Chapter 1

Macroscopic Quantum Phenomena

I. Foundations of the Josephson Effect

Macroscopic Quantum Phenomena

1.1 The Macroscopic Quantum Model of Superconductivity

Macroscopic systems

Quantum mechanics \rightarrow Physical quantities (p, E, ...) are quantized Usually thermal motion masks quantum properties

 \rightarrow No quantization effects on a macroscopic scale

Superconductivity:

→ Macroscopic quantum effects are observable Example: quantization of flux through a loop Why? Electrons form highly correlated system

1.

Milestones

- 1911 Discovery of superconductivity
- 1933 Meißner-Ochsenfeld effect
- 1935 **London-Laue-theory** phenomenological model describing observations
- 1948 London: superelectron fluid as quantum mechanical entity Superconductivity is an inherently quantum phenomenon manifested on a macroscopic scale
 - → Macroscopic wave function $\Psi(\mathbf{r}, t) = \Psi_0 e^{i\theta(\mathbf{r}, t)}$
 - \rightarrow London equations
- 1952 Ginzburg-Landau theory
 - ightarrow Description by complex order parameter $\Psi(r)$
 - \rightarrow Treatment of spatially inhomogeneous situations near $T_{\rm c}$
- 1957 Microscopic BCS theory (J. Bardeen, L.N. Cooper, J.R. Schrieffer)
 - \rightarrow BCS ground state $\Psi_{\rm BCS}$ (coherent many body state)
- 1962 Prediction of the Josephson effect

Macroscopic quantum model of superconductivity

Macroscopic wave function $\Psi(\mathbf{r}, t)$

- \rightarrow Describes the behavior of the whole ensemble of superconducting electrons
- \rightarrow Justified by microscopic BCS theory
 - Small portion of electrons close to Fermi level are bound to Cooper pairs
 - Center of mass motion of pairs is strongly correlated
 - > Example:

Wave function $\Psi(\mathbf{r}, t) = \Psi_0 e^{i\theta(\mathbf{r}, t)} = \Psi_0 e^{i(\mathbf{k}_s \cdot \mathbf{r} - \omega t)}$

Each pair has momentum $\hbar k_s$ or velocity $v_s = \frac{\hbar k_s}{m_s}$

Basic quantum mechanics

Quantization of electromagnetic radiation (Planck, Einstein): photons represent smallest amount of energy:

 $E = \hbar \omega$ with $\hbar = 1.054571596(82) \times 10^{-34}$ Js

Luis de Broglie describes classical particles as waves \rightarrow wave particle duality \rightarrow Particle – wave interrelations:

$$E = \hbar \omega$$
 , $p = \hbar \mathbf{k} = \frac{\hbar}{\lambda} \widehat{\mathbf{k}}$

Erwin Schrödinger developed a wave mechanics for particles → Complex wave function describes quantum particle

Basic quantum mechanics

with
$$\frac{p^2}{2m} = E - V \implies p^2 = 2m(E - V)$$

 $E = \hbar\omega$

$$\nabla^2 \Psi - \frac{2m(E-V)}{\hbar^2 \omega^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

multiply by
$$-\frac{\hbar^2}{2m}$$

use $E = \hbar\omega$ $\frac{\partial^2 \Psi}{\partial t^2} = -\omega^2 \Psi$
since $\frac{\partial \Psi}{\partial t} = -i\omega \Psi$
 $-\frac{\hbar^2}{2m} \nabla^2 \Psi - \frac{V}{\omega^2} \frac{\partial^2 \Psi}{\partial t^2} = -\frac{E}{\omega^2} \frac{\partial^2 \Psi}{\partial t^2}$
 $-\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi = -\frac{\hbar}{\omega} \frac{\partial^2 \Psi}{\partial t^2}$
 $-\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi = i\hbar \frac{\partial \Psi}{\partial t}$

2m

Basic quantum mechanics

Similar considerations \rightarrow Schrödinger postulated a

General time dependent equation for massive quantum objects:

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t)\right) \Psi(\mathbf{r}, t)$$

Hamilton operator

Schrödinger equation (differential equation)

We restrict ourselves to systems with constant total energy (conservative systems)

 \rightarrow Due to $E = \hbar \omega$ also the frequency is constant

→ Prefactor of 2nd term on lhs of
$$\nabla^2 \Psi - \frac{2m(E-V)}{\hbar^2 \omega^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$
 is constant

ightarrow Solutions can be split in a two parts depending only on space and time

Basic quantum mechanics

$$\Psi(\mathbf{r}, t) = \Psi(\mathbf{r}, 0) \exp(-\iota\omega t) \quad \text{and} \quad \nabla^2 \Psi - \frac{2m(E - V)}{\hbar^2 \omega^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$
$$\nabla^2 \Psi(\mathbf{r}) \exp(-\iota\omega t) - \frac{2m(E - V)}{\hbar^2 \omega^2} \cdot (-\omega^2) \Psi(\mathbf{r}) \exp(-\iota\omega t)$$
$$\nabla^2 \Psi(\mathbf{r}) + \frac{2m(E - V)}{\hbar^2} \Psi(\mathbf{r})$$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right) \Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Stationary Schrödinger equation for Hamiltonians without explicit time dependence

> Yields eigenenergies E_n and eigenstates $\Psi_n(r)$

Probability currents

Interpretation of complex wave function $\Psi(\mathbf{r}, t) = \Psi_0 e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$ \rightarrow Note: EM fields represented as the real **or** imaginary part of a complex expression \rightarrow Schrödinger equation suggests that phase has physical significance

Max Born: Interpretation of square magnitude as probability of a quantum object

$$\rho(\mathbf{r}, t) = |\Psi(\mathbf{r}, t)|^2 = \Psi^*(\mathbf{r}, t)\Psi(\mathbf{r}, t)$$
$$\int \Psi^*(\mathbf{r}, t)\Psi(\mathbf{r}, t) dV = 1$$

Conservation of probability density requires $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J}_{\rho} = 0$

ightarrow Continuity equation describes evolution of probability in space and time

 J_{ρ} describes probabilistic flow of a quantum object, not the motion of a charged particle in an electromagnetic field (forces depending on the motion of the particle itself)

Probability currents

 \rightarrow Time evolution of $\rho(\mathbf{r}, t)$ defines probability current:

$$\mathbf{J}_{\rho} \equiv \frac{\hbar}{2m\iota} \left(\Psi^{\star} \nabla \Psi - \Psi \nabla \Psi^{\star} \right) = \Re \left\{ \Psi^{\star} \frac{\hbar}{\iota m} \nabla \Psi \right\} = \Re \left\{ \Psi^{\star} \frac{\widehat{\mathbf{p}}}{m} \Psi \right\}$$

Example: J_{ρ} for a charged particle in an EM field

Start with classical equation of motion:

$$rac{d}{dt} \mathbf{p} = - \mathbf{\nabla} V$$

Canonical (kinetic and field) momentum

p = mv + qAVector potential

Example: J_{ρ} for a charged particle in an EM field

Lorentz' law with E and B expressed in terms of potentials ϕ and A

$$\frac{d\mathbf{p}}{dt} = -\boldsymbol{\nabla}\left\{q\phi - \frac{q}{m}(\mathbf{p}\cdot\mathbf{A}) + \frac{q^2}{2m}(\mathbf{A}\cdot\mathbf{A})\right\}$$

 \rightarrow generalized potential:

$$V = q\phi - \frac{q}{m}(\mathbf{p} \cdot \mathbf{A}) + \frac{q^2}{2m}(\mathbf{A} \cdot \mathbf{A}) \qquad \Rightarrow \frac{d}{dt}\mathbf{p} = -\nabla V$$

Schrödinger equation:

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)\right)\Psi(\mathbf{r},t) \qquad \qquad E \Rightarrow i\hbar\frac{\partial}{\partial t}$$

insert expression for $V(\mathbf{r}, t)$

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left(-\frac{\hbar^2}{2m}\nabla^2 + q\phi - \frac{q}{m}(\mathbf{p}\cdot\mathbf{A}) + \frac{q^2}{2m}(\mathbf{A}\cdot\mathbf{A})\right)\Psi(\mathbf{r},t)$$

Chap. 1 - 12

Lorentz's law:

 $\mathbf{B} = \boldsymbol{\nabla} \times \mathbf{A}$

 $\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \boldsymbol{\nabla}\phi$

 $\boldsymbol{p} = m\boldsymbol{v} + q\boldsymbol{A}$

 $\frac{dA}{dt} = \frac{\partial A}{\partial t} + (\boldsymbol{\nu} \cdot \boldsymbol{\nabla})A$

 $E = E_{\rm kin} + E_{\rm pot}$

 $\mathbf{p} \Rightarrow -\iota \hbar \nabla$

with:

 $m\frac{d\mathbf{v}}{dt} = q\left[\mathbf{E} + (\mathbf{v} \times \mathbf{B})\right]$

Example: J_{ρ} for a charged particle in an EM field

Schrödinger equation

$$i\hbar\frac{\partial\Psi}{\partial t} = \frac{1}{2m}\left(\frac{\hbar}{\imath}\boldsymbol{\nabla} - q\boldsymbol{A}\right)^2\Psi + q\phi\,\Psi$$

Probability current

$$\mathbf{J}_{\rho} = \Re \left\{ \Psi^{\star} \left(\frac{\hbar}{\iota m} \boldsymbol{\nabla} - \frac{q}{m} \mathbf{A} \right) \Psi \right\} = \Re \left\{ \Psi^{\star} \; \frac{\widehat{\mathbf{p}}}{m} \; \Psi \right\} \qquad \qquad \widehat{\mathbf{p}} = \frac{\hbar}{\iota} \boldsymbol{\nabla}$$

- ightarrow Central expression in the quantum description of superconductivity
- → Wave function of a single charged particle will be replaced by the macroscopic wave function describing all superelectrons

 $-q\mathbf{A}$

Normal metals

Electrons as weakly/non-interacting particles → Ordinary Schrödinger equation:

$$i\hbar \frac{\partial \Psi}{\partial t} = \widehat{H} \Psi$$

where $\Psi(\mathbf{r}, t) = \Psi_0(\mathbf{r}, t) e^{i\theta(\mathbf{r}, t)}$ is the complex wave function of a particle

Stationary case:

$$\hbar \frac{\partial \theta}{\partial t} = -E$$

 \sim

 \rightarrow Quantum behavior reduced to that of wave function phase

→ Fermi statistics → different time evolution of phase for different energies
 → Phases are uniformly distributed, phase drops out for macroscopic quantities

Central hypothesis of macroscopic quantum model:

There exists a macroscopic wave function $\psi(\mathbf{r}, t) = \psi_0(\mathbf{r}, t) e^{i\theta(\mathbf{r}, t)}$

describing the behavior of all superelectrons in a superconductor (motivation: superconductivity is a coherent phenomenon of all sc electrons)

Normalization condition:

$$\int \psi^{\star}(\mathbf{r},t)\psi(\mathbf{r},t) \, dV = N_s$$

$$|\psi(\mathbf{r},t)|^2 = \psi^*(\mathbf{r},t)\psi(\mathbf{r},t) = n_s(\mathbf{r},t)$$

 N_s and $n_s(\mathbf{r},t)$ are the total and local density of superconducting electrons \rightarrow Charged superfluid (analogy to fluid mechanics)

 \rightarrow Similarities in the description of superconductivity and superfluids

- → No explanation of microscopic origin of superconductivity
- ightarrow Relevant issue: describe superelectron fluid as quantum mechanical entity

Some basic relations:

General relations in electrodynamics:

Electric field
$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi$$

Flux density $\mathbf{B} = \nabla \times \mathbf{A}$
 $A = \text{Vector potential}$
 $\phi = \text{Scalar potential}$

• Electrical current is driven by gradient of electrochemical potential:

$$\phi(\mathbf{r}, t) \rightarrow \phi(\mathbf{r}, t) + \mu(\mathbf{r}, t)/q$$
$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \boldsymbol{\nabla} \left(\phi + \frac{\mu}{q} \right)$$

• Canonical momentum: $\mathbf{p} = m\mathbf{v} + q\mathbf{A}$

Kinematic momentum:

$$m\mathbf{v} = -\frac{n}{l}\mathbf{\nabla} - q\mathbf{A}$$

t

 $= \partial \mathcal{L} / \partial \dot{x},$ p_x = Lagrange function

Schrödinger equation for charged particle:

$$\frac{1}{2m} \left(\frac{\hbar}{\iota} \nabla - q \mathbf{A}(\mathbf{r}, t)\right)^2 \Psi(\mathbf{r}, t) + \left[q \phi(\mathbf{r}, t) + \mu(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t) = \iota \hbar \frac{\partial \Psi(\mathbf{r}, t)}{\partial t}$$

electro-chemical potential

• Insert macroscopic wave-function $\psi(\mathbf{r}, t) = \psi_0(\mathbf{r}, t) e^{i\theta(\mathbf{r}, t)}$

 $\Psi \rightarrow \psi, \quad q \rightarrow q_{s}, \quad m \rightarrow m_{s}$

• Split up into real and imaginary part and assume $|\psi_0(\mathbf{r}, t)|^2 = n_s(\mathbf{r}, t)| = const.$

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

• We start from the Schrödinger equation:

$$\underbrace{\frac{1}{2m_s} \left(\frac{\hbar}{l} \nabla - q_s \mathbf{A}(\mathbf{r}, t)\right)^2 \Psi(\mathbf{r}, t) + [q_s \phi(\mathbf{r}, t) + \mu(\mathbf{r}, t)] \Psi(\mathbf{r}, t)}_{ll} = \underbrace{l\hbar \frac{\partial \Psi(\mathbf{r}, t)}{\partial t}}_{l}$$
electro-chemical potential

• We use the definition $S \equiv \hbar \theta$ and obtain with $\psi(\mathbf{r}, t) = \psi_0(\mathbf{r}, t) e^{i\theta(\mathbf{r}, t)}$

$$I = i\hbar \frac{\partial \Psi}{\partial t} = \left[i\hbar \frac{\partial \Psi_0}{\partial t} - \Psi_0 \frac{\partial S}{\partial t} \right] e^{iS/\hbar}$$

$$II = \frac{1}{2m_s} \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A} \right)^2 \Psi = \frac{1}{2m_s} \left[\underbrace{-\frac{\hbar^2 \nabla^2}{1} + \underbrace{i\hbar q_s \nabla \cdot \mathbf{A}}_{2} + \underbrace{i\hbar q_s \mathbf{A} \cdot \nabla}_{3} + \underbrace{q_s^2 \mathbf{A}^2}_{4} \right] \Psi_0 e^{iS/\hbar}$$

$$II = \frac{1}{2m_s} \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A}\right)^2 \Psi = \frac{1}{2m_s} \left[-\frac{\hbar^2 \nabla^2}{1} + i\frac{\hbar q_s \nabla \cdot \mathbf{A}}{2} + i\frac{\hbar q_s \mathbf{A} \cdot \nabla}{3} + \frac{q_s^2 \mathbf{A}^2}{4} \right] \Psi_0 e^{iS/\hbar}$$

$$1 = -\frac{\hbar^2 \nabla^2}{2m_s} \Psi_0 e^{iS/\hbar} = \frac{1}{2m_s} \left[-\hbar^2 \nabla^2 \Psi_0 + \Psi_0 (\nabla S)^2 - 2i\hbar \nabla \Psi_0 (\nabla S) - i\hbar \Psi_0 \nabla^2 S \right] e^{iS/\hbar}$$

$$2 = \frac{1}{2m_s} i\hbar q_s \Psi_0 (\nabla \cdot \mathbf{A}) e^{iS/\hbar} + \text{term } 3$$

$$3 = \frac{1}{2m_s} \left[i\hbar q_s \mathbf{A} \cdot (\nabla \Psi_0) - q_s \Psi_0 \mathbf{A} (\nabla S) \right] e^{iS/\hbar}$$

$$2 + 3 = \frac{1}{2m_s} \left[i\hbar q_s \Psi_0 (\nabla \cdot \mathbf{A}) + 2i\hbar q_s \mathbf{A} \cdot (\nabla \Psi_0) - 2q_s \Psi_0 \mathbf{A} (\nabla S) \right] e^{iS/\hbar}$$

$$4 = \frac{1}{2m_s} q_s \Psi_0 \mathbf{A}^2 e^{iS/\hbar}$$

$$II = \left[\Psi_0 \frac{(\nabla S - q_s \mathbf{A})^2}{2m_s} - \frac{\hbar^2 \nabla^2}{2m_s} \Psi_0 - \frac{i}{2m_s} \frac{(2\hbar \nabla \Psi_0 + \hbar \Psi_0 \nabla) (\nabla S - q_s \mathbf{A})}{\frac{-\hbar^2 \nabla^2}{2m_s} (\nabla S - q_s \mathbf{A})} \right] e^{iS/\hbar}$$

Chap. 1 - 19

$$I = i\hbar \frac{\partial \Psi}{\partial t} = \left[i\hbar \frac{\partial \Psi_0}{\partial t} - \Psi_0 \frac{\partial S}{\partial t} \right] e^{iS/\hbar}$$
$$II = \left[\Psi_0 \frac{(\boldsymbol{\nabla} S - q_s \boldsymbol{A})^2}{2m_s} - \frac{\hbar^2 \boldsymbol{\nabla}^2}{2m_s} \Psi_0 - i\frac{\hbar}{2\Psi_0} \boldsymbol{\nabla} \left(\frac{\Psi_0^2}{m_s} (\boldsymbol{\nabla} S - q_s \boldsymbol{A}) \right) \right] e^{iS/\hbar}$$

• equation for real part:

$$\begin{bmatrix} \Psi_0 \left(\frac{(\nabla S - q_s \mathbf{A})^2}{2m_s} + q_s \phi \right) - \frac{\hbar^2 \nabla^2}{2m_s} \Psi_0 \end{bmatrix} e^{iS/\hbar} = -\Psi_0 \frac{\partial S}{\partial t} e^{iS/\hbar}$$
$$\xrightarrow{\mathbf{A}} \left\{ \frac{\partial S}{\partial t} + \frac{(\nabla S - q_s \mathbf{A})^2}{2m_s} + q_s \phi = \frac{\hbar^2 \nabla^2 \Psi_0}{2m_s \Psi_0} \right\}$$
$$\xrightarrow{\mathbf{A}} \left\{ \frac{\partial S}{\partial t} + \frac{1}{2n_s} \Lambda_{J_s}^2 + q_s \phi = \frac{\hbar^2 \nabla^2 \Psi_0}{2m_s \Psi_0} \right\}$$
$$\xrightarrow{\mathbf{A}} \left\{ \frac{\partial S}{\partial t} + \frac{1}{2n_s} \Lambda_{J_s}^2 + q_s \phi = \frac{\hbar^2 \nabla^2 \Psi_0}{2m_s \Psi_0} \right\}$$
$$S \equiv \hbar \theta$$

energy-phase relation (term of order $\nabla^2 n_s$ is usually neglected)

Chap. 1 - 20

• Interpretation of energy-phase relation

$$\hbar \frac{\partial \theta}{\partial t} + \frac{1}{2n_s} \Lambda J_s^2 + q_s \phi = 0$$

 $S(\mathbf{r}, t) \equiv \hbar \theta(\mathbf{r}, t)$ corresponds to action

→ In the quasi-classical limit $\hbar \rightarrow 0$, the energy-phase-relation becomes the Hamilton-Jacobi equation

$$\frac{\partial S(\mathbf{r},t)}{\partial t} = -\mathcal{H}(\mathbf{r},t)$$

$$I = i\hbar \frac{\partial \Psi}{\partial t} = \left[i\hbar \frac{\partial \Psi_0}{\partial t} - \Psi_0 \frac{\partial S}{\partial t} \right] e^{iS/\hbar}$$
$$II = \left[\Psi_0 \frac{(\boldsymbol{\nabla} S - q_s \boldsymbol{A})^2}{2m_s} - \frac{\hbar^2 \boldsymbol{\nabla}^2}{2m_s} \Psi_0 - i\frac{\hbar}{2\Psi_0} \boldsymbol{\nabla} \left(\frac{\Psi_0^2}{m_s} (\boldsymbol{\nabla} S - q_s \boldsymbol{A}) \right) \right] e^{iS/\hbar}$$

• equation for imaginary part:

$$i\hbar \frac{\partial \Psi_{0}}{\partial t} e^{iS/\hbar} = -i\frac{\hbar}{2\Psi_{0}} \nabla \left(\frac{\Psi_{0}^{2}}{m_{s}} (\nabla S - q_{s} \mathbf{A}) \right) e^{iS/\hbar}$$

$$2\Psi_{0} \frac{\partial \Psi_{0}}{\partial t} = -\nabla \left(\frac{\Psi_{0}^{2}}{m_{s}} (\nabla S - q_{s} \mathbf{A}) \right)$$

$$\stackrel{\partial \Psi_{0}^{2}}{\longrightarrow} = -\nabla \left(\frac{\Psi_{0}^{2}}{m_{s}} (\nabla S - q_{s} \mathbf{A}) \right)$$

$$\stackrel{\partial \Psi_{0}^{2}}{\longrightarrow} = -\nabla \left(\frac{\Psi_{0}^{2}}{m_{s}} (\nabla S - q_{s} \mathbf{A}) \right)$$

$$\stackrel{\text{continuity equation for probability density } \rho = \Psi_{0}^{2} = n_{s}$$

$$\stackrel{\text{and}}{\longrightarrow} probability current density \boldsymbol{J}_{\rho}$$

 \rightarrow Conservation law for probability density

• energy-phase relation

$$-\hbar \frac{\partial \theta}{\partial t} = \frac{1}{2n_s} \wedge \mathbf{J}_s^2 + q_s \phi + \mu \qquad \mathbf{1}$$

supercurrent density-phase relation
$$\Lambda = \frac{m_s}{n_s q_s^2} \quad \text{(London parameter)}$$
$$\mathbf{J}_s = q_s n_s \left\{ \frac{\hbar}{m_s} \nabla \theta(\mathbf{r}, t) - \frac{q_s}{m_s} \mathbf{A}(\mathbf{r}, t) \right\} \quad \mathbf{2} \quad \Lambda \mathbf{J}_s = -\left\{ \mathbf{A}(\mathbf{r}, t) - \frac{\hbar}{q_s} \nabla \theta(\mathbf{r}, t) \right\}$$

→ equations (1) and (2) have general validity for charged and uncharged superfluids

$$q_s = k \cdot q$$
, $m_s = k \cdot m$, $n_s = n/k$ (i) $q = -e$, $k = 2$ superconductor with Cooper pairs of charge q_s (ii) $q = 0$, $k = 1$ neutral Bose superfluid, e.g. ⁴He(iii) $q = 0$, $k = 2$ neutral Fermi superfluid, e.g. ³He

→ we use equations (1) and (2) to derive London equations

• note: $\Lambda = \frac{km}{(n/k)(kq)^2} = \frac{m}{nq^2}$ independent of k!

= -2e

Additional topic: Gauge invariance

 \rightarrow expression for the supercurrent density must be gauge invariant

$$\mathbf{J}_{s} = q_{s}n_{s}\left\{\frac{\hbar}{m_{s}}\boldsymbol{\nabla}\theta(\mathbf{r},t) - \frac{q_{s}}{m_{s}}\mathbf{A}(\mathbf{r},t)\right\}$$

with the *gauge invariant phase gradient*:

the supercurrent is

London coefficient

London penetration depth

$$\gamma = \nabla \theta - \frac{q_s}{\hbar} \mathbf{A} = \nabla \theta - \frac{2\pi}{\Phi_0}$$
$$\mathbf{J}_s = \frac{q_s n_s \hbar}{m_s} \gamma = \frac{\hbar}{q_s \Lambda} \gamma$$
$$\Lambda \equiv \frac{m_s}{n_s q_s^2}$$
$$\lambda_L \equiv \sqrt{\frac{\Lambda}{\mu_0}} = \sqrt{\frac{m_s}{\mu_0 n_s q_s^2}}$$

Summary:

The macroscopic wave function $\psi(\mathbf{r}, t) = \sqrt{n_s(\mathbf{r}, t)} e^{i\theta(\mathbf{r}, t)}$

describes the whole ensemble of superelectrons with

$$\int \psi^{\star}(\mathbf{r},t)\psi(\mathbf{r},t) \, dV = N_s \qquad |\psi(\mathbf{r},t)|^2 = \psi^{\star}(\mathbf{r},t)\psi(\mathbf{r},t) = n_s(\mathbf{r},t)$$

The current-phase relation (supercurrent equation) is $(n_s(\mathbf{r}, t) = const)$

$$\mathbf{J}_{s} = q_{s} n_{s} \left\{ \frac{\hbar}{m_{s}} \boldsymbol{\nabla} \theta(\mathbf{r}, t) - \frac{q_{s}}{m_{s}} \mathbf{A}(\mathbf{r}, t) \right\} = q_{s} n_{s} \mathbf{v}_{s}$$

The gauge invariant phase gradient is

$$\boldsymbol{\gamma} = \boldsymbol{\nabla} \boldsymbol{\theta} - \frac{2\pi}{\Phi_0} \mathbf{A} \qquad \Rightarrow \mathbf{J}_s = \frac{q_s n_s \hbar}{m_s} \, \boldsymbol{\gamma} = \frac{\hbar}{q_s \Lambda} \, \boldsymbol{\gamma}$$

The energy-phase relation is $(n_s(\mathbf{r}, t) = const)$

$$-\hbar \frac{\partial \theta}{\partial t} = \frac{1}{2n_s} \Lambda \mathbf{J}_s^2 + q_s \phi + \mu$$

Importance of current-phase and energy-phase relation

We can derive

- \rightarrow 1. and 2. London equation
- \rightarrow Flux(oid) quantization
- \rightarrow Josephson equations

Fritz London (1900 – 1954)

London equations are purely phenomenological

- \rightarrow Describe the behavior of superconductors
- \rightarrow Starting point: (super)current-phase relation (CPR)

$$\Lambda \mathbf{J}_{s} = -\left\{ \mathbf{A}(\mathbf{r}, t) - \frac{\hbar}{q_{s}} \nabla \theta(\mathbf{r}, t) \right\} \qquad \Lambda = \frac{m_{s}}{n_{s} q_{s}^{2}} \quad \text{(London parameter)}$$

2nd London equation – Meißner-Ochsenfeld effect:

Take the curl of CPR

ightarrow second London equation

$$abla imes (\Lambda \mathbf{J}_s) = -\mathbf{\nabla} \times \mathbf{A} = -\mathbf{B}$$
 $abla^2 \mathbf{B} = rac{\mu_0}{\Lambda} \mathbf{B} = rac{1}{\lambda_l^2} \mathbf{B}$

Maxwell: $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}_s$ $\nabla \times \nabla \times \mathbf{B} = \nabla \times \mu_0 \mathbf{J}_s$ $\nabla \times \nabla \times \mathbf{B} = \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mu_0 \mathbf{J}_s = -\nabla^2 B$

describes Meißner-Ochsenfeld effect

applied field decays exponentially inside superconductor,

 \rightarrow decay length λ_L

$$\equiv \sqrt{\frac{m_s}{\mu_0 n_s q_s^2}}$$

(London penetration depth)

Example Meißner-Ochsenfeld effect

Plane surface extending in yz-plane, magnetic field B_z parallel to z-axis:

 \rightarrow exponential decay

$$B_z(x) = B_{z,0} e^{-x/\lambda_L}$$

$$\boldsymbol{\nabla} \times \mathbf{B} = \mu_0 \mathbf{J}_s \quad \boldsymbol{\rightarrow} \quad J_{s,y}(x) = \frac{B_{z,0}}{\mu_0 \lambda_L} e^{-x/\lambda_L} = \frac{H_{z,0}}{\lambda_L} e^{-x/\lambda_L} = J_{y,0} e^{-x/\lambda_L}$$

1st London equation – perfect conductivity

Time derivative of CPR \rightarrow

$$\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = -\left\{\frac{\partial \mathbf{A}(\mathbf{r},t)}{\partial t} - \frac{\hbar}{q_s} \boldsymbol{\nabla}\left(\frac{\partial \theta(\mathbf{r},t)}{\partial t}\right)\right\}$$

Use energy-phase relation

$$-\hbar rac{\partial heta}{\partial t} = rac{1}{2n_s} \wedge \mathbf{J}_s^2 + q_s \phi + \mu$$

and

$$\mathbf{E} = -\partial \mathbf{A}/\partial t - \mathbf{
abla} \phi$$

First London equation

$$\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \mathbf{E} - \frac{1}{n_s q_s} \mathbf{\nabla} \left(\frac{1}{2} \Lambda \mathbf{J}_s^2\right)$$

Linearized form

 $\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \mathbf{E}$

Time-independent supercurrent \rightarrow electric field inside the superconductor vanishes \rightarrow dissipationless supercurrent

Processes that could cause a decay of J_s

Example: Fermi sphere in two dimensions in the $k_x k_y$ – plane

- \rightarrow T = 0: all states inside the Fermi circle are occupied
- \rightarrow Current in x-direction \rightarrow shift of Fermi circle along k_x by $\pm \delta k_x$

normal state: Relaxation into states with lower energy (obeying Pauli principle) \rightarrow centered Fermi sphere \rightarrow current relaxes

supercond. state: All Cooper pairs must have the same center of mass moment

Additional topic: Linearized 1. London Equation

Usually, 1. London equation is linearized:

→ Allowed if |E| >> |v_s| |B| Condition is satisfied in most cases Equivalent to neglecting magnetic contribution in Lorentz' law

The nonlinear first London equation results from the Lorentz's law and the second London equation

 \rightarrow Exact form describes the zero dc resistance in superconductors

The first London equation is derived using the second London equation → Meißner-Ochsenfeld effect is more fundamental than vanishing dc resistance

Additional topic: The London Gauge (see lecture notes)

rigid phase:

$$\nabla \phi = 0 \Rightarrow \mathbf{E} = -\partial \mathbf{A}/\partial t - \nabla \phi = \partial \mathbf{A}/\partial t \Rightarrow \mathbf{A} \mathbf{J}_s = -\mathbf{A}$$

 $\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \mathbf{E} - \frac{1}{n}$

no conversion of \mathbf{J}_{s} in \mathbf{J}_{n} : $\mathbf{\nabla} \cdot \mathbf{J}_{s} = 0 \implies \mathbf{\nabla} \cdot \mathbf{A} = 0$

1.2. Fluxoid Quantization

Gedanken-experiment

Generate supercurrent in a ring \rightarrow Zero dc-resistance

 \rightarrow Stationary state \rightarrow Determined by quantum conditions

Bohr's model for atoms

\rightarrow Angular momentum quantization

r/a_B

- \rightarrow No destructive interference of electron wave
- \rightarrow Stationary state

- \rightarrow Macroscopic wave function is not allowed to interfere destructively
- \rightarrow quantization condition

Stationary

Derivation of the quantization condition

(based on macroscopic quantum model of superconductivity)

Start with supercurrent density: $\Lambda \mathbf{J}_s = -\left\{ \mathbf{A}(\mathbf{r}, t) - \frac{\hbar}{q_s} \nabla \theta(\mathbf{r}, t) \right\}$

1.2. Fluxoid Quantization

Integration of expression for supercurrent density around a closed contour

$$\Lambda \mathbf{J}_{s} = -\left\{\mathbf{A}(\mathbf{r}, t) - \frac{\hbar}{q_{s}}\boldsymbol{\nabla}\theta(\mathbf{r}, t)\right\}$$

Stoke's theorem (path C in simply or multiply connected region):

$$\oint_C \mathbf{A} \cdot d\mathbf{I} = \int_S (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{s} = \int_S \mathbf{B} \cdot d\mathbf{s}$$

applied to supercurrent:

$$\oint_{C} (\Lambda \mathbf{J}_{s}) \cdot d\mathbf{I} + \int_{S} \mathbf{B} \cdot d\mathbf{s} = \frac{\hbar}{q_{s}} \oint_{C} \nabla \theta \cdot d\mathbf{I}$$

ntegral of phase gradient:
$$\int_{r_{1}}^{r_{2}} \nabla \theta \cdot d\mathbf{I} = \theta(\mathbf{r}_{2}, t) - \theta(\mathbf{r}_{1}, t)$$

If $r_1 \to r_2$ (closed path), then integral $\to 0$ But \to Phase only specified within modulo 2π of principal value $[-\pi, \pi]$: $q_n = q_0 + 2\pi n$ $\oint \nabla \theta \cdot d\mathbf{I} = \lim_{\mathbf{r}_2 \to \mathbf{r}_1} [\theta(\mathbf{r}_2, t) - \theta(\mathbf{r}_1, t)] = 2\pi n$

1.2. Fluxoid Quantization

th

then:

$$\oint_{C} (\Lambda \mathbf{J}_{s}) \cdot d\mathbf{I} + \int_{S} \mathbf{B} \cdot d\mathbf{s} = n \frac{n}{q_{s}} = n \Phi_{0}$$
Fluxoid is quantized
Flux quantum: $\Phi_{0} \equiv \frac{h}{|q_{s}|} = \frac{h}{2e} = 2.067 \ 833 \ 636(81) \times 10^{-15} \text{Vs}$

(a) Contour C

Simply connected superconductor

Quantization condition holds for all contour lines including contour that has shrunk to single point $\rightarrow r_1 = r_2$ in limit $r_1 \rightarrow r_2 \rightarrow n = 0$

h

Multiply connected superconductor

Contour line can no longer shrink to single point \rightarrow Inclusion of non-superconducting region in contour $\rightarrow r_1 \neq r_2$ in limit $r_1 \rightarrow r_2$ $\rightarrow n \neq 0$ possible

$$\oint_C (\Lambda \mathbf{J}_s) \cdot d\mathbf{I} + \int_S \mathbf{B} \cdot d\mathbf{s} = n \, \Phi_0$$

Fluxoid quantization

Total flux = externally applied flux + flux generated by induced supercurrent Must have discrete values

Flux Quantization (without "oid")

r

Superconducting cylinder, wall much thicker than $\lambda_{\rm L}$ Application of small magnetic field at $T < T_c$

→ Screening currents, **no** flux inside

Application of H_{ext} during cool down \rightarrow Screening current on outer and inner wall Amount of flux trapped in cylinder satisfies fluxoid quantization condition Wall thickness $\gg \lambda_{\text{L}} \rightarrow$ closed contour **deep inside** with $J_{\text{s}} = 0$

$$\int_{S} \mathbf{B} \cdot d\mathbf{s} = n \Phi_0 \quad \rightarrow \text{Flux quantization}$$

Remove field after cooling down \rightarrow Trapped flux is integer multiple of Φ_0

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Flux Trapping: why is flux not expelled after switching off external field

 $-\partial J_s/\partial t = 0$ according to 1st London equation: *E* = 0 deep inside (supercurrent only on surface within λ_L)

$$\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \mathbf{E}$$

ith
$$\mathbf{E} = -\partial \mathbf{A}/\partial t - \nabla \phi$$
 and $\nabla \phi = 0$ we get:

$$\oint \mathbf{E} \cdot d\mathbf{I} = -\frac{\partial}{\partial t} \oint \mathbf{A} \cdot d\mathbf{I} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot d\mathbf{s} = -\frac{\partial \Phi}{\partial t}$$

 Φ : magnetic flux enclosed in loop contour deep inside the superconductor: *E* = 0 and therefore $\frac{\partial \Phi}{\partial t} = 0$

\rightarrow Flux enclosed in cylinder stays constant

W

1.2.2 Experimental Proof of Flux Quantization

- 1961 by Doll/Näbauer at Munich, Deaver/Fairbanks at Stanford
 - → quantization of magnetic flux in superconducting cylinder → Cooper pairs with $q_s = -2e$
- \rightarrow Cylinder with wall thickness $\gg \lambda_L$ \rightarrow Different amounts of flux are frozen in during cooling down in $B_{\rm cool}$ \rightarrow Measure amount of trapped flux \rightarrow Demanding! Required: Large relative changes of magnetic flux Small fields Small diameter d \rightarrow For $d = 10 \ \mu m$ we need: 2×10^{-5} T for one flux quantum Measurement of (very small) torque $D = \mu \times B_{\rm p}$ due to probe field $B_{\rm p}$ \rightarrow Resonance method: Amplitude of rotary Bcool oscillation \propto exciting torque

1.2.2 Experimental Proof of Flux Quantization

Paarweise im Fluss, D. Einzel and R. Gross, Physik Journal 10, No. 6, 45-48 (2011)

Chap. 1 - 41

1.3 Josephson Effect

Brian David Josephson (born 04. 01. 1940)

Nobel Prize in Physics 1973

"for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects"

(together with Leo Esaki and Ivar Giaever)

What happens if we weakly couple two superconductors?

Mechanisms \rightarrow Tunneling barriers, point contacts, normal conductors, etc. Do they form a bound state such as a molecule? If so, what is the binding energy?

Cooper pairs can tunnel through thin insulating barrier!

- → Expectation → Extremely small Tunneling probability for pairs $\approx (|T|^2)^2 \simeq (10^{-4})^2$
- → B. D. Josephson (1962): Tunneling probability for pairs $\approx |T|^2$ Coherent tunneling of pairs

"Tunneling of macroscopic wave function"

 \rightarrow Finite supercurrent at zero applied voltage

- → Oscillating supercurrent at constant applied voltage
- → Finite binding energy (Josephson coupling energy)

Josephson effects

Coupling is weak \rightarrow Supercurrent density is small $\rightarrow |\Psi|^2 = n_s$ is not changed Supercurrent density depends on gauge invariant phase gradient:

$$J_{s}(\mathbf{r},t) = \frac{q_{s}n_{s}\hbar}{m_{s}} \left[\boldsymbol{\nabla}\theta(\mathbf{r},t) - \frac{2\pi}{\Phi_{0}} \mathbf{A}(\mathbf{r},t) \right] = \frac{q_{s}n_{s}\hbar}{m_{s}} \boldsymbol{\gamma}(\mathbf{r},t)$$

- \rightarrow Simplifying assumptions: Current density is homogeneous γ varies negligibly in electrodes J_s same in electrodes and junction area $\rightarrow \gamma$ varies in superconducting electrodes much smaller than in the tunnel barrier
- \rightarrow Replace gauge invariant phase gradient γ by gauge invariant phase difference

$$\varphi(\mathbf{r},t) = \int_{1}^{2} \gamma(\mathbf{r},t) = \int_{1}^{2} \left(\nabla \theta - \frac{2\pi}{\Phi_{0}} \mathbf{A} \right) \cdot d\mathbf{I}$$

First Josephson equation:

Expectation:

$$J_s = J_s(\varphi)$$

 $J_s(\varphi) = J_s(\varphi + n \cdot 2\pi)$

 $J_{s} = 0 \Rightarrow \text{Phase difference must be zero:}$ $J_{s}(0) = J_{s}(n \cdot 2\pi) = 0$ $J_{s}(\varphi) = J_{c} \sin \varphi + \sum_{m=2}^{\infty} J_{m} \sin(m\varphi)$

J_c: critical current density (maximum Josephson current density)

Current – phase

relation

(General formulation of 1st Josephson equation)

Weak coupling \rightarrow Keep only 1st term

1. Josephson equation: $J_s(\varphi) = J_c \sin \varphi$

Spatially inhomogeneous supercurrent density:

 $J_s(y, z, t) = J_c(y, z) \sin \varphi(y, z, t)$

derived by Josephson for SIS junctions

```
supercurrent
density varies
sinusoidally with
\varphi = \theta_2 - \theta_1
w/o external
potentials
```

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

```
Chap. 1 - 45
```

Other argument why there are only sin contributions to Josephson current

$$J_s(arphi) = J_c \sin arphi \ + \ \sum_{m=2}^{\infty} J_m \sin(m arphi)$$

\rightarrow Time reversal symmetry

If we reverse time, the Josephson current should flow in opposite direction $\rightarrow t \rightarrow -t$, $J_s \rightarrow -J_s$

The time evolution of the macroscopic wave functions is $\propto e^{i\theta(t)} = e^{i\omega t}$ \rightarrow If we reverse time, we have

$$\varphi(t) = \theta_2(t) - \theta_1(t) \xrightarrow{t \to -t} \varphi(-t) = \theta_2(-t) - \theta_1(-t)$$
$$= -[\theta_2(t) - \theta_1(t)]$$
$$= -\varphi(t)$$

If the Josephson effect stays unchanged under time reversal, we have to demand

$$J_s(arphi) = -J_s(-arphi)$$
 $ightarrow$ Satisfied only by sin-terms

Second Josephson equation:

Time derivative of the gauge invariant phase difference:

$$\frac{\partial \varphi}{\partial t} = \frac{\partial \theta_2}{\partial t} - \frac{\partial \theta_1}{\partial t} - \frac{2\pi}{\Phi_0} \frac{\partial}{\partial t} \int_{1}^{2} \mathbf{A}(\mathbf{r}, t) \cdot d\mathbf{I}$$

$$\varphi(\mathbf{r},t) = \theta_2(\mathbf{r},t) - \theta_1(\mathbf{r},t) - \frac{2\pi}{\Phi_0} \int_{1}^{2} \mathbf{A}(\mathbf{r},t) \cdot d\mathbf{r}$$

Substitution of the energy-phase relation

$$-\hbar \frac{\partial \theta}{\partial t} = \frac{1}{2n_s} \Lambda \mathbf{J}_s^2 + q_s \phi$$

$$\frac{\partial \varphi}{\partial t} = -\frac{1}{\hbar} \left(\frac{\Lambda}{2n_s} \left[\mathbf{J}_s^2(2) - \mathbf{J}_s^2(1) \right] + q_s \left[\phi(2) - \phi(1) \right] \right) - \frac{2\pi}{\Phi_0} \frac{\partial}{\partial t} \int_{1}^{2} \mathbf{A} \cdot d\mathbf{I}$$

Supercurrent density across the junction is continuous $(J_s(1) = J_s(2))$:

$$\frac{\partial \varphi}{\partial t} = \frac{2\pi}{\Phi_0} \int_{1}^{2} \left(-\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \right) \cdot d\mathbf{I}$$

$$E = -\nabla \phi - \frac{\partial A}{\partial t}$$
2. Josephson equation:
$$\frac{\partial \varphi}{\partial t} = \frac{2\pi}{\Phi_0} \int_{1}^{2} \mathbf{E}(\mathbf{r}, t) \cdot d\mathbf{I}$$
Voltage drop across barrier
Voltage drop across barrier

Second Josephson equation:

For a constant voltage across the junction:

$$\frac{\partial \varphi}{\partial t} = \frac{2\pi}{\Phi_0} V$$
$$\varphi(t) = \varphi_0 + \frac{2\pi}{\Phi_0} V \cdot t$$

 $I_{\rm s}$ oscillates at the Josephson frequency $\nu = V/\Phi_0$

$$I_{s}(t) = I_{c} \sin \varphi(t) \qquad \qquad \frac{\nu}{V} = \frac{\omega}{2\pi V} = \frac{1}{\Phi_{0}} \simeq 483.597898(19) \frac{MHz}{\mu V}$$
$$= I_{c} \sin \left(\frac{2\pi}{\Phi_{0}} V \cdot t\right) \qquad \Rightarrow \text{Voltage controlled oscillator}$$

Applications: Josephson voltage standard Microwave sources

1.3.2 Josephson Tunneling

Maximum Josephson current density

 $\frac{\partial \theta}{\partial t} = -\frac{E_0}{\hbar}$ E_0 = kinetic energy

Insulating tunneling barrier of thickness d

 \rightarrow Calculation by wave matching method

Energy-phase relation:

 $-\hbar \frac{\partial \theta}{\partial t} = \frac{1}{2n_c} \wedge \mathbf{J}_s^2$

$S_{1} \theta_{1}$ V(x) $S_{2} \theta_{2}$ - d/2 d/2 $Y_{1}(x)$ - d/2 d/2 $Y_{2}(x)$ $Y_{2}(x)$

→ Time-dependent macroscopic wave function $\psi(\mathbf{r}, t) = \psi(\mathbf{r}) e^{-\iota(E_0/\hbar)t}$

Within barrier (height $V_0 > E_0$) \rightarrow Only elastic processes

- ightarrow Time evolution is the same outside and inside barrier
- \rightarrow Consider only time-independent part
- → Time-independent Schrödinger(-like) equation for region of constant potential

1.3.2 Josephson Tunneling

Maximum Josephson current density

$$-\frac{\hbar^2}{2m^*}\boldsymbol{\nabla}^2\psi(\mathbf{r})=(E_0-V_0)\psi(\mathbf{r})$$

Homogeneous barrier and supercurrent flow \rightarrow 1D problem

Solutions:

→ Superconductor: $\psi_{1,2} = \sqrt{n_{1,2}} e^{i\theta_{1,2}}$ → Insulator: Decaying + growing exponential $\psi(x) = A \cosh(\kappa x) + B \sinh(\kappa x)$

→ Characteristic decay constant: $\kappa = \sqrt{\frac{2m_s(V_0 - E_0)}{\hbar^2}}$

Coefficients A and B are determined by the boundary conditions at $x = \pm d/2$:

$$\psi(-d/2) = \sqrt{n_1} e^{i\theta_1}$$

 $\psi(+d/2) = \sqrt{n_2} e^{i\theta_2}$

 $n_{1,2}$, $\theta_{1,2}$: Cooper pair density and wave function phase at the boundaries $x = \pm d/2$

$$\sqrt{n_1} e^{i\theta_1} = A \cosh(\kappa d/2) - B \sinh(\kappa d/2)$$
$$\sqrt{n_2} e^{i\theta_2} = A \cosh(\kappa d/2) + B \sinh(\kappa d/2)$$

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

1.3.2 Josephson Tunneling

Maximum Josephson current density

Solving for A and B: A = -

$$\frac{\sqrt{n_1} e^{i\theta_1} + \sqrt{n_2} e^{i\theta_2}}{2\cosh(\kappa d/2)} \qquad \qquad B = -\frac{\sqrt{n_1} e^{i\theta_1} - \sqrt{n_2} e^{i\theta_2}}{2\sinh(\kappa d/2)}$$

 $\mathbf{J}_{s} = \frac{q_{s}}{m_{s}} \Re \left\{ \psi^{\star} \left(\frac{\hbar}{I} \boldsymbol{\nabla} \right) \psi \right\} \quad \Longrightarrow \quad \mathbf{J}_{s} = \frac{q_{s}}{m_{s}} \kappa \hbar \ \Im \left\{ A^{\star} B \right\}$ Supercurrent density

Substituting the coefficients A and B $J_s = J_c \sin(\theta_2 - \theta_1)$ Current-phase relation

$$\mathbf{J}_{c} = -\frac{q_{s}}{m_{s}}\kappa\hbar\frac{\sqrt{n_{1}n_{2}}}{2\sinh(\kappa d/2)\cosh(\kappa d/2)} = -\frac{q_{s}\hbar\kappa}{m_{s}}\frac{\sqrt{n_{1}n_{2}}}{\sinh(2\kappa d)}$$

Real junctions:

 $V_0 \approx \text{few meV} \rightarrow 1/\kappa < 1 \text{ nm}, d \approx \text{few nm} \rightarrow \kappa d \gg 1 \rightarrow \sinh(2\kappa d) \simeq \frac{1}{2} \exp(2\kappa d)$

Maximum Josephson current decays exponentially with increasing thickness

$$\mathbf{J}_c = \frac{e\hbar\kappa}{m} 2\sqrt{n_1 n_2} \exp(-2\kappa d)$$

Summary

The supercurrent equation is

$$\mathbf{J}_{s} = q^{\star} n_{s}^{\star}(\mathbf{r}, t) \left\{ \frac{\hbar}{m^{\star}} \boldsymbol{\nabla} \theta(\mathbf{r}, t) - \frac{q^{\star}}{m^{\star}} \mathbf{A}(\mathbf{r}, t) \right\}$$

 $\mathbf{\nabla} \times (\Lambda \mathbf{J}_s) = -\mathbf{\nabla} \times \mathbf{A} = -\mathbf{B}$

В,

+λι

quartz thread

mirror

B_{2.0}

2nd London equation:

which leads to: $\nabla^2 \mathbf{B} = \frac{\mu_0}{\Lambda} \mathbf{B} = \frac{1}{\lambda_I^2} \mathbf{B}$

1st London equation:

$$\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \mathbf{E} - \frac{1}{n_s^{\star} q^{\star}} \mathbf{\nabla} \left(\frac{1}{2} \Lambda \mathbf{J}_s^2\right)$$

Fluxiod quantization

z 1

B2.0

Summary

Macroscopic wave function $|\Psi
angle$

describes ensemble of macroscopic number of superconducting pairs

 $|\Psi|^2$ describes density of superconducting pairs

Current density in a superconductor:

$$\mathbf{J}_{s} = \frac{\hbar n_{s} q_{s}}{m_{s}} \left\{ \boldsymbol{\nabla} \theta(\mathbf{r}, t) - \frac{q_{s}}{\hbar} \mathbf{A}(\mathbf{r}, t) \right\} \qquad \wedge \mathbf{J}_{s} = -\left\{ \mathbf{A}(\mathbf{r}, t) - \frac{\hbar}{q_{s}} \boldsymbol{\nabla} \theta(\mathbf{r}, t) \right\}$$

Gauge invariant phase gradient:

$$\gamma(\mathbf{r},t) = \boldsymbol{\nabla}\theta(\mathbf{r},t) - \frac{q_s}{\hbar}\mathbf{A}(\mathbf{r},t) = \boldsymbol{\nabla}\theta(\mathbf{r},t) - \frac{2\pi}{\Phi_0}\mathbf{A}(\mathbf{r},t)$$

Phenomenological London equations:

$$\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \mathbf{E} \qquad \nabla \times (\Lambda \mathbf{J}_s) = -\mathbf{B} \qquad (\Lambda = m_s/n_s q_s^2 = \mu_0 \lambda_L^2)$$

Flux(oid) quantization:

$$\oint_C (\Lambda \mathbf{J}_s) \cdot d\mathbf{I} + \int_S \mathbf{B} \cdot d\mathbf{s} = n \, \Phi_0$$

Summary

Josephson equations:

$$\mathbf{J}_{s}(\mathbf{r}, t) = \mathbf{J}_{c}(\mathbf{r}, t) \sin \varphi(\mathbf{r}, t)$$
$$\frac{\partial \varphi}{\partial t} = \frac{2eV}{\hbar} = \frac{2\pi}{\Phi_{0}} V \qquad (\omega/2\pi = 483.6 \,\mathrm{GHz/mV})$$

$$\mathbf{J}_{s} = \mathbf{J}_{c} \sin(\theta_{2} - \theta_{1})$$
$$\mathbf{J}_{c} = \frac{e\hbar\kappa}{m} 2\sqrt{n_{1}n_{2}} \exp(-2\kappa d)$$

