WMI Home
about us Research Methods and Techniques Teaching People Publications Master and PhD theses Contact    
   
Teaching

WMIText

Walther-Meißner-Institut (WMI), Bayerische Akademie der Wissenschaften
Chair for Technical Physics (E23), Technische Universität München

Seminar on
Advances in Solid State Physics
WS 2013/2014


BADW

Lectures & Exercises
Practical Training
Seminars
Ferienakademie
Lecture Notes
Talks & Tutorials
 
 

Time:
Tuesday, 10:15 - 11:45 h
Place:
Seminar Room 143
Walther-Meißner-Institut
Walther-Meißner-Str. 8
Research Campus Garching

Date Speaker Title
15.10.2013
and
22.10.2013
Rudolf Gross
Walther-Meißner-Institut (E23)
Technische Universität München and BAdW
Preliminary discussion and assignment of topics
12. 11. 2013
Gustav Andersson
Technische Universität München
19. 11. 2013
Sheng-da Wang
Technische Universität München and BAdW
26. 11. 2013
Johannes Lang
Technische Universität München
03. 12. 2013
Matthias Althammer
Walther-Meißner-Institut
Center for Materials for Information Technology "MINT", Tuscaloosa AL (USA)
One Year Research in Alabama
10.12. 2013
Vasileios Tzanos
Walther-Meißner-Institut
17. 12. 2013
no talk
14. 01. 2014
Ludwig Schaidhammer
Technische Universität München
21. 01. 2014
Florian Schäble
Technische Universität München
28. 01. 2014
Thomas P. Devereaux
Stanford Institute for Materials and Energy Sciences
SLAC National Accelerator Laboratory & Stanford University
Theoretical understanding of ultrafast electron dynamics in model systems


Within the seminar students can give talks on current topics in condensed matter physics. The seminar aims to give a closer look at new developments in condensed matter physics and to show how these developments can be transferred into applications. In the winter semester 2013/2014, the seminar will again focus on spin electronics, solid-state quantum information processing, the physics of solid-state nanostructures, and high temperature superconductivity (including the previously discovered FeAs superconductors). These topics are in the focus of several research programs of WMI and collaborative research programs in the Munich area (e.g. Collaborative Research Center 631, Excellence Cluster "Nanosystems Initiative Munich", DFG Priority Program 1538, EU Projects CCQED and PROMISCE)

The seminar is relevant for the special courses on "Superconductivity and Low Temperature Physics" as well as on "Magnetism and Spintronics". It is also suitable for bachelor and master students in the 5th semester and higher.

List of open topics for seminar talks in WS 2013/2014

  1. Spin-Cherenkov effect and magnonic Mach cones (M. Yan et al., Phys. Rev. B 88, 220412 (2013))
  2. Optical detection of radio waves through a nanomechanical transducer (T. Bagci et al., Nature 507, 81(2014))
  3. Room-temperature antiferromagnetic memory resistor (X. Marti et al., Nature Mater. (2014))
  4. An electrically pumped polariton laser (C. Schneider et al., Nature 497, 348, (2013))
  5. Photon-Mediated Interactions Between Distant Artificial Atoms (Arjan F. van Loo et al., Science 342, pp. 1494-1496 (2013))
  6. Coherent flux tunneling through NbN nanowires (J.T. Peltonen et al., Phys. Rev. B 88, 220506(R) (2013))
  7. Entangling Mechanical Motion with Microwave Fields (T. A. Palomaki et al., Science 342, pp. 710-713 (2013))
  8. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials (Ilya Grinberg et al., Nature 503, pp. 509-512 (2013))
  9. Quantum Limit of Heat Flow Across a Single Electronic Channel (S. Jezouin et al., Science 342, 601-604(2013))
  10. Stabilizing the magnetic moment of single holmium atoms by symmetry (Toshio Miyamachi et al., Nature 503, 242-246(2013))
  11. Superconducting Circuits for Quantum Information: An Outlook (M.H. Devoret and R.J. Schoelkopf, Science 339, 1169-1174 (2013))
  12. A scanning superconducting quantum interference device with single electron spin sensitivity (see Nature Nanotech. 8, 639-644 (2013))
  13. Spintronics with Antiferromagnets (see Nature Mater. 10, 347 (2011))
  14. A temporal cloak at telecommunication data rate (see Nature 498 (2013))
  15. Spin-Optical Metamaterial Route to Spin-Controlled Photonics (see Science 340, 724 (2013))
  16. Electric Field Control of Nonvolatile Four-State Magnetization (see Phys. Rev. Lett. 108, 177201 (2012))
  17. Spin injection into a mesoscopic superconductor (see Phys. Rev. Lett. 109, 207001 (2012))
  18. The Josephson Heat Interferometer (see Giazotto et al., Nature 492,401–405 (2012))
  19. Josephson supercurrent through a topological insulator state (see M. Veldhorst et al.,Nature Materials 11, 417 (2013))
  20. Racetrack 2.0 - High velocity magnetic domain wall motion (see K.-S. Ryu et al., Appl. Phys. Express (2012))
  21. Negative Absolute Temperature for Motional Degrees of Freedom (see S. Braun et al., Science 339, 52-55 (2013))
  22. Coherent quantum phase slip (see Astafiev et al., Nature, 2012)



For general information on the teaching program of TUM see TUMonline.