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1 Basic Properties of Superconductors

1.1 AC Conductivity of Normal Metals and Superconductors

Exercise:

We consider a normal metal with volume V containing N charge carriers of mass mn resulting
in the charge carrier density n = N/V. The charge current density Jq is connected to the drift
velocity vn by Jq = nqnvn, where qn = −e for electrons. In the presence of an electric field E(t)
drift velocity vn(t) follows the Drude relaxation equation

mn

(
∂

∂t
+ Γn

)
vn(t) = qnE(t)

with the momentum relaxation rate Γn = 1/τn.

We also consider a superconducting metal which we describe by a simple two-fluid model.
That is, we assume that at finite temperatures there are quasiparticle excitations, forming a
normal fluid of density nn. Their drift velocity vn again follows the Drude relaxation equation

mn

(
∂

∂t
+ Γn

)
vn = qnE .

In addition, we have a superfluid component formed by superconducting charge carries of
density ñs, charge qs and mass ms. Their drift velocity vs follows the analogue relaxation equa-
tion

ms

(
∂

∂t
+ Γs

)
vs = qsE ,

where Γs → 0 due to the dissipationless flow of the superfluid component. The total charge
current density is given by the sum of the normal and superfluid component

J = Js + Jn = qsñsvs + qnnnvn
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Usually, in metals we have qn = −e, mn = m (m = electron mass), qs = −2e, ms = 2m and a
pair density ñs = ns/2 (ns = n− nn, with n the total electron density) and we obtain

J = −e(nsvs + nnvn)

within the two fluid description. The minus sign expresses the fact that the drift velocity of the
electrons is antiparallel to the technical current density. According to London theory, the drift
velocity of the superfluid component, vs =

h̄
ms
∇θ − qs

ms
A, is determined by the gradient of the

phase of the macroscopic wave function describing the superconducting condensate and the
vector potential A.

(a) Calculate the time dependent charge current density Jq(t) in a normal metal for the case
of a harmonic time dependence of the electric field E(t) = E0 exp(−ıωt) and derive an
expression for the complex ac conductivity σ(ω) = δJq/δE for the case t/τn � 1.

(b) Calculate the complex ac conductivity σ(ω) in a superconductor, assuming again a har-
monic time dependence E(t) = E0e−ıωt and J(t) = J0e−ıωt and the constitutive relation
J = σE.

(c) Calculate the real and imaginary part of the complex ac conductivity of a superconductor,
σ = σ′ + ıσ′′, and derive the contributions σ′n (σ′s) and σ′′n (σ′′s ) of the normal (superfluid)
component.

Solution:

(a) We start with the relaxation equation(
∂

∂t
+ Γn

)
vn(t) = qn

E(t)
mn

(1)

and use nn = n, qn = −e, and mn = m, resulting in Jq(t) = −envn(t). The relaxation
equation then reads as (

∂

∂t
+ Γn

)
Jq(t) =

ne2

m
E(t) . (2)

The general solution of this first order differential equation is given by

Jq(t) = Jq(0)e−
t

τn +
ne2

m
e−

t
τn

∫ t

0
dt′E(t′)e

t′
τn︸ ︷︷ ︸

(∗)

. (3)

Assuming a harmonic electric field E(t) = E0 exp(−ıωt) we can evaluate the term (*):

(∗) = E0

∫ t

0
dt′ e(−ıω+ 1

τn )t′ =
E0

−ıω + 1
τn

[
e(−ıω+ 1

τn )t − 1
]

. (4)

With this result equation (3) reads as

Jq(t) = Jq(0)e−
t

τn +
ne2

m
E0

−ıω + 1
τn

e−
t

τn

[
e(−ıω+ 1

τn )t − 1
]

=

Jq(0)−
ne2

m
(
−ıω + 1

τn

)E0

 e−
t

τn +
ne2

m
(
−ıω + 1

τn

)E(t) . (5)
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In this expression we can identify the following quantity as the complex ac conductivity:

σ(ω) =
ne2

m
(
−ıω + 1

τn

) =
ne2τ

m (1− ıωτn)
=

σ0

1− ıωτn
(6)

with the Drude conductivity σ0 = ne2τn
m of a normal metal. Evidently, using σ(ω) we can

rewrite the charge current density in the limit t/τn � 1 as

Jq(t) =
[
Jq(0)− σ(ω)E0

]
e−

t
τn + σ(ω)E(t) t�τ

= σ(ω)E(t) . (7)

(b) With qn = −e, qs = −2e, mn = m and ms = 2m we can express the current densities of
the normal and superfluid component as Js = −ensvs, Jn = −ennvn. Using the relaxation
equations

mn

(
∂

∂t
+ Γn

)
vn(t) = qnE(t) (8)

ms

(
∂

∂t
+ Γs

)
vs(t) = qsE(t) , , (9)

the total current density J = Js + Jn can be expressed as

J(t) =

(
ns

−ıω + Γs
+

nn

−ıω + Γn

)
e2

m
E ≡ σ(ω)E(t) (10)

with the complex ac conductivity of the superconductor

σ(ω) = σs(ω) + σn(ω) =
e2

m

(
ns

−ıω + Γs
+

nn

−ıω + Γn

)
. (11)

In order to determine σs we have to evaluate

nse2

m
lim
Γs→0

1
−ıω + Γs

=
nse2

m
lim
Γs→0

1/Γs

1− ıω/Γs

=
nse2

m
lim
Γs→0

(
1/Γs

1 + (ω/Γs)2 + ı
ω/Γ2

s
1 + (ω/Γs)2

)
=

nse2

m

(
πδ(ω) +

ı
ω

)
. (12)

With this result we obtain

σ(ω) =
nse2

m

[
πδ(ω) +

ı
ω

]
︸ ︷︷ ︸

superfluid component

+
nne2

m
1

−ıω + Γn︸ ︷︷ ︸
normal component

. (13)

(c) Separating expression (13) into real and imaginary part, σ(ω) = σ′(ω) + ıσ′′(ω), yields
for the normal component

σ′n(ω) =
nne2τn

m
1

1 + (ωτn)2 =
1

Λs

nn

ns

τn

1 + (ωτn)2 (14)

σ′′n (ω) =
nne2τn

m
ωτn

1 + (ωτn)2 =
1

Λs

nn

ns
τn

ωτn

1 + (ωτn)2 . (15)

3



Here we have used Λn ≡ m/nne2 = Λsns/nn with the London coefficient Λs ≡
ms/ñsq2

s = m/nse2 = µ0λ2
L (λL is the London penetration depth).

For the superfluid component we obtain

σ′s(ω) =
nse2

m
πδ(ω) =

1
Λs

πδ(ω) (16)

σ′′s (ω) =
nse2

m
1
ω

=
1

ωΛs
. (17)

For the total conductivity we then obtain

σ′(ω) = σ′s(ω) + σ′n(ω) =
1

Λs

[
πδ(ω) +

nn

ns

τn

1 + (ωτn)2

]
ωτn�1' 1

ωΛs

[
ωπδ(ω) +

nn

ns
ωτn

]
(18)

σ′′(ω) = σ′′s (ω) + σ′′n (ω) =
1

Λs

[
1
ω

+
1
ω

nn

ns

(ωτn)2

1 + (ωτn)2

]
ωτn�1' 1

ωΛs

[
1 +

nn

ns
(ωτn)

2
]

. (19)

In a superconductor we obviously have two conduction channels in parallel. It is inter-
esting to calculate the crossover frequency at which the normal and superfluid channel
carry the same current density. The ratio of the two components is given by

Js

Jn
=

σsE
σnE

=
σ′′s

σ′n + σ′′n

ωτn�1' σ′′s
σ′n

=
nn

ns

1
ωτn

. (20)

Assuming that we are far below the transition temperature so that nn/ns ∼ 10−2, the
crossover frequency is ω/2π ∼ 10−2/τn ∼ 10− 100 GHz for a typical momentum relax-
ation time of 10−12 − 10−13s.

We finally can estimate the dissipated power density

P = ρJ2 = <
(

1
σ

)
J2 =

σ′

(σ′)2 + (σ′′)2 J2 ' σ′

(σ′′)2 J2 ∝
nn

ns
τnω2 . (21)

Here we have used the fact that typically σ′ � σ′′. We see that the dissipated power
density increases proportional to ω2 and the normal to superfluid density ratio nn/ns.

1.2 Frequency dependent skin depth and dielectric function of a normal metal

Exercise:

We consider a normal metal with volume V containing N electrons of mass m resulting in the
electron density n = N/V. The charge current density is related to the electric field by Ohm’s
law, Jq = σ(ω)E, with the complex ac conductivity

σ(ω) =
ne2

m
(
−ıω + 1

τ

) =
ne2τ

m (1− ıωτ)
=

σ0

1− ıωτ
(1)

Here, σ0 = ne2τ
m is the Drude conductivity and τ the momentum relaxation time.
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(a) Use σ(ω) and Maxwell’s equations to derive the frequency dependent dielectric function
ε̃(ω) of the normal metal.

(b) Calculate the frequency dependent electromagnetic penetration depth (skin depth) δ(ω)
for the electric and magnetic field.

(c) What is the relation between δ(ω) and ε̃(ω)?

Solution:

We start by repeating Maxwell’s equation which read as (in SI unit, ε = µ = 1)

∇×H =
∂D
∂t

+ Jq , D = ε0E (2)

∇× E = −∂B
∂t

, B = µ0H (3)

∇ · B = 0 (4)
∇ ·D = ρq . (5)

For electrons with charge q = −e the charge density is given by ρq = −en = −eN/V and the
charge current density by Jq = qnv = −env. We see that the direction of motion of the electrons
is antiparallel to the technical charge current density. Maxwell’s equations are supplemented
by the constitutive relation (Ohm’s law)

Jq = σ · E , (6)

linking the charge current density Jq with the electric field E via the electric conductivity σ
(which in the most general case is a second rank tensor). Applying ∇ · . . . on both sides of
eq. (2) yields

∇ · (∇×H)︸ ︷︷ ︸
=0

=
∂

∂t
(∇ ·D)︸ ︷︷ ︸

=ρq

+∇ · Jq , (7)

immediately leading to the continuity equation

∂ρq

∂t
+∇ · Jq = 0 (8)

for the charge density ρq.

Applying ∇× . . . on both sides of eq. (2) yields

∇× (∇×H) = −∇2H +∇(∇ ·H) = −
(
∇2 −∇ : ∇

)
H

−
(
∇2 −∇ : ∇

)
H =

∂

∂t
∇×D +∇× Jq

= ε0
∂

∂t
∇× E +∇× Jq

(3)
= −ε0

∂2B
∂t2 +∇× Jq

= −µ0ε0
∂2H
∂t2 +∇× Jq . (9)
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Using µ0ε0 = 1/c2, this finally results in[
∇2 −∇ : ∇− 1

c2
∂2

∂t2

]
B = −µ0∇× Jq . (10)

We will see below that we can interpret this expression as the screening equation for the mag-
netic field, allowing us to derive the frequency dependent penetration depth of the magnetic
field.

Finally, applying ∇× . . . on both sides of eq. (3) yields

∇× (∇× E) = − ∂

∂t
∇× B = −∇2E +∇(∇ · E)

−
(
∇2 −∇ : ∇

)
E = −µ0

∂

∂t
∇×H

= −µ0ε0
∂2E
∂t2 − µ0

∂Jq

∂t
. (11)

Again, using µ0ε0 = 1/c2 we can rewrite this equation as[
∇2 −∇ : ∇− 1

c2
∂2

∂t2

]
E = µ0

∂Jq

∂t
. (12)

(a) Using Ohm’s law Jq = σ(ω)E and ∂D/∂t = −ıωε0ε(ω)E [we assume a harmonic time
dependence D(t) = D0 exp(−ıωt)] we can rewrite eq. (2) as

∇×H = Jq +
∂D
∂t

= σ(ω)E− ıωε0ε(ω)E (13)

We can write the r.h.s. of eq. (13) as σ̃(ω)E using the generalized conductivity

σ̃(ω) = σ(ω)− ıωε0ε(ω)
ε(ω)=1
= σ(ω)− ıωε0 . (14)

In the same way we can write the r.h.s. of eq. (13) as −ıωε0ε̃(ω)E using the generalized
dielectric function

ε̃(ω) = ε(ω) +
ıσ(ω)

ωε0

ε(ω)=1
= 1 +

ıσ(ω)

ωε0
. (15)

With the complex ac conductivity σ(ω) = σ0
1−ıωτ (σ0 = ne2τ

m ) we obtain

ε̃(ω) = 1− 1
ω2

ne2

mε0︸︷︷︸
=ω2

p

−ıωτ

1− ıωτ

= 1−
ω2

p

ω2
−ıωτ

1− ıωτ
with ω2

p =
ne2

mε0
. (16)

Here, ωp is the plasma frequency of the electron system.
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(b) Inserting Jq = σ(ω)E into eq. (10) yields[
∇2 −∇ : ∇+

ω2

c2

]
B = −µ0∇× Jq = −µ0σ(ω)∇× E

= −ıωσ(ω)µ0︸ ︷︷ ︸
=1/δ2(ω)

B =
B

δ2(ω)
, (17)

where1

δ2(ω) =
1

−ıωσ(ω)µ0
=

m
µ0ne2︸ ︷︷ ︸
=δ2

∞

1− ıωτ

−ıωτ
= δ2

∞
1− ıωτ

−ıωτ
(18)

is the penetration depth of the magnetic field (skin depth). Note that the skin depth δ∞
(collisionless limit: τ → ∞) can be expressed via the plasma frequency ωp using the
relation µ0ε0 = 1/c2:

δ2
∞ =

m
µ0ne2 =

c2

ω2
p

. (19)

We can rewrite eq. (17) in the form of a wave equation for B:∇2 −∇ : ∇+ µ0ε0ω2

(
1−

ω2
p

ω2
−ıωτ

1− ıωτ

)
︸ ︷︷ ︸

=ε(ω)

 B = 0 . (20)

We see that by taking into account the current density Jq on the r.h.s. of eq. (17) results in
the replacement ε0ε(ω)→ ε0ε̃(ω).

For superconductors the complex conductivity in the limit ωτ � 1 usually valid up to
GHz frequencies is given by [cf. eq. (21) and (22)]

σ′(ω) ' 1
ωΛs

[
ωπδ(ω) +

nn

ns
ωτn

]
(21)

σ′′(ω) ' 1
ωΛs

[
1 +

nn

ns
(ωτn)

2
]

. (22)

This results in the total conductivity at finite frequencies

σ(ω) = σ′(ω) + ıσ′′(ω) =
1

ωΛs

[
nn

ns
ωτn + ı

(
1 +

nn

ns
(ωτn)

2
)]

. (23)

At temperature not to close to the transition temperature, (nn/ns)ωτ � 1 and we can
use the approximation

σ(ω) ' ı
ωΛs

=
ı

ωµ0λ2
L

. (24)

1Note that for ωτ � 1 we have 1
δ2

∞
' −ıω

δ∞
. With δ2

∞ = m/µ0ne2, σ0 = ne2τ/m and
√
−ı = 1√

2
(1− ı) we obtain

1
δ(ω)

=
√

µ0σ0ω
2 (1− ı).
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Inserting this into the expression for the magnetic field penetration depth we obtain

δ2(ω) =
1

−ıωσ(ω)µ0
= λ2

L . (25)

We see that the magnetic field screening length in superconductor up to frequencies sat-
isfying (nn/ns)ωτ � 1 is about frequency independent and given by the London pene-
tration depth λL.

In order to show that the electric field E also follows a wave equation of the form (20), we
insert Ohm’s law, Jq = σ(ω)E, into eq. (12) and obtain[

∇2 −∇ : ∇+
ω2

c2

]
E = µ0

∂Jq

∂t
= −ıωµ0σ(ω)︸ ︷︷ ︸

1/δ2(ω)

E =
E

δ2(ω)
. (26)

This can be rewritten into an equation identical to (20) despite of the replacement B↔ E:∇2 −∇ : ∇+
ω2

c2

(
1 +

ıσ(ω)

ωε0

)
︸ ︷︷ ︸

=ε(ω)

 E = 0 . (27)

This result shows that also the electric field E is screened within the same screening length
δ(ω) as the magnetic field B.

(c) The relation between the dielectric function ε̃(ω) and the electromagnetic penetration
depth δ(ω) reads

ε̃(ω) = ε(ω)−
ω2

p

ω2
−ıωτ

1− ıωτ

ε(ω)=1
= 1−

ω2
p

ω2
−ıωτ

1− ıωτ

= 1− c2

ω2

ω2
p

c2︸︷︷︸
=1/δ2

∞

−ıωτ

1− ıωτ
= 1− c2

ω2
1

δ2
∞

−ıωτ

1− ıωτ︸ ︷︷ ︸
=1/δ2(ω)

= 1− c2

ω2
1

δ2(ω)
. (28)
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