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Deppe, and K. Fedorov © Walther-MeiBner-Instit

Marx, F.

R. Gross, A.

6.2
Introduction to
quantum information
processing
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Information
Information has

uncertainty!

— Shannon entropy

- Measure of this
uncertainty

— General concept (similar to energy)

- Many forms: Mechanical, thermal,
electric, ...

— Can be packed into equivalent forms:

01 NG |

- Information is physical (Landauer 1991)
- Ink on paper
Charge on capacitor S ri)li= = x)lo X
Currents in leads [P( )] Zx:p( ) &2 P( )
Spins

Can be quantified: The random
variable X distributed according to

p(x) contains the information

E.g., in the process of throwing a dice
one may gain the information

AS-Chap. 6.2 -2
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Konrad Zuse (1945)

—> Built the first binary digital
computer (,Z1“) in 1938.

—> First programmable
electromechanical computer
(,Z3“) completed in 1941.

- Developed the first algorithmic

programming language
(,,Plankalktl®).

AS-Chap. 6.2 -3
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John von Neumann (1945)

- Proposed the EDVAC computer in
1945.

- Introduced the concept of a
computer that is controlled by a
stored program.

AS-Chap.6.2-4
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The ,,electronic
numerical integrator
and computer” (ENIAC,
1946)

'''''

— Built at the University of Pennsylvania
— 18.000 vacuum tubes

- Weight of 30 tons

- Space of 160 m?

- Required 6 operators

Left to right:
H.Wexler, J. von Neumann, M. H. Frankel,
J. Namias, J. C. Freeman, R. Fjortoft,

F. W. Reichelderfer, and J. G. Charney. s Chap. 5
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Moore‘s law

In 1965, Moore observed an exponential growth in the number of transistors per
integrated circuit = Prediction: trend continues

Moore’s Law — The numbel ot transnstons on mtegmted mcunt clups (1971 z()18) Our World

Moore's nw desortd the empincal regulonty ittt o doubles approximate

in Data

—— Thiv advancernent iy inportant gz olber aspects of technologheal progress — such as processing speed or the price of el odoet
finked to Moare's law
50.000.000,000
10.000,000,000 ’ Ko Mapeet ‘ g
5,000,000,000 ‘.39 ‘
il T e". .
1,000,000,000 3 °
s i SO
500,000,000 SR Z ke G L v
- DAY
s 24
100,000,000 oo &, N
- 50,000,000 ’ g i o0 oun o
& 10,000,000 Wi »
| R ,,,Q'.
& 5,000,000 ° ’ ’
® M g
=
1,000,000 "o S
500,000 LEHEREGe s, o
° e ®
& b *
100,000 - *
B 0 .
e ® o A3
40 o g
10,0 ° : _' t °
5,000 i M
) viw ez, Q. :
1970 g
1,000
A AV 4k & o P b oo o g0 B ‘o 2
- ) ¥ . NS K] & £ { {
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Complexity of a ,,yes/no“-problem

Example: Is m a prime number?

—> Expressed in terms of required resourses (memory space & computing

time) as a function of the problem size N

=> Prime number factorization 2 N = log, m (number of bits)

L Logarithmic memory space O(InN)
PSPACE | Polynomial memory space O(In N")
Chess computer
P, QP Polynominal execution time O(N"‘)
Multiply two numbers 2 O(N?)
NP Not solvable in polynominal time
Travelling salesman problem
EXP Exponential execution time 0(kM)
Simple factorization ~ 2N/2
Easy: 7919x 17389 ="
Hard: 137703491 = ?

Time - n° of operations

10°

10° +

°
) Q@ exp(N)
°o o N
°
)
Q994
° 00000000°°°°
000°°°
)
® .o
%9
o9
3
10 20 30
n° of digits

Known relations between the complexity classes > L € P € NP € PSPACE € EXP

AS-Chap.6.2-7
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Integer factorization - NP hard on classical computer!

Quantum computer

Classical computer (clock 100 MHz)

10" — . - - 10°
- 2048 bits 1
1012: 4096 bits @
i N 10°F
10°F O :
— i O —_ 2048 bits @
£ [ 1024 bits & 2
o 10°f » ¢ 5 10
= i I= 1024 bits @
0°r <
- 10°
10°F 512 bits @
L 512 bits
2000 2010 2020 2030 100 1000 10000
year of fabrication n° of bits

® Algorithm is known, but it takes too long

© Exponential speedup by quantum algorithm (Shor)
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Integer factorization

Best known classical algorithm (number field sieve)

1 2
- Required time « exp [2(ln m)3(In(In m))g]

—> Exponential in bit number N = log, m

A\ }Ni
AN e\
- Factorization of 400-digit decimal takes =~ 101 years Peter W. Shor

Digits in Largest Known Prime by Year
(computer age)

Shor quantum algorithm (Peter Shor, 1994) 10000000 1 3
- Required time o« (Inm)3 o B
—> Factorization of 400-digit decimal takes a o | o’
fewyears e
10000 + o
. ' ' . . .
Largest known prime number (2017): ool o | e
2742072811 5 22 338 618 - digit decimal o

- Quantum algorithms can reduce the execution time to human timescales, where
classical algorithms would take ,forever” in terms of these timescales!

AS-Chap.6.2-9
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campie:nmersceng o s ([{[[{] - (11111

N = 1000 - Dimension of Hilbert space = 21°°° > number of atoms in universe

Richard Feynman (1981):

“...nature isn’t classical, dammit, and if you want to make a
simulation of nature, you'd better make it quantum

mechanical, and by golly it's a wonderful problem because
@/ it doesn't look so easy.”

Quantum simulation > Encode the dynamics of a difficult-to-access
guantum system in another quantum system, which
can be more easily accessed

Example — Dirac dynamics of a relativistic electron in
(nonrelativistic) trapped ion system
(Nature 463, 68-71, 2010)

Advantage - Less demanding than a universal quantum computer

AS-Chap. 6.2 -11
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Exploitation of new functionalities

field electronics opto . fluxonics | mechatronics | spintronics
electronics
degree of charge charge charge charge charge
freedom + + + +
optical fluxonic mechanical | spin degree
degree of degree of degree of of freedom
freedom freedom freedom
> <
§ ~
RSFQ-Logic MRAM
ultrafast AD-converters GMR read heads

..... spin transistor

AS-Chap. 6.2 -12
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today near future
- =
multi single
elec”pin, ele pin,
fluxo oton fluxo oton
devices devices
classical quantifiable,
description but not guantum

%\Q

tunneljunctions \1 %
N\

©)

gate

1 um

65 nm process 2005 single electron transistor

far future

quantum

elec”pin,
fluxo oton

devices

quantum

description

superconducting qubit
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& —
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Classical

p(t)

ﬂ
O/’; 5

A

Point on a classical trajectory

x(t) and p(t) can be measured
simultaneously at arbitrary precisions

No noise 2 (Ax) = (Ap) =0

Classical noise
— Probability distribution
- Nonnegative

Quantum mechanical

muv?

— V(r)] dt

B
1
Ppath = %f >
A

Yp = z exp[igopath]lPA
paths

Quantum parallelism
= Superposition of states
- Entanglement of states

Vacuum noise (quantum)

- (Ax)(Ap) = h/2

— Quasiprobability distribution

— Can become negative (e.g., Fock states)

AS-Chap. 6.2 - 15
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Superposition of (basis) states

A quantum degree of freedom is described
through a wave function.

Entanglement between states

Two quantum degrees of freedom can
exhibit stronger correlations than any
classical system.

Ruth Bloch, bronze, 27" (2000) (“Superposition between Hilbert spaces”)

AS-Chap. 6.2 - 16
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Not entangled, separable (product) states: ¥) = ¥R W)

(Quantum) Entanglement |¥) # |¥;)&Q |¥,)

Uniquely quantum mechanical property of a composite system

No/restricted knowledge on
subsystems despite perfect
knowledge on combined system

— Quantum correlations

Entanglement between spatially separate subsystems
= Quantum teleportation
- Quantum communication
- Quantum illumination (radar)
= Quantum cryptography

AS-Chap. 6.2 - 17
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6.2 Introduction to QIP

Realization of a quantum two-level system

Natural systems:

Effective systems:

AE

- Natural spins [1), |T)
- Orthogonally polarized light |1), |<)

- Isolate two levels from a manifold structure
Mechanisms: Energy separation, selection rules, ...
- Requires nonlinearity!

3)

Other system states

2)

e)

Two-level system

|g)

AS-Chap. 6.2 - 18
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microscopic

quantum optics NMR
trapped ions

— _ -

Oxford, Stanford,
IBM,MIT...

ENS Paris

easily quantum,
but difficult to scale

meso- and
macroscopic

solid state devices

scalable,
but not easily quantum

AS-Chap. 6.2 - 19
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ad
=
=
afd
[7)]
o
(=]
L
[}
c
7]
=
L
[}
=
=

R. Gross, A. Marx, F. Deppe, and K. Fedorov

single particle states
semiconductors

 nuclear spins of P in Si (Kane)

s ooy

s ‘% 3

W »
'
'

" Chalmers

Q uantrom

global states
superconductors

» superconducting flux, charge, phase,
charge-phase qubits

T ———

\ Ve
¥

/_,_/"——
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Classical bits
0,1

E.g., implementation by
charge states

# ¥

0:Q=0 1: Q=Q,

Basic gates:

Single-bit-gate: NOT

Two-bit-gates: { AND
OR

Quantum bits

|W(t)) = cos (E) le) + e!’sin <§> |g)

Implementation by
any quantum two-level system

Persistent
current

Polarization

Spin

Basic gates:

rotations

Single-qubit-gate: {Hadamard

Two-qubit-gates: C-NOT

AS-Chap. 6.2 -21
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Classical computer: Bits & gates

Bits = Capacitors
V=0->0
T U>0>1

Example for a single-
bit gate > NOT Ve

Input output
V

&g

7 4

Si-wafer

Example for a two-bit
gate 2 AND

I;}__4

Input

v, 4|

Gates = transistors

Ve=0 - closed
V>0 > open

AS-Chap. 6.2 - 22
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6.2 Introduction to QIP

Universality theorem

A small number of Single-bit gates (e.g., NOT) and two-bit gates allows for any
manipulation on classical bits (universal set)

Truth tables for various 2-bit gates

f(a,b)

T ()

(a,b) AND NAND OR NOR EQUIV XOR
0 0 () l () | | ()
= a
0 () 2 1 () () 1
Q
i Ol i ad ) 0 b

Examples

a OR b = (a NAND a) NAND (b NAND b)

a AND b = (a NAND b) NAND (a NAND b) —

NOT a = a NAND a

OR, AND, NOT
also form
universal set

AS-Chap. 6.2 - 23
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Irreversible classical logic (1940 - current):

Logical irreversibility
- No ability to reconstuct the input from the output
Physical irreversibility

— Heat dissipated during a gate operation

Intimate connection
—> Increase of entropy due to loss of 1 bit of information, AS = kgzln2

—> Dissipative heat = Irreversibility

Si-based computers
- Way above the ideal limit by a factor
- 1010 (transistor)
- 100 (DNA copying mechanism in human cell)

—> Discussion somewhat academic
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Reversible classical logic (Bennett, 1973)

Conditions

- Absence of physical dissipation

- Number of output bits equals to number of inputs

— Gate produces all input combinations at output

f(a,b)

a a

2

f(a,b)

,aNAND b ,aXORb :
m (3, a ) | (3,3 ) CNOT gate (reversible XOR)

(0,0)
(0,1)
(1,0)
(1,1)

(0,1)
(0,1)
(1,1)
(1,0)

Intrinsically
irreversible

(0,0)

u I ' | b
(0,1) 4 & s ofol olo

(1,1) L0 1 1

10 00 1] 1[0
(1'0) [u 10 uJ

0 o001

0 o0 1 0

Logically
reversible
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Three-bit gates (Bennett, 1973)

Universality — Reversible logic requires three-bit gates

Toffoli gate —> Controlled CNOT gate (CCNOT)
—> Applies a NOT to bit c when both bit a and bit b are “1”

- Some two-bit gates are intrinsically irreversible (e.g., NAND)

— Third bit required to store input safely

AS-Chap. 6.2 - 26
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Definition of a quantum bit

au__7

Classical bit = Deterministic, either in ground state “g” or in excited state “e”

Quantum bit (qubit) = Superposition of two computational basis states
(P () = a(®)lg) + b(t)|e) AZ

a(t),b(t) € C with l[a@®)|?* + |b@®)|* =1
— All states can be visualized on the
surface of a sphere

Global phase unobservable
—> Bloch sphere representation

|W(t)) = cos <@> le) + e??(® sin <?> |g)

2

Bloch angles
6(t) - Amplitude = Energy, population
@(t) = Phase > Coherence
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Linear algebra notation of operators and state vectors

Qubit states can be written as vectors

ale) + b|g) > a(é) +b((1)) = ()

Qubit operators (gates) can be written as matrices

ale)e| + blg){g| + cle)(g| + dlg){el

9a(é)(1 O)+b((1))(0 1)+c((1))(0 1)+a((1))(1 0) =

d b)

AS-Chap. 6.2 - 28
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Pseudo spin and Pauli matrices

¥ (t)) = cos <@> le) + e?(® sin <@> lg)

Pseudo spin

= |¥) equivalent to spin wavefunction in external
magnetic field

Unitary operations

> U|¥) expressed via the Hermitian Pauli spin matrices 1, 6, 0y, 0y

=0 ) 4= D 4=C ) 2=} %)

| |g) and |e) are the eigenvectors of 7, |

AS-Chap. 6.2 - 29
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Conventions: Pauli matrices and Bloch sphere

iz(é (1)) 6x5((1) (1)) 63,5(? _Ol) 625((1)

These definitons contain several conventions, such as

—> The global scaling factor
—> The positon of the minus sign in o,
—> Here, we show two examples with fixed o,

- Physics convention = |g) = ((1))’ le) = ((1))

— Ground state energy negative (more ,physical”)

Information theory (IT) convention

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press

>10=(). =)

- Ground state energy positive (,,unphysical”)
—> Easily generalized, more ,logical”

|¥(t)) = cos (9(;)) |0) + ei®® sm( ( )> |1)
= Unless otherwise mentioned = Physics convention!

- Formal resolution = Equate |g) to [1) and |e) to |0) = Used in this lecture!
AS-Chap. 6.2 - 30
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Important states on the Bloch sphere

Physics .z

8)

Lp( — g Lo o3 9
|P(t)) = cos > le) + e'? sin > lg)

1)

Lp()_ 90 i§0'€1
| t)—cos2 |0) + e sm2 |1)
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Interpretation of the Pauli matrices

=0 1) %=(Q o &=( ) &= 2)

— The Pauli matrices can expressed in terms of projection operators

=)
I

G, = |le)g| - Puts an excitation into the qubit

a_ = |g)el - Removes an excitation from the qubit

0y =0_+ 0y
- Induce transitions between |g) and |e)

6, = i(6- — 8,)
G, = |eXe| — lg){g| > (6,) gives the qubit population
1 =|g)g| + le){e] > Reflects normalization

- Combination of basis definition and operator description in terms of
projection operators = Matrix from of operators
= In this lecture, we fix the matrix definitions of the Pauli matrices
—> “Physical” intuition in {|g), |e)}-notation

— | e)
—Qei= |g)
@ |c)

S [ )

@~ |e)

—— |c)
—Q=— [g)

- Notation consistent with Nielsen & Chuang and most physics papers!
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Single qubit gate

Rotation matrices

- Around x-axis

- Around z-axis

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBner-Institut (2001 - 2020)

> Ry (a)

- Around y-axis -2 I?y(a)

Definition of a single qubit gate

e

e

- Unitary operation U on state |¥)
— Described by rotations on Bloch sphere + global phase

% cos= i sin—

x 2 2
- A/ a
—isin-  COs7

2

o a .«
iagy COS— —SIn—
> 2 2

. a

sm; COS —

2

A _laog —ia/2
SR(@)=e 2 = (e w0 )

0 eioc/Z

Why? General unitary expressed by rotations

> U =e“R,(BR,(y)R,(6) with e, B,y,6 €R
- Z-Y decomposition (others possible)
- ¢ is a global phase (unobservable)
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Examples for 1-qubit gates

L 0 : i 1—i
| ) VNOT VX %(”l)

[dentitit
0 1

(
(() 1

1
NOT X ’ Hadamard H L b
- 1 0 Ea WML = 1

Y |

0 — | 1 0
Pauli-Y < , 1> Phase (vZ) S ( )
.0 0 1
| | 10 o , 10
Pauli-Z 7 (() B l) m/8 (V5) d (() ei”/">

Graphical representation example

NOT a D —a

Matrix representation (taken from Ql theory books) typically follow IT convention!
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Hadamard gate H is of particular importance

—> Applied to one of the basis states |g) or |e), it results in a superposition state of
the basis states

~ 1 1 ~
H \/E(i _11) = E(Ux + 6,)

N4
€)

— Physics convention

1
H =—{(leXe| — [gigl + leXg| + [g)el)

V2
Alg) = — (o) -
g —ﬁ(e 1g))
R 1
Hle) = \/_§(|e> +18))

8)
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Quantum coherence

2

0(t) = Amplitude = Energy, population
@ (t) = Phase > Coherence

¥ (t)) = cos (@) le) + e sin (@) lg)

Ideal quantum system

- Completely isolated
= In reality, however, ...

Environment must interact with |¥(t)) for control

Uncontrolled interactions (noise) also exist

Quantum effects (population oscillations, quantum interference, superpositions,
entanglement) unobservable after characteristic time

Decoherence time Tgec

After Tyec, quantum effects have decayed to 1/e of their original level

T4ec is a time scale rather than a strict time

Term “decoherence” originally only referred to phase

Nowadays sloppily comprises both phase and amplitude effects

N 20 28 20 2 2\ 7

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBner-Institut (2001 - 2020)
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Energy and phase relaxation

2

0(t) = Amplitude = Energy, population
@ (t) = Phase > Coherence

¥ (t)) = cos (@) le) + e sin (@) lg)

Population => Energy relaxation time T; or T;
2 kgT K hwge =2 decay from |e) to |g)
- Nonadiabatic (irreversible) processes
= Induced by high-frequency fluctuations (v =~ wge)

Phase = Pure dephasing time T,
- Adiabatic (reversible) processes
= Induced by low-frequency fluctuations (w — 0)
- Often encountered: 1/f-noise
—> Real measurements always contain T;-effects
T, 1 =QT) 1+ qul

Nomenclature is not very consistent in literature!
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From single to multi-qubit systems

Single qubit (IT) 2> W) = c1]10) + c,|1)

Two qubits (IT) 2 W) = c1100) + ¢,]|10) + c3|01) + c4|11)
(1\ /n\
1

w = (@) -{o] m=()e()-

7\ \0/ \::/

Tensoriroduct (()\ (”\
w = ORG)-[]| =)0
\()) \1 /
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Two-qubit operators

.'4 ":;;j;:i' B — (

(n(

(i

A1 Ai2\ _ (Bi1 Big) _
Aoy Ass) "\ By By

Bi1 Bio
Ba1 Bas
By Bya
Bay1 B

) o
) o

By 31‘2)\

Bs1 Bos

By Bio
Boy Bao

- Tensor product (blockwise product) of single qubit operators
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The Bell states

— The Bell states are of particular importance in many QIP protocols

— Created via a Hadamard and a CNOT gate

A

2

€

|Bxy)
1Boo) = — (100) + [11))
ﬁOO — \/E

1
1Bo1) = ﬁ(lm) +110))

1
1B10) = ﬁ(lOO) —[11))

1
1B11) = \/_i(l()l) —10))

-
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Einstein-Podolsky-Rosen (EPR) paradoxon

Example: Two spins Alice .‘. .‘ Bob

Uncorrelated: 4 product states |TT>, |Tl>, |J,A>, |J,J,>

Correlated: Linear combination of

1
roduct states l'IJ e — Asl« i J«T
F; Entatng:cletment | ) \/E (l ) | >)

— Alice and Bob perform measurements in z-direction on the entangled spins

- Suppose: Alice first measures her spin and finds |T) (50% chance)

- Then: Bob always measures his spin [) (100%), although he may be
far away from Alice 2 Quantum mechanics is nonlocal !

- Repetition of the experiment
— Always the same result = The two entangled spins are fully correlated
- Heisenberg relation violated if conjugate quantites measured by Alice and Bob (,,EPR
paradox”)?
- No, Bob’s measurements in x- or y-direction yield equal probabilities
- Superluminal information exchange?

—> Only if quantum copying (,,cloning”) was allowed
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No-cloning theorem

Classical bits can be copied easily: C 2> CC

Quantum bits (quantum states) cannot be copied = No-cloning theorem

> Proof: Assume that there is a unitary transformation U producing copies
of |a) and |B)
Ula0) = |aa) and U|S0) = |BB)

- However, the quantum copying machine fails in copying state
1
[v) =% () + [BY)

L
V2

Combination of the EPR paradox and the no-cloning theorem

Uly0) = —=(laa) + |8B)) # lyy)

—> Rescues the consistency between quantum mechanics and special relativity
- No superliminal communication!
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Quantum teleportation

- No-cloning theorem forbids copying state |¢) = a|T) + b|l)

- However, vanishing at one place and reappearing at another is allowed

- Teleportation

- Teleporting a quantum state (qubit) requires that Alice and Bob share an entangled

state |lPAB> = \/_1§(|’N/> + |iT>) (”EPR pair”)

Teleportation protocol

1. Alice entangles her spin |T) with the
unknown state |¢)

2. Alice measures what state her two spins are and

tells Bob, which of the four possible results TT Tl, @ l,i,

she has found

— Classical communication
3. Bob carries out the appropriate rotation of his spin |T) by Bob “>
4.  As a result, Bob ends up with his spin in the state |¢) = a|T) + b|l)
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Quantum gates

Intrinsically reversible

- Any irreversible manipulation would be associated with heat dissipation
—> Destruction of quantum coherence

- Universal set of gates = E.g., single qubit rotations and CNOT

- Three-qubit Toffoli is required (also important for quantum error correction)

Represented by unitary transformations
- Normalization = length of state vector (on Bloch sphere) stays constant
—> Reversibility requires that matrix can be inverted

- Complex matrix elements, since components of spinor are complex
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SWAP gate
a l o /L b
b as T an a
resp.
a b
) I a
Interchange

(1 0 0 0)

0 0 0

0 0 0
\0 0 0 1)
al|lbl| a'|b
olol o] o
o|l1|f1 |0
1{o|f0 |1
s |

ofaandb

|

1L 0 0 0
a1 0 0
0 00 1
0 01 0

a
'?l’- adh

|

CNQT gate
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6.2 Introduction to QIP

Universal quantum processor: Required elements

qubit
(two-level
guantum system)

U,

single qubit gate

2 qubit gates (e.g., C-NOT)

(controlled interactions)

[T =

read out
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6.2 Introduction to QIP

Initialization

Preparation of superposition

states

Example: 3 bit system

Computational steps

- Unitary transformations
- Single-qubit gates
- Two-qubit gates

- Program

- Parameters

Quantum error correction

Readout

J
J

J

Final state

10>Q |0>®....0 |0>®

10>+ [1>® [0>+ |1>®...8 |0>+ |1>

|Y>=a|000>+ b|001>+ c|010>+ d|100> +
e|011>+f|101>+g|110>+ h|111>

Quantum algorithm
- Factorization (Shor)

- Database search (Grover)
2> .

E.g., Shor, Steane, surface
code, cat code
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DiVincenzo criteria for scalable QIP

* Qubits:
The system has to provide a well defined two-level quantum system

* Preparation of the initial state:
It must be possible to prepare the initial state with sufficient accuracy

* Decoherence:
The phase coherence time must be long enough to allow for a sufficiently

large number (typically >10%) of coherent manipulations

* Quantum gates:
There must be sufficient control over the qubit Hamiltonian to perform

the necessary unitary transformations, i.e., single- and two-qubit operations

* Quantum measurement:
For read-out of the quantum information a quantum measurement

is needed

* Scalability:
There should be the possibility to increase to number of qubits

D. DiVincenzo, The physical implementation of quantum computation,

Fortschr. Phys. 48, 771 (2000). AS-Chab. 6.2 - 48
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You are
here!

Operations on single logical qubits
Logical memory with longer lifetime than physical qubits

Fault-tolerant quantum computation

Algorithms on multiple logical qubits

Complexity

QND measurements for error correction and control

Algorithms on multiple physical qubits

Operations on single physical qubits >

Time

M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013); DOI:10.1126/science.1231930
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