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 Band structure between Insulator and 
Conductor

 SOC leads to Band Inversion

 Bands touch: Cones

 TRS or lattice symmetry  broken → Weyl 
Cones

 Else: Dirac Cone (degenerate)
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Topological Materials
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[2] Binghai Yan, Claudia Felser, Annu. Rev. Condens. Matter Phys, 8, 337-354  (2017)



 WSM: Topological states on the surface 
(Fermi arcs in contrast to closed Fermi 
surface, spin & momentum are locked)

 Chiral magnetic effects inside the material 
(Weyl cones)

 Extremely high conductivity and 
magnetoresistance
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Weyl Semimetals
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No lattice symmetry

→ WSM
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ß-WP
2

[7] Dirk Wulferding et al, Phys. Rev. B, 102, 075116 (2020)
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 RRR=ρ(300 K)/ρ(2 K) (residual resistivity ratio)

 RRR(WP
2
) ≈ 25.000

 RRR(Copperwire) ≈ 40 – 50 [4]

 Green line: impurities, e-e, e-ph: 

ρ(T)=ρ0+a·T2+b·T5

 Red line: Phonon drag (ph-e) (e get “dragged 
along”):  normally small, but with suppressed ph-
ph decay, ph-e becomes more significant

 ρ(T)=ρ
0
+ c·exp(−T

0
/T)

 Blue line: combined terms
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Motivation
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Scattering mechanisms central to the high conductivity largely 
unexplored.

Idea: momentum lost to phonons (in e-ph) can be regained if 
these phonons scatter back into electrons (e-ph) signifficantly 
more then into other phonons (ph-ph)

→ higher conductivity
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Motivation



 Incident photon with ω
i
 excites the energy state

 Most of these states relax back into original state (Rayleigh)
 Some relax into another vibrational state (Stokes/ Anti-Stokes) emitting ω

s

 Raman shift = |ω
i
-ω

s
| is the Energy of the created/ annihilated phonon

 Not only sensitive to ω, but also to k.
 Only optical Phonons can be observed
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Raman spectroscopy - Theory

    [5]
[5] https://en.wikipedia.org/wiki/Raman_spectroscopy (12.5.2021)

https://en.wikipedia.org/wiki/Raman_spectroscopy


Raman spectroscopy to see the different phonon 
modes

Example: displacements of A
1
(1) mode
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Raman spectroscopy

[1]

[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)
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Typically, Phonon Energy decreases with 
increasing Temperature 

(lattice expansion → Phonons have larger 
wavelength)

Percentage change of each modes energy.

Most modes change by 1% while A
1
(1) changes by 

2%.
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Raman spectroscopy
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[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)



Linewidth is dependant on the Lifetime of the 
Phonon (uncertainty Principle):

 Long Lifetime  small Linewidth⬌

 Short Lifetime  big Linewidth⬌

Temperature dependence of ph-ph decay is 
governed  by Bose-Einstein distribution

Higher T → higher density of states → more 
scattering

→ linewidth increases monotonically with T

Doesn’t fit the observation for A
1
(1) and A

1
(2)
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Phonon Linewidth Measurements
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Model for ph-e decay:

Decay rate dependent on difference in occupation 

of states n
I
 - n

T
 

in graphene: 

Initial State < E
F

Target occupation higher with bigger T

→ difference in occupation smaller

→ linewidth decreases monotonically with T

Doesn’t fit the observation for A1(1) and A1(2)
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Phonon Linewidth Measurements
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Model for ph-e decay:

Decay rate dependent on difference in occupation 
of states

New model:

Initial State > E
F
 

WP2: Γ(T)  n∝
I
 - n

T
 

Since the electron states are ω
a 
above E

F
 they are 

not thermally populated at low T 

→ increase at low T, decrease at high T

Matches with behavior of A
1
(1) and A

1
(2)

There are Interband and intraband transitions
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Phonon Linewidth Measurements

[1]

[1][1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)



[1]

The calculated electronic band structure.
∪-shaped Bands: electron-like Bands
∩-shaped Bands: hole-like Bands
 
 

Intraband transitionsalways alowed in terms of E
Joint density of states (JDOS) for vertical transitions at 
low Temperature
 Max between 40-60 meV
 but: A

1
(1) and A

1
(2) at 22.4 meV & 35.8 meV

 A
1
 modes in 40-60 meV have ph-ph decay

→ Conservation of Energy allows the observed 
transition, but availability of states is not the biggest 
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Energy conservation

   [1]

[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)

bands are split 
→ gaps are in scale of the optical phonons (70meV) 

→ allows q≈0 transitions 



Normaly this has do be considered, here the Result is 
that all transitions are possible.

Interband and intraband likely contribute to the 

linewidth of A
1
(1) and A

1
(2).
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Interband 
transition with q=0 exist for whole range of optical 
phonon energy. (q≈0 looks similar)
→ momentum conservation trivially fulfilled. 

Intraband:
Calculated the max. momentum the Photons can 

transfer: q ≤ 4πni(λ)/λ = 9.68×107 m−1

Needed for transfer:  q = ΔE / (  νℏ
F
) 

A
1
(1) q ≈ 8.57×107 m−1 Enough

A
1
(2) q ≈ 1.37×108 m−1 Not enough (almost, so some 

are possible)

Higher A
1
 modes: q ≈ 1.71×108 m−1  Not enough

Might explain why the linewidth of A
1
(1) is stronger 

influenced by the ph-e decay path then A
1
(2) 
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Momentum conservation
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[1]
[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)



Decay paths available from the Selection Rules for  
A

2
, B

1
, B

2
, But no anomalous linewidth.

g: electron-phonon-coupling constant (explain color)

g is high near Γ (at finite q near zero) and at low Energy

For q=0: phonon electron coupling very weak

For finite q, it rises drastically for A
1
(1) and A

1
(2) put 

arrows
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Phonon Electron Coupling
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[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)

A
1
(1)

A
1
(2)



Why does ph-e dominate over ph-ph? 

Low E optical ph decays into 2 acoustical ph

lowest Energy optical Phonons are close to the Energy of the 
acoustic phonons

→ can only decay into really low E acoustic phonons

Density of states increases with k

Low amount of decay paths available
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Discussion

[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)

[1]

optical ph

acoustic  ph
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For mobility, acoustic phonons are important, not optical phonons

They calculate the lifetime of of accousstic ph that scatter into 

e (τ
ph-e

) and ph that scatter into ph (τ
ph-ph

):

τ
ph-e

/τ
ph-ph

≈0.1

Same bunching Argument as above

→ strongly suggests dominance of ph-e scattering for acoustic 
ph as well

Weyl-nodes are hundreds of meV under EF, so the topological 

nature of the semimetal might not play a role. 

But SOC (which is also the cause for the Weyl-nodes) is 
important, as it splits the Band.

19

Discussion

[1]

[1] Gavin B. Osterhoudt et al., Phys. Rev. X,11 011017  (2021)



Momentum “lost” to phonons by e-ph scattering may be returned 
to electrons by ph-e scattering, which improves conductivity 

→ Consistent with phonon drag effect

It is not known if acoustic Phonons behave the same, as only 
optical phonons could be observed with the Raman-spectroscopy

Further studies on acoustic phonons needed.

They did not explain a physical background for the positive ω
A

But: α-WP2 has similar properties (conductivity) but has no SOC  

and no splitting
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HWP – Half-wave plate

BS – Beam Splitter

FR – double Fresnel rhomb
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