Chapter 3

Physics of Josephson Junctions:

The Voltage State

AS-Chap. 3 - 1

3. Physics of Josephson junctions: The voltage state

For bias currents $I > I_s^m$

- \rightarrow Finite junction voltage
- → Phase difference φ evolves in time: $\frac{d\varphi}{dt} \propto V$
- \rightarrow Finite voltage state of the junction corresponds to a dynamic state
- ightarrow Only part of the total current is carried by the Josephson current
 - \rightarrow additional resistive channel
 - \rightarrow capacitive channel
 - \rightarrow noise channel

Key questions

- ightarrow How does the phase dynamics look like?
- → Current-voltage characteristics for $I > I_s^m$?
- \rightarrow What is the influence of the resistive damping ?

3.1 The basic equation of the lumped Josephson junction

- 3.1.1 The normal current: Junction resistance
 - At finite temperature T > 0
 - \rightarrow Finite density of "normal" electrons
 - \rightarrow Quasiparticles
 - \rightarrow Zero-voltage state: No quasiparticle current
 - → For V > 0 → Quasiparticle current = Normal current I_N → Resistive state

High temperatures close to $T_{\rm c}$

→ For $T \leq T_c$ and $2\Delta(T) \ll k_B T$: (almost) all Cooper pairs are broken up → Ohmic current-voltage characteristic (IVC)

$$ightarrow I_{\rm N} = G_{\rm N}V$$
, where $G_{\rm N} \equiv \frac{1}{R_{\rm N}}$ is the normal conductance

Large voltage $V > V_g = \frac{\Delta_1 + \Delta_2}{e}$ \rightarrow External circuit provides energy to break up Cooper pairs \rightarrow Ohmic IVC

For $T \ll T_c$ and $|V| < V_q$

ightarrow Vanishing quasiparticle density ightarrow No normal current

3.1.1 The normal current: Junction resistance

Current-voltage characteristic

Voltage state

- \rightarrow Bias current I
- $\rightarrow I_{\rm s}(t) = I_{\rm c} \sin \varphi(t)$ is time dependent
- \rightarrow *I*_N is time dependent
- → Junction voltage $V = \frac{I_N}{G_N}$ is time dependent
- \rightarrow IVC shows time-averaged voltage $\langle V \rangle$

For $T \ll T_{\rm c}$ and $|{\rm V}| < V_{\rm g}$

 \rightarrow IVC depends on sweep direction and on bias type (current/voltage)

\rightarrow Hysteretic behavior

• Current bias
$$\rightarrow I = I_s + I_N = const$$

Equivalent conductance G_N at T = 0:

$$G_N(V) = \begin{cases} 0 & \text{for } |V| < 2\Delta/e \\ rac{1}{R_N} & \text{for } |V| \ge 2\Delta/e \end{cases}$$

3.1.1 The normal current: Junction resistance

Finite temperature

→ Sub-gap resistance $R_{sg}(T)$ for $|V| < V_g$

 $\rightarrow R_{sg}(T)$ determined by amount of thermally excited quasiparticles

 $G_{sg}(T) = \frac{1}{R_{sg}(T)} = \frac{n(T)}{n_{tot}}G_N$ $n(T) \rightarrow$ Density of excited quasiparticles

\rightarrow for T > 0 we get

$$G_N(V,T) = \begin{cases} \frac{1}{R_{sg}(T)} & \text{for } |V| < 2\Delta(T)/e\\ \frac{1}{R_N} & \text{for } |V| \ge 2\Delta(T)/e \end{cases}$$

→ Nonlinear conductance $G_N(V, T)$

 \rightarrow Characteristic voltage ($I_c R_N$ -product)

$$V_c \equiv I_c R_N = \frac{I_c}{G_N}$$

Note: \rightarrow There may be a frequency dependence of the normal channel \rightarrow Normal channel depends on junction type

3.1.2 The displacement current: Junction capacitance

3.1.3 Characteristic times and frequencies

3.1.3 Characteristic times and frequencies

Stewart-McCumber parameter and quality factor

→ Stewart-McCumber parameter

 $\beta_C \equiv \frac{\omega_c^2}{\omega_p^2} = \frac{\omega_c}{\omega_{\rm RC}} = \omega_c \tau_{\rm RC} = \frac{2e}{\hbar} I_c R_N^2 C$ $Q = \frac{RC}{\sqrt{LC}} = \frac{\omega_p}{\omega_{\rm RC}} = \frac{\omega_c}{\omega_p} = \sqrt{\beta_C}$

(Q compares the decay of oscillation amplitudes to the oscillation period)

Limiting cases

 \rightarrow Quality factor

$\rightarrow \beta_C \ll 1$

- ightarrow Small capacitance and/or small resistance
- → Small $R_{\rm N}C$ time constants ($\tau_{RC}\omega_{\rm p}\ll 1$)
- → Highly damped (overdamped) junctions

$\rightarrow \beta_C \gg 1$

- \rightarrow Large capacitance and/or large resistance
- \rightarrow Large $R_{\rm N}C$ time constants ($\tau_{RC}\omega_{\rm p} \gg 1$)
- → Weakly damped (underdamped) junctions

3.1.4 The fluctuation current

Fluctuation/noise

- \rightarrow Langevin method: include random source \rightarrow fluctuating noise current
 - → type of fluctuations: **thermal noise, shot noise, 1/f noise**

Thermal Noise

Johnson-Nyquist formula for thermal noise $(k_{\rm B}T \gg eV, \hbar\omega)$:

$$S_{I}(f) = \frac{4k_{B}T}{R_{N}}$$
 (current noise power spectral density)
$$S_{V}(f) = 4k_{B}TR_{N}$$
 (voltage noise power spectral density)

relative noise intensity (thermal energy/Josephson coupling energy):

$$\gamma \equiv \frac{k_B T}{E_J} = \frac{2e}{\hbar} \frac{k_B T}{I_c} \qquad \Rightarrow \gamma \equiv \frac{I_T}{I_C} \text{ with } I_T = \frac{2e}{\hbar} k_B T$$

 $I_T \equiv$ thermal noise current $T = 4.2 \text{ K} \rightarrow I_T \approx 0.15 \text{ }\mu\text{A}$

Shot Noise

Schottky formula for shot noise ($eV \gg k_BT \rightarrow V > 0.5 \text{ mV} @ 4.2 \text{ K}$): $S_I(f) = 2eI_N$

- \rightarrow Random fluctuations due to the discreteness of charge carriers
- \rightarrow Poisson process \rightarrow Poissonian distribution
- → Strength of fluctuations → variance $\Delta I^2 \equiv \langle (I \langle I \rangle)^2 \rangle$
- \rightarrow Variance depends on frequency \rightarrow Use noise power:

$$S(f) = \int_{-\infty}^{+\infty} (\langle I(t)I(0) \rangle - \langle I(0) \rangle^2) dt \qquad \text{includes equilibrium} \\ \text{fluctuations (white noise)}$$

1/f noise

- → Dominant at low frequencies
- \rightarrow Physical nature often unclear
- \rightarrow Josephson junctions: dominant below about 1 Hz 1 kHz \rightarrow Not considered here

3.1.5 The basic junction equation

Kirchhoff's law:

Voltage-phase relation:

dt ħ \rightarrow Basic equation of a Josephson junction

dφ

$$\Rightarrow I = I_c \sin \varphi + G_N(V)V + C\frac{dV}{dt} + I_F$$

$$\Rightarrow I = I_c \sin \varphi + G_N(V) \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} + C \frac{\Phi_0}{2\pi} \frac{d^2 \varphi}{dt^2} + I_F$$

Nonlinear differential equation with nonlinear coefficients

2eV

- \rightarrow Complex behavior, numerical solution
- \rightarrow Use approximations (simple models)

3.2 The resistively and capacitively shunted junction (RCSJ) model

Resistively and Capacitively Shunted Junction (RCSJ) model

Approximation $\rightarrow G_N(V) \equiv G = R^{-1} = \text{const.}$ R = Junction normal resistance

Differential equation in dimesionless or energy formulation

$$\left(\frac{\hbar}{2e}\right) C \frac{d^2\varphi}{dt^2} + \left(\frac{\hbar}{2e}\right) \frac{1}{R} \frac{d\varphi}{dt} + I_c \left[\sin\varphi - \frac{I}{I_c} + \frac{I_F(t)}{I_c}\right] = 0$$

$$= i = i_F(t)$$

$$= \left(\frac{\hbar}{2e}\right)^2 C \frac{d^2\varphi}{dt^2} + \left(\frac{\hbar}{2e}\right)^2 \frac{1}{R} \frac{d\varphi}{dt} + \frac{d}{d\varphi} \left\{E_{J0}\left[1 - \cos\varphi - i\varphi + i_F(t)\varphi\right]\right\} = 0$$

Mechanical analog

Gauge invariant phase difference \leftrightarrow Particle with mass *M* and damping η in potential *U*:

$$M \frac{d^2 x}{dt^2} + \eta \frac{dx}{dt} + \nabla U = 0$$

with $M = \left(\frac{\hbar}{2e}\right)^2 C$ $\eta = \left(\frac{\hbar}{2e}\right)^2 \frac{1}{R}$ $U = R$

$$U = E_{J0} \left[1 - \cos \varphi - i \varphi + i_F(t) \varphi \right]$$

Tilted washboard potential

AS-Chap. 3 - 12

3.2 The resistively and capacitively shunted junction (RCSJ) model

Finite tunneling probability:

→ Macroscopic quantum tunneling (MQT)

Escape by thermal activation → Thermally activated phase slips

Normalized time: $\tau \equiv \frac{t}{\tau_c} = \frac{t}{2eI_cR/\hbar}$ Stewart-McCumber parameter: $\beta_C \equiv \frac{\omega_c^2}{\omega_p^2} = \frac{2e}{\hbar}I_cR_N^2C$

$$\beta_C \frac{d^2 \varphi}{d\tau^2} + \frac{d\varphi}{d\tau} + \sin \varphi - i - i_F(\tau) = 0$$

Motion of "phase particle" φ in the tilted washboard potential

Plasma frequency

→ Neglect damping, zero driving and small amplitudes (sin $\varphi \approx \varphi$)

Solution:
$$\varphi = c \cdot \exp\left(i\frac{\tau}{\sqrt{\beta_c}}\right) = c \cdot \exp\left(i\frac{t}{\sqrt{\beta_c}\tau_c}\right) = c \cdot \exp\left(i\omega_p t\right)$$

Plasma frequency = Oscillation frequency around potential minimum

3.2 The resistively and capacitively shunted junction (RCSJ) model

- \rightarrow Plane mechanical pendulum in uniform gravitational field
- → Mass m, length ℓ , deflection angle θ
- \rightarrow Torque *D* parallel to rotation axis
- \rightarrow Restoring torque: $mg\ell\sin\theta$

Equation of motion $\rightarrow D = \Theta \ddot{\theta} + \Gamma \dot{\theta} + mg \ell \sin \theta$

		$\Theta = m\ell^2$ Γ	² Moment of inertia Damping constant
Analogies	Ι	\leftrightarrow	D
	I _c	\leftrightarrow	$mg\ell$
	$\frac{\Phi_0}{2\pi R}$	\leftrightarrow	Г
	$\frac{C\Phi_0}{2\pi}$	\leftrightarrow	Θ
	φ	\leftrightarrow	heta

For $D = 0 \rightarrow$ Oscillations around equilibrium with

$$\omega = \sqrt{\frac{g}{\ell}} \iff$$
 Plasma frequency $\omega_{\rm p} = \sqrt{\frac{2\pi I_{\rm c}}{\Phi_0 C}}$

Finite torque $(D > 0) \rightarrow$ Finite $\theta_0 \rightarrow$ Finite, but constant $\varphi_0 \rightarrow$ Zero-voltage stateLarge torque (deflection > 90°) \rightarrow Rotation of the pendulum \rightarrow Finite-voltage stateVoltage V \leftrightarrow Angular velocity of the pendulum

3.2.1 Under- and overdamped Josephson junctions

(Phase particle will retrap immediately at $I_{\rm c}$ because of large damping)

(Once the phase is moving, the potential has to be tilt back almost into the horizontal position to stop ist motion)

Motivation

"Applied Superconductivity" \rightarrow One central question is

 \rightarrow "How to extract information about the junction experimentally?"

Typical strategy

→ Drive junction with a probe signal and measure response

Examples for probe signals

- → Currents (magnetic fields)
- \rightarrow Voltages (electric fields)

 \rightarrow DC or AC

 \rightarrow Josephson junctions \rightarrow AC means microwaves!

Prototypical experiment

- \rightarrow Measure junction IVC
- ightarrow Typically done with current bias

Time averaged voltage:

T = Oscillation period

ንተ

$$\langle V \rangle = \frac{1}{T} \int_{0}^{T} V(t) dt = \frac{1}{T} \int_{0}^{T} \frac{\hbar}{2e} \frac{d\varphi}{dt} dt = \frac{1}{T} \frac{\hbar}{2e} [\varphi(T) - \varphi(0)] = \frac{\Phi_0}{T}$$

Total current must be constant (neglecting the fluctuation source):

$$I = I_s(t) + I_N(t) + I_D(t) = I_c \sin \varphi(t) + \frac{V(t)}{R} + C \frac{dV(t)}{dt} = const$$

where: $\varphi(t) = \int_0^t \frac{2e}{\hbar} V(t) dt$

 $I > I_{\rm c} \rightarrow$ Part of the current must flow as $I_{\rm N}$ or $I_{\rm D}$

- → Finite junction voltage |V| > 0
- \rightarrow Time varying $I_{\rm s}$
- \rightarrow $I_{\rm N}$ + $I_{\rm D}$ varies in time
- → Time varying voltage, complicated non-sinusoidal oscillations of I_s , Oscillating voltage has to be calculated self-consistently
- → Oscillation frequency $f = \langle V \rangle / \Phi_0$

For $I \gtrsim I_c$

→ Highly non-sinusoidal oscillations → Long oscillation period → $\langle V \rangle \propto \frac{1}{\tau}$ is small

For $I \gg I_{\rm c}$

- ightarrow Almost all current flows as normal current
- \rightarrow Junction voltage is nearly constant
- → Almost sinusoidal Josephson current oscillations
- → Time averaged Josephson current almost zero
- \rightarrow Linear/Ohmic IVC

\rightarrow Analogy to pendulum

Strong damping

 $\beta_C \ll 1$ & neglecting noise current

$$\beta_C \frac{d^2 \varphi}{d\tau^2} + \frac{d\varphi}{d\tau} + \sin \varphi - i = 0$$

- $i < 1 \rightarrow$ Only supercurrent, $\varphi = \sin^{-1} i$ is a solution, zero junction voltage
- $i > 1 \rightarrow$ Finite voltage, temporal evolution of the phase

$$d\tau = \frac{d\varphi}{i - \sin\varphi}$$

Integration using

$$\int \frac{dx}{a - \sin x} = \frac{2}{\sqrt{a^2 - 1}} \tan^{-1} \left(\frac{-1 + a \tan(x/2)}{\sqrt{a^2 - 1}} \right)$$

gives

$$\tau - \tau_0 = \frac{2}{\sqrt{i^2 - 1}} \tan^{-1} \left(\frac{-1 + i \tan(\varphi/2)}{\sqrt{i^2 - 1}} \right)$$

$$\Rightarrow \varphi(t) = 2 \tan^{-1} \left\{ \sqrt{1 - \frac{1}{i^2}} \tan\left(\frac{t\sqrt{i^2 - 1}}{2\tau_c}\right) + \frac{1}{i} \right\}$$

Setting $\tau_0 = 0$ and using the set of the se

Periodic function with period

$$T = \frac{2\pi\tau_c}{\sqrt{i^2 - 1}}$$

$$\tan^{-1}(a\tan x + b)$$

is π -periodic

AS-Chap. 3 - 19

with
$$\langle V(t) \rangle = \frac{1}{T} \int_{0}^{T} V(t) dt = \frac{\Phi_0}{T}$$

and $\tau_c = \frac{\Phi_0}{2\pi} \frac{1}{I_c R}$ $T = \frac{2\pi\tau_c}{\sqrt{i^2 - 1}}$

We get for i > 1

$$\langle V(t) \rangle = I_c R \sqrt{\left(\frac{l}{l_c}\right)^2 - 1}$$

Weak damping

 $\beta_C \gg 1$ & neglecting noise current

 $\omega_{RC} = \frac{1}{R_N C}$ is very small \rightarrow Large C is effectively shunting oscillating part of junction voltage $\rightarrow V(t) \simeq \overline{V}$ \rightarrow Time evolution of the phase

$$\varphi(t) = rac{2e}{\hbar} \, \overline{V} \, t + ext{const}$$

ightarrow Almost sinusoidal oscillation of Josephson current

$$\overline{I_s(t)} = \overline{I_c \sin\left(\frac{2e}{\hbar}\overline{V}t + \text{const}\right)} \simeq 0$$

→ Down to
$$\overline{V} \approx \frac{\hbar \omega_{RC}}{e} \ll (V_{c} = I_{c}R_{N}) \Rightarrow \overline{I} = I_{N}(\overline{V}) = \frac{V}{R}$$

→ Corresponding current $\ll I_{c}$ → Hysteretic IVC

-I_cR/e -I_cR/e -I_c -I_c

Ohmic result valid for $R_{\rm N} = const$.

→ Real junction → IVC determined by voltage dependence of $R_{\rm N} = R_{\rm N}({\rm V})$

Intermediate damping

- $\beta_C \simeq 1$
- \rightarrow Numerically solve IVC
- → General trend Increasing $\beta_C \leftrightarrow$ Increasing hysteresis

Hysteresis characterized by retrapping current $I_{\rm r}$

 \rightarrow $I_{\rm r}$ \propto washboard potential tilt where

Energy dissipated in advancing to next minimum = Work done by drive current

Analytical calculation possible for $\beta_C \gg 1$ (exercise class)

$$\frac{I_R}{I_c} = \frac{4}{\pi} \frac{1}{\sqrt{\beta_C}}$$

3.3.1 Response to a dc voltage source

Phase evolves linearly in time:

$$\varphi(t) = \frac{2e}{\hbar} V_{dc} t + \text{const}$$

- \rightarrow Josephson current I_s oscillates sinusoidally
- \rightarrow Time average of $I_{\rm s}$ is zero

$$\rightarrow I_{\rm D} = 0$$
 since $\frac{dV_{\rm dc}}{dt} = 0$

→ Total current carried by normal current → $I = \frac{V_{dc}}{R_N}$

RCSJ model \rightarrow Ohmic IVCGeneral case $R = R_N(V)$ \rightarrow Nonlinear IVC

Response to an ac voltage source Strong damping $\beta_C \ll 1$

$$V(t) = V_{\rm dc} + V_1 \cos \omega_1 t$$

Integrating the voltage-phase relation:

$$\varphi(t) = \varphi_0 + \frac{2\pi}{\Phi_0} V_{dc} t + \frac{2\pi}{\Phi_0} \frac{V_1}{\omega_1} \sin \omega_1 t$$

Current-phase relation: $I_s(t) = I_c \sin \left\{ \varphi_0 + \frac{2\pi}{\Phi_0} V_{dc} t + \frac{2\pi}{\Phi_0} \frac{V_1}{\omega_1} \sin \omega_1 t \right\}$

Superposition of linearly increasing and sinusoidally varying phase \rightarrow Supercurrent $I_s(t)$ and ac voltage V_1 have different frequencies

 \rightarrow Origin \rightarrow Nonlinear current-phase relation

Some maths for the analysis of the time-dependent Josephson current

Fourier-Bessel series identity:

 $e^{ib\sin x} = \sum_{n=1}^{\infty} \frac{\mathcal{J}_n(b)e^{inx}}{\mathcal{J}_n(b)e^{inx}} \qquad \frac{\mathcal{J}_n(b) = n^{\text{th}} \text{ order Bessel function of the first kind}}{\mathcal{J}_n(b)e^{inx}}$ $n = -\infty$

and:
$$\sin(a+b\sin x) = \Im\left\{e^{i(a+b\sin x)}\right\}$$

 $\mathcal{J}_{-n}(b) = (-1)^n \mathcal{J}_n(b)$

$$\Rightarrow e^{i(a+b\sin x)} = \sum_{n=-\infty}^{+\infty} \mathcal{J}_n(b) e^{i(a+nx)} = \sum_{n=-\infty}^{+\infty} (-1)^n \mathcal{J}_n(b) e^{i(a-nx)}$$
$$\Rightarrow \sin(a+b\sin x) = \sum_{n=-\infty}^{+\infty} (-1)^n \mathcal{J}_n(b) \sin(a-nx)$$
Imaginary part

Ac driven junction $\Rightarrow x = \omega_1 t$, $b = \frac{2\pi}{\phi_0 \omega_1}$ and $a = \varphi_0 + \omega_{dc} t = \varphi_0 + \frac{2\pi}{\phi_0} V_{dc} t$

$$I_s(t) = I_c \sum_{n=-\infty}^{+\infty} (-1)^n \mathcal{J}_n\left(\frac{2\pi V_1}{\Phi_0 \omega_1}\right) \sin\left[(\omega_{dc} - n\omega_1)t + \varphi_0\right]$$

 \rightarrow Frequency ω_{dc} couples to multiples of the driving frequency

Shapiro steps

$$I_s(t) = I_c \sum_{n=-\infty}^{+\infty} (-1)^n \mathcal{J}_n\left(\frac{2\pi V_1}{\Phi_0 \omega_1}\right) \sin\left[(\omega_{dc} - n\omega_1)t + \varphi_0\right]$$

 \rightarrow Ac voltage results in dc supercurrent if $[(\omega_{dc} - n\omega_1)t + \varphi_0]$ is time independent

$$\omega_{\rm dc} = n\omega_1$$
 or $V_{\rm dc} = V_n = n \frac{\Phi_0}{2\pi} \omega_1$

 \rightarrow Amplitude of average dc current for a specific step number n

$$|\langle I_s \rangle_n| = I_c \left| \mathcal{J}_n \left(\frac{2\pi V_1}{\Phi_0 \omega_1} \right) \right|$$

 $\rightarrow [(\omega_{dc} - n\omega_1)t + \varphi_0]$ is time dependent

- \rightarrow Sum of sinusoidally varying terms
- → Time average is zero → Vanishing dc component → $\langle I \rangle = \frac{V_{dc}}{R_N} + \langle \frac{V_1}{R_N} \cos \omega_1 t \rangle = \frac{V_{dc}}{R_N}$

→ Ohmic dependence with sharp current spikes at $V_{dc} = V_n$ → Current spike amplitude depends on ac voltage amplitude → n^{th} step → Phase locking of the junction to the n^{th} harmonic

Example: $\omega_1/2\pi = 10 \text{ GHz}$ Constant dc current at $V_{dc} = 0$ and $V_n = n\omega_1 \frac{\phi_0}{2\pi} \simeq n \times 20 \text{ }\mu\text{V}$

Response to an ac current source

Strong damping $\beta_C \ll 1$ (experimentally relevant)

→ Kirchhoff's law (neglecting I_D) → $I_c \sin \varphi + \frac{1}{R_N} \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} = I_{dc} + I_1 \sin \omega_1 t$

Difficult to solve \rightarrow Qualitative discussion with washboard potential

→ Increase I_{dc} at constant I_1 → Zero-voltage state for $I_{dc} + I_1 \le I_c$, finite voltage state for $I_{dc} + I_1 > I_c$ → Complicated dynamics!

 $\rightarrow V_n = n\omega_1 \frac{\Phi_0}{2\pi} \rightarrow$ Motion of phase particle synchronized by ac driving

Simplifying assumption

- → During each ac cycle the phase particle moves down n minima
- → Resulting phase change $\dot{\phi} = n \frac{2\pi}{T} = n\omega_1$

→ Average dc voltage
$$\langle V \rangle = n \frac{\Phi_0}{2\pi} \omega_1 \equiv V_n$$

Exact analysis

→ Synchronization of phase dynamics with external ac source for a certain bias current interval → Steps

Experimental IVCs obtained for an underdamped and overdamped Niobium Josephson junction under microwave irradiation

3.3.4 Photon-assisted tunneling

Superconducting tunnel junction \rightarrow Highly nonlinear R(V) \rightarrow Sharp step at $V_{\rm g} = \frac{2\Delta}{a}$ \rightarrow Use quasiparticle (QP) tunneling current $I_{qp}(V)$ I_c → Include effect of ac source on QP tunneling 2∆/e Model of Tien and Gordon: \rightarrow Ac driving shifts levels in electrode up and down S. S2 QP energy: $E_{qp} + eV_1 \cos \omega_1 t$ \rightarrow QM phase factor eV,cos@,t $\exp\left(-\frac{i}{\hbar}\int (E_{\rm qp}+eV_1\cos\omega_1)dt\right)$ Δ $= \exp\left(-\frac{i}{\hbar}E_{qp}t\right) \cdot \exp\left(-i\frac{eV_1}{\hbar\omega_1}\sin\omega_1t\right)$

Bessel function identity for V_1 -term \rightarrow Sum of terms $\mathcal{J}_n(eV_1/\hbar\omega_1)e^{-in\omega_1 t}$ \rightarrow Splitting of qp-levels into many levels $E_{qp} \pm n\hbar\omega_1 \rightarrow$ Modified density of states!

→ Tunneling current
$$I_{qp}(V) = \sum_{n=-\infty}^{+\infty} \mathcal{J}_n^2 \left(\frac{eV_1}{\hbar\omega_1}\right) I_{qp}^0(V + n\hbar\omega_1/e)$$

→ Sharp increase of the $I_{qp}(V)$ at $V = V_g$ is broken up into many steps of smaller current amplitude at $V_n = V_g \pm \frac{n\hbar\omega_1}{e}$

3.3.4 Photon-assisted tunneling

Example

→ QP IVC of a Nb SIS Josephson junction without & with microwave irradiation

→ Frequency $\omega_1/2\pi = 230$ GHz corresponding to $\hbar\omega_1/e \simeq 950 \mu V$

QP steps

→ Appear at $V_n = n \frac{\hbar}{e} \omega_1$ → Amplitude $J_n \left(\frac{eV_1}{\hbar\omega_1}\right)$ → Broadended steps (depending on $I_{qp}(V)$)

Shapiro steps

→ Appear at
$$V_n = n \frac{\hbar}{2e} \omega_1$$

→ Amplitude $J_n \left(\frac{2eV_1}{\hbar\omega_1}\right)$
→ Sharp steps

3.4 Effect of thermal fluctuations

Thermal fluctuations with correlation function: $\langle I_F(t) \rangle$ Small fluctuations \rightarrow Phase fluctuations around equilibrium

- \rightarrow Increase probability for escape out of potential well
- \rightarrow Escape at rates $\Gamma_{n\pm 1}$
 - \rightarrow Escape to next minimum
 - \rightarrow Phase change of 2π

$$\Rightarrow I > 0 \Rightarrow \Gamma_{n+1} > \Gamma_{n-1} \Rightarrow \left\langle \frac{d\varphi}{dt} \right\rangle > 0$$

Langevin equation for RCSJ model

$$I = I_c \sin \varphi + \frac{1}{R_N} \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} + C \frac{\Phi_0}{2\pi} \frac{d^2 \varphi}{dt^2} + I_F$$

 \rightarrow Equivalent to Fokker-Planck equation:

$$\frac{1}{\omega_c}\frac{\partial\sigma}{\partial t} + \frac{\partial}{\partial\varphi}(\sigma v) + \frac{1}{\beta_c}\frac{\partial}{\partial v}\left(\sigma\left[f(\varphi) - v\right]\right) = \frac{\gamma}{\beta_c^2}\frac{\partial^2\sigma}{\partial v^2}$$

$$\langle I_F(t)I_F(t+\tau)\rangle = \frac{2k_BT}{R_N}\delta(\tau)$$

 $S(f) = 4k_BT/R_N$

Normalized momentum $v = \frac{d\varphi/dt}{\omega_c} = \frac{V}{I_c R_N}$

Normalized force $f(\varphi) = -\frac{1}{E_{J0}} \frac{\partial U(\varphi)}{\partial \varphi} = \frac{I}{I_c} - \sin \varphi$

3.4 Effect of thermal fluctuations

 $\sigma(v, \varphi, t) \rightarrow$ Probability density of finding system at (v, φ) at time t

$$\langle X \rangle(t) = \iint_{-\infty}^{+\infty} \sigma(\varphi, v, t) X(\varphi, v, t) d\varphi dv$$

statistical average of variable X

Small fluctuations

→ Static solution
$$\left(\frac{d\sigma}{dt} = 0\right)$$
 $\sigma(v, t) = \mathcal{F}^{-1} \exp\left(-\frac{G(\varphi, \sigma)}{k_B T}\right)$

with:
$$\mathcal{F} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp\left(-\frac{G(\varphi,\sigma)}{k_BT}\right) d\varphi dv$$

→ Boltzmann distribution (G = E - Fx is total energy, E is free energy)

 \rightarrow Constant probability to find system in n^{th} metastable state

$$p = \int\limits_{-\infty}^{+\infty} dv \int\limits_{arphi pprox arphi_n} \sigma(arphi, v) darphi$$

3.4 Effect of thermal fluctuations

Large fluctuations

p can change in time

$$\rightarrow \quad \frac{dp}{dt} = (\Gamma_{n+1} - \Gamma_{n-1})p$$

for $\Gamma_{n+1} \gg \Gamma_{n-1}$ and $\frac{\omega_A}{\Gamma_{n+1}} \gg 1 \rightarrow \Gamma_{n+1} = \frac{\omega_A}{2\pi} \exp\left(-\frac{U_0}{k_B T}\right)$

Amount of phase slippage

Kramers approximation $\omega_{\rm A} =$ Attempt frequency

Attempt frequency ω_{A}

$$\omega_A = \omega_0 = \omega_p (1 - i^2)^{1/4}$$
 for $\omega_c \tau \gg 1$, (underdamped junction)
 $\omega_A = \tau^{-1} = \omega_c (1 - i^2)^{1/2}$ for $\omega_c \tau \ll 1$ (overdamped junction)

Weak damping ($\beta_c = \omega_c \tau_{RC} \gg 1$) $\Rightarrow I = 0 \Rightarrow \omega_A = \omega_p$ (Oscillation frequency in the potential well) $\Rightarrow I \ll I_c \Rightarrow \omega_A \gg \omega_p$

Strong damping ($\beta_C = \omega_c \tau_{RC} \ll 1$) $\rightarrow \omega_p \rightarrow \omega_c$ (Frequency of an overdamped oscillator)

3.4.1 Underdamped junctions: Critical current reduction by premature switching

For $E_{J0} \gg k_B T \rightarrow Small escape probability \propto exp\left(-\frac{U_0(I)}{k_B T}\right)$ at each attempt Barrier height: $U_0(I) \simeq 2E_{J0} \left(1 - \frac{I}{I_c}\right)^{3/2} \rightarrow \frac{2E_{J0}}{0}$ for I = 0 $\Rightarrow 0$ for $I \rightarrow I_c$

> Escape probability $\rightarrow \omega_A/2\pi$ for $I \rightarrow I_c$ After escape \rightarrow Junction switches to IR_N

Experiment

→ Measure distribution of escape current I_M
→ Width *δI* and mean reduction $\langle \Delta I_c \rangle = I_c - \langle I_M \rangle$ → Use approximation for U₀(I) and escape rate $\omega_A/2\pi \exp\left(-\frac{U_0(I)}{k_BT}\right)$ $\langle \Delta I_c \rangle = I_c - \langle I_M \rangle \simeq I_c \left[\frac{k_BT}{2E_{J0}} \ln\left(\frac{\omega_p \Delta t}{2\pi}\right)\right]^{2/3}$

 \rightarrow Considerable reduction of I_c when $k_B T > 0.05 E_{JO}$

 \rightarrow Provides experimental information on real or effective temperature!

3.4.2 Additional topic: Overdamped junctions - The Ambegaokar-Halperin theory

n+1

3

2E,0

Γ_{n+1}

 U_0

n-1

Γ_{n-1}

2

φ/2π

Calculate voltage $\langle V \rangle$ induced by thermally activated phase slips as a function of current

Important parameter:

$$\gamma_0(T) = \frac{2E_{J0}(T)}{k_B T} = \frac{\Phi_0 I_c(T)}{\pi k_B T}$$

1 = 0 2.0 1>0-1.6 10 1.2 |/| c 10 0.8 0.4 0.0 0.4 0.8 1.2 1.6 2.0 <V> / I_cR_N

2

0

-2

-6` 0

E_{pot} / E_{JO}

3.4.2 Additional topic:

Overdamped junctions - The Ambegaokar-Halperin theory

Amgegaokar-Halperin theory

Finite amount of phase slippage

- \rightarrow Nonvanishing voltage for $I \rightarrow 0$
- → Phase slip resistance for strong damping ($\beta_C \ll 1$), for $U_0 = 2E_{J_0}$:

$$R_{p} = \lim_{I \to 0} \frac{\langle V \rangle}{I} = R_{N} \left\{ \mathcal{I}_{0} \left[\frac{\gamma_{0}(T)}{2} \right] \right\}^{-2} \qquad \gamma_{0}(T) = \frac{2E_{J0}(T)}{k_{B}T} = \frac{\Phi_{0}I_{c}(T)}{\pi k_{B}T}$$

$$\frac{E_{J0}}{k_{B}T} \gg 1 \Rightarrow \text{Approximate Bessel function} \Rightarrow \quad \mathcal{I}_{0}(x) = e^{x}/2\pi\sqrt{x}$$

$$\frac{R_{p}(T)}{R_{N}} \propto E_{J0} \exp\left(-\frac{2E_{J0}}{k_{B}T}\right)$$
attempt frequency
or
$$\langle \dot{\varphi} \rangle \propto \frac{2eI_{c}R_{N}}{\hbar} \exp\left(-\frac{2E_{J0}}{k_{B}T}\right) = \omega_{c} \exp\left(-\frac{2E_{J0}}{k_{B}T}\right)$$

Attempt frequency is characteristic frequency ω_c Plasma frequency has to be replaced by frequency of overdamped oscillator: $\omega_A = \omega_p \sqrt{\beta_C} = \omega_p \sqrt{\omega_c R_N C} = \omega_c$

Washboard potential \rightarrow Phase diffuses over barrier \rightarrow Activated nonlinear resistance

AS-Chap. 3 - 37

3.4.2 Additional topic: Overdamped junctions - The Ambegaokar-Halperin theory

Example: YBa₂Cu₃O₇ grain boundary Josephson junctions

 \rightarrow Strong effect of thermal fluctuations due to high operation temperature

epitaxial YBa₂Cu₃O₇ film on SrTiO₃ bicrystalline substrate

R. Gross et al., Phys. Rev. Lett. 64, 228 (1990) Nature 322, 818 (1988)

3.4.2 Additional topic: Overdamped junctions - The Ambegaokar-Halperin theory

R. Gross et al., Phys. Rev. Lett. 64, 228 (1990)

3.5 Voltage state of extended Josephson junctions

So far

- ightarrow Junction treated as lumped element circuit element
- \rightarrow Spatial extension neglected

Spatially extended junctions

- ightarrow Specific geometry as as in Chapter 2
 - \rightarrow Insulating barrier in *yz*-plane
 - \rightarrow In-plane *B* field in *y*-direction
 - \rightarrow Thick electrodes $\gg \lambda_{L1,2}$
 - → Magnetic thickness $t_B = d + \lambda_{L,1} + \lambda_{L,2}$
 - \rightarrow Bias current in *x*-direction
- \rightarrow Phase gradient along z-direction

$$\Rightarrow \frac{\partial \varphi(z,t)}{\partial z} = \frac{2\pi}{\Phi_0} t_B B_y(z,t)$$

Expected effects

- \rightarrow Voltage state \rightarrow *E*-field and time-dependence become important
- ightarrow Short junction and long junction case

3.5.1 Negligible Screening Effects

Short junctions ($L \ll \lambda_{\rm J}$) - neglecting self-fields

 $\rightarrow B = B^{\mathrm{ex}}$

→ Junction voltage V = Applied voltage V_0 → Gauge invariant phase difference:

$$\frac{\partial \varphi}{\partial t} = \frac{2e}{\hbar} V_0 = \omega_0$$

$$\frac{\partial \varphi(z, t)}{\partial z} = \frac{2\pi}{\Phi_0} t_B B_y(z, t)$$

$$\Rightarrow \varphi(z, t) = \varphi_0 + \omega_0 t + \frac{2\pi}{\Phi_0} B_y t_B \cdot z = \varphi_0 + \omega_0 t + k \cdot z$$

$$\Rightarrow J_s(z, t) = J_c \sin(\omega_0 t + k \cdot z + \varphi_0)$$

→ Josephson vortices moving in z-direction with velocity

$$v_z = \frac{\omega_0}{k} = \frac{V_0}{B_y t_B}$$

3.5.2 The time dependent Sine-Gordon equation

Long junctions ($L \gg \lambda_{\rm J}$)

→ Effect of Josephson currents has to be taken into account

→ Magnetic flux density = External + Self-generated field

with **B** =
$$\mu_0$$
H and **D** = ε_0 **E**: $\nabla \times$ **B** = μ_0 **J** + $\epsilon \epsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$

in contrast to static case, now $\partial \mathbf{E}/\partial t \neq 0$

consider 1D junction extending in z-direction, $B = B_y$, current flow in x-direction

3.5.2 The time dependent Sine-Gordon equation

$$\Rightarrow \frac{\partial^2 \varphi(z,t)}{\partial z^2} - \frac{1}{\overline{c}^2} \frac{\partial^2 \varphi(z,t)}{\partial t^2} - \frac{1}{\lambda_J^2} \sin \varphi(z,t) = 0$$

Time dependent Sine-Gordon equation

with the Swihart velocity

$$\overline{c} = \sqrt{\frac{d}{\epsilon \epsilon_0 \mu_0 t_B}} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \sqrt{\frac{d}{\epsilon (2\lambda_L + d)}} = c \sqrt{\frac{1}{\epsilon (1 + 2\lambda_L/d)}}$$

$$\lambda_J \equiv \sqrt{\frac{\Phi_0}{2\pi\mu_0 t_B J_c}}$$

 \bar{c} = velocity of TEM mode in the junction transmission line Example: $\varepsilon \simeq 5 - 10$, $\frac{2\lambda_L}{d} \simeq 50 - 100 \rightarrow \bar{c} \simeq 0.1c$ \rightarrow Reduced wavelength \rightarrow For f = 10 GHz \rightarrow Free space: 3 cm, in junction: 1 mm

Other form of time-dependent Sine-Gordon equation

$$\lambda_J^2 \frac{\partial^2 \varphi(z,t)}{\partial z^2} - \frac{4\pi^2}{\omega_p^2} \frac{\partial^2 \varphi(z,t)}{\partial t^2} - \sin \varphi(z,t) = 0$$

$$\omega_p^2 = 2eI_c/\hbar C \quad C/A_i = \epsilon \epsilon_0/d \quad I_c/A_i = J_c \quad c^2 = 1/\epsilon_0 \mu_0 \quad \Rightarrow \omega_p/2\pi = \overline{c}/\lambda_s$$

AS-Chap. 3 - 43

3.5.2 The time dependent Sine-Gordon equation

Time-dependent Sine-Gordon equation:

$$\lambda_J^2 \frac{\partial^2 \varphi(z,t)}{\partial z^2} - \frac{4\pi^2}{\omega_p^2} \frac{\partial^2 \varphi(z,t)}{\partial t^2} - \sin \varphi(z,t) = 0$$

Mechanical analogue

- Chain of mechanical pendula attached to a twistable rubber ribbon
- → Restoring torque $\lambda_J^2 \frac{\partial^2 \varphi}{\partial z^2}$
- \rightarrow Short junction w/o magnetic field
 - $\rightarrow \partial^2 \varphi / \partial z^2 = 0$
 - \rightarrow Rigid connection of pendula
 - \rightarrow Corresponds to single pendulum

AS-Chap. 3 - 45

0

3.5.3 Solutions of the time dependent SG equation

Simple case

 \rightarrow 1D junction (W $\ll \lambda_{\rm I}$), short and long junctions

Short junctions
$$(L \ll \lambda_J)$$
 @ low damping
 \rightarrow Neglect z-variation of φ
 $\frac{\partial^2 \varphi(z,t)}{\partial t^2} + \frac{\omega_p^2}{4\pi^2} \sin \varphi(z,t) = 0$
 \Rightarrow Equivalent to RCSJ model for $G_N = 0, I = 0$
Small amplitudes \Rightarrow Plasma oscillations
(Oscillation of φ around minimum of washboard potential)
 $\lambda_J^2 \frac{\partial^2 \varphi(z,t)}{\partial z^2} - \frac{4\pi^2}{\omega_p^2} \frac{\partial^2 \varphi(z,t)}{\partial t^2} - \sin \varphi(z,t) = 0$
 $C/A_i = \epsilon \epsilon_0/d$
 $I_c/A_i = J_c$

Long junctions (L $\gg \lambda_I$)

 \rightarrow Solution for infinitely long junction \rightarrow Soliton or fluxon

$$\varphi(z,t) = 4 \arctan\left\{ \exp\left(\pm \frac{\frac{z-z_0}{\lambda_J} - \frac{v_z}{\overline{c}}t}{\sqrt{1 - \left(\frac{v_z}{\overline{c}}\right)^2}} \right) \right\}$$

 $\varphi = \pi$ at $z = z_0 + v_z t$ goes from 0 to 2π for $-\infty \rightarrow z \rightarrow \infty$ → Fluxon (antifluxon: $\infty \rightarrow z \rightarrow -\infty$)

3.5.3 Solutions of the time dependent SG equation

Applied current \rightarrow Lorentz force \rightarrow Motion of phase twist (fluxon)

Fluxon as particle $\textbf{\rightarrow}$ Lorentz contraction for $v_z \rightarrow \overline{c}$

Local change of phase difference \rightarrow Voltage

\rightarrow Moving fluxon = Voltage pulse

Other solutions: Fluxon-fluxon collisions, breathers, bound states,...

1.0

0.5

-0.5

-1.0

3.5.3 Solutions of the time dependent SG equation

Josephson plasma waves

Linearized Sine-Gordon equation

 $\varphi(z, t) = \varphi_0(z) + \varphi_1(z, t)$ $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\varphi_1 =$ Small deviation \Rightarrow Approximation $\sin \varphi \simeq \sin \varphi_0 + \varphi_1 \cos \varphi_0$

Substitution (keeping only linear terms):

$$\frac{\partial^2 \varphi_0}{\partial z^2} + \frac{\partial^2 \varphi_1(z,t)}{\partial z^2} - \frac{1}{\overline{c}^2} \frac{\partial^2 \varphi_1(z,t)}{\partial t^2} - \frac{1}{\lambda_J^2} \sin \varphi_0 - \frac{1}{\lambda_J^2} \cos \varphi_0 \varphi_1(z,t) = 0$$

 $\varphi_{0} \text{ solves time independent SGE } \frac{\partial^{2} \varphi_{0}}{\partial z^{2}} = \lambda_{J}^{-2} \sin \varphi_{0}$ $\frac{\partial^{2} \varphi_{1}(z, t)}{\partial z^{2}} - \frac{1}{\overline{c}^{2}} \frac{\partial^{2} \varphi_{1}(z, t)}{\partial t^{2}} - \frac{1}{\lambda_{J}^{2}} \cos \varphi_{0} \varphi_{1}(z, t) = 0 \qquad \qquad \begin{array}{l} \varphi_{0} \text{ slowly varying} \\ \Rightarrow \varphi_{0} \approx const. \end{array}$

3.5.3 Solutions of the time dependent SG equation

Solution: $\varphi_1(z, t) = \exp(-\iota[kz - \omega t])$ (small amplitude plasma waves)

Dispersion relation $\omega(k)$:

$$\omega^2 = \overline{c}^2 k^2 + \omega_{p,J}^2$$

Josephson plasma frequency

$$\frac{\omega_{p,J}^2}{4\pi^2} = \frac{\overline{c}^2}{\lambda_J^2} \cos \varphi_0 = \frac{\omega_p^2}{4\pi^2} \cos \varphi_0$$

 $\omega < \omega_{p,J}$

 \rightarrow Wave vector k imaginary \rightarrow No propagating solution

- $\omega > \omega_{p,J}$
- \rightarrow Mode propagation
- \rightarrow Pendulum analogue \rightarrow Deflect one pendulum \rightarrow Relax \rightarrow Wave like excitation

```
\omega = \omega_{p,I}
```

 \rightarrow Infinite wavelength Josephson plasma wave

- \rightarrow Analogy to plasma frequency in a metal
- \rightarrow Typically junctions $\omega_{p,I} \simeq 10 \text{ GHz}$

Plane waves

$$\Rightarrow \frac{\partial^2 \varphi(z,t)}{\partial z^2} - \frac{1}{\overline{c}^2} \frac{\partial^2 \varphi(z,t)}{\partial t^2} - \frac{1}{\lambda_1^2} \operatorname{SD} \varphi(z,t) = 0$$

For very large $\lambda_{\rm I}$ or very small /

→ Neglect $\frac{\sin \varphi}{\lambda_1^2}$ term → Linear wave equation → Plane waves with velocity \bar{c}

Interaction of fluxons or plasma waves with oscillating Josephson current

- \rightarrow Rich variety of interesting resonance phenomena
- \rightarrow Require presence of $B^{\rm ex}$
- \rightarrow Steps in IVC (junction upconverts dc drive)

Flux-flow steps and Eck peak

For $B^{ex} > 0$

→ Spatially modulated Josephson current density moves at $v_z = V/B_y t_B$ → Josephson current can excite Josephson plasma waves

 \rightarrow On resonance, em waves couple strongly to Josephson current if $\overline{c} = v_z$

Corresponding junction voltage:

$$V_{\mathsf{Eck}} = \overline{c}B_{y}t_{B} = \sqrt{\frac{d}{\epsilon\epsilon_{0}\mu_{0}t_{B}}}B_{y}t_{B} = \frac{\omega_{p}}{2\pi}\frac{\lambda_{J}}{L}B_{y}t_{B}L = \frac{\omega_{p}}{2\pi}\frac{\lambda_{J}}{L}\Phi_{0}\frac{\Phi}{\Phi_{0}}$$

ightarrow Traveling current wave only excites traveling em wave of same direction

- ightarrow Low damping, short junctions ightarrow Em wave is reflected at open end
- → Eck peak only observed in long junctions at medium damping when the backward wave is damped

Alternative point of view

→ Lorentz force → Josephson vortices move at $v_z = \frac{V}{B_v t_B}$

$$ightarrow$$
 Increase driving force $ightarrow$ Increase v_z

- \rightarrow Maximum possible speed is $v_z = \bar{c}$
- \rightarrow Further increase of *I* does not increase *V*)
- \rightarrow Flux-flow step in IVC

 \rightarrow Corresponds to Eck voltage

Fiske steps

$$\lambda/2$$
-cavity
 $\Rightarrow \omega_n = (n\pi v_{\rm ph})/L$
 $v_{\rm ph}$ = Phase velocity

Standing em waves in junction "cavity" at $\omega_n = 2\pi f_n = 2\pi \frac{\bar{c}}{2L}n = \frac{\pi \bar{c}}{L}n$ \rightarrow Fiske steps at voltages

$$V_n = \frac{\hbar}{2e} \omega_n = \Phi_0 \frac{\overline{c}}{2L} n = \frac{\omega_p}{2\pi} \frac{\lambda_J}{L} \Phi_0 \frac{n}{2}$$
for *L* » 100 µm
first Fiske step » 10 GHz
(few 10s of µV)

Interpretation

 → Wave length of Josephson current density is ^{2π}/_k
 → Resonance condition L = ^{c/2}/_{2fn} n = ^λ/₂ n ⇒ kL = nπ or Φ = n^{Φ0}/₂ where maximum Josephson current of short junction vanishes
 → Standing wave pattern of em wave and Josephson current match
 → Steps in IVC

Influence of dissipation

- ightarrow Damping of standing wave pattern by dissipative effects
 - ightarrow Broadening of Fiske steps
 - \rightarrow Observation only for small and medium damping

For $V \neq V_{\text{Eck}}$ and $V \neq V_n \rightarrow \langle I_s \rangle = \langle I_c \sin(\omega_0 t + kz + \varphi_0) \rangle \simeq 0 \rightarrow I = I_N(V) = V/R_N(V)$

Zero field steps

→ Motion of trapped flux due to Lorentz force (w/o magnetic field)

 \rightarrow Junction of length *L*, moving back and forth

→ Phase change of 4π in period T = ^{2L}/_{v_z}
→ At large bias currents (v_z → c̄) $V_{zfs} = \dot{\phi} \frac{\hbar}{2e} = \frac{4\pi}{T} \frac{\hbar}{2e} = \frac{4\pi}{2L/c} \frac{\hbar}{2e} = \frac{h}{2e} \frac{c}{L} = \frac{\omega_p}{\pi} \frac{\lambda_J}{L} \Phi_0$

For *n* fluxons

→ $V_{n,zfs} = nV_{zfs}$ → $V_{n,zfs} = 2 \times Fiske voltage V_n$ (fluxon has to move back and forth) → $V_{ffs} = V_{n,zfs}$ for $\Phi = n\Phi_0$ (introduce n fluxons = generate n flux quanta)

Example:

IVCs of annular Nb/insulator/Pb Josephson junction containing a different number of trapped fluxons

Summary (Voltage state of short junctions)

Voltage state: (Josephson + normal + displacement + fluctuation) current = total current

$$\Rightarrow I = I_c \sin \varphi + G_N(V)V + C\frac{dV}{dt} + I_F$$

$$\frac{d\varphi}{dt} = \frac{2eV}{\hbar}$$

$$\Rightarrow I = I_c \sin \varphi + G_N(V)\frac{\Phi_0}{2\pi}\frac{d\varphi}{dt} + C\frac{\Phi_0}{2\pi}\frac{d^2\varphi}{dt^2} + I_F$$

Equation of motion for phase difference φ :

RCSJ-model ($G_N(V) = const.$)

ence
$$\varphi$$
:
 $\tau \equiv \frac{t}{\tau_c} = \frac{t}{2eI_cR/\hbar}$
 $\beta_C \frac{d^2\varphi}{d\tau^2} + \frac{d\varphi}{d\tau} + \sin\varphi - i - i_F(\tau) = 0$

Motion of phase particle in the tilted washboard potential $U = E_{J0}[1 - \cos \varphi - (I/I_c)\varphi]$

Equivalent LCR resonator, characteristic frequencies:

$$\omega_{p} = \sqrt{\frac{1}{L_{c}C}} = \sqrt{\frac{2eI_{c}}{\hbar C}} \qquad \omega_{c} = \frac{R}{L_{c}} = \frac{2eI_{c}R}{\hbar} \qquad \omega_{RC} = \frac{1}{RC}$$
Quality factor:
$$Q^{2} = \beta_{C} \equiv \frac{2e}{\hbar}I_{c}R^{2}C \qquad \beta_{C} = \text{Stewart-McCumber parameter}_{AS-Chap. 3-54}$$

Summary (Voltage state of short junctions)

IVC for strong damping and $\beta_C \ll 1$ $\langle V(t) \rangle = I_c R \sqrt{\left(\frac{l}{l_c}\right)^2 - 1}$ for $\frac{l}{l_c} > 1$

Driving with $V(t) = V_{dc} + V_1 \cos \omega_1 t$

- → Shapiro steps at $V_n = n \frac{\Phi_0}{2\pi} \omega_1$ with amplitudes $|\langle I_s \rangle_n| = I_c \left| \mathcal{J}_n \left(\frac{2\pi V_1}{\Phi_0 \omega_1} \right) \right|$
- → Photon assisted tunneling Voltage steps at $V_n = n \frac{\Phi_0}{\pi} \omega_1$ due to nonlinear QP resistance

Effect of thermal fluctuations

→ Phase-slips at rate
$$\Gamma_{n+1} = \frac{\omega_A}{2\pi} \exp\left(-\frac{U_0}{k_BT}\right)$$

- \rightarrow Finite phase-slip resistance $R_{\rm p}$ even below $I_{\rm c}$
- \rightarrow Premature switching

Summary

 voltage state of extended junctions w/o self-field:

$$\Rightarrow J_s(z, t) = J_c \sin(\omega_0 t + k \cdot z + \varphi_0)$$

• with self-field: time dependent Sine-Gordon equation

$$\Rightarrow \frac{\partial^2 \varphi(z,t)}{\partial z^2} - \frac{1}{\overline{c}^2} \frac{\partial^2 \varphi(z,t)}{\partial t^2} - \frac{1}{\lambda_J^2} \sin \varphi(z,t) = 0$$
$$\overline{c} = \sqrt{\frac{d}{\epsilon \epsilon_0 \mu_0 t_B}} = c \sqrt{\frac{1}{\epsilon(1+2\lambda_L/d)}} \qquad \lambda_J \equiv \sqrt{\frac{\Phi_0}{2\pi \mu_0 t_B J_0}}$$

characteristic **velocity** of TEM mode in the **junction transmission line**

characteristic screening length

Prominent solutions: plasma oscillations and solitons

nonlinear interactions of these excitations with Josephson current:

 \rightarrow flux-flow steps, Fiske steps, zero-field steps

A **soliton** is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed.

Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium.

1-d classic soliton in the water canal, discovered in 1834 by J.S.Russel :

Described by Kortweg de Friz (KdF) equation – similar to SG equation.

2-d solitons on the shallow water surface:

Usually described by cnoidal wave solution of KdF equation.

3-d Falaco soliton in the water pool:

Two vortices are linked together with a turbulent channel deep in the water and moving as the whole.

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

