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AS-Chap. 3.6 - 1

Introduction to Chapter 6
(from Chapter 3 of the lecture notes)

Quantum treatment of JJ
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AS-Chap. 3.6 - 2

Classical treatment of Josephson junctions (so far)

Phase 𝜑 and charge 𝑄 = 𝐶𝑉 ∝
𝑑𝜑

𝑑𝑡
 Purely classical variables

(𝑄, 𝜑) are assumed to be measurable simultaneously

Dynamics  Tilted washboard potential, rotating pendulum

Classical energies:

 Potential energy 𝑈(𝜑)
(Josephson coupling energy / Josephson inductance)

 Kinetic energy 𝐾 ሶ𝜑

(Charging energy via
1

2
𝐶𝑉2 =

𝑄2

2𝐶
∝

𝑑𝜑

𝑑𝑡

2
/ junction capacitance)

Current-phase & voltage-phase relation from macroscopic quantum model

 Quantum origin

 Primary macroscopic quantum effects

Second quantization

 Treat (𝑄, 𝜑) as quantum variables (commutation relations, uncertainty)

 Secondary macroscopic quantum effects

3.6 Full Quantum Treatment of Josephson Junctions
Secondary Quantum Macroscopic Effects
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AS-Chap. 3.6 - 3

E

j

2𝐸J0

3.6.1 Quantum Consequences of the small Junction Capacitance

Validity of classical treatment

 Classical treatment valid for 
𝐸𝐽0

ℏ𝜔𝑝
≃

𝐸𝐽0

𝐸𝐶

1/2
≫ 1 (Level spacing ≪ Potential depth)

 Enter quantum regime by decreasing junction area 𝐴

Consider an isolated, low-damping junction, 𝐼 = 0
 Cosine potential, depth 2𝐸𝐽0
 Close to potential minimum

 Harmonic oscillator
Frequency 𝜔p, level spacing ℏ𝜔p

Vacuum energy
ℏ𝜔p

2

≃
ℏ𝜔p

2

≃ ℏ𝜔p
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AS-Chap. 3.6 - 4

Example 1
Area 𝐴 = 10 μm2, Tunnel 
barrier 𝑑 = 1 nm, 𝜀 = 10, 

𝐽c = 100
A

cm2

 𝐸J0 = 3 × 10−21 J

 𝐸J0/ℎ = 4500 GHz

𝐶 =
𝜀𝜀0𝐴

𝑑
= 0.9 pF

 𝐸𝐶 = 2 × 10−26 J


𝐸𝐶

ℎ
= 30 MHz

 Classical junction

We also need 𝑇 ≪ 500 mK for 𝑘B𝑇 ≪ 𝐸J0, 𝐸𝐶!

3.6.1 Quantum Consequences of the small Junction Capacitance

Parameters for the quantum regime

Example 2
Area  𝐴 = 0.02 μm2

 𝐶 ≃ 1 fF 𝐸𝐶 ≃ 𝐸J0
 Quantum junction
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AS-Chap. 3.6 - 5

Kinetic energy: 

Total energy:

𝑈 𝜑 ∝ 1 − cos𝜑  Potential energy
𝐾 ሶ𝜑 ∝ ሶ𝜑2

 Kinetic energy

 Energy due to extra charge 𝑄 on one junction electrode due to 𝑉

Consider 𝐸 𝜑, ሶ𝜑 as junction Hamiltonian, rewrite kinetic energy

𝐾 = 𝑝2/2𝑀

 𝑝 =
ℏ

2𝑒
𝑄

3.6.1 Quantum Consequences of the small Junction Capacitance

 Position coordinate associated to phase 𝜑, momentum associated to charge 𝑄

Hamiltonian of a strongly underdamped junction (with 
𝑑𝜑

𝑑𝑡
≠ 0)
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AS-Chap. 3.6 - 6

Canonical quantization (operator replacement)

with 𝑁 =
𝑄

2𝑒
 # of Cooper pairs

we get the Hamiltonian

 Describes only Cooper pairs

𝐸𝐶 =
𝑒2

2𝐶
nevertheless defined as 

charging energy for a single electron 
charge

𝑁 ≡
𝑄

2𝑒
 Deviation of # of CP in electrodes from equilibrium

3.6.1 Quantum Consequences of the small Junction Capacitance

Commutation rules for the operators

Heisenberg uncertainty relation 

Δ𝐴Δ𝐵 ≥
1

2
መ𝐴, ෠𝐵
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AS-Chap. 3.6 - 7

Hamiltonian in the flux basis (𝜙 =
ℏ

2𝑒
𝜑 =

Φ0

2𝜋
𝜑)

3.6.1 Quantum Consequences of the small Junction Capacitance

Commutator 𝜙, 𝑄 = 𝑖ℏ

 𝜙 and Q are canonically conjugate  (analogous to x and p)

 Circuit variables are now quantized

 Superconducting quantum circuits
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AS-Chap. 3.6 - 8

Lowest energy levels localized near bottom of potential wells at 𝜑𝑛 = 2𝜋 𝑛

Taylor series for 𝑈 𝜑  Harmonic oscillator, 

Frequency 𝜔p, eigenenergies 𝐸𝑛 = ℏ𝜔p 𝑛 +
1

2

Ground state: narrowly peaked wave function at 𝜑 = 𝜑𝑛

Large fluctuations of 𝑄 on electrodes since Δ𝑄 ⋅ Δ𝜑 ≥ 2𝑒
(small EC  pairs can easily fluctuate, large Δ𝑄)

Small phase fluctuations Δ𝜑
Negligible Δ𝜑 ⇒ classical treatment of phase dynamics is good approximation

3.6.2 Limiting Cases: The Phase and Charge Regime

The phase regime

ℏ𝜔p ≪ 𝐸J0 , 𝐸𝐶 ≪ 𝐸J0 Phase 𝜑 is a good quantum number!
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AS-Chap. 3.6 - 9

Hamiltonian

define 𝑎 = 𝐸 − 𝐸𝐽0 /𝐸𝐶, 𝑏 = 𝐸𝐽0/2𝐸𝐶 and 𝑧 = 𝜑/2

known from periodic potential 
problem in solid state physics
 Energy bandsGeneral solution 

Bloch waves

Charge/pair number variable 𝑞 is continuous (charge on capacitor!)
 𝛹 𝜑 is not 2𝜋-periodic

3.6.2 Limiting Cases: The Phase and Charge Regime

Mathieu equation

The phase regime
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AS-Chap. 3.6 - 10

1D problem  Numerical solution straightforward
Variational approach for approximate ground state

Trial function for 𝐸𝐶 ≪ 𝐸J0

Choose 𝜎 to find minimum energy:

𝑬𝑪

𝑬𝐉𝟎
= 𝟎. 𝟏

𝑬𝐦𝐢𝐧 = 𝟎.𝟏 𝑬𝐉𝟎

first order in EJ0

Emin ≃ 0 for EC ≪ EJ0

3.6.2 Limiting Cases: The Phase and Charge Regime

The phase regime
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AS-Chap. 3.6 - 11

Tunneling coupling ∝ exp −
2𝐸J0−𝐸

ℏ𝜔p
 Very small since ℏ𝜔p ≪ 𝐸J0

 Tunneling splitting of low lying states is exponentially small

3.6.2 Limiting Cases: The Phase and Charge Regime

The phase regime

𝑬𝑪

𝑬𝐉𝟎
= 𝟎. 𝟏

𝑬𝐦𝐢𝐧 = 𝟎.𝟏 𝑬𝐉𝟎
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AS-Chap. 3.6 - 12

Kinetic energy ∝ 𝐸𝑐
𝑑𝜑

𝑑𝑡

2
dominates

 Complete delocalization of phase
 Wave function should approach constant value, Ψ 𝜑 ≃ const.
 Large phase fluctuations, small charge fluctuations (𝛥𝑄 ⋅ 𝛥𝜑 ≥ 2𝑒)

3.6.2 Limiting Cases: The Phase and Charge Regime

ℏ𝜔p ≫ 𝐸J0 , 𝐸𝐶 ≫ 𝐸J0 Charge 𝑄 (momentum) is good quantum number

Appropriate trial function: 

Hamiltonian

Approximate 
ground state energy

second order in EJ0

𝛼 ≪ 1

The charge regime
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AS-Chap. 3.6 - 13

𝑬𝑪
𝑬𝑱𝟎

= 𝟐. 𝟓

 𝑬𝒎𝒊𝒏 = 𝟎. 𝟗𝟓 𝑬𝑱𝟎

 Periodic potential is weak 
 Strong coupling  between neighboring phase states  Broad bands
 Compare to electrons moving in strong (phase regime) or weak (charge regime) periodic 

potential of a crystal

3.6.2 Limiting Cases: The Phase and Charge Regime

The charge regime
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AS-Chap. 3.6 - 14

Voltage 𝑉 Charge 𝑄 = 𝐶𝑉, energy 𝐸 =
𝑄2

2𝐶

Observation of CB requires small thermal fluctuations

 𝐸𝐶 =
𝑒2

2𝐶
> 𝑘𝐵𝑇 ⇒ 𝐶 <

𝑒2

2𝑘𝐵𝑇

 𝐶 ≃ 1 fF at T = 1 K, 𝑑 = 1 nm, and 𝜀 = 5 𝐴 ≲ 0.02 μm2
 Small junctions!

Observation of CB requires small quantum fluctuations

 Quantum fluctuations due to Heisenberg principle  Δ𝐸 ⋅ Δ𝑡 ≥ ℏ
 Finite tunnel resistance
 𝜏𝑅𝐶 = 𝑅𝐶 (decay of charge fluctuations) 

 Δ𝑡 = 2𝜋𝑅𝐶, Δ𝐸 =
𝑒2

2𝐶
 𝑅 ≥

ℎ

𝑒2
= 𝑅𝐾 = 24.6 kΩ Typically satisfied

3.6.3 Coulomb and Flux Blockade

Coulomb blockade in normal metal tunnel junctions

Single electron tunneling

 Charge on one electrode changes to 𝑄 − 𝑒

 Electrostatic energy 𝐸′ =
𝑄−𝑒 2

2𝐶

 Tunneling only allowed for 𝐸′ ≤ 𝐸
 Coulomb blockade: Need 𝑄 ≥ 𝑒/2 or 𝑉 ≥ 𝑉CB = 𝑉c = 𝑒/2𝐶
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AS-Chap. 3.6 - 15

Coulomb blockade in superconducting tunnel junctions

For 
𝑄2

2𝐶
> 𝑘𝐵𝑇, 𝑒𝑉 (𝑄 = 2𝑒)  No flow of Cooper pairs

Threshold voltage  𝑽 ≥ 𝑽𝑪𝑩 = 𝑽𝒄 =
𝟐𝒆

𝟐𝑪
=

𝒆

𝑪

Coulomb blockade  Charge is fixed, phase is completely delocalized

3.6.3 Coulomb and Flux Blockade

S S
2e-
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AS-Chap. 3.6 - 16

Current 𝐼 Flux 𝛷 = 𝐿 𝐼, energy 𝐸 = 𝛷2/2𝐿

In presence of fluctuations we need

 𝐸J0 ≫ 𝑘B𝑇 (large junction area) 

 And 𝛥𝐸 ⋅ 𝛥𝑡 ≥ ℏ with 𝛥t = 2𝜋
𝐿

𝑅
and 𝛥𝐸 = 2𝐸𝐽0 𝑅 ≤

ℎ

(2𝑒)2
=

1

4
𝑅𝐾

3.6.3 Coulomb and Flux Blockade

Phase or flux blockade in a Josephson junction

 Phase is blocked due to large 𝐸J0 = 𝛷0𝐼𝑐/2𝜋

 𝐼c takes the role of 𝑉CB
 Phase change of 2𝜋 equivalent to flux change of 𝛷0

 Flux blockade 𝐼 ≥ 𝐼FB = 𝐼c =
ΤΦ0 2𝜋

𝐿c

 Analogy to CB  𝐼 ↔ 𝑉, 2𝑒 ↔
𝛷0

2𝜋
, 𝐶 ↔ 𝐿
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AS-Chap. 3.6 - 17

Coherent charge states
Island charge continuously changed by gate

Independent charge states (𝐸J0 = 0)

 Parabola 𝐸 𝑄 = 𝑄 − 𝑛 ⋅ 2𝑒 2/2𝐶Σ

Cooper pair box

3.6.4 Coherent Charge and Phase States

𝐸J0 > 0

 Interaction of |𝑛〉 and |𝑛 + 1〉 at the level crossing points  𝑄 = 𝑛 +
1

2
⋅ 2𝑒

 Avoided level crossing (anti-crossing)

 Coherent superposition states 𝛹± = 𝛼 𝑛 ± 𝛽 𝑛 + 1
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AS-Chap. 3.6 - 18

Average charge on the island as a function of the applied gate voltage 
 Quantized in units of 2𝑒 (no coherence yet)

3.6.4 Coherent Charge and Phase States

First experimental demonstration of coherent superposition charge states by Nakamura, 
Pashkin, Tsai (1999, not this picture)

Coherent charge states
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AS-Chap. 3.6 - 19

Coherent phase states
 Interaction of two adjacent phase states
 Example is rf SQUID

magnetic energy

of flux 𝜙 =
Φ0

2𝜋
𝜑 in the ring 𝚽𝒆𝒙𝒕 = 𝚽𝟎/𝟐

Tunnel coupling 
Experimental evidence  for quantum coherent superposition (Mooij et al., 1999)

3.6.4 Coherent Charge and Phase States
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AS-Chap. 3.6 - 20

Violation of conservation of energy on small time scales, obey Δ𝐸 ⋅ Δ𝑡 ≥ ℏ

 Creation of virtual excitations
 Include Langevin force 𝐼𝐹 with adequate statistical properties
 Fluctuation-dissipation theorem

𝐸 𝜔, 𝑇 = energy of a quantum oscillator

 Transition from “thermal” Johnson-Nyquist noise to quantum noise:

classical limit (ℏ𝜔, 𝑒𝑉 ≪ 𝑘𝐵𝑇):

quantum limit (ℏ𝜔, 𝑒𝑉 ≫ 𝑘𝐵𝑇):

3.6.5 Quantum Fluctuations

vacuum
fluctuations

occupation probability
of oscillator (Planck distribution)
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AS-Chap. 3.6 - 21

Escape of the “phase particle” from minimum of washboard potential by tunneling

 Macroscopic, i.e., phase difference is tunneling (collective state)
 States easily distinguishable

Competing process

 Thermal activation
 Low temperatures

Neglect damping

Dc-bias  Term −
ℏ𝐼𝜑

2𝑒
in Hamiltonian

Curvature at potential minimum:

(Classical) small oscillation frequency:

3.6.6 Macroscopic Quantum Tunneling

𝑖 = 𝐼/𝐼𝑐

(attempt frequency)
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AS-Chap. 3.6 - 22

Quantum mechanical treatment 

 Tunnel coupling of bound states to outgoing waves  Continuum of states
 But only states corresponding to quasi-bound states have high amplitude 
 In-well states of width  Γ = ℏ/𝜏 (𝜏 = lifetime for escape)

Determination of wave functions 

 Wave matching method
 Exponential prefactor within WKB approximation
 Decay in barrier:

decay of wave function of 
particle with mass M and 
energy E

3.6.6 Macroscopic Quantum Tunneling

for 𝑈 𝜑 ≫ 𝐸0 = ℏ𝜔A/2

mass effective barrier height
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AS-Chap. 3.6 - 23

Constant barrier height  Escape rate

Increasing bias current 

𝑈0 decreases with 𝑖  𝛤 becomes measurable

Temperature 𝑇⋆ where 𝛤tunnel = 𝛤TA ≈ exp −
𝑈0

𝑘𝐵𝑇

for 𝐼 > 0: 
For 𝜔p ≈ 1011 𝑠−1

 T* 100 mK

very small for 𝑖 ≃ 0

3.6.6 Macroscopic Quantum Tunneling

for 𝐼 ≃ 0:
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AS-Chap. 3.6 - 24

Junction couples to the environment (e.g., Caldeira-Leggett-type heat bath)

 Crossover temperature 𝑘𝐵𝑇
⋆ ≈

ℏ𝜔R

2𝜋
with 𝜔R = 𝜔𝐴 1 + 𝛼2 − 𝛼 and 𝛼 ≡

1

2𝑅N𝐶𝜔A

 Strong damping 𝛼 ≫ 1 𝜔R ≪ 𝜔A Lower 𝑇⋆

 Damping suppresses MQT

3.6.6 Macroscopic Quantum Tunneling

Additional topic: Effect of damping

lightly damped
(small capacitance)

moderately damped
(larger capacitance)

After: Martinis et al., Phys. Rev. B. 35, 4682 (1987).

𝜔
R
/𝜔

A

𝛼
10310−1 10 105

1.0

0
10−3

0.8

0.6

0.4

0.2

Phase diffusion by MQT
See lecture notes
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AS-Chap. 3.6 - 25

Charge regime at 𝑇 = 0

 Coulomb blockade  Tunneling only for 𝑉CB ≥
𝑒

𝐶

Flux regime at 𝑇 = 0

 Flux blockade  Flux motion only for 𝐼FB ≥
Φ0

2𝜋𝐿c

Classical description only in the phase regime (large junctions): 𝐸𝐶 ≪ 𝐸𝐽0

For 𝐸𝑐 ≫ 𝐸𝐽0:  quantum description (negligible damping):

Phase difference 𝜑 and Cooper pair number 𝑁 =
𝑄

2𝑒
are canonically conjugate variables

phase regime: Δ𝜑 → 0 and Δ𝑁 → ∞
charge regime: Δ𝑁 → 0 and Δ𝜑 → ∞

At 𝐼 < 𝐼c
 Escape out of the washboard by thermal activation or macroscopic quantum tunneling

TA-MQT crossover temperature 𝑇⋆

Summary (secondary quantum macroscopic effects)


