Experimental observation of vortex rings in a bulk magnet

Claire Donnelly^{1,2,3}, Konstantin L. Metlov^{4,5}, Valerio Scagnoli^{2,3}, Manuel Guizar-Sicairos³, Mirko Holler³, Nicholas S. Bingham^{2,3}, Jörg Raabe³, Laura J. Heyderman^{2,3}, Nigel R. Cooper¹ and Sebastian Gliga³

Introduction

Overview

- 1. Vortex rings and bloch points in a bulk magnet
- 2. Experimental investigation and setup
- 3. Results
- 4. Outlook

Magnetic vorticity $\Omega_{\alpha} = \frac{1}{8\pi} \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} m_i \partial_{\beta} m_j \partial_{\alpha} m_k$ Reduced magnetization $\mathbf{m} = \frac{M}{M_s}$

Cartesian components:

$$\begin{split} \Omega_x &= 2m_x(\partial_y m_y \partial_z m_z - \partial_z m_y \partial_y m_z) + 2m_y(\partial_y m_z \partial_z m_x - \partial_z m_z \partial_y m_x) \\ &+ 2m_z(\partial_y m_x \partial_z m_y - \partial_z m_x \partial_y m_y) \\ \Omega_y &= 2m_x(\partial_z m_y \partial_x m_z - \partial_x m_y \partial_z m_z) + 2m_y(\partial_z m_z \partial_x m_x - \partial_x m_z \partial_z m_x) \\ &+ 2m_z(\partial_z m_x \partial_x m_y - \partial_x m_x \partial_z m_y) \\ \Omega_z &= 2m_x(\partial_x m_y \partial_y m_z - \partial_y m_y \partial_x m_z) + 2m_y(\partial_x m_z \partial_y m_x - \partial_y m_z \partial_x m_x) \\ &+ 2m_z(\partial_x m_x \partial_y m_y - \partial_y m_x \partial_x m_y) \end{split}$$

In general: $\vec{\omega} \equiv \nabla \times \vec{u} = \epsilon_{ijk} \frac{\partial u_k}{\partial x_j}$ with flow velocity \vec{u}

Here (magnetic vorticity): $\Omega_{i} \equiv \frac{1}{2} \epsilon_{ijk} (\partial_{j} \mathbf{M} \times \partial_{k} \mathbf{M}) \cdot \mathbf{M}$ with magnetization $\mathbf{M} = \mathbf{M}(\mathbf{r}, t)$

Magnetic vorticity $\Omega_{\alpha} = \frac{1}{8\pi} \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} m_i \partial_{\beta} m_j \partial_{\alpha} m_k$ Reduced magnetization $\mathbf{m} = \frac{M}{M_s}$

 \checkmark represents **topological charge flux density** Ω

Vortices: naturally occuring flux closure states in which the magnetization curls around a stable core

Anti-vortices: opposite rotation of the in-plane magnetization

Reduced magnetization $\mathbf{m} = \frac{M}{M_s}$ **Magnetic vorticity** $\Omega_{\alpha} = \frac{1}{8\pi} \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} m_i \partial_{\beta} m_j \partial_{\alpha} m_k$

Magnetic vorticity $\Omega_{\alpha} = \frac{1}{8\pi} \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} m_i \partial_{\beta} m_j \partial_{\alpha} m_k$

Singularities of the magnetic vorticity: $\pmb{\nabla}\cdot\pmb{\Omega}$

- → Bloch points and anti-Bloch points
- → Vorticity abruptly reverses sign
- →Bloch point: vorticity source
 →Anti-Bloch point: vorticity sink

GdCo ₂	Two dimensions	Three dimensions
WALL.	soft-X-ray and electron microscopies	Hard x-ray regime
Зит	Spatial resolution:	Spatial resolution:
	< 10 nm	~ 10 – 100 nm
	Sample thickness:	and
	< 200nm and 100nm	Penetration depth:
		Up to 10s of μ m
	→ imaging is limited to thin samples	→ high-spatial-resolution 3D studies of ferromagnetic systems
		0

"Imaging three-dimensional magnetic systems with x-rays", C Donnelly and V Scagnoli

GdCo₂

Effective dual-axis tomography

1024 different orientations distributed over **360°** with equal angular spacing

0° and 30° tilt angles

Spatial resolution: 97 nm, 125 nm and 127 nm in the x-z, x-y and y-z planes

X-ray magnetic circular dichroism (XMCD)

dichroism \triangleq dependence of the absorption on its polarisation

X-ray magnetic circular dichroism (XMCD)

Signal takes **maximum positive (negative)** value when: magnetic moment **parallel (antiparallel)** to x-ray propagation direction

Signal is **zero** when:

Magnetic moment **perpendicular** to X-ray propagation direction

 \rightarrow upon 180° the XMCD signal is reversed in sign

single X-ray polarization → only left circulary polarization

Dichroic ptychography

Scattering factor:

$$f = \underbrace{f_{c}(\varepsilon_{f}^{*} \cdot \varepsilon_{i})}_{\text{charge}} - \underbrace{if_{m}^{(1)}(\varepsilon_{f}^{*} \times \varepsilon_{i}) \cdot m(r)}_{\text{circular dichroism}} + \underbrace{f_{m}^{(2)}(\varepsilon_{f}^{*} \cdot m(r))(\varepsilon_{i} \cdot m(r))}_{\text{linear dichroic scattering factor } f_{m}^{(2)} \rightarrow 0$$

$$f = f_{c} - if_{m}^{(1)} \begin{pmatrix} im_{Z} & 0 \\ 0 & -im_{Z} \end{pmatrix} = f_{c} \pm if_{m} \, \hat{\mathbf{z}} \cdot \mathbf{m}(\mathbf{r})$$

$$\epsilon_i$$
: Jones polatization vector
incomming wave
 ϵ_f : Jones polatization vector
scattered wave
 f_c : complex valued
charge scattering factor
 $f_m^{(1)}$: complex valued
circular dichroic magnetic
scattering factor
 $f_m^{(2)}$: complex valued
linear dichroic magnetic
scattering factor

Dichroic ptychography

- → projections are measured at θ and θ + 180° using
 circular left polarization through 360° about rotation axis
- → XMCD signal has reversed sign
- → magnetic contrast is separated from electronic contrast
- \rightarrow Tilted by angle ϕ (0° and 30°) to probe components of magnetization in multiple planes

➡ all components of the magnetization vector

Dichroic ptychography

Probe and object are complex functions that interact via scalar product:

b **Exit field** after sample $\psi_i(\mathbf{r}) = \mathbf{P}(\mathbf{r}) \cdot \mathbf{O}(\mathbf{r} - \mathbf{r}_i)$ scattering Absorption factor X-rays $P(\mathbf{r})$: incident illumination Transmissivity of sample: $O(r - r_j) = \exp\left[i\frac{\omega}{c}\int \left(1 - \frac{r_{electron}}{2\pi}\lambda^2 n_{at} f(r - r_j)\right)dz\right]$ 0.1 X-rays 0.05 \rightarrow phase ϕ_{XMCD} and absorption A_{XMCD} magnetic contrast of XMCD signals -0.05 🖁 \rightarrow Maximum of absorption signal at $E_{Photon} = 7.246 \text{ keV}$

Effective dual-axis tomography

The magnetization reconstructed using

two-step gradient-based iterative reconstruction algorithm

- . Magnetization in two planes perpendicular to the axis of rotation
- 2. 3D magnetization determined from two components of the magnetization in each plane

Results

Axial tomographic slice

Anti-vortex

Results

Correspondence with 3D

Results – simple structures and pre-images

- static and stable loops at room temperature
- average diameter of the vortex rings ≈ (400 ± 90) nm (y-z)-plane

ZX

Hopf index H = 0
 → vortex rings
 belong to a class of
 non-topological
 solitons

1 µm

Results – Pre-images

Vortex ring:

- → vortex-antivortex pair
- \rightarrow no Bloch points

Vortex loop:

→ containing sources and sinks of the magnetization due to the presence of Bloch points

d Vortex loop

20

c Vortex ring

Results – vortex loops

Results – stability of vorticity loops

→ no vortex loops after heating and magnetic field

→ vortex loops are metastable states

7 T magnetic field along the long axis of the pillar at **room temperature**

a

sample heated to 400 K while applying 7 T magnetic field $\Omega_{z}(a.u.)$

Outlook

X-ray magnetic laminography

For $0^{\circ} < \alpha < 90^{\circ}$, all three components of the magnetization are measured with **one** rotation axis.

- \rightarrow makes measurements simpler and sample set up much easier
- \rightarrow 4th dimension
- \rightarrow higher spatial resolution and sensitivity for nanoscale 3D structures

Single-step reconstruction

Thank you for your attention

References:

Slide 5: Zang J., Cros V., Hoffmann A., Topology in Magnetism, Springer, p. 77 (2018) Donnelly C., Scagnoli V., Imaging three-dimensional magnetic systems with x-rays (2020) Slide 10: Donnelly C., Scagnoli V., et al., High-resolution hard x-ray magnetic imaging with dichroic ptychography (2016) Slide 11: Donnelly C., et al., Three-dimensional magnetization structures revealed with X-ray vector nanotomography (2017) Slide 12: Donnelly C., Scagnoli V., et al., High-resolution hard x-ray magnetic imaging with dichroic ptychography (2016) Slide 15: Donnelly C., et al., Tomographic reconstruction of a three-dimensional magnetization vector field (2018) Slide 16: Donnelly C., et al., Three-dimensional magnetization structures revealed with X-ray vector nanotomography (2017) Donnelly C., et al., Tomographic reconstruction of a three-dimensional magnetization vector field (2018) Slide 17: Donnelly C., et al., Tomographic reconstruction of a three-dimensional magnetization vector field (2018) Slide 18: Slide 19: Donnelly C., et al., Tomographic reconstruction of a three-dimensional magnetization vector field (2018)