Repetition

Current-phase and **voltage-phase** relation are classical, but have quantum origin (macroscopic quantum model)

 \rightarrow Primary quantum macroscopic effects

Quantization of conjugate variable pairs such as (I, V) or (Q, φ)

 $\mathcal{H} = -4E_C \frac{\partial^2}{\partial \varphi^2} + E_{J0}(1 - \cos\varphi)$

 \rightarrow Secondary quantum macroscopic effects

Canonical quantization, operator replacement

$$\frac{\hbar}{2e}Q \to -i\hbar\frac{\partial}{\partial\varphi} \qquad \qquad p \to -i\hbar\frac{\partial}{\partial x}$$

$$ightarrow$$
 Hamiltonian for single JJ

Commutation rules $\rightarrow [\varphi, Q] = i2e$; $[\varphi, N] = i$ or $[\varphi, \frac{\hbar}{2e}Q] = i\hbar$

 $N \equiv Q/2e$: deviation of the CP number in the electrodes from equilibrium

Heisenberg uncertainty relation $\Delta N \cdot \Delta \varphi \geq 1$

... Motivation

More than quantization effects \rightarrow Coherence, superposition, entanglement

→ Superconducting circuits offer quantum resources!

Applications in Quantum information processing, simulation & communication Tests of fundamental quantum mechanics

\rightarrow Experimental challenges:

Ultralow-power measurements & millikelvin cryotechnology

... Millikelvin temperatures

Dilution refrigerator

Continuous cooling method using a liquid mixture of ³He and ⁴He

- → Phase separation below $\simeq 900 \text{ mK}$ (Concentrated & dilute phase)
- → In dilute phase $\simeq 6\%$ ³He even for $T \rightarrow 0$

- \rightarrow Pump on dilute (heavy) phase
- \rightarrow Remove mainly ³He
- ightarrow 3He has to diffues from concentrated phase over the phase boundary
- \rightarrow Cooling power (heat taken from environment)

 \rightarrow Can easily reach 20 – 50 mK \rightarrow Suitable for investigating quantum junctions

... Millikelvin temperatures

Dilution refrigerator

WMI-made microwave-ready dilution refrigerators

Qubit lab wet cryostat → wired and in operation

Cirqus lab wet cryostat → wired and in operation since 2013

K21 lab dry cryostat (very large) → in operation since 2014

Making quantum junctions is demanding from a technological point of view
 Advanced nanofabrication techniques required!

Materials for superconducting circuits

Typical superconductors

\rightarrow Nb

- → Type-II superconductor, $T_{\rm c} \approx 9 {\rm K}$
- ightarrow Fast measurements at 4K possible
- \rightarrow Shadow evaporation for nanoscale junction not possible

\rightarrow AI

- ightarrow Type-I superconductor, $T_{
 m c} \approx 1.5 {
 m K}$
- \rightarrow Measurements require millikelvin temperatures
- \rightarrow Shadow evaporation possible (stable oxide)

Normal metals

- \rightarrow Mainly Au (no natural oxide layer)
- ightarrow For on-chip resistors and passivation layers

Dielectric substrates

- \rightarrow Silicon, sapphire
- \rightarrow Contribute to dielectric losses (T_1)

Micro- and nanopatterning of superconducting circuits

Lithography

- \rightarrow Define pattern
- \rightarrow Optical lithography (UV)
- \rightarrow Electron beam lithography (EBL)

Thin-film deposition

- \rightarrow Deposit materials
- \rightarrow DC sputtering (metals)
- \rightarrow RF sputtering (insulators)
- \rightarrow Electron beam evaporation (metals)
- \rightarrow Epitaxial growth (Molecular beam epitaxy)

Processing

- \rightarrow Positive pattern \rightarrow Lift-off
 - ightarrow Deposit material only where you want it
- → Negative pattern → Etching
 - \rightarrow Deposit material everywhere
 - \rightarrow Remove what you don't want

Submicron dimensions

- ightarrow EBL instead of optical lithography
- ightarrow Same principle, but resist and exposure different

T. Niemczyk, PhD Thesis (2011)

Etching process

- \rightarrow Example: Superconducting transmission line (Nb)
- \rightarrow Etching technique for well-defined edges \rightarrow Minimize microwave losses

Submicron dimension

- \rightarrow EBL instead of optical lithography
- \rightarrow Same principle, but resist and exposure different

T. Niemczyk, PhD Thesis (2011)

Lift-off process

 \rightarrow **Example:** Au on-chip wiring for Al junctions and SQUIDs

Etching vs. Lift-off process

	Lift-off	etching
Well-defined edges (no "teeth")		-
Resist choice independent from film growth process		
Remaining substrate undisturbed		

Challenges in micro- and nanofabrication

- \rightarrow Complex procedure with large parameter space
- ightarrow Optimization requires controlled and reproducible conditions
- \rightarrow Cleanroom
 - \rightarrow Low number of dust particles due to special filters & air conditioning
 - \rightarrow Controlled temperature and humidity

ightarrow Small changes to a working process can have a huge impact on the result

→ Highly systematic step-by-step approach mandatory!

Spin coating

Goal \rightarrow Cover substrate with uniform layer of lithography resist

Principle

- ightarrow Distribute resist drop by fast rotation of the substrate
- ightarrow Substrate is held in place by vacuum chuck

Simple spin coating model

Complex process \rightarrow Simplifying assumptions

- \rightarrow No resist solvent evaporation
- \rightarrow Infinitely large substrate
- \rightarrow Applied liquid radially symmetric
- \rightarrow Gravitation and Coriolis effects negligible
- → Newtonian liquid (linear shear forces)
- ightarrow Appreciable shear resistance only in horizontal planes

$$F_{\rm centrifugal} = F_{\rm viscous\,resisting}$$

$$\rho\omega^2 r = -\eta \frac{\partial^2 v_{\eta}}{\partial z^2}$$

 $\begin{array}{l}\rho \rightarrow \text{resist density}\\\eta \rightarrow \text{resist viscosity}\\v_r \rightarrow \text{radial velocity}\\h \rightarrow \text{liquid surface}\end{array}$

Integrate with boundary conditions $v_r(z=0) = 0$ and $\frac{\partial v_r}{\partial z}\Big|_{z=h} = 0$

$$v_r = \frac{\rho \omega^2 r}{\eta} \left(-\frac{z^2}{2} + hz \right)$$

A. G. Emslie et al., J. of Appl. Phys. 29, 858-862 (1958)

Overview

 $v_r = \frac{\rho \omega^2 r}{\eta} \left(-\frac{z^2}{2} + hz \right)$

Radial flow per unit length of circumference

$$q_r = \int_0^h dz \ v_r = Krh^3$$
 $K \equiv \frac{\rho\omega^2}{3\eta}$ $q_\theta = q_z = 0$

Equation of continuity (cylindrical coordinates)

$$\frac{\partial h}{\partial t} = -\nabla \begin{pmatrix} q_r \\ q_\theta \\ q_z \end{pmatrix} = -\frac{1}{r} \frac{\partial (rq_r)}{\partial r} = -\frac{K}{r} \frac{\partial}{\partial r} (r^2 h^3) \qquad \nabla F(r,\theta,z) = \frac{1}{r} \frac{\partial (rF_r)}{\partial r} + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$$

Strong tendency to flatten for arbitrary initial surfaces $\rightarrow h(r,t) = h(t)$

$$h(t) = \frac{h_0}{\sqrt{1 + 4Kh_0^2 t}} \qquad h_0 \equiv h(t = 0) \text{ is initial thickness}$$

Include evaporation \rightarrow Practical importance, more complicated model

Typical thickness $\rightarrow 50 \text{nm} - 1 \mu \text{m}$

A. G. Emslie et al., J. of Appl. Phys. 29, 858-862 (1958)

.4 mm

25.

Resist surface defects

Edge beads

→ Real substrate has finite size
 → Resist thicker near substrate edges
 → Either removal with special mask
 → Or cut small chip after spinnig large substrate

Photograph

Reflectometry measurement

Fingers → Not enough resist volume

Air pockets

→ Resist not applied smoothly

Comets
 → Dirt particles on the substrate

F. Sterr, Diplom Thesis (2013)

Resist surface defects

Striations

- ightarrow Wavy radially oriented resist thickness fluctuations
- \rightarrow Period: 50 200 μ m, height: few tens of nm
- → Local evaporation efficiency variations during the transisiton from the flow-dominated to the evaporation-dominated regime
- → Prevention: Increase spin speed, IPA atmosphere, careful resist handling

F. Sterr, Diplom Thesis (2013)

Limits of optical lithography

Abbe diffraction limit for far-field imaging systems

$$d = \frac{\lambda}{2(n\sin\theta)} \ge \frac{\lambda}{3}$$

Numerical aperture

(1.4 in modern optics)

- $\lambda \rightarrow$ wave length
- $n \rightarrow$ refractive index

 $\theta \rightarrow$ convergence angle

 $d \rightarrow \text{spot size}$

UV light $\rightarrow d$ is few hundreds of nm, in practice often $1 - 2\mu m$ \rightarrow Use accelerated electrons instead

Advantages

→ At 30 kV acceleration voltage $\lambda_e = h \sqrt{2 e V m_e} \approx 0.007 \mathrm{nm}$

- \rightarrow In practice, $d \approx 1 \text{ nm}$ because electrons interact with the substrate
- \rightarrow "Electron optics" available (magnetic and electrostatic lenses)

Disadvantages

- \rightarrow Technical complication
- \rightarrow Lower throughtput
- ightarrow Higher cost of operation

Working principle of electron beam lithography (EBL)

Old WMI EBL system: Philipps scanning electron microscope (SEM) XL30sFEG extended with a Raith laser stage

F. Sterr, Diplom Thesis (2013)

Working principle of electron beam lithography (EBL)

New WMI EBL system

- \rightarrow Nanobeam nb5
- \rightarrow Up to 100 kV acceleration voltage
 - → Strongly reduced "natural" undercut from backscattered electrons
 - → Undercut now deliberately designed during the process
- \rightarrow Large beam current \rightarrow Fast
- → Few nm resolution (in practice mostly resist limited)
- → Heavily automated (operated "from the office")
 - → Advantage: fewer user-dependent parameers in the process
 - \rightarrow Better reproducibility

Shadow evaporation

Key fabrication technique for Al/AlO_x/Al Josephson junctions with submicron lateral dimensions

J. Schuler, PhD Thesis (2005)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Evaporation of the first Al layer

Courtesy of J. Schuler

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Evaporation of the second Al layer

Courtesy of J. Schuler

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

After resist removal (liftoff)

F. Deppe *et al.*, Phys. Rev. B 76, 214503 (2007) T. Niemczyk et al., Supercond. Sci. Technol. 22, 034009 (2009)

2 µm

