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Chapter 3
Physics of Josephson Junctions:

The Voltage State
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3. Physics of Josephson junctions: The voltage state

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

For bias currents I > I"

—> Finite junction voltage

—> Phase difference ¢ evolves in time: Z—‘f xV

—> Finite voltage state of the junction corresponds to a dynamic state

- Only part of the total current is carried by the Josephson current
— additional resistive channel

—> capacitive channel |1
- noise channel -
I=1.sing s
= 3% df o,

Key questions =
- How does the phase dynamics look like?
—> Current-voltage characteristics for [ > I"?

- What is the influence of the resistive damping ?
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3.1 The basic equation of the lumped Josephson junction

3.1.1 The normal current: Junction resistance

At finite temperature T > 0

- Finite density of “normal” electrons

— Quasiparticles

—> Zero-voltage state: No quasiparticle current

= For V > 0 - Quasiparticle current = Normal current Iy = Resistive state

High temperatures close to T,

> ForT S T, and 2A(T) < kgT: (almost) all Cooper pairs are broken up

- Ohmic current-voltage characteristic (IVC)
1.

- Iy = GNV, where Gy = — s the normal conductance
N

Ay +A
Large voltage V >V, = 112

e
- External circuit provides energy to break up Cooper pairs

- Ohmic IVC

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

ForT K T.and |V] <V,
—> Vanishing quasiparticle density = No normal current

AS-Chap.3-3



3.1.1 The normal current: Junction resistance

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Current-voltage characteristic

Voltage state

11 I 1
i ~r —> Bias current [
PV i1 | : 2> L(t) = I.sin @(t) is time dependent
ATT, e | T - |, is time dependent
-2Mle L 2Mle  <V> S| e <vs -> Junction voltage V = G—N is time
Lol Z La N
/‘ dependent
- IVC shows time-averaged voltage (/)

ForT & Tcand [V] <14

- IVC depends on sweep direction and on bias type (current/voltage)
- Hysteretic behavior

- Current bias 2 I = I + Iy = const. |1 Circuit model
+
Equivalent conductance G, at T=0: I=1sino
v _ad MGV ——C Ok
0 for |V|<2A/e V= 2% at N/
Gn(V) =

RLN for |V| > 2A/e
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3.1.1 The normal current: Junction resistance

Finite temperature

— Sub-gap resistance Rgs(T) for [V] <V,

> ng(T) determined by amount of thermally excited quasiparticles
1 ~n(T)

— = Gp n(T) > Density of excited quasiparticles
ng(T) MNtot

GSQ(T)

- for T > 0 we get

1 for |V| <2A(T)/e
GN(V,T)_{qu(T) Vi (T)/

= Nonlinear conductance Gy(V,T)
Yo for |V|>2A(T)/e
N

—> Characteristic voltage (I.Ry-product)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

lc
Ve = IRy = —
C c\N GN
Note: = There may be a frequency dependence of the normal channel

- Normal channel depends on junction type
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3.1.2 The displacement current: Junction capacitance

dV
If% # 0 - Finite displacement current [p = CE

- C &> junction capacitance |1
€€nA;

d
I=1.sing 5
V4 i Dy qgo I GuV) —_—C '(tj I
2n dt N

—> For planar tunnel junction C =

- Compare current values of different channels

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)
I
I

thy =1 % 1= _ oW L _ 1
WithV = Lo 8 In=VGy, Ip = C o, Ly = <> Lcand Gy(V, T) =
1 ,
Le = el Josephson inductance
4 4
[ < —— In < = Ip ~wCV
5 = CULC N RN D
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3.1.3 Characteristic times and frequencies

|1
Characteristic frequencies +
Equivalent parallel LRC circuit v \'/’;”jg IGN(V) T
9 LC/ RN; C 2n df N
— Three characteristic frequencies =
o) ; 1 1 2el.
asma frequency Wy = = =
P, T VL.C hC
2 Wy X /é—c, where C4 = % is the specific junction capacitance
A
2 w<wp,2Ip<I
1 RN 2e 2T
Inductive L./Ry time constant W, = = = —V. = —V, V. = I.Ry

Tc [_C h (DO
—> Inverse relaxation time in the normal+supercurrent system
- w, follows from V. (2"? Josephson equation)
—> W, - characteristic frequency
2> Iy <I.forV <V.orw < w,

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

N _ 1 1 w3
Capacitive RyC time constant WRC = = =
TRC RNC We

|

1
2> Ip <Iyforw <—
TRC AS-Chap.3-7



3.1.3 Characteristic times and frequencies

Stewart-McCumber parameter and quality factor

W, 2e
< = W:TRC = —/CRIQ\/C
WRC h

TNIO N

w
- Stewart-McCumber parameter Bc = w

RC  wp we G
VLC WRC Wp ¢

(Q compares the decay of oscillation amplitudes to the oscillation period)

— Quality factor QR =

Limiting cases

> f <1
—> Small capacitance and/or small resistance
= Small Ry C time constants (Tgcwp K 1)

- Highly damped (overdamped) junctions
> B> 1

—> Large capacitance and/or large resistance
— Large RyC time constants (tgcwp > 1)

- Weakly damped (underdamped) junctions

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)
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3.1.4 The fluctuation current
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Fluctuation/noise
- Langevin method: include random source - fluctuating noise current
- type of fluctuations: thermal noise, shot noise, 1/f noise

Thermal Noise

Johnson-Nyquist formula for thermal noise (kgT > eV, hw):

4kg T
Si(f) = RB (current noise power spectral density)
N
Sv(f) =4kgT Ry (voltage noise power spectral density)

relative noise intensity (thermal energy/Josephson coupling energy):

kBT 2e kBT /T : 2e
_ — T with I+ = ZSkaT
E, B I =Y =g with I = 2 ke

/'Y

I+ = thermal noise current
T=42K=>I1; = 0.15 yA

AS-Chap.3-9



3.1.4 The fluctuation current

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Shot Noise

Schottky formula for shot noise (eV > kgT 2> V > 0.5 mV @ 4.2 K): Si(f) =2eln

- Random fluctuations due to the discreteness of charge carriers

—> Poisson process = Poissonian distribution
- Strength of fluctuations = variance 41% = ((I — (I))?)
- Variance depends on frequency = Use noise power:

fluctuations (white noise)

400 . el s
S(f) :/ ({(1(£)1(0)) — </(O)>2) dt includes equilibrium

1/f noise
— Dominant at low frequencies

—> Physical nature often unclear
- Josephson junctions: dominant below about 1 Hz - 1 kHz = Not considered here

AS-Chap.3-10



3.1.5 The basic junction equation

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Kirchhoff’s law: I @ @ @ @ &

de 2eV ISline (-

_ ion: do _ zeV v 2do WGV ——C ()
Voltage-phase relation . - i 208 N oL
—> Basic equation of a Josephson junction _ ,

Suber 1 Displace- Noise
curF;ent Normal ment cCurrent
current  cyrrent

dVv
=>/=/CSInQ0+GN(V)V+CE+IF
B . Oy do by d?p
= | = /CsmgovLGN(V)%r T +C27r 172 + Ie

Nonlinear differential equation with nonlinear coefficients
- Complex behavior, numerical solution

- Use approximations (simple models)

AS-Chap. 3-11



3.2 The resistively and capacitively shunted junction (RCSJ) model

Resistively and Capacitively Shunted {1
Junction (RCSJ) model ¥
I=1.sing
Approximation = Gy(V) = G = R™! = const. V Av-2% IGN(V) —C @'F
R = Junction normal resistance
Differential equation in dimesionless or energy formulation =
h d? h\ 1dop . / Ie(t)
— | C——+ | =) =—t+Ilc|SINY— — =0
(2e> dt2 (ze) Rdt [ YT
=i = ip(t)
h\° _d%p A\°1de d F
| =) C=—+|=—=) s—+——1En[l —cosp —ip+ ie(t =0
(28) Jt2 <2€> R dt dcp{ s | ¢ —ip+ir(t)el}

Mechanical analog
Gauge invariant phase difference <> Particle with mass M and damping 7 in potential U:
d?x dx

MF+77E+VU:O

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

with M = n 2C (I 21 U=Ep|l ] '
= 7 =) & = Ejo[1 —cosp —ip+ ir(t)y]

Tilted washboard potential AS-Chap. 3 - 12



3.2 The resistively and capacitively shunted junction (RCSJ) model

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

A

h
Epot

Finite tunneling probability:
- Macroscopic quantum tunneling (MQT)

Y

quantum
tunneling Escape by thermal activation

- Thermally activated phase slips

Normalized time: 7 = L ‘
" T 1. 2el.R/N

Wi 2,
Stewart-McCumber parameter: B¢ = — = —I-R}C

‘ h

T

d?o dy Motion of ,,phase particle” ¢ in

Bc dr2 + dT tsing —i—ir(1) =0 the tilted washboard potential

Plasma frequency dch
> Neglect damping, zero driving and small amplitudes (sin ¢ = @) Bc dT2 =0

T t
Solution: @ =c-exp (l—) = C - exp (/ ) = c-exp (lwpt)
vBc VBcTe (10,

Plasma frequency = Oscillation frequency around potential minimum
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3.2 The resistively and capacitively shunted junction (RCSJ) model

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

The pendulum analog

- Plane mechanical pendulum in uniform gravitational field
- Mass m, length ¢, deflection angle 6

— Torque D parallel to rotation axis

—> Restoring torque: mg¥ sin 6

Equation of motion > D = 00 + I' + mg¥sin 6
® = m#? Moment of inertia

I Damping constant
Analogies I x4 D
I. x4 mg¥
Po_
%nR 4 r
CPo PN )
21
Q x4 6
For D = 0 - Oscillations around equilibrium with
_ |9 _|2mlc
w = \/; <> Plasma frequency wp, = ooC

Finite torque (D > 0) = Finite 8, = Finite, but constant ¢, = Zero-voltage state
Large torque (deflection > 90°) - Rotation of the pendulum > Finite-voltage state

Voltage V x4 Angular velocity of the pendulum
AS-Chap.3-14



3.2.1 Under- and overdamped Josephson junctions

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Overdamped junction

2el.R%C
fo="——«1

Capacitance & resistance small
= M small, n large
- Non-hysteretic IVC

(Phase particle will retrap immediately at
I because of large damping)

quantum
tunneling |

Underdamped junction

2el .R*C
Be=——>1

— Capacitance & resistance large
= M large, n small
— Hysteretic IVC

(Once the phase is moving, the potential has to be tilt back
almost into the horizontal position to stop ist motion)
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3.3 Response to driving sources
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Motivation

,Applied Superconductivity > One central question is
- ,How to extract information about the junction experimentally?“

Typical strategy

—> Drive junction with a probe signal and measure response

Examples for probe signals

- Currents (magnetic fields)
- Voltages (electric fields)
- DCor AC

- Josephson junctions - AC means microwaves!

Prototypical experiment " /

-I.Rle

-I.Rle

—> Measure junction IVC i -
—> Typically done with current bias / g

I.Rle

<v>
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3.3.1 Response to a dc current source
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. T = Oscillation period
Time averaged voltage:

21
T T . - : .
1 T Do
W) =1 [V de=1 [ 5-20dt = 22 10(T) - 0(0)] =
0 0
Total current must be constant (neglecting the fluctuation source):
. V(t dV(t
| = Is(t) + In(t) + Ip(t) = Icsinp(t) + I(?) d(t ) = const

where: ©(t) :/ Qhe V(t) dt

0

I > I. - Part of the current must flow as Iy or I

—> Finite junction voltage [V| > 0

—> Time varying I

- Iy + Ip varies in time

—> Time varying voltage, complicated non-sinusoidal oscillations of I,
Oscillating voltage has to be calculated self-consistently

- Oscillation frequency f = (V)/®,

AS-Chap. 3-17



3.3.1 Response to a dc current source

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Forl = I

—> Highly non-sinusoidal oscillations
—> Long oscillation period

2> (V) x % is small

Forl > I

- Almost all current flows as normal current

—> Junction voltage is nearly constant

- Almost sinusoidal Josephson current
oscillations

— Time averaged Josephson current almost
zero

= Linear/Ohmic IVC

- Analogy to pendulum

V(t) /I R

4 —

T
-

vvvvvv
llllll
'''''''

llllll
e - " N




3.3.1 Response to a dc current source

Strong damping ;
d . .
Bc < 1 & neglecting noise current 5, g + E +sinp —1 =20

1

[ < 1 - Only supercurrent, ¢ = sin™ " i is a solution, zero junction voltage

i > 1 - Finite voltage, temporal evolution of the phase

éj d
§ dr = ——— <p
= | | [ —sing
: Integration using
g / dx 2 .y (=1+atan(x/2)
B a—sinx +/a2-1 21
S gives 2 —1+ /'tan(<p/2)>
g ~1 . . t
x T—To= —F= tan : Setting T, = 0 and using T = —
: 21 ( 21 250 BT =
<
[ 1 tViZ—1\ 1
" = p(t)=2tan ' {4 /1 - Stan | —— | + =
w(1) { i2 ( 2T, ) I
2T, -1
Periodic function with period T = —° tan (q tanx -+ )
2 1 is m-periodic
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3.3.1 Response to a dc current source

-

with (v(1)) = — /V(t) dt= 22
b

CD0 1 2MTc

T =R VR

0

We get fori > 1

v = ey (L) -1

Al
NI~
Al

0.8 — s _‘ BC <S94

.........
........
..........

3
-
-
-
-
- > S . S S T
-
-
-
-
-
-
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00 04 08 12 18 20
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3.3.1 Response to a dc current source

Weak damping
Bc > 1 & neglecting noise current

1 .
Wgc = AnC is very small

- Large Cis effectively shunting oscillating part of junction voltage = V(t) = V
- Time evolution of the phase

2 —
o(t) = Tj V' t + const

- Almost sinusoidal oscillation of Josephson current

2e —
Is(t) = I.sin (Tth + const) ~ 0

2| <l

> DowntoV = % K (=1Ry) = | = IN(V) —
—> Corresponding current << I. = Hysteretic IVC Lt

I.Rle <V>

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Ohmic result valid for Ry = const.

- Real junction = IVC determined by voltage dependence of Ry = Ry(V)
AS-Chap. 3-21



3.3.1 Response to a dc current source

Intermediate damping

pc =1

- Numerically solve IVC
- General trend
Increasing B <> Increasing hysteresis

Hysteresis characterized by retrapping current I

—> I. < washboard potential tilt where
Energy dissipated in advancing to next minimum = Work done by drive current

[ | [EEER e

|
S
7/
" NP

Analytical calculation possible for - >> 1 (exercise class) 0.8

\
N

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Numerical “’\ 41z p!?
Ir _ 4 1 Qu O'GT calculation 4
{c - ﬁt’? ~ 04+
0.2+
00 A 4 L
0.01 0.1 1 10 100

B
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3.3.1 Response to a dc voltage source

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

. oL €
Phase evolves linearly in time: p(t) = ?Vdct + const

—> Josephson current I oscillates sinusoidally
- Time average of I is zero

. av
> Ip = Osmcechz 0

. 14
- Total current carried by normal current > [ = =4¢

RN

RCSJ model = Ohmic IVC
General case R = Ry (V) - Nonlinear IVC
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3.3.2 Response to ac driving sources
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Response to an ac voltage source — 1

Strong damping ., < 1
V,cos @, \ ~

V(t) = Vyc + Vi cosw; t

IN
; @, do
Is=1,sing Ry V=% aF
I

V,

Integrating the voltage-phase relation: .

2T 2 \Vp .
t) = o+ —V4ct + ——sinw;t
©(t) = o g et 5o 1
, . 2 2t Vi .

Current-phase relation:  /s(t) = I.sinq g + —Vyct + — —sinw; t

Ol Do wr

Superposition of linearly increasing and sinusoidally varying phase

—> Supercurrent I(t) and ac voltage V; have different frequencies
— Origin = Nonlinear current-phase relation
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3.3.2 Response to ac driving sources

Some maths for the analysis of the time-dependent Josephson current

: o b) = n'™ order Bessel
Fourier-Bessel series identity: e!bsinx — E Jn(b)e"™ (zﬁr(mct)ion::lf e

n=—oo

d: e 1(a+bsinx)
an sin(a+ bsinx) =S {e } T-n(b) = (—=1)"T,(b)

N e/(aersmx) Z j(b 1(a+nx) _ Z ( 1) j(b)e’(a nx)

n=—ogC n=—aoo

Imaginary part

= sin(a+ bsinx) = Z (—=1)"T,(b)sin(a — nx)

nN=—0oo

Ac driven junction 2 x = w4t, b = and a = @y + wgct = @y + Vdc

Pow1q

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

WO =1 Y -1y (W)sin[wdc—nwl)tﬂoo]

n=—o0 CDowl

- Frequency wqy. couples to multiples of the driving frequency
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3.3.2 Response to ac driving sources
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Shapiro steps

e 3 0 (224 ) i = m)t + ol

(DOwl J

n=—oc

- Ac voltage results in dc supercurrent if [(wge — nwq)t + @,] is time independent

Do
Wde = Nwy, or Vi =V, =n—uw;
2T
- Amplitude of average dc current for a specific step number n

l10’
21V |
(0 = 1|70 () '
oW1 §

Vdc * Vn
2 [(wge — nwq)t + @g] is time dependent =
= Sum of sinusoidally varying terms

- Time average is zero Vdc V4
- Vanishing dc component = (I) = Ry + <R—N coswit) =
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3.3.2 Response to ac driving sources

—> Ohmic dependence with sharp current spikes at Vg, =V,
- Current spike amplitude depends on ac voltage amplitude
> nth step > Phase locking of the junction to the n™ harmonic

2 ——

B, <<1

<>=V, /R

Vi, = n—wy
; 2

|</s>n| = Ic

<|>/]|

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Example: w;/2m = 10 GHz

@
Constant dc current at Vg = 0and I}, = nwlz—;; ~n X 20uVv

274
i (q’owl) ‘
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3.3.2 Response to ac driving sources
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Response to an ac current source

Strong damping S <« 1 (experimentally relevant)
1 ¢0 d(p

—> Kirchhoff’s law (neglecting I,) 2 I, singp + ——— = [4. + [; sin w4t
Ry 21 dt

Difficult to solve > Qualitative discussion with washboard potential

- Increase 4. at constant I;
—> Zero-voltage state for Iy, + I; < I, finite voltage state for I3 + I; > I
- Complicated dynamics!

2>V, =nw, %2 - Motion of phase particle synchronized by ac driving

Simplifying assumption
— During each ac cycle the phase particle
moves down 1 minima 12}

<<
gl Bs <t

—> Resulting phase change ¢ = nz?n = Nnw, 4 08/

—> Average dc voltage (V) = n%wl =V,

| /1

04}

Exact analysis apls

— Synchronization of phase dynamics with 0.0

external ac source for a certain bias current interval - Steps
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3.3.2 Response to ac driving sources

Experimental IVCs obtained for an underdamped and overdamped Niobium Josephson
junction under microwave irradiation

03—mm8Mm8

overdamped

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

< 01l |
- — | underdamped _
il ®
0.0F | I | V., = n—o-wl
2T
0.1 : 1 n
1 2 3

V (mV) AS-Chap. 3-29



3.3.4 Photon-assisted tunneling
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Superconducting tunnel junction = Highly nonlinear R(V/)
= Sharp step at I; = 2

e

—> Use quasiparticle (QP) tunneling current qu(V) I
- Include effect of ac source on QP tunneling

Model of Tien and Gordon: | e Y
= Ac driving shifts levels in electrode up and down z |' 5
QP energy: Eqp, + eV cos wyt ! - 2
- QM phase factor : |
. Ee I eV,cosm,t
I
exp (—— /(Eqp + eVj cos wl)dt) oV

h . E. —*

eVp .
= exp (—%Eqpt) - exp (—/h—wll sin wlt)

Bessel function identity for V;-term = Sum of terms 7,,(eV; /hwy)e "™t

—> Splitting of gp-levels into many levels Eq, +

Vi
- Tunneling current /g, (V Z (e 1 ) lgp(V + nhwy /e)

nN=—0o

nhw,; =2 Modified density of states!

— Sharp increase of the qu(V) at V = Vg is broken up into many steps of smaller current

amplitude at 1V, =V, + nhewl
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3.3.4 Photon-assisted tunneling
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Example
— QP IVC of a Nb SIS Josephson junction without & with microwave irradiation
- Frequency w,/2m = 230 GHz corresponding to hw,/e =~ 950 uV

| (nA)

100 . - :
w,/2m = 230 GHz
80+
60+
2A/e
40+
ho,/e ho/e |
20+ v %
/V.l #0 .'b- =0
0 I — i |
0 1 2 3
v, (mV)
QP steps

—> Appear atVj, = ngwl
. eV
- Amplitude J, (5)
1

— Broadended steps
(depending on I, (V))

| (mA)

0.3

0.2f

0.1F

0.0F

-0.1

overdamped

I
T
1

V (mV)

2

Shapiro steps
- Appear atlj, = nz—f;wl

- Amplitude J,, (zevl)

fl(l)l

— Sharp steps
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3.4 Effect of thermal fluctuations
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2kg T

Thermal fluctuations with correlation function: (IF(D)Ie(t+T1)) =

o(T)

Rn
S(f) = 4kgT/Ry

Small fluctuations = Phase fluctuations around equilibrium

Larger fluctuations

- Increase probability for escape out of potential well
—> Escape at rates L.,
— Escape to next minimum
— Phase change of 27

SI1>0>T >T e( >>o

Langevin equation for RCSJ model

1 cD() d(p CDO d2
Rt Ay
Ry 2 dt tCorae TIF

- Equivalent to Fokker-Planck equation'

| =l.sinp +

1 50 1 7y B0
— flo) — -
S (0V) + 5o (1) — ) = 5 v
: 1 oU(p) | .
Normalized force f = — = — —sin
N 2 Ejn Oy lc v
deo/dt V
Normalized momentum vV = ¢/
(JJC / RN
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3.4 Effect of thermal fluctuations

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

a(v, @,t) = Probability density of finding system at (v, @) at time t

X)(t) = // a(p, v, t)X(p, v, t)dpdv statistical average of variable X

Small fluctuations

. . do -1
- Staticsolution (—=0) o(v,t)=F “exp| —
atic solution (— = 0) (v, t) p( T

with: F = // exp( GSZTU)> dpdv

- Boltzmann distribution (G = E- Fx is total energy, E is free energy)

c(v.9)

- Constant probability to find system in nt" metastable state p = / dv / o(p, v)de

—0C Y=Pn
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3.4 Effect of thermal fluctuations

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Large fluctuations

L d
p can change in time - d—': = (M1 — Mh1)p Amount of phase slippage

WA

forI,41 > I,,_1 and

>1 2 [ = wa exp (_ﬂ\ Kramers approximation
n 2T keT ) w, = Attempt frequency

Attempt frequency wy

wa = wo = wp(1 —i*)* for weT > 1,  (underdamped junction)
wa=T ' =w(l—i*)"? for wet < 1 (overdamped junction)
Weak damping (B = W Trc > 1)

2 1 =0 2 wp = wy (Oscillation frequency in the potential well)
21K 2 wy,»w,

Strong damping (B = w,Trc K 1)
= wp — . (Frequency of an overdamped oscillator)
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3.4.1 Underdamped junctions:
Critical current reduction by premature switching

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Uo (D)
BT

For Ejo > kgT > Small escape probability « exp (— ) at each attempt

I\ 3/2
Barrier height:  Up (/) ~ 2E (1 — /—> < 2E)y forlI =0
¢ -0 forl — I

Escape probability 2 wp/2m for I — I
After escape = Junction switches to IR,

Experiment
—> Measure distribution of escape current Iy wor
- Width 61 and mean reduction (41.) = 1. — {Iy)
—> Use approximation for Uy (1) and escape rate 82
C 200
wa /2T exp (— UO(I)) 2
! e 2/3 3 '
kBT wpAt
Ale) =1c— (Iy) =~ In (-2 0
< C> c < M> c |:2E_j0 ( o )] 5.8

—> Considerable reduction of /. when k;T>0.05 E,,

- Provides experimental information on real or effective temperature!
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3.4.2 Additional topic:

O

verdamped junctions - The Ambegaokar-Halperin theory

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Calculate voltage (V) induced by thermally activated phase slips as a function of current

Important parameter:

ke T

o(T) = 2Ej0(T) _ Polc(T)

7TkBT

L | o -
'\{ \)
Pl
é ,\\Q
0.4 -
0.0 Al Il R 1 3 | | s
0.0 04 0.8 1.2 1.6 2.0
<V>/IR,
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3.4.2 Additional topic:
Overdamped junctions - The Ambegaokar-Halperin theory

Amgegaokar-Halperin theory

Finite amount of phase slippage
- Nonvanishing voltage for I — 0
—> Phase slip resistance for strong damping (5. < 1), for U, = 2E ,:

Rp — |lim @ = Ry {7‘10 {WO(T)]} 2 ,.YO(T) _ QEJO(T) _ CD()/C(T)

-0 | 2 ke T kg T

Modified Bessel function

210 55 1 > Approximate Bessel function > Zo(x) = ¢*/2m/x

kgT
R,(T 2E
D) ¢, op (-2E2)
Ry ke T attempt frequency

or < > 2€/CRN ox 2EJO —@\ _QEJO
Y xX g P\ ka7 ) Y\ T haT

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Attempt frequency is characteristic frequency w,
Plasma frequency has to be replaced by frequency of overdamped oscillator:

wa = Wp\/ Bc = wWp\/WcRNC = we

Washboard potential = Phase diffuses over barrier = Activated nonlinear resistance
AS-Chap. 3 - 37



3.4.2 Additional topic:
Overdamped junctions - The Ambegaokar-Halperin theory

Example: YBa,Cu;0, grain boundary Josephson junctions
— Strong effect of thermal fluctuations due to high operation temperature

oxide

epitaxial YBa,Cu 0, film on
SrTiO; bicrystalline substrate

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

R. Gross et al., Phys. Rev. Lett. 64, 228 (1990)
Nature 322, 818 (1988)
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3.4.2 Additional topic:
Overdamped junctions - The Ambegaokar-Halperin theory

Overdamped YBa,Cu;0, grain boundary Josephson junction

: 18 T T T

:85— 14L i

"Z 1.2_,."0; _ 1: Y T T T T T Y ‘_ -

< 1.0k z ! i 7

2 ‘ : - 2E 4o(0

: [ ) 236 = 600

% 0.8 | I 1 1 =i d

S k -280 85 il £l 95 100, | 0.1 E" T 1 /> : . ..‘

> T 06f therm lly \ 1 T ]

P | actiyéted B - Determination of
s 041 phase /1 .| [ &Y .~ I.(T) close to T,
| Ippage | : JE

§ 02F ' ‘ y [ o S K 2E 5(0) = 1400

S L | ol ¥ SR kBT

< 0.0 L >

= i 1 A 1 ) 1 5 1 2 1 2 i i 1 2 1E_3 3 MU . 1 i 1 i i i

< 85 86 87 88 89 90 91 92 093 088 090 092 094 096 098 1.00
: T (K) T (K)

R. Gross et al., Phys. Rev. Lett. 64, 228 (1990)
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3.5 Voltage state of extended Josephson junctions

So far

- Junction treated as lumped element circuit element
- Spatial extension neglected

Spatially extended junctions

- Specific geometry as as in Chapter 2
—> Insulating barrier in yz-plane
- In-plane B field in y-direction f
—> Thick electrodes >> Ay 1, d
—> Magnetic thickness tg =d + A, + 41>
—> Bias current in x-direction i

— Phase gradient along z-direction

dp(zt) _ 2m 4
-> ~ —cpotBBy(Z,t)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Expected effects

- Voltage state = E-field and time-dependence become important
- Short junction and long junction case
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3.5.1 Negligible Screening Effects

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Short junctions (L < 4;) - neglecting self-fields

- B = B¥¥
—> Junction voltage VV = Applied voltage V/,
— Gauge invariant phase difference:

op 2e
at - h 0T
Op(z, t) 2w
Py Ry teBy(z, t)
2T
= @(z,t) = @o + wot + —
o
= Js(z,t) = Jesin (wot + k- 2 + ¢q)
5
— Josephson vortices moving in 4
z-direction with velocity 3l
‘ k Bth
’

00 02 04 06 08 1.0 00 02 0
z/L

Bytg-z = o+ wot+k-z

J (2) (arb. units)

4 06 08 10
z/L
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3.5.2 The time dependent Sine-Gordon equation

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Long junctions (L >> 4)

- Effect of Josephson currents has to be taken into account
- Magnetic flux density = External + Self-generated field

. GE in contrast to static case,
with B = ygH and D = g,E: V X B = pugd + €€oko 57 now E/8t £ 0
consider 1D junction extending in z-direction, B = B, current flow in x-direction

0By,(z,t) OE,(z,t)
= —Ugtx(z, t) — €€ op(z,t) 2
8%p(z, t) 27 OE«(z,t)
T 8z2 —gots {qux(Z, t) + GGOUOT
. ; OE, 0%
with E, = =V /d, ], = —J.sin@ and dp /0t = 2nV /®,: e = atf 27r0d(z' t)
0%p(z,t) 2mteuode . ecolote 0% (z, t
p(z, t) _ BH0oJc sin (2, t) + okots 0°p(z, t)
0z2 (DO d ot?
\ Y J \ Y J
z'r P d
_ 0
Ar= \;‘J 2t Je C = \/— (propagation velocity)
(Josephson penetration depth) €€olo tB
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3.5.2 The time dependent Sine-Gordon equation

5‘2<p(2, t) 1 62(,0(2, t) 1 Time dependent

- 8z2 @2  ar2 B }\_3 sinp(z,t) =0 Sine-Gordon equation

with the Swihart velocity

_ d 1 d 1 N \/ g
C — . = = C gy = - -
€€olotn €otbo \| €(2A + d) e(1+ 21, /d) 2o teJc

¢ = velocity of TEM mode in the junction transmission line

%zSO—loerzo.u

Example: € =~5 — 10,
- Reduced wavelength
= For f=10 GHz = Free space: 3 cm, in junction: 1 mm

Other form of time-dependent Sine-Gordon equation

0°p(z,t) 4m* 0%p(z, t)
0z ws  Ot?

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

A]

—sinp(z,t) =0

M;%:QEfc/ﬁC C/A; =eeo/d I /A = J. c®=1/eopuo = Wp /2T =T/,
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3.5.2 The time dependent Sine-Gordon equation

Time-dependent Sine-Gordon equation:

0%p(z, t) 4Am> 0%p(z, t)
0z2 ws  Ot?

rubber ribbon .

Ag —sinp(z,t) =0

pendula

Mechanical analogue ..

— Chain of mechanical pendula attached to a twistable

rubber ribbon
2

- Restoring torque A7 37?
— Short junction w/o magnetic field

2> ?plo?=0

—> Rigid connection of pendula

— Corresponds to single pendulum

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)
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3.5.3 Solutions of the time dependent SG equation

Simple case
= 1D junction (W < %), short and long junctions

Short junctions (L < ;) @ low damping ,0%p(z,t)  4m* 3%p(z.t)

£ Y - > —= —sinp(z,t) =0
p —> Neglect z-variation of ¢ 7oz wp Ot
T 2 2
> O°p(z, t) w, .
2 + sinp(z,t) =0
z ot? 472 (2. 1)
s C/A; = €€/ d
3 —> Equivalent to RCSJ model for Gy = 0,1 =0 FERO
3 Small amplitudes = Plasma oscillations I JA = J
= (Oscillation of ¢ around minimum of washboard potential) «r y
%‘ Long junctions (L >> A;)
i —> Solution for infinitely long junction = Soliton or fluxon
2‘ Z;ZO V:Czt @ =matz=2zy+ vt
(p(Z, t) = 4 arctan eXp + = goes from 0 to 2w for —o0 - z — o0
\/1 . (\_/__7_)2 - Fluxon (antifluxon: co - z - —oo)
C
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3.5.3 Solutions of the time dependent SG equation

1.0 ] —— —] 1.0
_ B,(2)
Q@ =matz=2zy+ v,t Jx(Z)
goes from 0 to 27 for —o0 —» z > © 0.5
- Fluxon (antifluxon: co - z —» —o0)
ﬁO
0.0 :x
/27 1792
Pendulum analog
- Local 360° twist of 10

rubber ribbon

Applied current
- Lorentz force = Motion of phase twist (fluxon)

Fluxon as particle = Lorentz contraction forv, = C

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Local change of phase difference = Voltage

Mo O = R

- Moving fluxon = Voltage pulse

Other solutions: Fluxon-fluxon collisions, breathers, bound states,... AS.Chan. 3 . 46
- ap. -



3.5.3 Solutions of the time dependent SG equation

Josephson plasma waves

Linearized Sine-Gordon equation

(p(Z, t) — (p()(Z) + (pl(Z, t) sin(a + B) = sinacosB + cosasin 3
@1 = Small deviation
- Approximation SIN Y >~ SIN g + Y1 COS Y

Substitution (keeping only linear terms):

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

0%pg  B%pi(z,t) 1 &%pi(z,t) 1 1
+ — — — —SIiNYg — —5 CoS g Y1(z,t) =0
0z2 0z2 c?  Ot? A2 A2
. . 62<p0 -2 ..
Qo solves time independent SGE 5z = Ay “sin g
62(01(2, t) 1 azwl(z' t) 1 @, slowly varying
6z2 &2 a2 A9 cospopr(2.) =0 > @o ~ const,
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3.5.3 Solutions of the time dependent SG equation

Solution: ¢1(z,t) = exp (—ilkz — wt]) (small amplitude plasma waves)
2 =212 2
Dispersion relation w(k) : W = C°K" + wp
2 =2 2
w C w
J
Josephson plasma frequency Pt CcOS ——P cos
42 )\3 ¥o gz O P0
W < Wp
- Wave vector k imaginary = No propagating solution
W > Wp

- Mode propagation

- Pendulum analogue > Deflect one pendulum = Relax - Wave like excitation
w = (l)p,]

- Infinite wavelength Josephson plasma wave

- Analogy to plasma frequency in a metal

= Typically junctions wpyy =~ 10 GHz

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Plane waves N p(z.t) 10%°p(z.t)
022 c? o2

For very large A; or very small /

- Neglect Sl/?l;p

term = Linear wave equation = Plane waves with velocity ¢

AS-Chap. 3 -48



3.5.4 Resonance phenomena

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Interaction of fluxons or plasma waves with oscillating Josephson current

—> Rich variety of interesting resonance phenomena
- Require presence of B€¥
—> Steps in IVC (junction upconverts dc drive)

Flux-flow steps and Eck peak

For B > 0

—> Spatially modulated Josephson currrent density moves at v, = V/Bth
- Josephson current can excite Josephson plasma waves

- On resonance, em waves couple strongly to Josephson current if ¢ = v,

Corresponding junction voltage:

_ d W >\_] w >\_j P
Veck = CBytg = | —— Bt —P tgl = 2=
Eck = CDyls \/ e€olbotn te = o L VB o L Y d,

26 >\_j (D = —)&_f
—> Eck peak at frequency: Wk = —Veck = Wp— — 2m
P q y: Eck A Eck — Wp [ CDO O = B, tsl
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3.5.4 Resonance phenomena

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

—> Traveling current wave only excites traveling em wave of same direction
- Low damping, short junctions = Em wave is reflected at open end
— Eck peak only observed in long junctions at medium damping when

the backward wave is damped

Alternative point of view

—> Lorentz force > Josephson vortices move at v, = =
y'B

—> Increase driving force = Increase v,

—> Maximum possible speedis v, = ¢

— Further increase of I does not increase V)

= Flux-flow step in IVC
- D wpﬁ i
2> Vi = CBth = CI— Py (I)Ocpo

— Corresponds to Eck voltage
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3.5.4 Resonance phenomena

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Fiske steps
Standing em waves in junction “cavity” at w,, = 2nf,, = an—CLn = %n
- Fiske steps at voltages

Vn = e = D0 "= 2n L P02

Interpretation

L2
- Wave length of Josephson current density is 7”
A P9

— Resonance condition L = %n = En > kL =nmor® = n;
n

where maximum Josephson current of short junction vanishes
— Standing wave pattern of em wave and Josephson current match
- Steps in IVC

Influence of dissipation

- Damping of standing wave pattern by dissipative effects
— Broadening of Fiske steps
- Observation only for small and medium damping

A/ 2-cavity
2> w, = (nnvph)/L
Vpn = Phase velocity

for L » 100 um
first Fiske step » 10 GHz
(few 10s of pV)

AS-Chap. 3-51



3.5.4 Resonance phenomena

Fiske steps at small damping and/or Eck peak at medium damping and/or
small magnetic field medium magnetic field

/1 14

B,tsL = n @,/2 Bytsl >> @2z /|

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

| | vEck
<V> <V>

ForV # Vgexkand V = 1V, 2 () = (I sin(wot + kz + @y)) = 0> 1 =Iy(V) =V /Ry(V)
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3.5.4 Resonance phenomena

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Zero field steps

- Motion of trapped flux due to Lorentz force (w/o magnetic field)

- Junction of length L, moving back and forth

— Phase change of 4 in period T = L

Vz
—> At large bias currents (v, — C)
h 4w h 4t h  h < wpl

#s =0 e T T 2¢ 2Ljc2e 2eL w L °

For n fluxons

- Vn,zfs = nVZfS
= V265 = 2 X Fiske voltage 1, (fluxon has to move back and forth)
2 Virs = Vizes for @ = ndy (introduce n fluxons = generate n flux quanta)

Example:

IVCs of annular Nb/insulator/Pb
Josephson junction containing a
different number of trapped fluxons
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Summary (Voltage state of short junctions)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

Voltage state: (Josephson + normal + displacement + fluctuation) current = total current

: dVv I
:>/:/CSInCP+GN(V)V+CE+/F + I
do 2eV . Xv Lo IG~<V> - ?/F
dt h i T

CDO d(p CDO d2(P

= | = /.sl + Gn(V)—— + C— /
esine+Gn(V)or gy T o are TIF
Equation of motion for phase difference : T = Ti = ﬁ
d’e do o
RCSJ-model (G (V) = const. —— + — 4+sinp—1—Ig(T) =0
(Gn(V) ) B+ - tsing F(T)

Motion of phase particle in the tilted washboard potential U = E jo[1 — cose — (//1:)¢]

Equivalent LCR resonator, characteristic frequencies:

Y 1_2€/C w_R_Qe/CR w—l
=\ L.c  V aC L. h RC ™ RC

2e
Quality factor: Q% = B = —I.R*C fc = Stewart-McCumber parameter
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Summary (Voltage state of short junctions)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

IVC for strong damping and 5, < 1

Driving with V(t) = V. + V; cos w4t

—> Shapiro steps at I, = n%‘;wl

Jn (2nV1 )

q§0w1

with amplitudes |{I),,| = I

- Photon assisted tunneling

@ .
Voltage steps at I, = nfa)l due to nonlinear

QP resistance

Effect of thermal fluctuations
—> Phase-slips at rate [, = ;)—ﬁexp (— —)

= Finite phase-slip resistance R, even below I

- Premature switching

‘
4

|
| 100, \
/|
‘ ’ } | | 2mom, =230 GHz ¢ 1
80} £
i a0
\Y (m\&: | Py {-‘;g o
= 40; ,
; hele haye |
- - _d-
20+ "
[ Nero | o
Q——
0 1 2 3 4
v, (mV)

—V

I
04

08 12
<V>/1R,

0 i
5.8 6.0

L (

e 6 .4
i
C
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Summary

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

* voltage state of extended junctions |
w/o self-field: el os

\
J.(2) (arb. units)

=>Js(Z.t)=JCsin (wot+k-z+(po) 138

90 02 04 06 08 10 00 02 04 06 08 10
z/L z/L

* with self-field: time dependent Sine-Gordon equation
&p(z,t) 1 0%p(z,t) 1
022 c2  0ot? A2

C = L—c 1 A= CDO
\ ccomots  \ (1 + 27, /d) TN\ 2mpote e

characteristic velocity of TEM mode in
the junction transmission line

sinp(z,t) =0

Prominent solutions: plasma oscillations and solitons

nonlinear interactions of these excitations with Josephson current:
- flux-flow steps, Fiske steps, zero-field steps

characteristic screening length
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Solitons

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

do/dx
A

A soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its
shape while it travels at constant speed.

Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium.
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Solitons

1-d classic
soliton in the
water canal,
discovered in
1834 by
J.S.Russel :

Described
by Kortweg
de Friz (KdF)
equation —
similar to SG
equation.

(kB0
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AS-Chap. 3-59

on the shallow
water surface

QL
© O
S X
—_ Y
o O
O c
o O
cC =
O >
>
2 3

C
i)
)

©

-}

o

Q

2-d solitons
Usually
described
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Solitons

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiRner-Institut (2001 - 2020)

3-d Falaco
soliton

in the
water pool:

Two vortices
are linked
together with
a turbulent
channel deep
in the water
and moving as
the whole.

Falaco Topological Defects

Surface 2D Singularity

Transverse Torsional Waves \\

Torsion String Singularity
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Solitons

>
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Q0
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Clouds’

?

Australia

coastline:
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