

Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide

G. Wolfowicz et al. (2019). "Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide". In: *Applied Physics Letters* 115.4, p. 043105.

Manuel Knauft

04.05.2021

Motivation

- Measurements of utmost importance in (experimental) physics
- Not only quantity *x*, but also
 - Information about vector field: \vec{x}
 - Spatial distribution: $\vec{x}(\vec{r})$
 - Time (and frequency) domain: x(t), X(f)
 - Gradients: $\nabla \vec{x}(\vec{r})$

ПΠ

Figure: Measurements in physics.¹

¹https://www.helpyoubetter.com/measurement-in-physics-and-si-units-of-measurement/amp/, acessed 28.04.2021

Electrometry

Existing technologies:

- Field mill (Sensitivity $200 V m^{-1}$)
- Nitrogen-vacancies in diamonds
- Spin-based sensing (comparable to method presented here)
- Quantum dots

Figure: Field mill (left) and spin-based sensing (right).²

²after https://upload.wikimedia.org/wikipedia/commons/9/99/Signalverarbeitung-Feldm%C3%BChle.svg, acessed 25.04.2021 and https://pubs.rsc.org/ko/content/articlelanding/2019/ra/c9ra02282a#!divAbstract, acessed 28.04.2021

Silicon carbide and vacancies

- Silicon-carbon-lattice
- Used in high-endurance applications
- Semiconductor industry: high temperature and/or voltage applications
- Increased interest as vacancy-based sensor

Figure: Divacancy in silicon carbide.³

³A. L Falk (2017). "Adressing spin states with infrared light". In: *Science* 357.6352, pp. 649-649

Silicon carbide and vacancies

- e⁻ on vacancy positions: Different spin and charge states
- Only charge states VV⁰ shows photoluminescence (PL) → Optical detection with suitable laser excitation

Figure: Energy level scheme of divacancy.⁴

⁴after Wolfowicz G, Anderson CP, Yeats AL, et al (2017). "Optical charge state control of spin defects in 4H-SiC". In: *Nat Commun.* 8(1):1876. Published 2017 Nov 30.

Measurement protocol

- Measurement: Repump divacancies with reset laser
- Data acquisition while illumination with readout laser
- Contrast value: $\frac{PL(E)-PL(E=0)}{PL(E=0)}$

Figure: Measurement protocol.⁵

⁵after G. Wolfowicz, S. J. Whiteley, and D. D. Awschalom (2018). "Electrometry by optical charge conversion of deep defects in 4H-SiC" PNAS 115.31, pp. 7879–7883.

Silicon carbide and vacancies

• Fit function for contrast contains rate shift $\Delta R(E) = \Delta R_{\infty} \left\langle \frac{(E/E_{sat})^2}{1+(E/E_{sat})^2} \right\rangle_t$, is *E*-dependent • Sensitivity $S = \frac{E^2 \sigma_{\Delta PL}(E) \sqrt{t_{exp}}}{\Delta PL(E)}$

⁶G. Wolfowicz, S. J. Whiteley, and D. D. Awschalom (2018). "Electrometry by optical charge conversion of deep defects in 4H-SiC". In: *Proceedings of the National Academy of Sciences* 115.31, pp. 7879–7883.

Experimental setup

- Ensemble of divacancies created via carbon implantation
- Optical detection and pumping by lasers: EOCC (Electrometry by optical charge conversion)
- Application of sensed field \vec{E}_{sensed} and pump field \vec{E}_{pump} through titan-/gold-contacts
- Signal strength ${\cal S}$ proportional to quadratic electrical field \vec{E}^2

Figure: a) Experimental setup of the sensor b) Measurement (left) and simulation (right).

Experimental setup - Heterodyne

Consider $S \propto \vec{E}^2 = (E_{pump} \cos (\omega_{pump} t) \vec{u}_p + E_{sensed} \cos (\omega_{sensed} t + \phi) \vec{u}_s)^2$ with \vec{u}_p , \vec{u}_s normalized vectors \rightarrow mixed term $\propto E_{pump} E_{sensed} \cos (\Delta \omega t + \phi) \vec{u}_p \vec{u}_s$

- Scalar product: Alignment information
- Linear in $E_{\text{sensed}} \rightarrow$ increased sensitivity for low electrical fields

Figure: Electronics of the device.

Applications - Spectroscopy

- Sweep of reference frequency fref of lock-in
- FWHM only limited by lock-in acquisition time $\tau_{\rm RC} \rightarrow$ Improvement over comparable methods

Figure: Spectroscopic potential of the device.

Applications - Contrast of heterodyne

- Higher pump field → higher contrast (possible limit: saturation)
- Standard EOCC: Quadratic response, low sensitivity for small *E*_{sensed}
- Heterodyne measurement: Linear in *E*, higher sensitivity. Coherent heterodyne (φ fixed): Signal extended to noise floor

Figure: a) Effect of pump field *E*_{pump}; b) Quadratic EOCC response vs. (in)coherent heterodyne.

Applications - phase information

- Signal at Δω proportional to scalar product u
 _p · u
 _s → Cancels out when fields are orthogonal
- 2D-vector information can be read of

Figure: Parallel (left) and orthogonal (right) configuration. Bottom row: Phase contrast.

Sensitivity

- Sensitivity of 1.1 (V/cm)/ \sqrt{Hz} for $\approx 10^3$ to 10^4 defects \rightarrow Thinning out divacancies: Higher spatial resolution; more vacancies: Better sensitivity
- Better per defect than spin-based sensing $(0.1 (V/cm)/\sqrt{Hz}$ for 10^{11} defects, $200 (V/cm)/\sqrt{Hz}$ for a single defect)
- Comparison to semiconductor technologies: 10⁴ V cm⁻¹ Cavity quantum electrodynamics⁷: 2 mV cm⁻¹

⁷A. Blais et al. (2004). "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation". In: *Phys. Rev. A* 69 (6), p. 062320.

Outlook

- 3D information by applying a pump field orthogonal to substrate
- Multifrequency pumps for sensing different frequencies of the electrical field
- Alternative defects better suited for EOCC measurements

Conclusion

- Vacancies in silicon carbide accessed via charge-based measurements allow for sensing applications of electrical field
- Nonlinear response to *E* enables heterodyne techniques → higher sensitivity, lower *E*-values accessible, phase and vector information
- Presented technique better than spin-based sensing; can be adjusted to individual needs

Department of physics Technical University of Munich

Thank you for your attention!