Chapter 4

Applications of the Josephson Effect

II. Applications of the Josephson Effect

Motivation for analog and digital applications

I_s^m = I_s^m(B)
 → Superconducting quantum interference device (Magnetic field sensors) (Ch. 4)

 $\beta_C \gg 1$ \rightarrow Zero/finite voltage state bistability \rightarrow Switching devices, Josephson computer (ch. 5)

2nd Josephson equation $\frac{d\varphi}{dt} = 2eV/\hbar$ → VCO, voltage standard

Nonlinear IVC → Mixers up to THz, oscillators

Macroscopic quantum behavior

→ Superconducting qubits (ch. 6)

4. Superconducting quantum interference devices

Superconducting Quantum Interference Devices (SQUID)

Single Josephson junction = Magnetic field sensor $I_s^m = I_s^m(B)$

- → Sensitivity: $\frac{dI_s}{dB} = \frac{dI_s}{d\Phi} t_B L \approx \frac{I_s^m}{\Phi_0} t_B L$
- \rightarrow Increase area A = $t_B L$ to increase sensitivity

Superconducting loop with one or more Josephson junctions

- \rightarrow Relevant area = Loop area
- \rightarrow Dual- or multi-beam interference

Superconducting Quantum Interference Devices (SQUIDs)

- \rightarrow Relevant physics: flux quantization & Josephson effect
- \rightarrow Most sensitive detectors for magnetic flux
- → Can detect any quantity that can be converted into magnetic flux: magnetic field, field gradient, current, voltage, displacement, ...
- \rightarrow Two important types:

Direct current (dc) and radio frequency (rf) SQUIDs

 \rightarrow Dc-SQUIDs: highest energy sensitivity at low temperatures

4.1 The dc SQUID

Definition

- → Parallel circuit of two lumped elements Josephson junctions
- \rightarrow Important for sensing applications

Substitution
$$\rightarrow \varphi_1 - \varphi_2 = -\frac{2\pi}{\Phi_0} \oint_C \mathbf{A} \cdot d\ell - \frac{2\pi}{\Phi_0} \int_{Q_b}^{P_c} \wedge \mathbf{J}_s \cdot d\ell - \frac{2\pi}{\Phi_0} \int_{P_d}^{Q_a} \wedge \mathbf{J}_s \cdot d\ell$$

Integrate vector potential A

Closed loop \rightarrow Total flux Φ threading the loop Integrate self-induced current J_s

 $J_{\rm s}$ vanishes deep inside electrode material $\rightarrow \int \Lambda J_{\rm s} \cdot d\ell$ vanishes

→ Phase differences are not independent but linked via the fluxoid quantization

$$\varphi_{2} - \varphi_{1} = \frac{2\pi\Phi}{\Phi_{0}}$$

$$I_{s} = 2I_{c}\cos\left(\frac{\varphi_{1} - \varphi_{2}}{2}\right)\sin\left(\frac{\varphi_{1} + \varphi_{2}}{2}\right)$$

$$\Rightarrow I_{s} = 2I_{c}\cos\left(\pi\frac{\Phi}{\Phi_{0}}\right)\sin\left(\varphi_{1} + \pi\frac{\Phi}{\Phi_{0}}\right)$$

 $\Phi = \Phi_{\text{ext}} \rightarrow \text{Maximum supercurrent}$ is obtained for $\sin\left(\varphi_1 + \pi \frac{\Phi}{\Phi_0}\right) = 1$

$$I_s^m = 2I_c \left| \cos \left(\pi \frac{\Phi_{\text{ext}}}{\Phi_0} \right) \right|$$

In reality often finite inductance L of the loop \rightarrow Total flux $\Phi = \Phi_{ext} + \Phi_L$

Intuitive variables (symmetric loop)

$$\begin{split} I_{s1} &= \widetilde{I} + I_{\text{cir}} & \widetilde{I} &= (I_{s1} + I_{s2})/2 & \text{Average (tr} \\ I_{s2} &= \widetilde{I} - I_{\text{cir}} & I_{\text{cir}} &= (I_{s1} - I_{s2})/2 & \text{Circulating} \end{split}$$

Average (transport) supercurrent Circulating current

$$\Rightarrow \Phi = \Phi_{\text{ext}} + LI_{\text{cir}} = \Phi_{\text{ext}} + \frac{LI_c}{2} (\sin \varphi_1 - \sin \varphi_2)$$
$$= \Phi_{\text{ext}} + LI_c \sin \left(\frac{\varphi_1 - \varphi_2}{2}\right) \cos \left(\frac{\varphi_1 + \varphi_2}{2}\right) \qquad \qquad \varphi_2 - \varphi_1 = \frac{2\pi\Phi}{\Phi_0}$$

$$\Phi = \Phi_{\text{ext}} - LI_c \sin\left(\pi \frac{\Phi}{\Phi_0}\right) \cos\left(\varphi_1 + \pi \frac{\Phi}{\Phi_0}\right)$$
$$I_s = 2I_c \cos\left(\pi \frac{\Phi}{\Phi_0}\right) \sin\left(\varphi_1 + \pi \frac{\Phi}{\Phi_0}\right)$$

Equations have to be solved self-consistently Maximize I_s with respect to φ_1 with constraint $\rightarrow I_s^m$

Relevance of finite inductance is characterized by

Screening parameter

$$\beta_L \equiv \frac{2LI_c}{\Phi_0}$$

Negligible screening: $oldsymbol{eta}_L \ll 1$

→ Flux due to circulating current can be neglected → Maximum supercurrent for given Φ_{ext} requires $\frac{dI_{\text{s}}}{d\varphi_1} = 0$ → $\cos\left(\varphi_1 + \pi \frac{\Phi_{\text{ext}}}{\Phi_0}\right) = 0$

$$\sin\left(\varphi_1 + \pi \frac{\Phi_{\text{ext}}}{\Phi_0}\right) = \pm 1 \quad \Rightarrow I_s^m \simeq 2I_c \left|\cos\left(\pi \frac{\Phi_{\text{ext}}}{\Phi_0}\right)\right|$$

Large screening: $\beta_L \gg 1$

→ $LI_c \gg \Phi_0$ → Circulating current compensates external field

 \rightarrow Total flux in the loop tends to be quantized

$$\Phi = \Phi_{\text{ext}} + LI_{\text{cir}} \simeq n\Phi_0$$

Example
$$\rightarrow I \simeq 0 \rightarrow \sin \varphi_1 \approx -\sin \varphi_2$$

$$\Phi_{\text{ext}} = \Phi + LI_c \sin\left(\pi \frac{\Phi}{\Phi_0}\right) \quad \text{or} \quad \frac{\Phi_{\text{ext}}}{\Phi_0} = \frac{\Phi}{\Phi_0} + \frac{\beta_L}{2} \sin\left(\pi \frac{\Phi}{\Phi_0}\right)$$

Finite screening $\rightarrow \beta_L > 0$

How does ${\pmb \Phi}({\pmb \Phi}_{\rm ext})$ look like in detail ?

 $\Phi(\Phi_{ext})$ can be single-valued or multiple-valued (hysteretic)

Maximum value of $\Phi_{\rm cir} \simeq L I_c$

Rough estimate

 $\Phi(\Phi_{\text{ext}})$ single valued curve when Φ_{cir} does not bring Φ too far into the next period

$$\Rightarrow |\Phi_{\rm cir}| \le \frac{\Phi_0}{2} \Rightarrow LI_c \le \frac{\Phi_0}{2} \Rightarrow \beta_L \le 1 \quad \text{(more precisely: } \beta_L \le \frac{2}{\pi}\text{)}$$

Dc SQUID response in integer multiples of Φ_0 not affected by screening

3

2

0

-1

-2

-3

-4

-3

Φ/Φ

 $\beta_L = 1$

 $\beta_L = 2/\pi$

 $\beta_L = 0.2$

 \rightarrow Modulation depth of $I_{\rm s}^{\rm m}(\Phi_{\rm ext})$ is strongly reduced with increasing β_L (roughly $\propto 1/\beta_L$)

Negligible screening ($m{eta}_L \ll$ 1) and strong damping ($m{eta}_C \ll$ 1)

- \rightarrow Total flux = Applied flux
- \rightarrow (Neglect displacement current)
- \rightarrow Total current = Josephson current + resistive current

dentical junctions

$$\Rightarrow I = I_{c} \sin \varphi_{1} + I_{c} \sin \varphi_{2} + \frac{V}{R_{N}} + \frac{V}{R_{N}}$$

$$= 2I_{c} \cos \left(\pi \frac{\phi}{\phi_{0}}\right) \sin \left(\varphi_{1} + \pi \frac{\phi}{\phi_{0}}\right) + 2\frac{V}{R_{N}}$$

$$\varphi = \varphi_{1} + \pi \frac{\Phi}{\phi_{0}}$$

Define new phase
$$\varphi \equiv \varphi_1 + \pi \frac{\phi}{\phi_0}$$

with $\Phi \approx \Phi_{\text{ext}} = const. \rightarrow \frac{d\varphi}{dt} = \frac{d\varphi_1}{dt} = \frac{2\pi}{\phi_0}V(t)$

$$I = I_s^m(\Phi_0) \sin \varphi + \frac{2}{R_N} \frac{\Phi_0}{2\pi} \frac{d\varphi}{dt} \text{ with } I_s^m(\Phi_{ext}) = 2I_c \cos\left(\pi \frac{\Phi_{ext}}{\Phi_0}\right)$$

 \rightarrow IVC of single junction with flux dependent $I_{\rm c} = I_{\rm c}(\Phi_{\rm ext})$

Mechanical analog \rightarrow Two pendula with rigid coupling because of $\beta_L \ll 1$

Finite screening: $\beta_L \approx 1$, intermediate damping: $\beta_C \approx 1$

 \rightarrow Increase flux threading loop \rightarrow Larger loops \rightarrow Large L

 \rightarrow Consider displacement + noise current \rightarrow Numerical solution required!

Basic equations

$$V = \frac{\Phi_0}{4\pi} \left(\frac{d\varphi_1}{dt} + \frac{d\varphi_2}{dt} \right)$$
Relates voltage to phase change

$$2\pi n = \varphi_2 - \varphi_1 - 2\pi \frac{\Phi_{\text{ext}}}{\Phi_0} - 2\pi \frac{LI_{\text{cir}}}{\Phi_0}$$
Fluxoid quantization

$$\frac{I}{2} = \frac{\hbar C}{2e} \frac{d^2 \varphi_1}{dt^2} + \frac{\hbar}{2eR_N} \frac{d\varphi_1}{dt} + [I_c \sin \varphi_1 + I_{\text{cir}}] + I_{F1}$$
coupling

$$\frac{I}{2} = \frac{\hbar C}{2e} \frac{d^2 \varphi_2}{dt^2} + \frac{\hbar}{2eR_N} \frac{d\varphi_2}{dt} + [I_c \sin \varphi_2 - I_{\text{cir}}] + I_{F2}$$

Mechanical analog

- → Two pendula with mass M and length ℓ coupled via twistable bar
- → Negligible screening ($\beta_L \ll 1$)
 - \rightarrow Rigid bar
 - → Relative angle $\varphi_1 \varphi_2 = 2\pi \frac{\phi_{\text{ext}}}{\phi_0}$ fixed by external flux
 - \rightarrow Single pendulum with mass 2M
 - → Distance from pivot point $I \cos\left(\frac{\varphi_1 \varphi_2}{2}\right)$
 - → Zero torque → Pendula reside at $\frac{\varphi_1 \varphi_2}{2}$
 - → Finite torque (bias current) → Pendulum rotates
- \rightarrow Finite screening
 - ightarrow Relative motion of the pendula
 - \rightarrow Coupling \rightarrow Numerical solution

AS-Chap. 4 - 16

AS-Chap. 4 - 17

Important parameters for practical applications of SQUIDs

Main goal \rightarrow High resolution = Low noise!

Flux-to-voltage transfer coefficient (measure of sensitivity to flux):

$$H \equiv \left| \left(\frac{\partial V}{\partial \Phi_{\text{ext}}} \right)_{I=const} \right|$$

Maximum at steepest point of $\langle V \rangle (\Phi_{ext})$ \rightarrow Flux to voltage transducer

Equivalent flux noise (measure of flux resolution)

 $S_{\Phi}(f) = \frac{S_V(f)}{H^2}$ $S_V(f) =$ Power spectral density of voltage noise at fixed bias current

Noise energy (measure of energy resolution when comparing different geometries)

$$\epsilon(f) = \frac{S_{\Phi}(f)}{2L} = \frac{S_V(f)}{2LH^2}$$

Sets energy resolution Should be as small as possible!

Of course it is always good to reduce the noise itself, but typically $S_V(f)$ given \rightarrow Maximize H and L!

1. Current & flux bias

$$\blacktriangleright \quad I \approx I_{\rm c}, \, \Phi_{\rm ext} \approx \frac{2n+1}{4} \Phi_0$$

- ▶ Largest modulation of $\langle V \rangle (\Phi_{\text{ext}})$
- 2. Junction critical current
 - \succ Coupling energy $E_{\rm J} \gg k_{\rm B}T$
 - > Simulations $\rightarrow \frac{1}{5}I_{c} \gtrsim I_{th} = \frac{2\pi k_{B}T}{\Phi_{0}}$
 - \succ T = 4.2 K → $I_c \gtrsim 1$ μA

- Should be large, but thermal flux noise $\sqrt{k_B T L}$ should be $\ll \Phi_0$
- ▶ Define thermal inductance $L_{\text{th}}I_{\text{th}} \equiv \frac{\phi_0}{2}$
- ▶ Simulations → $5L \leq L_{\text{th}} \rightarrow L \leq 1 \text{ nH}$ @ 4.2K

> Define
$$\beta_{\text{th}} \equiv \frac{2I_{\text{th}}L}{\Phi_0} = \frac{L}{L_{\text{th}}} = \frac{I_{\text{th}}}{I_c} \beta_L \lesssim 0.2$$

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

 $S_V(f)$ given \rightarrow Maximize H and L!

4. Screening parameter

$$\succ \quad \beta_L = \frac{2I_{\rm c}L}{\Phi_0}$$

- > No hysteresis in $\langle V \rangle (\Phi_{\text{ext}})$
- \succ Small L, but large area → Choose $β_L \approx 1$
- ➤ Smallest possible $I_c \approx 1 \ \mu A @ 4.2 \ K \rightarrow L \approx 1 \ nH$
- Does not contradict 3

5. Stewart-McCumber parameter

- ➤ No hysteresis in IVC → $β_C ≤ 1$
- \succ Underdamped junctions \rightarrow Shunt resistor
- Choose $\beta_C \approx 1$ for large voltage output

Detailed numerical simulations

 $\rightarrow \epsilon(f)$ minimum for $\beta_L \simeq 1$, $\beta_C \simeq 1$ at $(2n+1)\frac{\Phi_0}{4}$ for max. voltage modulation ($\approx I_c R_N$)

then

$$H = \left| \left(\frac{\partial V}{\partial \Phi_{\text{ext}}} \right)_{I=const} \right| \simeq \frac{I_c R_N}{\Phi_0/2} \simeq \frac{R_N}{L}$$

 $S_I^{in} = 4k_BT/(R_N/2)$

In-phase current fluctuations

$$S_I^{out} = 4k_BT/2R_N$$

Small signal analysis in white noise regime (@ optimal point)

$$S_V(f) = S_I^{in}(f)R_d^2 + S_I^{out}(f)L^2 H^2 = \frac{4k_BT}{R_N} \left[2R_d^2 + \frac{L^2H^2}{2}\right] \simeq 18k_BTR_N$$

 $R_{\rm d}$ = differential resistance at the operation point

$$\Rightarrow \epsilon(f) = \frac{S_V(f)}{2LH^2} \simeq \frac{9k_BTL}{R_N} \simeq \frac{9k_BT\Phi_0}{2I_cR_N} \quad \text{for } \beta_L \simeq 1$$

$$\Rightarrow \epsilon(f) \simeq 16k_BT \sqrt{\frac{LC}{\beta_C}} \simeq 16\sqrt{\pi}k_BT \sqrt{\frac{\Phi_0C_s}{2\pi J_c}} = \frac{16\sqrt{\pi}k_BT}{\omega_p} \quad \text{for } \beta_L \simeq 1; \quad \beta_C \simeq 1$$

 \rightarrow Miminize *T*, *C* and maximize *J*_c, $\omega_{\rm p}$

0.01

Improve performance of dc-SQUID

- \rightarrow Decrease *T* and *C*, increase J_c
- $\rightarrow \epsilon(f)$ is given in units of $\hbar \simeq 10^{-34}$ Js
- \rightarrow Optimized SQUIDs approach quantum limit $\hbar/2$
- → Practical SQUIDs: $\epsilon(f) \approx 10\hbar$

Dimensionless parameter Reduced noise energy

$$\Sigma(f) = \frac{\epsilon(f)}{\frac{2\Phi_0 k_B T}{I_c R_N}}$$

Rapid increase for $\gamma \beta_L > 0.2$ \rightarrow Due to thermal noise rounding of IVC

→ Corresponds to
$$L \leq \frac{1}{5}L_{\text{th}}$$

D. Kölle et al., Rev. Mod. Phys. 71, 631 (1999)

Required components

- \rightarrow Antenna
- → SQUID (cryogenic)
- \rightarrow Room temperature electronics

SQUID geometries

Today's SQUIDs and antenna consist of **thin film structures** → Fabrication by optical and electron beam lithography

- \rightarrow Requirements
 - \rightarrow Large sensitivity \rightarrow Large area $A \rightarrow$ Large L
 - \rightarrow Deterioration of performance

$$\Delta \Phi_{\rm ext} = A \cdot \Delta B$$

Washer type SQUID

- → Large effective area and small inductance (perfect diamagnetism)
- → Easy coupling to antenna via planar spiral coil

Loop currents around inner opening

- $\rightarrow L = 1.25 \mu_0 D \text{ (for } W \gg D \text{)}$
- → Effective area: $A_{\rm eff} \propto D \times W$

Limit: flux trapping in washer area

ightarrow Flux noise by thermally activated motion

Flux focusing effect in washer-type YBCO grain boundary junction dc SQUID

Specific problem: Capacitance between spiral input coil and square washer \rightarrow LC resonances \rightarrow Excess noise

- \rightarrow Heteroepitaxial growth of the different SC layers
- \rightarrow Low reproducibility of junctions
- → Alternatives: flip-chip design, directly coupled SQUID (only 1 SC layer required)

4.1.5 Readout schemes

Flux-locked loop operation

 $\langle V \rangle (\Phi_{\text{ext}})$ curve is nonlinear \rightarrow Linearization by feedback circuit \rightarrow Linear input – output relation \rightarrow Apply oscillating flux with peak-to-peak amplitude $\frac{\Phi_0}{2}$ $\rightarrow f_{\text{mod}} \approx 100 \text{ kHz} - \text{several MHz}$

Quasistatic flux = $n\Phi_0$

- \rightarrow Rectified input
- $\rightarrow 2f_{\text{mod}}$ -component
- \rightarrow Lock-in signal at $f_{\rm mod}$ vanishes
- Quasistatic flux = $\left(n + \frac{1}{4}\right)\Phi_0$ \rightarrow Only f_{mod} -component exists \rightarrow Maximum lock-in output signal

Detection of ac voltage

- ightarrow Low-noise preamplifier
- → Cooled transformer for SQUID impedance matching
- → Example: $R_d \rightarrow N^2 R_d$

4.1.5 Readout schemes

Small flux change $\delta \Phi$ to SQUID \rightarrow Positive output $\propto \delta \Phi$

- \rightarrow Increase of integrator output voltage $\delta V_{\rm in} \propto \delta \Phi$
- ightarrow Increase of current through feedback coil
- → Feedback flux must compensate $\delta \Phi \rightarrow |\delta \Phi_{\rm f}| = |\delta \Phi|$
- \rightarrow SQUID voltage (and integrator output) stay constant \rightarrow Null detector

$$\delta I_{\rm f} = \frac{\delta V_{\rm in}}{R_{\rm f}}, \, \delta \Phi_{\rm f} = k^2 L_{\rm f} \delta I_{\rm f} \stackrel{|\delta \Phi_{\rm f}| = |\delta \Phi|}{\rightarrow} \quad \delta V_{\rm in} = \frac{R_{\rm f}}{k^2 L_{\rm f}} \delta \Phi$$

Specs of readout electronics

→ $f_{mod} \approx 100 \text{ kHz} - \text{several MHz}$, bandwidth $\simeq 100 \text{ kHz}$, dynamic range $\simeq 140 \text{ dB}$ → Slew rate (maximum compensation rate) up to $10^7 \Phi_0/\text{s}$

4.1.5 Readout schemes

Bias current reversal

- \rightarrow Bias current is modulated \rightarrow Double modulation technique
- → Suppress low-frequency noise of Josephson junctions
- \rightarrow Asymmetric part of critical current fluctuations can be eliminated

Additional positive feedback

 \rightarrow Part of the bias current used to obtain asymmetric $\langle V \rangle (\Phi_{\rm ext})$

- → Steeper slope → Larger $\frac{\partial V}{\partial \phi}$
- \rightarrow Direct read-out with room temperature electronics

Digital read-out schemes

→ Cryogenic digital feedback schemes → Compact, wideband
 → Digitized output signals for transmission to room temperature

Relaxation oscillation schemes

- \rightarrow Hysteretic junctions
- \rightarrow SQUID shunted by series *LR*-circuit
- ightarrow Frequency of relaxation oscillations depends on flux
- ightarrow Large SQUID output voltage

4.2 The rf SQUID

Superconducting loop with a single Josephson junction

 → Rf current is applied via a tank circuit inductively coupled to SQUID loop
 → Measure time-averaged tank circuit voltage

Advantage

- \rightarrow Simpler fabrication, no dc-current to SQUID
- Disadvantage
- ightarrow Energy resolution limited by readout electronics

Flux-phase relation (exercises) $\Rightarrow \varphi = -2\pi \frac{\phi}{\phi_0}$

Operation of rf SQUIDs

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

 $\beta_{L,rf} > 1$ $\Rightarrow \Phi(\Phi_{ext}) \text{ hysteretic}$ $\Rightarrow \text{ Applied flux through SQUID}$ $\Phi_{ext} = \Phi_{s} + \Phi_{rf} \sin \omega_{rf} t$ $\Phi_{rf} = MI_{T} = MQI_{rf}$ $\Rightarrow \text{ Linear increase of } \Phi_{rf}$ $\Rightarrow \text{ Linear increase of } V_{T}$ for $\Phi_{s} + \Phi_{rf} < \Phi_{ext,c}$ k = 0

For $\Phi_{\rm s} + \Phi_{\rm rf} > \Phi_{\rm ext,c} \rightarrow$ Hysteresis loop

 \rightarrow Energy loss \propto hysteresis loop area extracted from tank circuit

→ Damping of tank circuit

ightarrow Damping is proportional to the area of a traced-out hysteresis loop

 \rightarrow Also for $\beta_{L,rf} > 1 \rightarrow$ Tank voltage is periodic in applied flux

Dependence of $V_{\rm T}$ on $\boldsymbol{\Phi}_s$ and $\boldsymbol{\Phi}_{\rm rf}$

Start at $\Phi_{s} = n\Phi_{0}, n = 0$ \rightarrow Tank voltage V_{T} increases linearly with I_{rf} as long as $\Phi_{rf} = MQI_{rf} < \Phi_{ext,c} (0 \rightarrow A)$ \rightarrow Critical rf-current $I_{rf,c} \equiv \frac{\Phi_{ext,c}}{MQ}$ $V_{T}^{(n=0)}(\Phi_{ext,c}) = \omega_{rf}L_{T}I_{T,c} = \omega_{rf}L_{T}\frac{\Phi_{ext,c}}{M}$ \rightarrow For $I_{r} > I_{r} > I_{r} > I_{r}$ hump to $k = \pm 1$ branch

→ For $I_{rf} > I_{rf,c}$ → Jump to $k = \pm 1$ branch
→ Hysteresis loop, energy loss of tank circuit
→ Decrease of rf-current in tank circuit
→ Decrease of rf-current in tank circuit
→ No hysteresis loops until tank circuit recovers
→ Further increase of I_{rf} (A → B)
→ Transitions at higher rate
→ $I_{rf} = I_{rf,r}$ → One transition per rf cycle
→ Linear increase of $V_T^{(n=0)}$ until jumps to $k = \pm 2$ branch become possible

Dependence of $V_{\rm T}$ on ${m \Phi}_s$ (signal) and ${m \Phi}_{\rm rf}$

Start at
$$\Phi_{s} = \left(n + \frac{1}{2}\right) \Phi_{0}, n = 0$$

 \rightarrow Transition to $k = \pm 1$ branch at $\pm \left(\Phi_{ext,c} \mp \frac{\Phi_{0}}{2}\right)$
 $\rightarrow 1^{st}$ horizontal branch at
 $W^{(n=0.5)} = \omega_{0} L^{-\frac{\Phi_{ext,c} - \Phi_{0}/2}{\Phi_{ext,c} - \Phi_{0}/2}}$

$$V_{\rm T} = \omega_{\rm rf} L_{\rm T} - \frac{M}{M}$$

Intermediate signal flux values

$$\rightarrow V_T^{(n)}(I_{rf})$$
 curves between those for
 $n = 0$ and $n = 0.5$

Change of V_T from $\Phi_s = 0$ to $\Phi_s = \frac{\Phi_0}{2} \rightarrow \frac{\omega_{rf} L_T \Phi_0}{2M}$

- → Flux-to-voltage transfer function near $\Phi_{\rm S} = \frac{\Phi_0}{4} \rightarrow H = \left(\frac{\partial V_{\rm T}}{\partial \Phi_{\rm S}}\right)_{I_{\rm rf}=const.} = \frac{\omega_{\rm rf}L_{\rm T}}{M}$
- → Lower bound for $M \propto \alpha \rightarrow \forall \Phi_s$, there must be an I_{rf} that intersects the first step of $V_T(I_{rf})$ (point F has to be to the right of E)

$$\rightarrow H \approx \frac{\omega_{\rm rf}L_{\rm T}}{\alpha\sqrt{L_TL}} = \omega_{rf}\sqrt{Q\frac{L_{\rm T}}{L}}$$

→ Practical operation with flux-locked loop scheme → Stay on one step for all $\Phi_{\rm s}$

Noise in rf SQUIDs

Mechanism

→ Switching $k = 0 \rightarrow k = 1$ → Stochastic fluctuations (thermal activation) → Noise in step voltage V_T → Flux noise $S_{\Phi} \approx \frac{(LI_c)^2}{\omega_{rf}} \left(\frac{2\pi k_B T}{I_c \Phi_0}\right)^{4/3}$ or $\eta^2 \equiv \frac{S_{\Phi} \omega_{rf}}{\pi \Phi_0^2}$

 \rightarrow Noise causes finite slope of horizontal branches

 \rightarrow Extrinsic noise sources (preamplifier, lines) $\rightarrow T_{amp}^{eff}$

→ Energy resolution
$$\epsilon \approx \left(\frac{\pi \eta^2 \Phi_0^2}{2L} + 2\pi \eta k_{\rm B} T_{\rm amp}^{\rm eff}\right) \frac{1}{\omega_{\rm rf}}$$

→ High frequencies (few GHz), cryogenic amplifiers: $\epsilon \simeq 3 \times 10^{-32}$ J/Hz

Comparison

→ Rf SQUID $\epsilon \approx \frac{k_{\rm B}T}{\omega_{\rm rf}} \qquad (\omega_{\rm rf} \simeq \text{few GHz})$ $\rightarrow \text{Dc SQUID} \qquad \epsilon \approx \frac{k_{\rm B}T}{\omega_{\rm c}} \qquad (\omega_{\rm c} = \frac{2\pi I_{\rm c}R_{\rm N}}{\phi_0} \simeq 100 \text{ GHz})$ $\rightarrow \text{Better energy resolution of dc-SQUID because } \omega_{\rm c} \gg \omega_{\rm rf}$

AS-Chap. 4 - 40

4.2.3 Practical rf-SQUIDs

Low- $T_{\rm c}$ rf SQUIDs

 \rightarrow Early versions were toroidal configuration machined from Nb

- \rightarrow Operated at 10 MHz with $\epsilon \simeq 5 \times 10^{-29}$ J/Hz
- → Today thin film technology → $\epsilon \simeq 10^{-32}$ J/Hz

High- T_{c} rf-SQUIDs

- \rightarrow Operating at 77 K (liquid nitrogen)
- \rightarrow Washer-type rf-SQUIDs incorporated in a $\lambda/2$ microstrip resonator

4.3 Additional topic: Other SQUID configurations

Motivation

- \rightarrow Dc and rf SQUID are the most obvious configurations
- \rightarrow Over the years, many other configurations have been developed
- → Specific advantages and disadvantages
- \rightarrow Examples discussed here: DROS, SQUIF, cartwheel SQUID

4.3.1 Additional topic: The DROS (Double Relaxation Oscillation SQUID)

Hysteretic dc-SQUID ($\beta_C > 1$) + hysteretic reference junction in series + *LR* shunt

- \rightarrow System performs relaxation oscillations
- \rightarrow DROS functions as comparator of the two critical currents
- ightarrow Voltage output behaves like square wave
- ightarrow Large flux-to-voltage transfer coefficients up to 3 mV/ Φ_0
- \rightarrow Direct read-out by RT amplifier

4.3.2 Additional topic: The SQIF

Motivation

- $ightarrow eta_L \ll 1
 ightarrow$ Dc-SQUID analogous to double slit configuration
- → Steeper $I_{s}^{m}(\Phi_{ext})$ inspired by optical grid analog → N junctions in parallel
- ightarrow Experimental problem ightarrow Uniformity of junctions and loops

Irregular parallel array of JJ

- → Superconducting Quantum Interference Filter (SQUIF)
- → $I_{\rm s}^{\rm m}(\Phi_{\rm ext})$ and $\langle V \rangle(\Phi_{\rm ext})$ show a sharp peak at zero flux → Large $\frac{\partial V}{\partial \Phi_{\rm ext}}$

4.3.3 Additional topic: Cartwheel SQUID

SQUID loop \rightarrow Several loops in parallel \rightarrow reducing total SQUID loop inductance

4.4 Instruments Based on SQUIDs

SQUIDs sense any signal that can be converted to flux

SQUID based instrument \rightarrow Antenna determines quantity to be measured

Input circuit influences signal and noise properties of SQUID Reduction of SQUID inductance to

$$L' = L - \frac{M^2}{L_i + L_p} = L \left(1 - \frac{\alpha^2 L_i}{L_i + L_p} \right)$$

 α^2 = coupling coefficient Mutual inductance: $M_i = \alpha \sqrt{L_i L}_{AS-Chap. 4-46}$

Flux change in input coil: $\delta \Phi^{\rm p} = N_{\rm p} A_{\rm p} \delta B_{\rm ext}$

→ Shielding current $I_{\rm sh}$ in pickup and input coil → Flux coupled to SQUID

Flux quantization (superconducting contact between L_p and L_i !)

$$\delta \Phi^p + (L_i + L_p)I_{\rm sh} = N_p A_p \delta B_{\rm ext} + (L_i + L_p)I_{\rm sh} = 0$$

Flux coupled to SQUID operating in flux locked loop

$$\delta \Phi = M_i |I_{sh}| = M_i \frac{\delta \Phi^p}{L_i + L_p} = \frac{\alpha \sqrt{L_i L}}{L_i + L_p} \, \delta \Phi^p = \frac{\alpha \sqrt{L_i L}}{L_i + L_p} N_p A_p \delta B_{ext}$$

Minimum detectable $\delta \Phi^{p} \rightarrow \text{Compare } \delta \Phi$ and equivalent SQUID flux noise

Spectral flux noise density referred to pick-up loop:

$$S_{\Phi}^{p} = \frac{(L_{i} + L_{p})^{2}}{M_{i}^{2}} S_{\Phi} = \frac{(L_{i} + L_{p})^{2}}{\alpha^{2} L_{i} L} S_{\Phi}$$

Equivalent noise energy referred to pick-up loop

$$\epsilon^{p} = \frac{S_{\Phi}^{p}}{2L_{p}} = \frac{(L_{i} + L_{p})^{2}}{L_{i}L_{p}} \frac{S_{\Phi}}{2\alpha^{2}L} = \frac{(L_{i} + L_{p})^{2}}{L_{i}L_{p}} \frac{\epsilon}{\alpha^{2}}$$

Minimum for $L_i = L_p$

$$\epsilon^p(f) = rac{4\epsilon(f)}{lpha^2}$$

Matching of L_i and $L_p \rightarrow$ Maximum fraction $\frac{\alpha^2}{4}$ of the energy is transferred

Thin film magnetometers

@ 4.2 K: wire wound L_p & planar multi-turn thin film input coil Reminder: Superconducting contact between L_p and L_i !

HTS magnetometers

No flexible wires (prototypes exist already) \rightarrow Thin film flux transformers \rightarrow Directly coupled SQUID

 \rightarrow Flip-chip arrangement of single layer flux transformer and SQUID

ightarrow Flip-chip arrangement of multilayer flux transformer and SQUID

Multi-loop magnetometers

N loops in parallel → Reduction of total inductance & large effective area Typically trilayer structures

Example \rightarrow 8 loops, diameter 7.2 mm \rightarrow Sensitivity $\simeq 1.5 \frac{\text{fT}}{\sqrt{\text{Hz}}}$

4.4.2 Gradiometers

- \rightarrow Reduce perturbing environmental magnetic fields
- \rightarrow Non-magnetic materials
- \rightarrow High permeability shields (μ -metal or cryoperm)
- ightarrow Magnetically shielded rooms
- → Further reduction via gradiometers!

WMI qubit cryostat:

- 3 μ-metal cylindric pots (top is open) at room temperature
- 1 cryoperm pot at 4 K
- Shielding factor: $\simeq 2 \times 10^3$ @ a few Hz
- Now further improved by superconducting Al or Pb pot at 50 mK

PTB Berlin:

- 7 μ-metal shields
- 1 Al layer
- Active field reduction
- Shielding factor:
 2 × 10⁶ @ 0.01 Hz
 2 × 10⁸ @ 5 Hz

4.4.2 Gradiometers

R. Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

nth-order gradiometers

→ Suppression of uniform remote signals
 → Sensitive to field gradients

4.4.3 Susceptometers

Measurement of magnetic properties of materials

- $\rightarrow \chi = \frac{M}{H}$ is response of magnetization to an external field
- → 1st or 2nd order gradiometer & sample in static B field (gradiometer removes effect of static field)
- ightarrow Sample in one of the pick-up loops

Non-magnetic sample \rightarrow No output signalSample with susceptibility χ \rightarrow Additional flux detected by SQUID

Commercial systems

- \rightarrow 2nd order gradiometer
- \rightarrow Sample axially moving
- → Resolution of 10^{-8} emu at 1.8 400 K up to 7 T

4.4.3 Susceptometers

Miniature susceptometer

 $\rightarrow \chi_{\rm m} \equiv \frac{\partial M}{\partial H}, \, \mu_{\rm r} = 1 + \chi_{\rm m}$

 \rightarrow 1st order gradiometer

 \rightarrow Sample in one loop + global static field

 \rightarrow Measure only response of the sample

\rightarrow For very small samples

 \rightarrow SQUID loop

4.4.4 Voltmeters

Voltage transformed into current via input resistor

- ightarrow Feedback of SQUID output to input resistor
- \rightarrow Flux locked loop (null-balancing of voltage)

R_i

Resolution

- $ightarrow \simeq 10^{-12} \ {
 m V}/\sqrt{{
 m Hz}}$ for $R_{
 m i} = 0.01 \ {\Omega}$
- $ightarrow \simeq 10^{-10} \ {
 m V}/\sqrt{{
 m Hz}}$ for $R_{
 m i} = 100 \ {\Omega}$
- \rightarrow Superior for low impedance samples

Applications:

- \rightarrow Transport and noise measurments
- \rightarrow Thermoelectric properties of metallic/superconducting samples

4.4.5 Radiofrequency amplifiers

Tuned amplifier

- \rightarrow Input circuit: $R_{\rm i}$, $C_{\rm i}$, and $L_{\rm i}$
- ightarrow For frequencies up to 100 MHz

→ Noise temperature close to the quantum limit $T_N^{QL} \approx \frac{\hbar\omega}{k_B \ln 2}$

Motivation of the quantum limit for amplifiers

- → Bosonic input field mode \hat{b} with commutation relation $[\hat{b}, \hat{b}^{\dagger}] = 1$
- \rightarrow Linear amplification by factor $G \gg 1 \rightarrow$ Output mode $\hat{c} \equiv G\hat{b}$
- → $[\hat{c}, \hat{c}^{\dagger}] = G^2 \neq 1$, but must also be bosonic
- → Solution → Phase-insensitive amplifier must add noise!

4.5 Applications of SQUIDs

Detection of small signals is practically relevant in modern science and technology!

- \rightarrow Biomagnetism
- \rightarrow Nondestructive evaluation
- \rightarrow Archeology
- \rightarrow SQUID microscopy
- ightarrow Gravity wave detectors

4.5.1 Biomagnetism

Biomagnetic method

ightarrow Non-invasive detection of magnetic signals from human body

Biomagnetic imaging

- ightarrow Field map of heart / brain activity
- ightarrow Source location via simple volume conductor models
- \rightarrow MEG (magnetoencephalography) \rightarrow Brain
- \rightarrow MCG (magnetocardiography) \rightarrow Heart

4.5.1 Biomagnetism

Signal reconstruction

- → Current distribution cannot be calculated from measured field distribution
- \rightarrow Inverse problem has no unique solution
- → Model assumptions based on elementary current dipoles (short localized conductor segments & volume backflow)

4.5.2 Nondestructive evaluation (NDE)

- \rightarrow Non-invasive identification of structural or material defects
- \rightarrow (Sub-) surface cracks in aircrafts
- \rightarrow Reinforcing rods in concrete strutures
- → Short distance between inner cold and outer warm wall
- (spatial resolution) → HTS SQUIDs (@ 77 K) advantageous

Eddy-current techniques

- \rightarrow Alternating field
- ightarrow Eddy currents disturbed by material defects

4.5.2 Nondestructive evaluation (NDE)

4.5.3 SQUID microscopy

Image magnetic field distribution

- ightarrow High sensitivity, modest spatial resolution
- \rightarrow Initially low- $T_{\rm c}$ dc SQUIDs \rightarrow now high- $T_{\rm c}$ SQUIDs @ 77 K
- \rightarrow Frequency: dc up to 1 GHz

Spatial resolution

- \rightarrow Cold samples \simeq 5 μ m (with soft magnetic focusing tip \simeq 0.1 μ m)
- \rightarrow Room temperature samples $\simeq 30 50 \ \mu m$

Applications

- ightarrow Diagnostics of SC devices
- → Properties of ultra-thin magnetic films
- ightarrow Analysis of semiconducting devices

SQUID-sample separation

- $\rightarrow 75~\mu m$ Sapphire window $~\simeq 150~\mu m$
- \rightarrow 3 µm Si_xN_y window

4.5.3 SQUID Microscopy

6

4.5.3 nano-SQUID Microscopy

→ Scanning nano-SQUIDs

Illustration of an atomic defect in graphene that creates a localized resonant dissipative state at the center of the ring (D), which in turn mediates inelastic scattering of an impinging electron

D. Vasyukov et al., *Nature Nanotechnology* **8**, 639–644 (2013) D. Halbertal et al., Science **358**, 1303-1306 (2017).

Bridge

Pb

100 nm

Pb

00 nm

4.5.4 Gravity wave antennas and gravity gradiometers

Motivation:

Inertial navigation, general relativity, deviations from r^{-2} -law, and gravitational waves:

- \rightarrow E.g., collapsing stars, rotating double stars
- \rightarrow Expansion and contraction oscillations
- → Expected length change $\frac{\delta \ell}{\rho} \simeq 10^{-19}$
- → Required resolution $\simeq 10^{-21}$

Resonant mass transducer from displacement to current

- ightarrow Antenna in the mK regime
- ightarrow Required resolution
 - ightarrow Zero point motion
 - → Quantum limited antenna!

4.5.4 Gravity Wave Antennas and Gravity Gradiometers

- → Typical resonance frequency $\simeq 1 \text{ kHz} \rightarrow T < \frac{\hbar\omega_{\text{ant}}}{k_{\text{B}}} \approx 50 \text{ nK} \rightarrow \text{Impractical}$
- \rightarrow Increase effective noise temperature $T_{\rm eff}$ by increasing Q
 - → Gravitational pulse of length τ & antenna decay time $\frac{Q}{\omega_{ant}}$ → $T_{eff} = T \frac{\tau}{Q/\omega_{ant}}$
 - → Quantum limit (bar energy $\hbar \omega_{ant} > k_B T_{eff}$) → Cool below $T < \frac{Q\hbar}{k_B \tau}$
 - \rightarrow for $Q = 2 \times 10^6$ and $\tau = 1 \text{ ms} \rightarrow T \simeq 20 \text{ mK}$
- ightarrow Quantum limited sensor is required
- → Present sensitivities $\frac{\delta \ell}{\rho} \simeq 10^{-18}$
- \rightarrow 2015 \rightarrow Gravitational wave reported in LIGO (laser interferometer, no SQUID)

Gravity gradiometer

Gravity gradient \rightarrow Separation of test masses \rightarrow Coil induction \rightarrow Map earth's gravity gradient \rightarrow Test of r^{-2} law $a = r^{-2} r^{-2}$

4.5.5 Geophysics

SQUIDs used to probe the magnetic properties of earth

- Rock magnetometry
- Mapping earth magnetic field / em impedance
- Geophysical surveying
- Archeology

INDEX DEEP JD 61

30 m (1,35 kHz (1 kHz)

4.5.5 Geophysics

Supracon SQUID detector

Summary (dc SQUID)

Negligible screening
$$\beta_L = 2LI_c/\Phi_0 \ll 1 \rightarrow \Phi \approx \Phi_{ext}$$

 $I_s^m = 2I_c \left| \cos \left(\pi \frac{\Phi_{ext}}{\Phi_0} \right) \right|$

Strong damping:

$$\langle V(t) \rangle = I_c R_N \sqrt{\left(\frac{I}{2I_c}\right)^2 - \left[\cos\left(\pi \frac{\Phi_{\text{ext}}}{\Phi_0}\right)\right]^2}$$

Large screening $\beta_L = 2 \text{LI}_c / \Phi_0 \gg 1 \rightarrow \Phi = \Phi_{\text{ext}} + \text{LI}_{\text{cir}} \approx n \Phi_0$ $I_s^m = 2I_c - \frac{2\Phi_{\text{ext}}}{L} = 2I_c \left(1 - \frac{2\Phi_{\text{ext}}}{\Phi_0} \frac{1}{\beta_L}\right)$

Intermediate $\beta_L \rightarrow I_s^m(\Phi_{ext})$ self-consistently from $\Phi(\Phi_{ext})$ and $I_s^m(\Phi)$

Performance

$$H \equiv \left| \left(\frac{\partial V}{\partial \Phi_{ext}} \right)_{I=const} \right| \qquad S_{\Phi}(f) = \frac{S_{V}(f)}{H^{2}} \qquad \epsilon(f) = \frac{S_{\Phi}(f)}{2L} = \frac{S_{V}(f)}{2LH^{2}}$$
Optimum operation ($\beta_{L} \approx 1, \beta_{C} \approx 1$):

$$\epsilon(f) \simeq 16k_{B}T \sqrt{\frac{LC}{\beta_{C}}} \simeq \frac{16\sqrt{\pi}k_{B}T}{\omega_{p}}$$
Operation in flux-locked-loop as null detector

Summary (rf-SQUID)

$$\frac{\Phi}{\Phi_{0}} = \frac{\Phi_{\text{ext}}}{\Phi_{0}} - \frac{\beta_{L,rf}}{2\pi} \sin\left(2\pi \frac{\Phi}{\Phi_{0}}\right)$$
Operation \Rightarrow inductive coupling to tank circuit
Performance:
$$H \equiv \left| \left(\frac{\partial V_{T}}{\partial \Phi_{\text{ext}}} \right)_{I_{\text{rf}}=const} \right| \simeq \frac{\omega_{\text{rf}}L_{T}}{M}$$

$$S_{\Phi} \approx \frac{(LI_{c})^{2}}{\omega_{\text{rf}}} \left(\frac{2\pi k_{B}T}{I_{c}\Phi_{0}} \right)^{4/3} \quad \epsilon \approx \left(\frac{\pi \eta^{2}\Phi_{0}^{2}}{2L} + 2\pi \eta k_{B}T_{\text{amp}}^{\text{eff}} \right) \frac{1}{\omega_{\text{rf}}}$$

Operation in flux-locked-loop as null detector

Summary (SQUID based instruments)

Antenna, SQUID (flux-to-voltage transformer), read-out electronics Magnetometer, gradiometer, voltmeter, susceptometer, ... Magnetic field resolution: few fT/(Hz)^{1/2} Application: magnetocardiography/-encephalography, NDE, microscopy, geophysics