# **Chapter 5**

# **Digital Electronics**

### **5.1 Superconductivity and Digital Electronics**

#### **Potential Advantages and Disadvantages**



Fast (< 100 GHz) Low-power (aJ / gate)

**Requires cooling** 



Requires new periphery (power supply, packaging, ...)

The Cryotron (1956)



Gross, A. Marx , F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 ż

- 2020)



Operating principle: superconducting-normal transition in wire Control line has higher critical magnetic field Control line switches enough current to control another gate  $\rightarrow$  Logic Memory: trap flux  $\pm \Phi$  in loop, read/write via sc-normal transition Inferior to semiconductor devices (low switching speed  $\tau_{LR} \simeq 10$  ns)

The Josephson Switch (1966, Matisoo, IBM)

Increase  $\tau_{LR}$  by switching JJ or SQUID instead of sc wire  $\rightarrow$  Josephson cryotron



Sub-ns switching times → Clock speeds up to 1GHz

Control  $\rightarrow$  Flux quantum as natural bit Strong shielding and controlled trapping of residual flux required Underdamped Pb junctions  $\rightarrow$  Large  $I_c$ -spread, vulnerable to thermal cycling

 $\rightarrow$  IBM stops efforts in 1983

Rapid Single Flux Quantum (RSFQ) Logic (1985, Likharev, Nakajima)

#### Operating principle:

Non-latching logic with overdamped Nb-JJ Slightly above  $I_c \rightarrow ps$  current pulses Phase difference evolves by  $2\pi$  during pulse Use resulting voltage pulses for logic circuits

1978  $\rightarrow$  First RSFQ gate (T-flip-flop) proposed

Fast (record so far: 770 GHz clock speed)
 Intrinsic memory
 Low power consumtion
 Reproducible fabrication possible

#### Fabrication still demanding No transistor-like superconducting devices with high gain

- $\rightarrow$  High fan-out difficult
- $\rightarrow$  Small parameter spread required

#### Rapid Single Flux Quantum (RSFQ) Logic (1985, Likharev, Nakajima)



#### FLUX-1

- the first RSFQ MPU
- 8 bit ALU array
- 16 word instruction memory
- 70,000 JJs
- 14 mW
- 20-22 GHz @ F = 2.0 um
  - $(\Rightarrow$  120-140 GHz @ 0.3 um)
- TRW's 4-metal process

### **5.1.2 Advantages of Josephson Switching Devices**



#### Low power

|           |                         | 1 user<br>dissipated power at clock speed |           | 10 <sup>7</sup> users<br>dissipated power at clock speed |                       |
|-----------|-------------------------|-------------------------------------------|-----------|----------------------------------------------------------|-----------------------|
|           |                         |                                           |           |                                                          |                       |
|           | $P_{\rm diss}\cdot\tau$ | 1 GHz                                     | 1 THz     | 1 GHz                                                    | 1 THz                 |
| Si        | 1 nJ                    | 1 Watt                                    | 1000 Watt | 10 <sup>7</sup> Watt                                     | 10 <sup>10</sup> Watt |
| Josephson | 1 pJ                    | 1 mWatt                                   | 1 Watt    | 10 <sup>4</sup> Watt                                     | 10 <sup>7</sup> Watt  |

#### (For $10^6$ switching elements)

Matched superconducting striplines for on-chip wiring (fast, low dissipation)

$$Z\left[\Omega
ight] = 60 \, rac{\sqrt{t_I t_M}}{W\sqrt{\epsilon}}$$
 ,  $t_M = t_I + 2 {
m Re} \delta$ 

 $Z \simeq 10 \ \Omega$  close to JJ resistance for width  $W \simeq 1 \ \mu m$ Little dispersion up to 1 THz  $\rightarrow$  Transfer of ps pulses OK Dense layout with little crosstalk possible

Junction technology available (Nb based)

# 5.2 The voltage state Josephson logic

#### Underdamped JJ as switching gates

- $\rightarrow$  Zero and finite voltage state as 0 an 1
- $\rightarrow$  Natural emulation of semiconductior logic



 $C = \frac{I_{contr}}{I_{gate}} = \frac{I_{L}}{I_{c}} = C = R_{L}$ 

Initially:  $I_{gate} < I_c$  $I_{contr} + I_{gate} > I_c \rightarrow Switching$ 

Load  $R_{\rm L} \ll R_{\rm sg} \rightarrow$  All current transferred to load after switching

### **5.2.1 Operation Principle and Switching Times**

**Characteristic Times (linearized LCR circuit)** 

$$L_{s} = \frac{\Phi_{0}}{2\pi I_{c} \cos \varphi(t)} = \frac{L_{c}}{\cos \varphi(t)} \quad \text{with} \quad L_{c} = \frac{\Phi_{0}}{2\pi I_{c}} = \frac{\hbar}{2eI_{c}}$$
$$\tau_{RC} = RC$$
$$\tau_{LR} = L_{c}/R = \Phi_{0}/2\pi I_{c}R \quad 1/R(V) = 1/R_{L} + 1/R_{J}(V)$$

Geometric mean

$$\tau_{LC} = \sqrt{L_c C} = \sqrt{\Phi_0 C / 2\pi I_c} = \sqrt{\tau_{RC} \tau_{RL}}$$

Underdamped junction for switching logic

$$\beta_C = \tau_{RC}/\tau_{RL} > 1 \quad \Rightarrow \quad \tau_{RC} > \tau_{LC} > \tau_{RL}$$

ightarrow Switching time limited by  $au_{RC}$ 

### **5.2.1 Operation Principle and Switching Times**



#### 5.2.2 Power Dissipation

for Nb junction:

$$R_{sg}^{th} \lesssim \frac{V_g}{I_c^{th}} \times 10 \simeq 30 \,\Omega$$
  
 $\underline{P_{diss}} \simeq 3 \times 10^{-7} \,\text{Watt}$ 

$$E = P_{\rm diss} \cdot \tau \simeq 3 \times 10^{-18} \, {
m J}$$

| material | $P_{\rm diss} \cdot \tau$ (Joule) |
|----------|-----------------------------------|
| Si       | $10^{-8} - 10^{-10}$              |
| GaAs     | $10^{-8} - 10^{-10}$              |
| HEMT     | $10^{-10} - 10^{-11}$             |
| HTSL     | $3 	imes 10^{-15}$                |

Compare to semiconducting → devices & HTSL



## 5.2.3 Global Clock, Punchthrough

Voltage state logic  $\rightarrow$  Underdamped JJ

- 1. Latching nature requires to switch off bias current
  - ightarrow Global clock system at GHz frequecies required

#### 2. Ac power source required

- ightarrow JJ biased with ac current source
  - $\rightarrow$  Shapiro steps
  - ightarrow JJ may switch back to step voltage instead of zero
- $\rightarrow$  Bipolar operation
  - ightarrow JJ may switch through to negative voltage branch
  - $\rightarrow$  "Punchthrough"
  - ightarrow Intrinsic feature of Josephson physics
  - $\rightarrow$  Limits clock speed to a few GHz
    - $\rightarrow$  No speed gain over semiconductor technology!

# **5.2.4 Josephson Logic Gates**

#### **General requirements**

High fan-out

 $\rightarrow$  Single gate should trigger multiple consequtive gates

Large parameter margins

 $\rightarrow$  Stable operation

#### Small size

 $\rightarrow$  Very large scale integration

Short gate times

- $\rightarrow$  High clock frequency
- $\rightarrow$  Requires fast switching

Low power dissipation

ightarrow High integration density

Input-output isolation

- $\rightarrow$  Directional logic
- $\rightarrow$  Difficult in switching gates
- $\rightarrow$  Not satisfied by simple circuit shown before!



### 5.2.4 Josephson Logic Gates

#### Performance (see lecture notes for details)

| gate | linewidth<br>(µm) | switching<br>time (ps) | power<br>dissipation (µW) | junction<br>technology | Ref. |
|------|-------------------|------------------------|---------------------------|------------------------|------|
| CIL  | 2.5               | 13                     | 2                         | Pb-alloy               | a    |
| JAWS | 5                 | 13                     |                           | Pb-alloy               | b    |
| RCJL | 5                 | 10.3                   | 11.7                      | Pb-alloy               | с    |
| RCL  | 2                 | 4.2                    |                           | Pb-alloy               | d    |
| 4JL  | 2.5               | 7                      | 4                         | Pb-alloy               | е    |
| DCL  | 1.5               | 5.6                    | 4                         | NbN/Pb-In              | f    |
| MVTL | 1.5               | 2.5                    | 4                         | $Nb/AlO_x/Nb$          | g    |

Table 5.1: Switching delay and power dissipation for various types of logic gates.

<sup>a</sup>T.R. Gheewala, A. Mukherjee, in *Tech. Digest International Electron Device Meeting (IEDM)*, p. 482 (1979). <sup>b</sup>S.S. Pei, Appl. Phys. Lett. **40**, 739 (1982).

<sup>c</sup>J. Sone, T. Yoshida, S. Tahara, H. Abe, Appl. Phys. Lett. 41, 886 (1982).

<sup>d</sup>J. Nakano, Y. Mimura, K. Nagata, Y. Hasumi, T. Waho, in Ext. Abstr. of 16th Conf. Solid State Dev. and Mat., Kobe (1984), p. 636.

<sup>e</sup>H. Nakagawa, T. Odake, E. Sogawa, S. Takada, H. Hayakawa, Jap. J. Appl. Phys. 22, L297 (1983).

<sup>f</sup>Y. Hatano, T. Nishino, Y. Tarutani, U. Kawabe, Appl. Phys. Lett. 44, 1095 (1984).

<sup>8</sup>S. Kotani, T. Imamura, H. Hasuo, in *IEEE IEDM Techn. Digest*, p. 865 (1987).

Speed not due to gate type, but due to junction technology (typical gate speed for Nb technology)

### 5.2.5 Memory Cells

#### **General definitions and requirements**

General types

| NDRO: | Non-Destructive Read-Out |
|-------|--------------------------|
| DRO:  | Destructive Read-Out     |

Speed requirements Order of CPU speed

Natural physical quantity

persistent currents / magnetic flux in sc.loops

"0": no flux in the loop

",1": finite flux in the loop (usually  $\Phi_0$ )

Access

Read/write JJ-based gates

### 5.2.5 Memory Cells



#### **Dc-SQUID** geometry

WRITE operation

Finite bias *I*gate

 $\rightarrow$  No flux coupled into loop at  $I_{\text{write}} = 0$ 

 $\rightarrow$  Increase  $I_{\text{write}}$  such that induced shielding current  $I_{\text{sh}} > I_{\text{c}}$ 

Turn off  $I_{write} \rightarrow$  Flux remaines trapped for  $\beta_L > 1$ 

**READ** operation

 $JJ_3$  biased slightly below  $I_{c3}$ 

"0" state  $\rightarrow$  No circulating current  $\rightarrow$  No switching of JJ<sub>3</sub>

",1" state  $\rightarrow$  Circulating current suppresses  $I_{c3} \rightarrow$  Switching of JJ<sub>3</sub>

Does not alter cell state

#### 5.2.5 Memory Cells

#### Performance

| access time              | 380 ps                                  |  |
|--------------------------|-----------------------------------------|--|
| power dissipation        | 9.5 mW                                  |  |
| bit yield                | 99.8 %                                  |  |
| Josephson junctions      | Nb/AlO <sub>x</sub> /Nb                 |  |
| number of junctions      | 21.000                                  |  |
| cirtical current density | $3.3 \mathrm{kA/cm^2}$                  |  |
| minimum junction size    | $2\mu\mathrm{m} \times 2\mu\mathrm{m}$  |  |
| minimum line width       | 1.5 μm                                  |  |
| cell size                | $55\mu\mathrm{m} 	imes 55\mu\mathrm{m}$ |  |
| RAM size                 | $4.5\mathrm{mm} 	imes 4.5\mathrm{mm}$   |  |

Table 1.3: Josephson 4 kbit RAM characteristics (Organization: 4096 word x 1 bit, NEC)

Still inadequate for most applications (too big) 1996 an  $8.5 \times 11.5 \ \mu m^2$  chip (1 Mb/cm<sup>2</sup>) demonstrated (Compare: 2016 Samsung 3D NAND flash  $\rightarrow$  185 Gb/cm<sup>2</sup>) Underdamped junction logic gates and memory ightarrow Josephson microprocessors were built

Problems preventing their practical use

Pb technology too unreliable  $\rightarrow$  Solved with Nb technology

Latching logic

Ac power supply and global timing required Speed < 1GHz due to punchthrough Switching back to zero voltage state slow (~1 ns)

No transistor-like amplifying 3-terminal device

#### **Specific properties of RSFQ logic**

Acronym for rapid single flux quantum logic

Clock frequencies above 100 GHz  $\rightarrow$  Fast!

**Nonlatching** logic

**Overdamped Josephson junctions** 

Low power consumption  $P_{\rm diss}\tau \simeq 10^{-18} \frac{\rm J}{\rm bit}$ 





#### Latching $_{,0}^{,0} \rightarrow _{,1}^{,1}^{,1}$ fast $_{,1}^{,1} \rightarrow _{,0}^{,0}^{,0}$ slow $\rightarrow$ Not competiti

→ Not competitive with semiconductorbased logic



SFQ pulses can be naturally generated, reproduced, amplified, memorized and processed with overdamped Josephson junctions!

#### **Static SFQ circuits**

Information passed as dc flux/supercurrent

 $\rightarrow$  Limited integration, requires rf power supply/clock  $\rightarrow$  Practical limitations!

#### **Dynamic SFQ circuits**

Information passed ballistically between devices

Interconnects  $\rightarrow$  Micostrip (passive) or Josephson transmission lines (active)



# **Repetiton: Voltage state of overdamped JJ** Time averaged voltage $\langle V \rangle = \frac{1}{T} \int_{0}^{T} V(t) dt = \frac{1}{T} \int_{0}^{T} \frac{\hbar}{2e} \frac{d\varphi}{dt} dt = \frac{1}{T} \frac{\hbar}{2e} [\varphi(T) - \varphi(0)] = \frac{\Phi_0}{T}$

Total current must be constant (neglecting the fluctuation source)



 $I = I_s(t) + I_N(t) + I_D(t)$ 

and

$$\varphi(t) = \int_{0}^{t} \frac{2e}{\hbar} V(t) dt$$



20

15



Bias overdamped JJ sightly above  $I_{\rm c}$ 

- → Pulse duration  $\Phi_0/2I_cR \approx 1 \text{ ps}$  for  $I_cR \approx I_cR_N \approx 1 \text{ mV}$
- $\rightarrow$  Nb JJ intrinsically underdamped  $\rightarrow$  Shunt resitance  $\rightarrow$  Pulses longer & less high
- $\rightarrow$  Single pulse with few-ps control pulse  $\rightarrow$  Demanding

No control pulse  $\rightarrow$  RSFQ pulse train  $\rightarrow$  Natural clock

**Generation of RSFQ pulses – rf SQUID** 



Replace overdamped JJ by rf SQUID with  $3 \leq \beta_{L,rf} \leq 10$ 

 $\rightarrow$  Hysteretic behavior

 $\rightarrow 0 \rightarrow 1$ -transition at  $I_{\text{contr}} = I_1$ 

→ 1 → 0-transition at  $I_{contr} = I_2$ RSFQ pulse again generated with dc current pulse Pulse can be longer at cost of decreased amplitude Pulse train can be generated with external RF clock



Josephson transmission line (JTL)



#### **Reciprocal device**

Exactly 1 fluxon localized at single junction  $\rightarrow L_n \simeq \Phi_0 / I_c$ 

SFQ pulse incident at A

- $\rightarrow$  Trigger consecutive  $2\pi$  phase jumps in junctions
- ightarrow Fluxon propagates towards B

5 ps-pulse & 1 cm line length  $\rightarrow$  No noticable attenuation

Amplification

 $\rightarrow I_{c,n}$  should grow &  $I_{c,n}$  decrease accordingly in propagation direction

#### Pulse splitter

ż

#### Reciprocal device

→ Symmetric with repsect to all three ports

Evident generalization of JTL Reproduction capability used



#### Buffer stage

Provides isolation

 $J_1$  and  $J_2$  dc-biased below their critical currents  $I_{c1} < I_{c2}$ 

SFQ pulse incident on port A

- $\rightarrow 2\pi$  phase shift at J<sub>2</sub>
- $\rightarrow$  SFQ pulse output at B

SFQ pulse incident on port B

- $\rightarrow 2\pi$  phase shift at J<sub>1</sub>
- $\rightarrow$  No output at port A



SFQ Memory cell: RS flip-flop register (DRO register)



Dc SQUID with  $\beta_L \simeq 3$  and two JJ-buffered input lines

#### Information stored as quantized flux trapped inside the loop

Proper parameters and bias

- → Incoming SFQ pulse at port S (set) triggers flux trapping ( $_{,0} \rightarrow 1$ "-transition)
- → Incoming SFQ pulse at port R triggers reset (" $1 \rightarrow 0$ "-transition)
- $\rightarrow$  J<sub>R</sub> and J<sub>S</sub> protect input from setting(resetting) a 1(0) state
- $\rightarrow$  During reset, a readout pulse is emitted at port F

Operating principle similar to latching (flipflop) logic

High-density RAM possible, but not implemented yet (effort, resources)

# **5.3.2 Information in RSFQ Logic**



Each cell  $\rightarrow$  Two or more stable flux states & signal RSFQ pulses S<sub>1</sub>, S<sub>2</sub>, ...

Clock generates additional timing line T

- $\rightarrow$  Sets cell to initial state "1" at the beginning of every clock period
- $\rightarrow$  Possibly generates output pulse  $\rm S_{out}$  at the end of every clock period

Logical "0" and "1"  $\rightarrow$  Absence and presence of RSFQ pulse during time  $\tau$  in line S<sub>i</sub>

**RSFQ OR gate** 



Confluence buffer connected to RS flip-flop

Initial clock pulse resets the memory to 0

One SFQ pulse enters either A or B  $\rightarrow$  memory cell switches to in state 1

Pulses in A and B  $\rightarrow$  First pulse switches memory to 1, second pulse does nothing Clock pulse at the end  $\rightarrow$  Resets memory and generates output pulse if in state 1

**RSFQ AND gate** 

Two RS flip-flops at the inputs of a confluence buffer



Initial clock pulse resets the memories to 0

If two SFQ pulse enters A or B at different times  $\rightarrow$  Memory cells for storage Next clock trigger  $\rightarrow$  Reset memories and release stored pulses simultanelously J<sub>c</sub> switches only if two pulses add  $\rightarrow$  Only then SFQ pulse released at port C

**RSFQ NOT gate** 



Initial clock pulse resets the memory to 0

If no pulse (state 0) enters at port IN

- $\rightarrow$  J2 carries virtually no current
- $\rightarrow$  Next trigger T pulse switches J3
- $\rightarrow$  Output of SFQ pulse (state 1)

If a pulse (state 1) enters at port IN

- $\rightarrow$  Stored in memory, increasing current through J2
- $\rightarrow$  Next trigger pulse T switches J2 and not J3
- $\rightarrow$  No output of SFQ pulse (state 0)

**RSFQ** shift register



Upper array acts as JTL transmittion trigger/reset pulses from port IN First in first out (FIFO) memory

### 5.3.5 Maximum Speed of RSFQ Logic

Simulation  $\rightarrow$  Maximum delay  $\simeq 6\pi\tau_{RL}$   $\tau_{RL} = \frac{\Phi_0}{2\pi I_c R}$ 

Overdamped Josephson junctions 
$$\rightarrow \beta_C = \frac{2\pi}{\Phi_0} I_c R^2 C = \frac{2\pi}{\Phi_0} J_c R^2 C_s < 1$$

for 
$$\beta_c \approx 1$$
  $\rightarrow$   $\tau_{\text{RL}} = \frac{\Phi_0}{2\pi I_c} \sqrt{\frac{\Phi_0 I_c C}{2\pi}} \propto \sqrt{\frac{C}{I_c}}$ 

 $3 \ \mu m \ technology \rightarrow 2\pi \tau_{RL} \simeq 3 \ ps \rightarrow Clock \ speed \simeq 100 \ GHz$ 

Submicron technology  $\rightarrow$  Clock speed  $\simeq$  500 GHz

#### **5.3.6 Power Dissipation**

$$E_{\rm diss} \simeq \int I_c V dt$$

$$I_c \simeq 100 \,\mu\text{A}$$
 and  $\int V dt = \Phi_0$ 

 $E_{\rm diss} \simeq 2 \times 10^{-19} {
m J}.$ 

But: power dissipation is mainly limited by dissipation in bias resistors

$$\rightarrow P_{\rm diss} \simeq 1 \frac{\mu W}{\rm gate}$$

### 5.3.7 Prospects of RSFQ

ż

#### **Applications of RSFQ logic**

| application                                  | no. of JJs | estimated market size |
|----------------------------------------------|------------|-----------------------|
| integrated SIS receivers with correlator     | $10^{6}$   | small                 |
| digital multichannel SQUID arrays            | $10^{5}$   | medium                |
| dc voltage standards                         | $10^{4}$   | small                 |
| ac voltage standards digital synthesizer     | $10^{5}$   | medium                |
| A/D converters                               | $10^{4}$   | large                 |
| D/A converters                               | $10^{3}$   | medium                |
| dc/ac quantum voltmeters                     | $10^{5}$   | large                 |
| time-digital converters                      | $10^{3}$   | medium                |
| digital SFQ test circuits for rf metrology   | $10^{3}$   | medium                |
| frequency dividers, digital frequency meters | 500        | medium                |
| transient recorders                          | $10^{4}$   | medium                |
| TeraFLOP workstation                         | $10^{6}$   | medium                |
| PetaFLOP computer                            | $10^{9}$   | ??                    |

Cryogenic electronics for control and readout of superconducting quantum circuits for quantum information

many

??

### Summary (latching Josephson logic)



#### Underdamped JJ as switching gates

- $\rightarrow$  Zero and finite voltage state as 0 an 1
- $\rightarrow$  Natural emulation of semiconductior logic

$$\tau_{RC} > \tau_{LC} > \tau_{RL}$$

$$\tau_{RC} \sim 10 \text{ ps}$$

$$P_{\text{diss}} = \frac{V_g^2}{R_{sg}}$$

$$E = P_{\text{diss}} \cdot \tau \simeq 3 \times 10^{-18} \text{ J}$$

Disadvantages of Josephson logic:

- Ac power supply and global timing required
- Speed < 1GHz due to punchthrough effect</li>
- Switching back to zero voltage state slow ( $\sim$  1 ns)

# Summary (RSFQ logic)



Advantages of RSFQ logic:

- typical clock frequencies above 100 GHz
- nonlatching logic
- low power consumption  $P_{\rm diss} \tau \simeq 10^{-18} \frac{\rm J}{\rm bit}$