Evidence for Dominant Phonon-Electron Scattering in Weyl Semimetal WP2

Article by: Gavin B. Osterhoudt, Yaxian Wang, Christina A. C. Garcia, Vincent M. Plisson, Johannes Gooth, Claudia Felser, Prineha Narang, and Kenneth S. Burch <u>https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.011017</u> [1]

Presentation by: Daniel Hagspihl

18.05.2021

ПП

Contents

- Introduction
 - Weyl-Semimetals
 - WP₂
 - Motivation
 - Raman spectroscopy Theory
- Raman spectroscopy
- Phonon Linewidth Measurement
- Phonon Decay Paths
 - Energy conservation
 - Selection Rules
 - Momentum conservation
 - Phonon-electron coupling
- Discussion
- Conclusion

Topological Materials

- Band structure between Insulator and ٠ Conductor
- SOC leads to Band Inversion •
- Bands touch: Cones •
- TRS or lattice symmetry broken \rightarrow Weyl ٠ Cones

C

Else: Dirac Cone (degenerate) •

ΠΠ

Weyl Semimetals

- WSM: Topological states on the surface ٠ (Fermi arcs in contrast to closed Fermi surface, spin & momentum are locked)
- Chiral magnetic effects inside the material ٠ (Weyl cones)

C

Extremely high conductivity and • magnetoresistance

ТШ

 $\operatorname{B-WP}_2$

(b) (c) orthorhombic monoclinic β -WP₂ (Cmc21) α-WP₂ (C12/m1) b а С C [7]

No lattice symmetry

 $\rightarrow \text{WSM}$

Motivation

- RRR= $\rho(300 \text{ K})/\rho(2 \text{ K})$ (residual resistivity ratio)
- RRR(WP₂) ≈ 25.000
- RRR(Copperwire) ≈ 40 50 [4]
- Green line: impurities, e-e, e-ph: $\rho(T) = \rho_0 + a \cdot T^2 + b \cdot T^5$
- Red line: Phonon drag (ph-e) (e get "dragged along"): normally small, but with suppressed phph decay, ph-e becomes more significant
- $\rho(T) = \rho_0 + c \cdot \exp(-T_0/T)$
- Blue line: combined terms

ПΠ

Motivation

Scattering mechanisms central to the high conductivity largely unexplored.

Idea: momentum lost to phonons (in e-ph) can be regained if these phonons scatter back into electrons (e-ph) signifficantly more then into other phonons (ph-ph)

 \rightarrow higher conductivity

Raman spectroscopy - Theory

- Incident photon with ω_i excites the energy state
- Most of these states relax back into original state (Rayleigh)
- Some relax into another vibrational state (Stokes/Anti-Stokes) emitting $\omega_{_{
 m s}}$
- Raman shift = $|\omega_i \omega_s|$ is the Energy of the created/ annihilated phonon
- Not only sensitive to ω , but also to k.
- Only optical Phonons can be observed

Raman spectroscopy

Raman spectroscopy to see the different phonon modes

(a)

Example: displacements of $A_1(1)$ mode

[1] Gavin B. Osterhoudt et al., Phys. Rev. X, 11 011017 (2021)

Raman spectroscopy

Typically, Phonon Energy decreases with increasing Temperature

(lattice expansion \rightarrow Phonons have larger wavelength)

Percentage change of each modes energy. Most modes change by 1% while $A_1(1)$ changes by 2%.

Phonon Linewidth Measurements

Linewidth is dependent on the Lifetime of the Phonon (uncertainty Principle):

- Long Lifetime ↔ small Linewidth
- Short Lifetime ↔ big Linewidth

Temperature dependence of ph-ph decay is governed by Bose-Einstein distribution

Higher $T \rightarrow$ higher density of states \rightarrow more scattering

 \rightarrow linewidth increases monotonically with T

Doesn't fit the observation for $A_1(1)$ and $A_1(2)$

Phonon Linewidth Measurements

Model for ph-e decay:

Decay rate dependent on difference in occupation (c) of states $n_{\mu} - n_{\tau}$

in graphene:

Initial State $< E_{\rm F}$

Target occupation higher with bigger T

- \rightarrow difference in occupation smaller
- \rightarrow linewidth decreases monotonically with T

Doesn't fit the observation for $A_1(1)$ and $A_1(2)$

Phonon Linewidth Measurements

Model for ph-e decay:

Decay rate dependent on difference in occupation (c) of states

New model:

Initial State > $E_{\rm F}$

WP2: $\Gamma(T) \propto n_{I} - n_{T}$

Since the electron states are ω_a above E_F they are not thermally populated at low *T*

```
\rightarrow increase at low T, decrease at high T
```

```
Matches with behavior of A_1(1) and A_1(2)
```

There are Interband and intraband transitions

ТЛП

Energy conservation

The calculated electronic band structure. \cup -shaped Bands: electron-like Bands \cap -shaped Bands: hole-like Bands

bands are split

 \rightarrow gaps are in scale of the optical phonons (70meV)

 \rightarrow allows *q*≈0 transitions

Intraband transitionsalways alowed in terms of E Joint density of states (JDOS) for vertical transitions at low Temperature

- Max between 40-60 meV
- but: A₁(1) and A₁(2) at 22.4 meV & 35.8 meV
- A₁ modes in 40-60 meV have ph-ph decay

→ Conservation of Energy allows the observed transition, but availability of states is not the biggest

Selection Rules

Normaly this has do be considered, here the Result is that all transitions are possible. Interband and intraband likely contribute to the

linewidth of $A_1(1)$ and $A_1(2)$.

Momentum conservation

Interband

transition with q=0 exist for whole range of optical phonon energy. (q \approx 0 looks similar)

 \rightarrow momentum conservation trivially fulfilled.

Intraband:

Calculated the max. momentum the Photons can transfer: $q \le 4\pi n_i(\lambda)/\lambda = 9.68 \times 10^7 \, m^{-1}$

Needed for transfer: $q = \Delta E / (\hbar v_F)$

 $A_1(1) q \approx 8.57 \times 10^7 \, \text{m}^{-1} \, \text{Enough}$

 $A_1(2) q \approx 1.37 \times 10^8 \,\text{m}^{-1} \,\text{Not enough (almost, so some}$

are possible)

```
Higher A<sub>1</sub> modes: q \approx 1.71 \times 10^8 \text{ m}^{-1} Not enough
```

```
Might explain why the linewidth of A_1(1) is stronger influenced by the ph-e decay path then A_1(2)
```


ТЛП

Phonon Electron Coupling

Decay paths available from the Selection Rules for A_2 , B_1 , B_2 , But no anomalous linewidth.

g: electron-phonon-coupling constant (explain color) g is high near Γ (at finite q near zero) and at low Energy

For q=0: phonon electron coupling very weak For finite q, it rises drastically for $A_1(1)$ and $A_1(2)$ put arrows

Discussion

Why does ph-e dominate over ph-ph?

Low E optical ph decays into 2 acoustical ph

lowest Energy optical Phonons are close to the Energy of the acoustic phonons

 \rightarrow can only decay into really low E acoustic phonons

Density of states increases with k

Low amount of decay paths available

Discussion

For mobility, acoustic phonons are important, not optical phonons

They calculate the lifetime of of accousstic ph that scatter into e (τ_{ph-e}) and ph that scatter into ph (τ_{ph-ph}) :

T_{ph-e}/T_{ph-ph}≈0.1

Same bunching Argument as above

→ strongly suggests dominance of ph-e scattering for acoustic ph as well

Weyl-nodes are hundreds of meV under E_F , so the topological nature of the semimetal might not play a role.

But SOC (which is also the cause for the Weyl-nodes) is important, as it splits the Band.

ПΠ

Conclusion

Momentum "lost" to phonons by e-ph scattering may be returned to electrons by ph-e scattering, which improves conductivity

 \rightarrow Consistent with phonon drag effect

It is not known if acoustic Phonons behave the same, as only optical phonons could be observed with the Raman-spectroscopy Further studies on acoustic phonons needed.

They did not explain a physical background for the positive ω_{A}

But: α -WP₂ has similar properties (conductivity) but has no SOC and no splitting

Sources:

- [1] Gavin B. Osterhoudt et al, Evidence for Dominant Phonon-Electron Scattering in Weyl Semimetal WP2, Phys. Rev. X, 11 011017 (2021) <u>https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.011017</u>
- [2] Binghai Yan, Claudia Felser, <u>Topological Materials: Weyl Semimetals</u>, *Annu. Rev. Condens. Matter Phys*, **8**, 337-354 (2017)
- [3] Nitesh Kumar et al, Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP₂ and MoP₂. NATURE (2017)
- [4] <u>https://en.wikipedia.org/wiki/Residual-resistance_ratio</u> (12.5.2021)
- [5] https://en.wikipedia.org/wiki/Raman_spectroscopy (21.5.2021)
- [6] https://www.researchgate.net/figure/Schematics-of-the-topological-insulator-and-Weyl-semimetal-a-A-TI-exhibits-anenergy_fig2_281312307 (23.5.2021)
- [7] Dirk Wulferding et al, <u>Effect of topology on quasiparticle interactions in the Weyl semimetal WP2</u>, Phys. Rev. B, **102**, 075116 (2020)
- [9] R. Schönemann et al, PHYSICAL REVIEW B, 96, 121108(R) (2017)

Thank you for listening!

Extra Slides – Raman Scattering

ТUП

Extra Slides – WSM

[6] https://www.researchgate.net/figure/Schematics-of-the-topological-insulator-and-Weyl-semimetal-a-A-TI-exhibits-an-energy_fig2_281312307 (23.5.2021) 23

Extra Slides – Umklapp ph-e Scattering

[8] Nathan Wiser, CONTEMP. PHYS., VOL. 25, NO. 3, 21 1 -249 (1984)

Extra Slides – Fermi Surface of WP₂

