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▪ 2-dimensional (single layer) modification of graphite

▪ Graphite is carbon in a hexagonal structure

▪ Graphite is a Van-der-Waals-Material, which means…

• it is built by the strong bounded 2D-layers graphene

• the 2D-layers are weakly bounded by the Van-der-Waals-

force

▪ As the valence band is touched by the conduction band, graphene

is a semimetal

▪ In 2004, Konstantin Novoselov and Andre Geim discovered and 

investigated graphene and received the Nobel Price in 2010

Graphene
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▪ Force on a charge carrier in an electric and 

magnetic field

Ԧ𝐹 = 𝑞 ∙ 𝐸 + Ԧ𝑣 × 𝐵

with q ∙ Ԧ𝑣 × 𝐵 = Ԧ𝐹𝐿 the Lorentz force

▪ In a system of equilibrium Ԧ𝐹 = 0, therefore

𝑞 ∙ 𝐸 + Ԧ𝑣 × 𝐵 = 0

▪ An electric field 𝐸 emerges so that Ԧ𝐹𝐿 gets

compensated

Ordinary Hall Effect
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▪ For simplicity, we can assume 𝐸𝑦 − 𝑣𝑥 ∙ 𝐵𝑧 = 0 with 𝐵𝑧 = 𝐵 and Ԧ𝑗 = 𝑛 ∙ 𝑞 ∙ Ԧ𝑣

▪ With 𝑣𝑥 =
1

𝑛∙𝑞
𝑗𝑥 and 𝑗𝑥 =

𝐽

𝑏∙𝑑
, we obtain the Hall voltage

𝑈𝐻 = 𝑏 ∙ 𝐸𝑦 = 𝑏 ∙
𝐽 ∙ 𝐵

𝑛 ∙ 𝑞 ∙ 𝑏 ∙ 𝑑
= 𝑅𝐻 ∙

𝐽 ∙ 𝐵

𝑑

▪ 𝑅𝐻 =
1

𝑛∙𝑞
is the Hall coefficient (𝑛 is the charge carrier density)

▪ The specific Hall resistance is 𝜌𝑥𝑦 =
𝐸𝑦

𝐽
=

𝑈𝑦

𝐽∙𝑏

▪ The Hall conductivity is given by 𝜎𝑥𝑦 = 𝜌−1 𝑥𝑦

Ordinary Hall Effect
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▪ Degree of degeneracy in a magnetic field: 

𝑝 = ħ 𝜔𝑐 𝐷2𝐷 = ⋯ =
ϕ

෩ϕ0
= 𝑁ϕ

with ෩ϕ0 =
ℎ

𝑒
the flux quantum, 𝜔𝑐 the cyclotron frequency  and 𝐷2𝐷 the 2-dimensional density of states

▪ For 𝑁𝑒 = 𝑛 ∙ 𝑝 the total amount of electrons, we obtain 𝑛 = 𝑁𝑒

𝑁ϕ
for the 𝑛𝑡ℎ −Landau level 

▪ If the chemical potential µ is located between the Landau levels, it holds that 𝑣 = 𝑛 =
𝑁𝑒

𝑁ϕ

with 𝑣 the filling factor

Filling Factor
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▪ In this case, the filling factor can be understood as the highest occupied Landau level

Filling Factor
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▪ For very high magnetic fields and low temperatures, a quantisation of the Hall conductivity on surfaces

and in 2D-materials can be observed

▪ The resistance is quantized by the resistance quantum ℎ

𝑒2
, so the quantum Hall conductivity is (𝑣 = 1,2,…) 

𝜎𝑥𝑦 =
𝑒2

ℎ
∙ 𝑣

▪ Filling factor is quantum number of the Hall conductivity

Integer Quantum Hall Effect (IQH)
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In the experiment:

▪ Gate voltage 𝑈𝑔 affects the electron density

▪ Current 𝐽𝑥 and magnetic field 𝐵 were fix

▪ For 𝑈𝑔, where 𝑈𝑥 = 0, 𝑈𝑦 has plateaus

▪ These plateaus can be understood as conductivity states

▪ General reason:

Impurities and defects cause localised and delocalised

. electron states, which can explain the Hall-plateaus 

Integer Quantum Hall Effect (IQH)
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Very simplified explanation for the quantum Hall plateaus:

▪ Assumption: chemical potential 𝜇 between two Landau levels

▪ As 𝜇 is located in between two levels, one band is fully occupied, whereas the next level is empty

→ insulator

▪ Also no thermal excitation 𝑘𝐵𝑇 ≪ ℏ𝜔𝐶, therefore 𝜎𝑥𝑥 = 𝜎𝑦𝑦 → 0

Integer Quantum Hall Effect (IQH)
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▪ Many contributions to the anomalous Hall effect (AH)

▪ Key ingredients are:

• Intrinsic contribution

• Skew-scattering contribution

• Side-jump contribution

▪ Internal magnetisation creates a flux density, according to 𝐵 = 𝜇0 ∙ 𝐻 +𝑀

▪ Even for 𝐻 = 0, the material has still a magnetisation 𝑀 ≠ 0 due to remanence

▪ Hence, the material has an internal flux density 𝐵 = 𝜇0 ∙ 𝑀, in our case bilayer graphene

Anomalous Hall Effect
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▪ Quantized version of the anomalous Hall 

effect

▪ Quantized Hall resistance at zero external 

magnetic field

▪ Hall conductivity is proportional to multiples of

the conductance quantum
𝑒2

ℎ

▪ Observed in various two-dimensional material 

with periodic structure

Quantum Anomalous Hall Effect
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▪ The band structure of a certain material in the first Brillouin zone

can have multiple valleys

▪ Valleys are at different wave vectors 𝑘 & 𝑘′

▪ In bilayer graphene, we obtain 8 possible electron states

(spin up/down, two valleys, top/bottom graphene layer)

Valley Hall Effect
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▪ There also exists a quantum

valley Hall effect (QVH)

▪ Layer antiferromagnetic effect

(LAF) is layer dependend

▪ ALL phase: all different Hall 

effects unify to one

▪ One spin species is in one of the

QVH phases, whereas the other

spin species is in one of the QAH 

phases

Valley Hall Effect
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Bilayer Graphene Device
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R.T. Weitz et al., Science 330, 812 (2010)

Bilayer Graphene

Top Gate 

Gold Contacts 

Bottom Gate is the Si of the wafer



Bilayer Graphene Device
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▪ Mechanical exfoliation is the most common way to achieve 2D-

flakes

▪ Stick tape on crystal and just remove it

▪ Flakes on the tape-site are transferred onto a silicon/silicon dioxide 

(Si/SiO2) substrate

▪ After the transfer, the flakes are examined under the microscope

▪ As different layer-thicknesses have different colours, bilayer flakes 

can be preselected just with the help of the optical contrast

Device Fabrication (Flake)
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▪ Standard lithography process with electron beam evaporation

▪ The electrodes, the top gate and spacer were fabricated by 
these standard lithography techniques  

▪ Afterwards, the spacer (SiO2) was etched with hydrofluoric acid

Device Fabrication (Chip)
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▪ Advantage of using a top and bottom gate is the independent 

tunability of the charge carrier density 𝒏 and the 

perpendicular electric field 𝑬⊥

▪ The electric field is given by

𝐸⊥ =
𝐶𝑏
2𝜀0

𝛼𝑉𝑡 − 𝑉𝑏

with 𝛼 = 𝐶𝑡

𝐶𝑏
the ratio between top and bottom capacity

▪ Changes by ∆𝑉𝑡 =
∆𝑉𝑏

𝛼
will have no influence on 𝐸⊥

Electrical Transport Measurements
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▪ Charge carrier density is given by

𝑛 =
𝐶𝑏
𝑒

𝛼𝑉𝑡 + 𝑉𝑏

▪ Changes by ∆𝑉𝑡 = −
∆𝑉𝑏

𝛼
will have no influence on 𝑛

• Shifting ∆𝑉𝑡 by − ∆𝑉𝑏

𝛼
→ sweeps solely 𝐸⊥

• Shifting ∆𝑉𝑡 by ∆𝑉𝑏
𝛼

→ sweeps solely 𝑛

Electrical Transport Measurements
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▪ Before: Unclear ground state of bilayer graphene for

𝐵 = 0𝑇

▪ The filling factor 𝑣 is the quantum number of the 

conductance, given as 𝜎 = 𝑣 ∙
𝑒2

ℎ

▪ At different flux densities 𝐵 = 3𝑇 & 𝐵 = 0.8𝑇 the

ALL phases 𝒗 = ±𝟐 emerge

▪ States are only stable for a certain electric field 𝐸⊥
and charge carrier density 𝑛

Orbital-Magnetism-driven QAH
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▪ These four states additionally exist for 𝐵 < 0

▪ Therefore, an octet for the 𝒗 = ±𝟐 ALL states exists

Octet of QAH Phases
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▪ So far: stability of the 𝑣 = ±2 states at small magnetic 

field

▪ At 𝐸⊥ = −20
𝑚𝑉

𝑛𝑚
, the 𝑣 = ±2 & 𝑣 = ±4 states emerge 

at unusually small magnetic fields

▪ One gets more insight by tracking fluctuations near

incompressible quantum states

▪ Therefore, examining the derivative of the conductance

▪ Specific filling factors can appear even before the

corresponding quantum Hall states emerge

Tracing the 𝑣 = ±2 States to 𝐵 = 0
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▪ Investigating the differential conductance at various electric fields shows that

both states, 𝑣 = ±2 & 𝑣 = ±4, emerge at magnetic fields well below 𝐵 = 100 𝑚𝑇

▪ High resolution scan shows that the 𝑣 = ±2 states are also present for

𝐵 < 20 𝑚𝑇, which is by far further than the 𝑣 = ±4 states

▪ Provides strong evidence that the 𝒗 = ±𝟐 states are potential ground 

states of bilayer graphene at 𝑩 = 𝟎

Tracing the 𝑣 = ±2 States to 𝐵 = 0
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Tracing the 𝑣 = ±2 States to 𝐵 = 0

27Björn Sinz | Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene



▪ Before: Unclear ground state of the conductivity of bilayer

graphene for 𝐵 = 0

▪ The anomalous Hall effect gives rise to 𝑣 = ±2 states in bilayer

graphene at very low magnetic field

▪ The ‘ALL’ phases form an octet for various 𝐸⊥, 𝐵, 𝑛

▪ Strong evidence that 𝑣 = ±2 states are ground states of bilayer 

graphene for 𝐵 = 0𝑇

▪ Also a magnetic hysteresis was discovered, which supports

this assumption

Summary
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