieoperator \(\hat{E} = i\hbar \frac{\partial}{\partial t} \) repräsentiert in der Quantenmechanik die Observable Energie, während der Hamilton-Operator ihren funktionellen Zusammenhang mit dem Orts- und Impulsoperator des Objektes darstellt.

Nach der obigen Definition sind einem freien Mikroobjekt \((f = 3)\) der Impulsoperator

\[
\hat{\mathbf{p}} = \hat{p}_x + \hat{p}_y + \hat{p}_z = -i\hbar \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) = i\hbar \nabla
\]

und der Operator der potentiellen Energie

\[
\hat{E}_{\text{pot}} = V(\mathbf{r})
\]

zuordnen. Damit erhalten wir aus der klassischen Hamilton-Funktion als Hamilton-Operator für das Quantenobjekt im nichtrelativistischen Grenzfall

2003
\[\hat{H} = \frac{\hat{p}^2}{2m} + \hat{E}_{\text{pot}} = -\frac{\hbar^2}{2m} \nabla^2 + V(r) . \] (1.3.28)

Damit lassen sich die Schrödinger-Gleichung [1.3.9] und die Energieeigenwertgleichung [1.3.15] in Operatorschreibweise als

\[
\begin{align*}
\hat{H} \Psi &= \hat{E} \Psi \quad (1.3.29) \\
\hat{H} \Psi_k &= E_k \Psi_k \quad (1.3.30)
\end{align*}
\]

ausdrücken. Wir gewinnen also die Schrödinger-Gleichung aus den Gesetzen der klassischen Physik, indem wir die klassische Hamilton-Funktion durch den Hamilton-Operator ersetzen und diesen entsprechend (1.3.29) auf die Zustandsfunktion anwenden. Dieses Vorgehen erscheint zunächst formal, kann aber auf jede beliebige Observable erweitert werden.

Zur praktischen Handhabung müssen wir natürlich jeder Observablen \(A \) auch den zugehörigen Operator \(\hat{A} \) zuordnen können. Dabei nutzen wir aus, dass jedes mechanische System durch Angabe seiner Orts- und Impulskoordinaten bestimmt ist und man aus der klassischen Physik zumeist für jede physikalische Größe die Funktion \(A(p_i, q_i, t) \) kennt. Mit dieser Funktion erhalten wir den zugehörigen quantenmechanischen Operator über die Vorschrift

\[\hat{A} = \hat{A}(\hat{p}_i, \hat{q}_i, t) . \] (1.3.31)

Aus der klassischen Definition des Drehimpulses \(L \) (bezogen auf den Nullpunkt \(r = 0 \)) eines Teilchens mit Masse \(m \) und Geschwindigkeit \(\mathbf{v} \)

\[L = m(r \times \mathbf{v}) = r \times \mathbf{p} \] (1.3.32)

folgt über die Vorschrift (1.3.31) mit der Definition des Impulsoperators der Drehimpulsoperator

\[\hat{\mathbf{L}} = -i\hbar(\mathbf{r} \times \nabla) . \] (1.3.33)

In kartesischen Koordinaten erhält man

\[
\begin{align*}
\hat{L}_x &= -i\hbar \left(\frac{\partial}{\partial z} - \frac{z}{\partial y} \right) \quad (1.3.34) \\
\hat{L}_y &= -i\hbar \left(\frac{\partial}{\partial x} - \frac{x}{\partial z} \right) \quad (1.3.35) \\
\hat{L}_z &= -i\hbar \left(\frac{\partial}{\partial y} - \frac{y}{\partial x} \right) \quad (1.3.36)
\end{align*}
\]

In Tabelle 1.3 sind einige physikalische Größen \(A \) mit ihren zugehörigen Operatoren \(\hat{A} \) zusammengefasst.
Physikalische Größe A & Operator \hat{A} \\
Ortsvektor \mathbf{r} & $\hat{\mathbf{r}}$
\begin{align*}
\text{potentielle Energie } E_{\text{pot}} & \Rightarrow \hat{E}_{\text{pot}} = V(\mathbf{r}) \\
\text{kinetische Energie } E_{\text{kin}} & \Rightarrow \hat{E}_{\text{kin}} = -\frac{\hbar^2}{2m} \nabla^2 \\
\text{Gesamtenergie } E = E_{\text{kin}} + E_{\text{pot}} & \Rightarrow \hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \\
\text{Impuls } \mathbf{p} & \Rightarrow \hat{\mathbf{p}} = -i\hbar \nabla \\
\text{Drehimpuls } \mathbf{L} & \Rightarrow \hat{\mathbf{L}} = -i\hbar (\mathbf{r} \times \nabla) \\
\text{z-Komponente des Drehimpulses } L_z & \Rightarrow \hat{L}_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)
\end{align*}

Tabelle 1.3: Physikalische Messgrößen mit ihren Operatoren im Ortsraum.

1.3.3 Erwartungswerte

Bei der Beschreibung der statistischen Eigenschaften eines Vielteilchensystems benutzt man in der klassischen Physik zur Definition von Mittelwerten den Begriff der Verteilungsfunktion. So wird z.B. die mittlere Geschwindigkeit \bar{v} eines Systems von Teilchen mit einer Geschwindigkeitsverteilung $f(v)$ durch

$$
\bar{v} = \frac{\int v \cdot f(v) \, dv}{\int f(v) \, dv} = \frac{\int v \cdot f(v) \, dv}{\int _{v=0}^{\infty} f(v) \, dv}
$$

gegeben. Hierbei gibt $f(v)dv$ die Wahrscheinlichkeit dafür an, dass ein Teilchen eine Geschwindigkeit im Geschwindigkeitsintervall zwischen v und $v + dv$ besitzt. Das Integral dieser Wahrscheinlichkeit über alle Geschwindigkeiten muss natürlich eins ergeben. Analog können wir den Mittelwert von v^2 oder das mittlere Geschwindigkeitsquadrat zu

$$
\bar{v^2} = \int _{v=0}^{\infty} v^2 \cdot f(v) \, dv
$$

angeben.

In der Quantenmechanik wird die Wahrscheinlichkeit, ein Teilchen im Intervall zwischen \mathbf{r} und $\mathbf{r} + d\mathbf{r}$ zu finden, durch $|\Psi(\mathbf{r})|^2$ bestimmt. Wir können deshalb den Mittelwert

$$
\bar{r} = \frac{\int \mathbf{r} \cdot |\Psi(\mathbf{r})|^2 \, dV}{\int |\Psi(\mathbf{r})|^2 \, dV} = \frac{\int \mathbf{r} \cdot |\Psi(\mathbf{r})|^2 \, dV}{\int _{-\infty}^{\infty} |\Psi(\mathbf{r})|^2 \, dV} = \int \Psi^* \hat{\mathbf{r}} \Psi \, dV
$$

geben.
als Erwartungswert für den Ort \(r \) eines Teilchens auffassen. Da durch \ref{1.3.39} also kein Mittelwert sondern ein Erwartungswert für eine Observable definiert wird, werden wir die Schreibweise

\[
\langle r \rangle = \int_{-\infty}^{\infty} \psi^* \hat{r} \psi \, dV
\]

\(\text{(1.3.40)} \)

für den Erwartungswert verwenden. An Stelle der exakten Ortsangabe in der klassischen Physik tritt in der Quantenphysik also eine Wahrscheinlichkeitsangabe. Machen wir eine Reihe von Messungen des Ortes \(r \) eines Teilchens, das durch seine stationäre Zustandsfunktion \(\Psi(r) \) beschrieben wird, so erhalten wir eine Verteilung der Messgröße \(r \) um den Mittelwert. Wichtig ist, dass diese Verteilung nicht durch statistische Messfehler zustande kommt, sondern durch die Tatsache, dass der Ort des Teilchens aufgrund der Unschärferelation eine endliche Unschärfe \(\Delta r \geq \hbar / \Delta p \) besitzt.

Allgemein erhalten wir für den Erwartungswert einer Observablen \(A \) mit der Zustandsfunktion \(\Psi(r) \) den Ausdruck

\[
\langle A \rangle = \int_{-\infty}^{\infty} \psi^* \hat{A} \psi \, dV ,
\]

\(\text{(1.3.41)} \)

wobei \(\hat{A} \) der zur physikalischen Observablen \(A \) zugeordnete Operator heißt. \(^{21} \) Wir können also folgende allgemeine Definition geben:

\text{Der Erwartungswert einer physikalischen Messgröße (Observablen) eines Teilchens ist der Mittelwert dieser Größe, gebildet mit der Zustandsfunktion des Teilchens.}

Der Erwartungswert der Observable \(A \) im Zustand \(\Psi \) repräsentiert den Mittelwert der Messwerte dieser Observablen an einem System, das sich im Zustand \(\Psi \) befindet.

\subsection*{1.3.4 Eigenwerte und Eigenfunktionen}

Wir haben bereits bei der Diskussion der Schrödinger-Gleichung die Begriffe Energieeigenwerte und Eigenfunktionen eingeführt. Wir wollen diese Diskussion jetzt auf beliebige Operatoren erweitern. Wenn bei der Anwendung des Operators \(\hat{A} \) auf eine Zustandsfunktion \(\Psi_k \) sich diese Funktion bis auf einen konstanten Faktor \(A_k \) reproduziert, d.h. wenn

\[
\hat{A} \Psi_k = A_k \Psi_k \quad \text{(1.3.42)}
\]

\(^{21} \) Bewegt sich z.B. ein Elektron, dass durch die Zustandsfunktion \(\Psi \) beschrieben wird, in einem elektrostatischen Potenzial \(\phi(r) \), so können wir seine mittlere potentielle Energie zu

\[
\langle E_{\text{pot}} \rangle = -e \int_{-\infty}^{\infty} \psi^* \phi(r) \psi \, dV
\]

angeben.
gilt, so nennt nennen wir die Funktion Ψ_k eine *Eigenfunktion* zum Operator \hat{A} und die Konstante A_k einen *Eigenwert*. In diesem Fall folgt aus (1.3.41)

$$\langle A \rangle = \int_{-\infty}^{\infty} \Psi_k^* \hat{A} \Psi_k \, dV = A_k \int_{-\infty}^{\infty} \Psi_k^* \Psi_k \, dV = A_k .$$ (1.3.43)

Wir sehen also, dass der Erwartungswert $\langle A \rangle$ des Operators \hat{A} gebildet mit seiner Eigenfunktion Ψ_k gleich dem Eigenwert A_k ist, welcher wohldefiniert und “scharf” ist. Die quadratische Schwankung

$$\langle A^2 \rangle - \langle A \rangle^2 = \int_{-\infty}^{\infty} \Psi_k^* \hat{A}^2 \Psi_k \, dV - \left(\int_{-\infty}^{\infty} \Psi_k^* \hat{A} \Psi_k \, dV \right)^2$$

$$= \int_{-\infty}^{\infty} \Psi_k^* \hat{A} \cdot \hat{A} \Psi_k \, dV - A_k^2 \left(\int_{-\infty}^{\infty} \Psi_k^* \Psi_k \, dV \right)^2$$

$$= A_k^2 \int_{-\infty}^{\infty} \Psi_k^* \Psi_k \, dV - A_k^2 \left(\int_{-\infty}^{\infty} \Psi_k^* \Psi_k \, dV \right)^2$$

$$= 0$$ (1.3.44)

wird in diesem Fall Null, da $\int \Psi_k^* \Psi_k \, dV = 1$. Nun gilt ganz allgemein für die mittlere quadratische Abweichung einer Messgröße von ihrem Mittelwert

$$\langle \Delta A^2 \rangle = \langle (A - \langle A \rangle)^2 \rangle = \langle A^2 \rangle + \langle A \rangle^2 - 2 \langle A \rangle \langle A \rangle$$

$$= \langle A^2 \rangle - \langle A \rangle^2 = 0 ,$$ (1.3.45)

da $\langle A \cdot \langle A \rangle \rangle = \langle A \rangle^2$. Daraus können wir folgenden wichtigen Schluss ziehen:

Wenn die Zustandsfunktion Ψ_k eine Eigenfunktion zum Operator \hat{A} ist, dann wird die mittlere quadratische Schwankung der zugehörigen Messgröße A_k gleich Null. Das System befindet sich also in einem Zustand, in dem die Messgröße A_k zeitlich konstant bleibt, und man deshalb, abgesehen von Messfehlern, immer den gleichen Wert von A_k misst.

Die Energie eines stationären Zustands ergibt sich als Eigenwert des Hamilton-Operators. Die stationäre Schrödinger-Gleichung lautet dann

$$\hat{H} \Psi_k = E_k \Psi_k .$$ (1.3.46)
Wir weisen hier nochmals darauf hin, dass die zu verschiedenen Eigenwerten $A_i \neq A_k$ gehörenden Eigenfunktionen Ψ_i und Ψ_k orthogonal sind (vergleiche (1.3.16)). Die Eigenfunktionen bilden ein vollständiges orthonormiertes Funktionensystem. Die Zustandsfunktion ist dann nach den Eigenfunktionen entwickelbar:

$$
\Psi = \sum_{k=0}^{\infty} c_k(r) \Psi_k .
$$

Entartung

Gibt es zu einem Eigenwert A_k einer Observablen mehrere Eigenfunktionen $\Psi_{k1}, \Psi_{k2}, \ldots, \Psi_{km}$, so nennen wir den Eigenwert A_k $(m-1)$-fach entartet (vergleiche (1.3.17)).

Parität

Die Parität Π einer Wellenfunktion Ψ charakterisiert ihr Verhalten bei Spiegelung am Koordinatenursprung, $r \rightarrow -r$. Es gilt

$$
\Psi(-r) = \Psi(r) \quad \Pi = +1 \quad \text{gerade Parität} \quad (1.3.48)
$$

$$
\Psi(-r) = -\Psi(r) \quad \Pi = -1 \quad \text{ungerade Parität} \quad (1.3.49)
$$

1.3.5 Zulässige Operatoren

Wir wollen nun noch überlegen, welche Operatoren für physikalische Observable in Betracht kommen. Die Linearität der Schrödinger-Gleichung erfordert, dass für jede Observable das Superpositionsprinzip gilt, d.h. es muss

$$
\hat{A}(\Psi_1 + \Psi_2) = \hat{A}\Psi_1 + \hat{A}\Psi_2 .
$$

gelten. Es kommen also nur lineare Operatoren in Frage.

Weil A eine Observable sein soll, müssen wir ferner fordern, dass die Messwerte A_k reell sind, d.h. $A_k^* = A_k$. Wir können deshalb nur solche Operatoren für physikalische Größen zulassen, die reelle Eigenwerte haben. Dies ist für hermitesche Operatoren erfüllt.\(^{22}\)

\(^{22}\)Ein Operator heißt linear, wenn er die Bedingung $\hat{A}\sum \Psi_t = \sum \hat{A}\Psi_t$ erfüllt.

Gilt für einen linearen Operator $\int \Psi^* \hat{A} \Psi dV = \int \Psi\hat{A}^* \Psi dV = \int (\hat{A}\Psi)^* \Psi dV$, dann heißt er hermitesch (nach Charles Hermite: 1822-1901).
Matrixdarstellung von Operatoren

In der durch die Funktionen \(\Psi_i, i = 1, \ldots, N \) gegebenen Basis kann der Operator \(\hat{A} \) durch die Matrixelemente

\[
A_{ik} = \int \Psi_i^* \hat{A} \Psi_k \, dV \quad i, k = 1, \ldots, N
\]

(1.3.51)
dargestellt werden. Da die zulässigen Operatoren hermitesch sind, werden Observable in der Quantenmechanik durch hermitesche Matrizen dargestellt, für die \(A_{ik} = A_{ki} \) gilt. Die quadratische Matrix (1.3.51) wird diagonal, wenn als Basis die orthonormierten Eigenfunktionen \(\Psi_n \) verwendet werden. Als Diagonalelemente treten dann die Eigenwerte \(A_n \) der Observablen, d.h. die möglichen Messwerte auf.

1.3.6 Vertiefungsthema: Quantenmechanische Bewegungsgleichung

Wir wollen in diesem Abschnitt die zeitliche Änderung

\[
\langle \frac{d \hat{A}}{dt} \rangle = \int_{-\infty}^{+\infty} \Psi^* \frac{d \hat{A}}{dt} \Psi \, dV
\]

(1.3.52)
des Erwartungswerts \(\langle \hat{A} \rangle \) einer Observablen \(A \) betrachten. Die zeitliche Änderung des Erwartungswert kann auch durch zeitliche Differentiation des Erwartungswerts \(\langle \hat{A} \rangle \) gewonnen werden. Durch Ausführen der Differentiation erhalten wir

\[
\langle \frac{d \hat{A}}{dt} \rangle = \frac{d}{dt} \int_{-\infty}^{+\infty} \Psi^* \hat{A} \Psi \, dV
\]

\[
= \int_{-\infty}^{+\infty} \frac{\partial \Psi^*}{\partial t} \hat{A} \Psi \, dV + \int_{-\infty}^{+\infty} \Psi^* \frac{\partial \hat{A}}{\partial t} \Psi \, dV + \int_{-\infty}^{+\infty} \Psi^* \hat{A} \frac{\partial \Psi}{\partial t} \, dV.
\]

(1.3.53)

Durch Benutzen der Schrödinger-Gleichung

\[
\frac{\partial \Psi}{\partial t} = -\frac{i}{\hbar} \hat{H} \Psi \quad \frac{\partial \Psi^*}{\partial t} = \frac{i}{\hbar} \hat{H} \Psi^*
\]

(1.3.54)

erhalten wir weiter
\begin{align*}
\langle \frac{d\hat{A}}{dt} \rangle &= \frac{i}{\hbar} \int_{-\infty}^{\infty} \hat{H}\Psi^* \hat{A} \Psi \, dV + \int_{-\infty}^{\infty} \Psi^* \frac{\partial \hat{A}}{\partial t} \Psi \, dV - \frac{i}{\hbar} \int_{-\infty}^{\infty} \Psi^* \hat{A} \hat{H} \Psi \, dV.
\end{align*}

(1.3.55)

Aufgrund der Hermitezität des Hamilton-Operators folgt

\begin{align*}
\int_{-\infty}^{\infty} \hat{H}\Psi^* \hat{A} \Psi \, dV &= \int_{-\infty}^{\infty} \Psi^* \hat{H} \hat{A} \Psi \, dV
\end{align*}

(1.3.56)

und damit

\begin{align*}
\langle \frac{d\hat{A}}{dt} \rangle &= \int_{-\infty}^{\infty} \Psi^* \left(\frac{i}{\hbar} (\hat{H}\hat{A} - \hat{A}\hat{H}) + \frac{\partial \hat{A}}{\partial t} \right) \Psi \, dV.
\end{align*}

(1.3.57)

Vergleichen wir (1.3.57) mit (1.3.52), so sehen wir, dass wir der zeitlichen Änderung der Observablen \(\hat{A}\) den Operator

\begin{align*}
\frac{d\hat{A}}{dt} &= \frac{i}{\hbar} \left(\hat{H}\hat{A} - \hat{A}\hat{H} \right) + \frac{\partial \hat{A}}{\partial t}
\end{align*}

(1.3.58)

zuordnen können. Der Ausdruck (1.3.58) gestattet es, die zeitliche Änderung jedes Operators und damit die zeitliche Änderung der Messwerte der Observablen zu bestimmen. Man nennt diesen Ausdruck deshalb allgemeine Bewegungsgleichung der Quantenmechanik.

Im Allgemeinen ist der Kommutator \([\hat{H}, \hat{A}] = \hat{H}\hat{A} - \hat{A}\hat{H} \neq 0\). Nur der Kommutator vertauschbarer Operatoren verschwindet. Hängt der Operator \(\hat{A}\) nicht explizit von der Zeit ab (\(\partial \hat{A}/\partial t = 0\)) und ist der Kommutator \([\hat{H}, \hat{A}] = 0\), das heißt \(\hat{A}\) vertauscht mit em Hamilton-Operator \(\hat{H}\), dann ist \(\frac{d\hat{A}}{dt} = 0\). Die Observable \(\hat{A}\) ist dann wie eine Erhaltungsgröße der klassischen Mechanik zeitlich konstant, wir sprechen von einer Erhaltungsobservablen.

1.3.7 Vertiefungsthema: Vertauschungsrelationen und Heisenbergsche Unschärferelation

Das Produkt \(\hat{A}\hat{B}\) zweier Operatoren \(\hat{A}\) und \(\hat{B}\) ist im Allgemeinen nicht kommutativ, \(\hat{A}\hat{B} \neq \hat{B}\hat{A}\). Man sagt dann, dass die Operatoren nicht vertauschbar sind. Zur Charakterisierung der Vertauschbarkeit von Operatoren verwenden wir den Begriff Kommutator:

\begin{align*}
[\hat{A}, \hat{B}] &= -[\hat{B}, \hat{A}] = \hat{A}\hat{B} - \hat{B}\hat{A}
\end{align*}

(1.3.59)
Wir sehen, dass nur der Kommutator vertauschbarer Operatoren verschwindet.

Wir wollen nun zwei Operatoren \hat{A} und \hat{B} betrachten, die das gleiche System von Eigenfunktionen Ψ_k besitzen. Es gilt dann

$$\hat{A}\Psi_k = A_k\Psi_k \quad \hat{B}\Psi_k = B_k\Psi_k .$$ \hspace{1cm} (1.3.60)

Durch nochmalige Anwendung von \hat{A} und \hat{B} erhalten wir

$$\hat{B}\hat{A}\Psi_k = \hat{B}A_k\Psi_k = A_k\hat{B}\Psi_k = A_kB_k\Psi_k \quad \hat{A}\hat{B}\Psi_k = \hat{A}B_k\Psi_k = B_k\hat{A}\Psi_k = B_kA_k\Psi_k .$$ \hspace{1cm} (1.3.61) (1.3.62)

woraus wir durch Subtraktion der beiden Gleichungen

$$(\hat{A}\hat{B} - \hat{B}\hat{A})\Psi_k = [\hat{A},\hat{B}]\Psi_k = 0$$ \hspace{1cm} (1.3.63)

erhalten. Hierbei haben wir ausgenutzt, dass A_k und B_k reelle Zahlen sind und deshalb $A_kB_k = B_kA_k$ gilt. Da diese Beziehung für alle Ψ_k gilt, folgt insgesamt

$$(\hat{A}\hat{B} - \hat{B}\hat{A}) = [\hat{A},\hat{B}] = 0 .$$ \hspace{1cm} (1.3.64)

Auch die Umkehrung dieses Satzes kann bewiesen werden und wir können festhalten:

Zwei Observable besitzen das gleiche System von Eigenfunktionen, wenn die ihnen zugeordneten Operatoren vertauschbar sind. Die Observablen sind dann gleichzeitig scharf messbar.

Wir wollen für die zugehörigen Observablen eine besondere Bezeichnung einführen:

Die zwei vertauschbaren (nichtvertauschbaren) Operatoren zugeordneten Observablen bezeichnen wir als verträgliche (nichtverträgliche) Observable.

Wir wollen hier ferner ohne Beweis folgende Tatsache festhalten23

Verträgliche Observable sind mit beliebiger Genauigkeit gleichzeitig messbar.

Nichtverträgliche Observable sind gleichzeitig nicht mit beliebiger Genauigkeit messbar.

Die untere Grenze wird durch die Heisenbergsche Unschärferelation

$$\Delta A\Delta B \geq \frac{1}{2} \left| \langle [\hat{A},\hat{B}] \rangle \right|$$

gegangen.

23Der Beweis für diese Aussage kann in den Lehrbüchern zur Quantenmechanik gefunden werden.
Für die Ortsoperatoren \hat{q}_i und die Impulsoperatoren \hat{p}_i gelten die Vertauschungsrelationen

\[
\begin{align*}
\hat{p}_i \hat{q}_k - \hat{q}_k \hat{p}_i &= \begin{cases}
-\imath \hbar & \text{für } i = k \\
0 & \text{für } i \neq k
\end{cases} \quad (1.3.65) \\
\hat{p}_i \hat{p}_k - \hat{p}_k \hat{p}_i &= 0 \quad (1.3.66) \\
\hat{q}_i \hat{q}_k - \hat{q}_k \hat{q}_i &= 0 \quad (1.3.67)
\end{align*}
\]

Es lässt sich ferner zeigen, dass der Impulsoperator und der Hamilton-Operator vertauschbar sind. Es kann ebenfalls gezeigt werden (siehe Abschnitt 3.3.4), dass für kugelsymmetrische Probleme der Hamilton-Operator mit \hat{L}^2 und \hat{L}_z vertauscht, d.h. $[\hat{H}, \hat{L}_z] = 0$ und $[\hat{H}, \hat{L}^2] = 0$.

1.3.8 Anwendungen

Wir haben bisher die wesentlichen Gedankengänge der Quantenmechanik erörtert. Der einzige Beweis für die Richtigkeit der gemachten Aussagen ist der Vergleich der aus der Quantenmechanik gefolgerten Gesetzmäßigkeiten mit den experimentellen Befunden. Bisher gibt es kein Experiment, dass die Gültigkeit der Quantenmechanik in Zweifel gezogen hätte.

Die Übereinstimmung von theoretischen Vorhersagen und experimentellen Befunden kann explizit an Beispielen nachvollzogen werden. Einfache Beispiele wie das freie Teilchen, das Teilchen im eindimensionalen Potenzialtopf, der lineare harmonische Oszillator oder das Tunneln durch eine Potenzialschwelle wurden bereits im Rahmen der Physik III diskutiert und sollen deshalb hier nicht mehr wiederholt werden.

24Mit $\hat{p}_i = -\imath \hbar \frac{\partial}{\partial q_i}$ erhalten wir

\[
\hat{p}_i \hat{A} \Psi = -\imath \hbar \frac{\partial}{\partial q_i} \hat{A} \Psi + \hat{A} \Psi \left(-\imath \hbar \right) \frac{\partial \Psi}{\partial q_i},
\]

und damit

\[
\frac{\partial \hat{A}}{\partial q_i} = \frac{i}{\hbar} \left(\hat{p}_i \hat{A} - \hat{A} \hat{p}_i \right) = \frac{i}{\hbar} \left[\hat{p}_i, \hat{A} \right].
\]

Setzen wir für den beliebigen Operator \hat{A} den Ortsoperator \hat{q}_j ein, so erhalten wir

\[
\frac{\partial \hat{q}_j}{\partial q_i} = \frac{i}{\hbar} \left[\hat{p}_i, \hat{q}_j \right].
\]

Für $i = j$ erhalten wir $\frac{\partial \hat{q}_j}{\partial q_i} = 1$ und damit

\[
\left[\hat{p}_i, \hat{q}_j \right] = -\imath \hbar.
\]

Für $i \neq j$ wird $\frac{\partial \hat{q}_j}{\partial q_i} = 0$ und damit

\[
\left[\hat{p}_i, \hat{q}_j \right] = 0.
\]
1.4 Ununterscheidbarkeit

Wir wollen zunächst die Probleme und die Folgerungen aus der Ununterscheidbarkeit von Quantenteilchen anhand des in Abb. 1.7 gezeigten Experiments veranschaulichen. Die Quellen Q_1 und Q_2 senden identische Teilchen (z.B. Elektronen oder α-Teilchen) aus, die dann in der Streuzone Z miteinander kollidieren und dadurch von ihrer ursprünglichen Flugbahn abgelenkt werden. Der Nachweis der Teilchen erfolgt mit Hilfe des Detektors D, der unter dem Winkel θ zur Achse Q_1Q_2 aufgestellt ist. Zur Vereinfachung machen wir alle Betrachtungen im Schwerpunktsystem.

Abbildung 1.7: Anordnung zur Messung der Winkelverteilung zweier aneinander gestreuter, identischer Teilchen.

Es gibt offenbar zwei Möglichkeiten, wie ein gestreutes Teilchen in den Detektor gelangen kann (siehe Abb. 1.8):

- Teilchen 1 wird an Teilchen 2 um den Winkel θ gestreut.
- Teilchen 2 wird an Teilchen 1 um den Winkel $\pi - \theta$ gestreut.

Wie kann man nun zwischen diesen beiden Streuprozessen unterscheiden? Hierzu gibt es zwei Möglichkeiten:

1. Der Detektor ist in der Lage zu erkennen, ob es sich bei dem Nachweis um Teilchen 1 oder Teilchen 2 handelt.
2. Durch geeignete Hilfsmittel werden zu jedem Zeitpunkt die Orts- und Impulskoordinaten der beiden Teilchen bestimmt, so dass ihre Bahnen rekonstruiert werden können.
Abbildung 1.8: Streuung zweier identischer Teilchen aneinander.

Wie sieht es nun für Quantenteilchen aus? Wir können Bedingung 1 erfüllen, wenn die beiden Teilchen unterschiedlich in einem Eigenwert sind, der auf den Streuprozess keinen Einfluss hat, aber am Detektor registriert werden kann. Eine solche Möglichkeit bietet z.B. im Falle eines Elektrons dessen z-Komponente des Spins. Die Spin-Spin-Wechselwirkung innerhalb der Streuzone ist verschwindend klein, die Streuung erfolgt praktisch ausschließlich am Coulomb-Potenzial der Elektronen. Damit bleibt die Ausrichtung der Spins erhalten. Wir benutzen also als Quellen zwei Stern-Gerlach Apparaturen, die Teilchen mit einer festen Orientierung der z-Komponente des Spins erzeugen, d.h. wir verwenden zwei spin-polarisierte Teilstrahlen. Für Elektronen sind nur zwei Einstellmöglichkeiten $S_z = +\hbar/2$ und $S_z = -\hbar/2$ möglich. Vor den Detektor schalten wir einen Stern-Gerlach-Filter, der nur Teilchen mit einer bestimmten Orientierung von S_z durchlässt. Die experimentelle Anordnung dafür ist in Abb. 1.9 skizziert.

Abbildung 1.9: Streuung zweier Teilchen mit orientiertem Spin $S_z = \pm \hbar/2$.

Schalten wir in diesem Beispiel den Stern-Gerlach-Filter auf $S_z = +\hbar/2$, so stammen die nachgewiesenen Elektronen aus Quelle Q_1 und die Streuung erfolgte um den Winkel θ. Schalten man den Stern-Gerlach-Filter dagegen auf $S_z = -\hbar/2$, so war der Streuwinkel $\pi - \theta$. Sind nun aber die beiden Quantenteilchen ununterscheidbar, was der Fall ist, wenn Teilchen 1 und 2 die gleiche Spinrichtung haben, so kann der Detektor nicht mehr zwischen den beiden Fällen I und II in Abb. 1.8 unterscheiden. Dasselbe gilt natürlich auch, wenn wir gar keine Stern-Gerlach-Apparatur verwenden würden, wenn also Q_1 und Q_2
unpolarisierte Strahlung aussenden.

Die Möglichkeit 2 zur Unterscheidung der beiden Streuparameter ist für Quantenteilchen aufgrund der Heisenbergschen Unschärferelation generell nicht gegeben.

Insgesamt finden wir also, dass für identische Quantenteilchen, d.h. für Teilchen, die in all ihren Quantenzahlen übereinstimmen, durch eine physikalische Messung nicht unterschieden werden kann, ob die Streuung um θ oder π − θ erfolgt ist.

Streuprozesse kennzeichnet man gewöhnlich durch eine Streuamplitude \(f(θ) \). Dabei gilt, dass die Wahrscheinlichkeit der Streuung um einen Winkel θ proportional zum Absolutquadrat \(|f(θ)|^2 \) der Streuamplitude ist. Liegt eine Unterscheidungsmöglichkeit zweier Teilchen vor, so ist die im Detektor registrierte Gesamtstreuintensität \(P \) durch die Summe der Absolutquadrate der einzelnen Streuamplituden gegeben, da die beiden Streuprozesse I und II völfig unkorreliert sind. Es gilt dann

\[
P_u = |f(θ)|^2 + |f(π − θ)|^2 = P_1 + P_2 .
\]

Für den Fall, dass die beiden Streuprozesse I und II nicht unterschieden werden können (identische Teilchen), ist die Streuung um θ und π − θ ein und denselbe Streuvorgang. Es liegt volle Korrelation der Streuvorgänge vor. Dies bedeutet, dass die beiden entsprechenden Streuamplituden \(f(θ) \) und \(f(π − θ) \) erst addiert oder subtrahiert werden müssen, bevor zur Berechnung der Gesamtstreuintensität das Betragsquadrat der Gesamtstreuamplitude gebildet werden darf (auf das Vorzeichen gehen wir im nächsten Abschnitt ein). Es gilt dann

\[
P_i = |f(θ) ± f(π − θ)|^2 = |f(θ)|^2 + |f(π − θ)|^2 ± I
= P_1 + P_2 ± I .
\]

Um den Unterschied zwischen den Streuintensitäten im Fall von Streuung ununterscheidbarer und unterscheidbarer Teilchen deutlich zu machen, betrachten wir die Streuamplitude für \(θ = π/2 \). Wir erhalten

identische Teilchen: \(P_i = 4|f(π/2)|^2 \) für positives Vorzeichen
identische Teilchen: \(P_i = 0 \) für negatives Vorzeichen
unterscheidbare Teilchen: \(P_u = 2|f(π/2)|^2 \).

\[
(1.4.3)
\]

Rutherford- und Mott-Streuung

Für elastische Streuung am Coulomb-Potenzial erhält man nach **Rutherford** die Streuamplitude (siehe Abschnitt 2.4.1)

\[
f(θ) \propto \frac{1}{\sin^2(θ/2)} .
\]

\[
(1.4.4)
\]
Abbildung 1.10: Winkelabhängigkeit der Streuwahrscheinlichkeit im Schwerpunktsystem für die Streuung von ^{12}C an ^{12}C Kernen. Die Messpunkte zeigen deutlich das Interferenzverhalten.

Sind die Teilchen unterscheidbar, so folgt

$$P_R(\theta) \propto \frac{1}{\sin^4(\theta/2)} + \frac{1}{\cos^4(\theta/2)}. \tag{1.4.5}$$

Dies ist eine glatte Winkelabhängigkeit der Streuwahrscheinlichkeit symmetrisch zu $\theta = \pi/2$ (falls die beiden Teilchen die gleiche Masse haben).

Sind die Teilchen jedoch ununterscheidbar, so tritt ein zusätzlicher Interferenzterm auf und wir erhalten

$$P_M(\theta) \propto P_R(\theta) \pm I(\theta) f(\theta) f(\pi - \theta). \tag{1.4.6}$$

Man spricht von Mott-Streuung. Auf die Berechnung von $I(\theta)$ wollen wir hier nicht eingehen. Wie wir im nächsten Abschnitt sehen werden, sind die Spineigenschaften der beteiligten Teilchen entscheidend. Generell beobachtet man, dass die Streuintensität oszillatorisches Verhalten als Funktion des Streuwinkels besitzt, wie dies für Interferenzterme typisch ist (siehe hierzu Abb. 1.10).
1.5 Fermionen und Bosonen

1.5.1 Der Spin von Quantenteilchen

Quantenteilchen können neben dem Bahndrehimpuls eine weitere drehimpulsartige Eigenschaft, den Spin S besitzen. Der Spin wird oft als ein Eigendrehimpuls der Teilchens dargestellt. Dies ist zwar hilfreich für die Anschauung, aber nicht korrekt. So besitzen z.B. die Fundamentalteilchen (Leptonen, Quarks) keine räumliche Ausdehnung (echte Massepunkte), aber dennoch einen Spin. Für ein punktförmiges Teilchen macht aber ein Eigendrehimpuls keinen Sinn. Wir geben deshalb folgende Definition für den Spin eines Quantenteilchens:

Der Spin ist eine Quanteneigenschaft, die an der Drehimpulserhaltung teilnimmt und sich wie ein Drehimpuls transformiert, aber kein klassisches Analogon besitzt.

Der Spin ist im Schrödinger-Formalismus nicht enthalten, er erscheint jedoch zwanglos aus der Anwendung der Dirac-Gleichung. Der Spin ist also eine an die Lorentz-Invarianz gekoppelte Quanteneigenschaft. Gemäß den Bedingungen für quantenmechanische Drehimpulse (siehe hierzu Physik III und Abschnitt 3.3.4, eine ausführlichere Diskussion des Spins erfolgt später in Abschnitt 3.4) finden wir für den Betrag des Spinvektors

$$|S| = S = \sqrt{s(s+1)} \hbar$$

(1.5.1)

und seine z-Komponente

Enrico Fermi (1901 - 1954), Nobelpreis für Physik 1938:

1938 verließ Fermi Italien. Der offizielle Grund war, dass er um die Sicherheit seiner hebräischen Frau fürchtete. Die inoffizielle Geschichte war, dass er Geld für die Fortsetzung seiner kernphysikalischen Forschungsarbeiten brauchte. Fermi war einer der vielen Intellektuellen, die nach dem Aufkommen des Nationalsozialismus in Deutschland Europa verließen. Fermi ließ sich 1939 in den USA nieder und wurde Professor an der Columbia University in New York.

Fermi setzte seine Experimente zur Kernspaltung dort fort. 1940 bestätigte Fermi’s Arbeitsgruppe, dass die Absorption eines Neutrons durch einen Uran-Kern diesen spalten kann, wobei mehrere Neutronen und eine Menge Energie freigesetzt werden. Damit war eine potentielle nukleare Kettenreaktion in den Bereich der Möglichen gerückt.

Satyendranath Bose (1894 - 1974):

\[
S_z = m_s \hbar \quad \text{mit} \quad m_s = -s, -(s-1), \ldots, +(s-1), s . \quad (1.5.2)
\]

Hierbei ist \(m_s \) die Orientierungsquantenzahl. Sind \(|S|\) und \(S_z\) festgelegt, so bleiben \(S_x\) und \(S_y\) unbestimmt.

Der Stern-Gerlach-Versuch hat gezeigt, dass das Elektron \(s = 1/2 \) und somit \(m_s = -1/2, +1/2 \) besitzt. Da es nur zwei Einstellmöglichkeiten für die \(z \)-Komponente gibt, spricht man oft lax von Spin \(\uparrow \) (“auf”) und Spin \(\downarrow \) (“ab”) Elektronen, obwohl ja der Spinvektor niemals die Länge \(\hbar/2 \) haben kann und somit niemals parallel oder antiparallel zur \(z \)-Achse steht. Die Fundamentalbausteine der Materie, Leptonen und Quarks, besitzen alle halbzahligen Spin. In zusammengesetzten Teilchen kann durch antiparallele Kopplung der Spins der Gesamtspin Null entstehen. Ein Beispiel hierfür ist das \(\pi^- \)-Meson, das aus einem Quark-Antiquark-Paar besteht (z.B. \(\pi^- = u \bar{d} \)).

Im Gegensatz dazu besitzen Photonen eine ganzzahlige Spinquantenzahl \((s = 1) \). Es gibt also sowohl Quantenteilchen mit halbzahligem und solche mit ganzzahligem Spin. Wir werden sehen, dass der Spin einen entscheidenden Einfluss auf die Streuintensität für identische Teilchen hat.

1.5.2 Quantenteilchen mit ganz- und halbzahligem Spin

Wir haben gesehen, dass die Streuintensität für identische Teilchen durch (vergleiche (1.4.2))

\[
P_i(\theta) = |f(\theta) \pm f(\pi - \theta)|^2 \quad (1.5.3)
\]

gegeben ist. Es zeigt sich, dass beide Vorzeichen vorkommen und dass das Vorzeichen davon abhängt, ob die identischen Teilchen halbzahligen oder ganzzahligen Spin besitzen. Es gilt:

\[\text{Walther-Meißner-Institut}\]
Teilchen mit ganzzahligem Spin

\[P_i(\theta) = |f(\theta) + f(\pi - \theta)|^2 \]

Teilchen mit halbzahligem Spin

\[P_i(\theta) = |f(\theta) - f(\pi - \theta)|^2 . \]

Bei Teilchen mit ganzzahligem Spin sprechen wir von Bosonen\(^a\) und bei Teilchen mit halbzahligem Spin von Fermionen\(^b\).

\(^a\)Benannt nach dem indischen Physiker Satyendranath Bose. \(^b\)Benannt nach dem italienischen Physiker Enrico Fermi.

Die Berechnung des Interferenzterms bei der Mott-Streuung hängt also davon ab, ob wir es mit Bosonen oder Fermionen zu tun haben. Als weitere Schwierigkeit kommt hinzu, dass wir unterscheiden müssen, ob wir es mit polarisierten Teilchenstrahlen zu tun haben oder nicht\(^25\). Der in Abb. 1.10 gezeigte Fall ist relativ einfach, da es sich bei den verwendeten \(^{12}\)C-Kernen um Bosonen mit \(s = 0\) handelt.

1.6 Austauschsymmetrie und Pauli-Verbot

1.6.1 Die Austauschsymmetrie

Der fundamentale Unterschied zwischen Fermionen und Bosonen macht sich in einer weiteren wichtigen Größe bemerkbar, der so genannten Austauschsymmetrie der Wellenfunktion. Diese wollen wir im Folgenden kurz erläutern.

Gegeben sei ein System von zwei identischen Quantenteilchen 1 und 2 mit den Koordinaten \(r_1 \) und \(r_2 \). Die Zustandsfunktion, die dieses System beschreibt, sei \(\Psi(r_1, r_2) \). Für den Fall, dass zwischen den Teilchen keine Wechselwirkung besteht, kann die Gesamtwellenfunktion als Produkt der beiden Teilchen beschrieben werden:

\[
\Psi(r_1, r_2) = \Psi_a(r_1) \cdot \Psi_b(r_2). \tag{1.6.1}
\]

Dabei definieren \(a \) und \(b \) die Quantenzustände der beiden Teilchen. Wir vertauschen nun die Teilchen 1 und 2, das heißt, wir bilden \(\Psi(r_2, r_1) \). Da es sich um identische Teilchen handelt, darf sich an der Zustandsfunktion nichts ändern, was durch den Ansatz (1.6.1) auch gewährleistet wird. Eine physikalische Bedeutung kommt aber nur dem Absolutquadrat der Zustandsfunktion bei, also muss \(|\Psi(r_1, r_2)|^2 = |\Psi(r_2, r_1)|^2 \) sein. Hierfür gibt es aber zwei Möglichkeiten:

symmetrischer Austausch: \(\Psi(r_1, r_2) = +\Psi(r_2, r_1) \) \(\tag{1.6.2} \)
antisymmetrischer Austausch: \(\Psi(r_1, r_2) = -\Psi(r_2, r_1) \) \(\tag{1.6.3} \)

Ob symmetrischer oder antisymmetrischer Austausch vorliegt, hängt vom Spin des Quantenteilchens ab. Er ist symmetrisch für ganzzahligen Spin (Bosonen) und antisymmetrisch für halbzahligen Spin (Fermionen).

Der Produktansatz (1.6.1) liefert nicht das gewünschte Austauschverhalten. Es ist vielmehr erforderlich, die Linearkombination

\[
\Psi(r_1, r_2) = C [\Psi_a(r_1) \cdot \Psi_b(r_2) \pm \Psi_a(r_2) \cdot \Psi_b(r_1)] \tag{1.6.4}
\]

zu bilden, um die Gesamtwellenfunktion zu erhalten. \(C \) ist hierbei ein Normierungsfaktor. Für Bosonen gilt das Plus-, für Fermionen das Minuszeichen.

Insgesamt sehen wir, dass mit dem Spin ein grundsätzlich unterschiedliches Verhalten von Quantenteilchen verbunden ist. Im nächsten Abschnitt werden wir noch einen weiteren Unterschied im Verhalten von Bosonen und Fermionen kennenlernen, der aus der Austauschsymmetrie folgt. Wir haben bereits erwähnt, dass im Schrödinger-Formalismus der Spin eines Teilchens gar nicht enthalten ist. Um den Spin eines Teilchens zu berücksichtigen, müssen wir die Zustandsfunktion eines Teilchens als das Produkt einer Ortsfunktion \(\Psi(r) \), die aus der Schrödinger-Gleichung folgt, und einer Spinfunktion \(\tau \), die den Spinzustand charakterisiert, schreiben:
Für das Elektron kann die Spinfunktion τ nur zwei Eigenwerte $\sigma_{\uparrow} = +\hbar/2$ und $\sigma_{\downarrow} = -\hbar/2$ annehmen (siehe hierzu Abschnitt 3.4).

Entscheidend ist nun, dass die Gesamtzustandsfunktion $\Phi(1,2) = \Psi(1,2)\tau(1,2)$ das richtige Austauschverhalten zeigt. Hierbei charakterisieren die beiden Zahlen die beiden Teilchen in ihren Zuständen. Es kommt also auf die Austauschsymbmetrie von Φ an, die den Spin mit einschließt, und nicht auf diejenige von Ψ, die nur den Ort enthält. Für Bosonen und Fermionen gilt:

\begin{align*}
\text{symmetrischer Austausch:} & \quad \Phi(1,2) = +\Phi(2,1) \quad \text{für Bosonen} \quad (1.6.6) \\
\text{antisymmetrischer Austausch:} & \quad \Phi(1,2) = -\Phi(2,1) \quad \text{für Fermionen.} \quad (1.6.7)
\end{align*}

Wichtig ist, dass für ein System aus gleichartigen Mikroobjekten die Zustandsfunktionen entweder alle symmetrisch oder alle antisymmetrisch sein müssen. Wäre das nicht das nicht der Fall, dann könnten durch die Überlagerung symmetrischer und antisymmetrischer Zustände solche entstehen, die weder das eine noch das andere Symmetrieverhalten zeigen und damit dem Prinzip der Ununterscheidbarkeit widersprechen würden. Welche der beiden Möglichkeiten vorliegt, hängt von der Art der Teilchen ab. Aus der relativistischen Quantenmechanik lässt sich begründen, dass dafür der Spin maßgebend ist. Teilchen mit halbzahligem Spin (Fermionen) sind antisymmetrische Zustandsfunktionen, solchen mit ganzzahligem Spin einschließlich dem Wert Null (Bosonen) sind symmetrische Zustandsfunktionen zuzuordnen.

Zur Illustration betrachten wir noch ein System aus drei Fermionen 1, 2 und 3 in den Zuständen i,k und l. Die zugehörigen Zustandsfunktionen seien $\Phi_i(1)$, $\Phi_k(2)$ und $\Phi_l(3)$. Wir müssen jetzt die Zustandsfunktion $\Phi(1,2,3)$ des Gesamtsystems finden. Es liegt zunächst nahe $\Phi(1,2,3) = \Phi_i(1) \cdot \Phi_k(2) \cdot \Phi_l(3)$ zu setzen. Wir müssen aber noch berücksichtigen, dass jede Vertauschung zweier beliebiger Teilchen ebenso wie $\Phi(1,2,3)$ eine Lösung der dem Problem entsprechenden Eigenwertgleichung sein muss. Es existieren also wegen der sechs möglichen Permutationen sechs spezielle Lösungen Φ, die bezüglich der Vertauschung weder symmetrisch noch antisymmetrisch sind. Die allgemeine Lösung $\Phi_{i,k}$ ist nun eine Linearkombination der speziellen Lösungen, die aber (für Fermionen) der Antisymmetriebedingung genügen müssen. Das ist erfüllt, wenn sich bei jeder Permutation das Vorzeichen umkehrt:

\[
\Phi_{i,k}(1,2,3) = \Phi_i(1) \cdot \Phi_k(2) \cdot \Phi_l(3) - \Phi_i(1) \cdot \Phi_k(3) \cdot \Phi_l(2) + \Phi_i(2) \cdot \Phi_k(3) \cdot \Phi_l(1) - \\
\Phi_i(3) \cdot \Phi_k(2) \cdot \Phi_l(1) + \Phi_i(3) \cdot \Phi_k(1) \cdot \Phi_l(2) - \Phi_i(2) \cdot \Phi_k(1) \cdot \Phi_l(3) . \quad (1.6.8)
\]

Diese Gleichung lässt sich auch als Determinante schreiben:

\[
\Phi_{i,k}(1,2,3) = \begin{vmatrix} \Phi_i(1) & \Phi_i(2) & \Phi_i(3) \\ \Phi_k(1) & \Phi_k(2) & \Phi_k(3) \\ \Phi_l(1) & \Phi_l(2) & \Phi_l(3) \end{vmatrix} . \quad (1.6.9)
\]

1.6.2 Das Pauli-Verbot

Bereits aus (1.6.4) erkennt man leicht, dass aus dem antisymmetrischen Austauschverhalten für zwei Fermionen im gleichen Quantenzustand $a = b$ wir $\Psi(r_1, r_1) = 0$ erhalten, das heißt, die Wahrscheinlichkeit dafür, zwei Fermionen im gleichen Quantenzustand $(a = b)$ am gleichen Ort $(r_1 = r_2)$ zu finden, ist gleich Null. Für Bosonen gilt dagegen $\Psi(r_1, r_1) = 2C\Psi_a^2$.

Pauli hat diesen Sachverhalt unter Berücksichtigung des Spins allgemeiner formuliert:

Pauli-Verbot für Fermionen:

In einem abgeschlossenen System können keine zwei Fermionen existieren, die einen völlig identischen Satz von Quantenzahlen besitzen.

Das Pauli-Verbot gilt insbesondere für Elektronen, die mit $s = 1/2$ ja Fermionen sind, und beeinflusst somit entscheidend den Aufbau der Atome und die Physik von Festkörpern. Für Bosonen gilt dieses Verbot

26 Pauli hat das Pauli-Verbot zunächst rein empirisch aus dem Aufbau der Atome abgeleitet. Die Verbindung zum antisymmetrischen Austauschverhalten konnte erst später gezeigt werden.
Tabelle 1.4: Eigenschaften von Fermionen und Bosonen.

<table>
<thead>
<tr>
<th></th>
<th>Fermionen</th>
<th>Bosonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinquantenzahl</td>
<td>halbzahlig</td>
<td>ganzzahlig</td>
</tr>
<tr>
<td>Streu-Interferenz</td>
<td>(</td>
<td>f(\theta) - f(\pi - \theta)</td>
</tr>
<tr>
<td>Austauschsymmetrie</td>
<td>antisymmetrisch</td>
<td>symmetrisch</td>
</tr>
<tr>
<td>Pauli-Verbot</td>
<td>wirksam</td>
<td>nicht wirksam</td>
</tr>
</tbody>
</table>

Pauli-Verbot nicht. Mehrere Bosonen können in einem abgeschlossenen System identisch bezüglich aller ihrer Quantenzahlen sein.
1.7 Vertiefungsthema:
Zur Axiomatik der Quantenmechanik

Wir haben in den vorangegangenen Abschnitten einen Formalismus entwickelt, mit dem wir die Eigenschaften von Quantenobjekten beschreiben können. Dabei sind wir so vorgegangen, dass die experimentell beobachteten Eigenschaften richtig wiedergegeben werden konnten. Diese Eigenschaften sind insbesondere (i) die Quantelung der Energie und anderer Observabler, (ii) die Wechselwirkung des Quantenobjekts mit der Messapparatur beim Messprozess und (iii) die prinzipielle Ununterscheidbarkeit gleichartiger Quantenobjekte. Wir haben also heuristisch einen Formalismus entwickelt, aus dem wir Ergebnisse ableiten konnten, die mit der experimentellen Erfahrung übereinstimmen. Für die Entwicklung einer fundierten theoretischen Beschreibung ist es aber unerlässlich, den Ausgangspunkt der Theorie axiomatisch zu formulieren.

Wir haben bereits gesehen, dass zur Entwicklung einer Quantentheorie ein erweiterter mathematischer Formalismus notwendig ist. Im Gegensatz zur klassischen Physik, wo die physikalischen Größen auf einfache Art der Messung zugänglich sind und ihr Wertevorrat dem Raum der reellen Zahlen entspricht, sind in der Quantenmechanik die ein System charakterisierenden Zustandsfunktionen \(\Psi \) und die verschiedenen Operatoren \(\hat{A} \) nicht unmittelbar durch eine Messung zu erfassen. Durch eine Messung erhält man nur die reellen Eigenwerte \(A_k \) der Operatoren (weshalb nur hermitesche Operatoren zulässig sind) und die Wahrscheinlichkeiten mit denen diese Eigenwerte auftreten. Die fundamentale Verschiedenheit des Messprozesses in der klassischen und der Quantenphysik wird dadurch ausgedrückt, dass zwischen verträglichen und nichtverträglichen Observablen unterschieden wird. Während man in der klassischen Physik annimmt, dass das Messobjekt einseitig auf die Messapparatur einwirkt, liegt in der Quantenphysik eine wechselseitige Beeinflussung von Messobjekt und Messapparatur vor.

Die Zustandsfunktionen \(\Psi \) werden in der Quantenmechanik im Allgemeinen als Zustandsvektoren \(|\Psi\rangle \) eines Hilbert-Raumes aufgefasst. Dies ist zulässig, da die Menge der Zustandsfunktionen alle Eigenschaften aufweist, durch die ein Hilbert-Raum definiert ist (Linearität, Normierung, Vollständigkeit, unbegrenzte Dimensionszahl). In der theoretischen Quantenmechanik hat sich die Betrachtung der quantenphysikalischen Zusammenhänge mit Hilfe von Zustandsvektoren im Hilbert-Raum durchgesetzt. Sie erfordert allerdings eine fundierte mathematische Basis, die wir hier nicht etablieren wollen. Wir werden deshalb im Folgenden bei der wellenmechanischen Form der Begriffsbildung bleiben.

Axiomensystem der Quantentheorie

Wir wollen auf der Basis der in den vorangegangenen Abschnitten dargelegten Gesetzmäßigkeiten ein Axiomensystem der Quantentheorie ableiten. Dieses hat für die Quantenmechanik dieselbe Bedeutung wie die Newtonschen Axiome für die klassische Mechanik, wie die Hauptsätze der Thermodynamik für die phänomenologische Thermodynamik, wie die Maxwellschen Gleichungen für die klassische Elektrodynamik, wie die Gleichwertigkeit der Inertialsysteme für die spezielle Relativitätstheorie oder wie das Einsteinsche Äquivalenzprinzip für die allgemeine Relativitätstheorie.

Das Axiomensystem der Quantentheorie besteht aus folgenden Axiomen:

1. Den Observablen \(A \) eines physikalischen Systems müssen lineare hermitesche Operatoren \(\hat{A} \) eines Hilbert-Raumes zugeordnet werden, die ein vollständiges System von Eigenfunktionen besitzen. Besteht zwischen zwei Observablen \(A \) und \(B \) ein durch eine stetige Funktion \(f \) gegebener Zusammenhang, \(B = f(A) \), so besteht dieser Zusammenhang auch zwischen den Operatoren: \(\hat{B} = f(\hat{A}) \).
2. Die einem physikalischen System zugeordneten verallgemeinerten Orts- und Impulskoordinaten genügen den Vertauschungsrelationen

\[\hat{p}_i \hat{q}_k - \hat{q}_k \hat{p}_i = \begin{cases} -i\hbar & \text{für } i = k \\ 0 & \text{für } i \neq k \end{cases} \quad (1.7.1) \]

\[\hat{p}_i \hat{p}_k - \hat{p}_k \hat{p}_i = 0 \quad (1.7.2) \]

\[\hat{q}_i \hat{q}_k - \hat{q}_k \hat{q}_i = 0 \quad (1.7.3) \]

3. Existiert in einem Quantensystem ein Hamilton-Operator \(\hat{H} \), so ist der zeitlichen Änderung \(dA/dt \) einer Observablen \(A \) der Operator

\[\frac{d\hat{A}}{dt} = \frac{i}{\hbar} (\hat{H}\hat{A} - \hat{A}\hat{H}) + \frac{\partial \hat{A}}{\partial t} \quad (1.7.4) \]

gezugeordnet.

4. Der Erwartungswert \(\langle A \rangle \) einer Observablen \(A \) für ein System im Zustand \(\Psi \) ist durch

\[\langle A \rangle = \int_{-\infty}^{+\infty} \Psi^{*} \hat{A} \Psi \, dV \quad (1.7.5) \]
gegeben.

Nach Axiom 1 muss in der Quantentheorie dem Ortsvektor \(\mathbf{q} \) der Ortsoperator \(\hat{\mathbf{q}} \), einer klassischen Feldgröße \(\mathbf{u} \) der Operator \(\hat{\mathbf{u}} \) zugeordnet werden. Die Quantisierung der klassischen Teilchenvorstellung führt deshalb zu dem gleichen Ergebnis wie die Quantisierung der klassischen Feldvorstellung. Diese Äquivalenz macht klar, dass in der Quantenmechanik das Problem des Welle-Teilchen-Dualismus nicht existent ist. Die Quantenmechanik berücksichtigt den Dualismus und kann entweder durch Quantisierung der klassischen Mechanik (dies wurde zuerst 1925 von Heisenberg gezeigt) oder durch die Quantisierung der klassischen Wellentheorie (dies wurde zuerst 1926 von Schrödinger gezeigt) erhalten werden.

Relativistische Erweiterungen

\[E = \pm \sqrt{m_0^2 c^4 + p^2 c^2}, \]

das heißt, sowohl positive als auch negative Werte. Bei einer nichtrelativistischen Betrachtung treten dagegen für freie Teilchen nur kontinuierliche Energiezustände mit Werten \(E \geq m_0 c^2 \) auf. Dirac nahm an,

Die Dirac-Gleichung kann prinzipiell auf alle Objekte mit einer von Null verschiedenen Ruhemasse und einem halbzahligen Spin, also auf Fermionen angewendet werden.

Quantenelektrodynamik

Quantenfeldtheorie

Die QED erfasst nur die elektromagnetische Wechselwirkung der Quantenteilchen. Sie ist deshalb eine spezielle Quantenfeldtheorie. Mittlerweile wurden auch Quantenfeldtheorien für die der starken und der schwachen Wechselwirkung unterliegenden Quantenobjekte entwickelt. Während die Quantenmechanik heute als abgeschlossen gilt, trifft dies für die Quantenfeldtheorien nicht zu. Insbesondere sind die Theorien, die die starke und schwache Wechselwirkung der Teilchen erfassen, noch nicht vollständig entwickelt.

© Walther-Meißner-Institut
Zusammenfassung

Welle-Teilchen-Dualismus

- Das Verhalten von mikroskopischen Objekten kann nicht mit klassischen Teilchen oder Wellen alleine beschrieben werden. Mikroskopische Objekte zeigen sowohl Teilchen- als auch Wellencharakter.

- Komplementaritätsprinzip (Bohr 1927):
 In einem Experiment können Teilchen- und Welleneigenschaften von mikroskopischen Objekten niemals gleichzeitig beobachtet werden. Teilchen und Welle schließen sich gegenseitig aus – sie sind *komplementär*.

Materiewellen und Wellenfunktionen

- Elektronen und andere massebehaftete Teilchen besitzen Wellencharakter, der experimentell durch Beugungs- und Interferenzeffekte nachgewiesen werden kann (z.B. Elektronenbeugung). Über die de Broglie Beziehungen
 \[
 \lambda = \frac{\hbar}{|\mathbf{p}|}
 \]
 und
 \[
 \omega = \frac{E}{\hbar}
 \]
 können Teilchen mit Impuls \(\mathbf{p}\) und Energie \(E\) eine Wellenlänge \(\lambda\) bzw. ein Wellenvektor \(\mathbf{k}\) und eine Frequenz \(\omega\) zugeordnet werden.

- Materiewellen zeigen Dispersion, d.h. ihre Phasengeschwindigkeit \(v_{\text{ph}}\) hängt von der Frequenz ab:
 \[
 v_{\text{ph}} = \frac{\omega(k)}{k} = \frac{\hbar k}{2m}.
 \]

- Teilchen können als Wellenpakete beschrieben werden. Die Teilchengeschwindigkeit \(v_T\) ist gleich der Gruppengeschwindigkeit \(v_{\text{gr}}\) des Wellenpakets. Es gilt \(v_{\text{gr}} \cdot v_{\text{ph}} = c^2\).

- Wahrscheinlichkeitsinterpretation der Wellenfunktion:
 Das Absolutquadrat \(|\Psi(r,t)|^2\) der Materiewellenfunktion gibt die Wahrscheinlichkeit dafür an, ein Teilchen zur Zeit \(t\) in einem Volumenelement \(dV\) um den Ort \(r\) zu finden.

- Heisenbergsche Unschärfe-Beziehung:
 Ort und Impuls eines Teilchens können nicht gleichzeitig beliebig genau gemessen werden. Die Heisenbergsche Unschärfe-Beziehung
 \[
 \Delta x \cdot \Delta p_x \geq \hbar
 \]
 gibt eine untere Schranke für die Unschärfen des Orts und des Impulses bei gleichzeitiger Messung an.

 Eine Unschärfe-Beziehung besteht auch für Energie und Zeit:
 \[
 \Delta E \cdot \Delta t \geq \hbar.
 \]
Operatoren, Erwartungswerte, Eigenwerte, Eigenfunktionen

- Den Observablen \hat{A} eines physikalischen Systems müssen in der Quantentheorie hermitesche lineare Operatoren \hat{A} zugeordnet werden, die auf die Zustandsfunktion Ψ wirken.

- Die möglichen Messwerte (Eigenwerte) A_k werden durch die Eigenwertgleichung
 \[
 \hat{A}\Psi_k = A_k\Psi_k
 \]
 bestimmt.

- Der Erwartungswert der Observablen \hat{A} ist durch
 \[
 \langle A \rangle = \int_{-\infty}^{+\infty} \Psi^\ast \hat{A} \Psi \, dV
 \]
 gegeben.

- Die Eigenfunktionen Ψ_k bilden ein vollständiges orthonormiertes Funktionensystem:
 \[
 \int_{-\infty}^{+\infty} \Psi_i^\ast \Psi_k \, dV = \delta_{ik}.
 \]
 Die Zustandsfunktion Ψ ist nach den Eigenfunktionen entwickelbar:
 \[
 \Psi = \sum_{k=0}^{\infty} c_k \Psi_k.
 \]

Unterscheidbarkeit, Austauschsymmetrie, Pauli-Verbot

- Quantenteilchen mit einem identischen Satz von Quantenzahlen (identische Teilchen) sind prinzipiell nicht voneinander unterscheidbar.

- Klassische Teilchen sind unterscheidbar. Als klassische Teilchen können wir solche auffassen, bei denen die Unschärfe von Orts- und Impulskoordinaten vernachlässigbar klein gegen die Koordinatenwerte selbst sind.

- Bei Quantenteilchen muss zwischen Bosonen (ganzzahliger Spin) und Fermionen (halbzahliger Spin) unterschieden werden.

- Fermionen unterliegen im Gegensatz zu Bosonen dem Pauli-Verbot.