General Hamiltonian

LC resonant circuit

$$\begin{split} \widehat{H}_{LC} &= E_{\text{kin}} + E_{\text{pot}} = \frac{\widehat{q}^2}{2C} + \frac{\widehat{\Phi}^2}{2L} = \frac{\widehat{q}^2}{2C} + \frac{1}{2}C\left(\frac{1}{LC}\right)\widehat{\Phi}^2\\ \\ \text{Momentum } \widehat{p} & \longleftrightarrow & \text{Charge } \widehat{q}\\ \\ \text{Position } \widehat{x} & \leftrightarrow & \text{Flux } \widehat{\Phi}\\ \\ \text{Mass } m & \leftrightarrow & \text{Capacitance } C\\ \\ \text{Resonance frequency } \omega_{\text{r}} & \leftrightarrow & \omega_{\text{r}} = 1/\sqrt{LC} \end{split}$$

→ Completely analogous treatment

Momentum \hat{p}	\leftrightarrow Charge \hat{q}
Position \hat{x}	\leftrightarrow Flux $\widehat{\Phi}$
Mass m	\leftrightarrow Capacitance C
Resonance frequency $\omega_{ m r}$	$\leftrightarrow \omega_{\rm r} = 1/\sqrt{LC}$

- \rightarrow Parabolic potential
- $\rightarrow \hat{q}$ and $\hat{\Phi}$ form a conjugate pair such as \hat{x} and \hat{p}
- → Heisenberg uncertainty: $\Delta q \Delta \Phi \geq \frac{\hbar}{2}$
- \rightarrow Commutation relation $\left[\hat{\Phi}, \hat{q}\right] = -i\hbar$

Momentum \hat{p}	\leftrightarrow Charge \hat{q}
Position \hat{x}	\leftrightarrow Flux $\widehat{\Phi}$
Mass m	\leftrightarrow Capacitance C
Resonance frequency $\omega_{ m r}$	$\omega \leftrightarrow \omega_{\rm r} = 1/\sqrt{LC}$

$$\widehat{H}_{LC} = \hbar \omega_{\rm r} \left(\widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} \right)$$

 $\hat{a} \equiv \frac{\omega_{\rm r} C \hat{\Phi} + i \hat{q}}{\sqrt{2\omega_{\rm r} C \hbar}}$ $\hat{a}^{\dagger} \equiv \frac{\omega_{\rm r} C \hat{\Phi} - i \hat{q}}{\sqrt{2\omega_{\rm r} C \hbar}}$

is the annihilation operator

is the creation operator

→ Photon number operator $\hat{n} \equiv \hat{a}^{\dagger}\hat{a}$ → Eigenstates are Fock states → $\hat{H}_{LC}|n\rangle = E_n|n\rangle$ → Eigenvalues $E_n = \hbar\omega_r \left(n + \frac{1}{2}\right)$ → Linear system → Equidistant level spacing

→
$$n = 0$$
 → Finite vacuum energy $E_0 = \frac{\hbar \omega_r}{2}$
→ { $|n\rangle$ } is the Fock or number basis

 $\hat{a} \equiv \frac{\omega_r C \hat{\Phi} + i \hat{q}}{\sqrt{2\omega_r C \hbar}}$

 $\hat{a}^{\dagger} \equiv \frac{\omega_r C \hat{\Phi} - i \hat{q}}{\sqrt{2\omega_r C \hbar}}$

Momentum \hat{p}	\leftrightarrow Charge \hat{q}
Position \hat{x}	\leftrightarrow Flux $\widehat{\Phi}$
Mass m	\leftrightarrow Capacitance C
Resonance frequency $\omega_{\rm r}$	$\leftrightarrow \omega_{\rm r} = 1/\sqrt{LC}$

$$\widehat{H}_{LC} = \hbar \omega_{\rm r} \left(\widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} \right)$$

is the annihilation operator

is the creation operator

→ When applied to a Fock state, \hat{a} annihilates a photon inside the oscillator

 $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$

→ When applied to a Fock state, \hat{a}^{\dagger} creates a photon inside the oscillator

$$\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

 $\hat{a} \equiv \frac{\omega_{\rm r} C \hat{\Phi} + i \hat{q}}{\sqrt{2\omega_{\rm r} C \hbar}}$

 $\hat{a}^{\dagger} \equiv rac{\omega_{
m r} C \widehat{\Phi} - i \widehat{q}}{\sqrt{2 \omega_{
m r} C \hbar}}$

Momentum \hat{p}	\leftrightarrow Charge \hat{q}
Position \hat{x}	\leftrightarrow Flux $\widehat{\Phi}$
Mass m	\leftrightarrow Capacitance C
Resonance frequency $\omega_{ m r}$	$\leftrightarrow \omega_{\rm r} = 1/\sqrt{LC}$

$$\widehat{H}_{LC} = \hbar \omega_{\rm r} \left(\widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} \right)$$

is the annihilation operator

is the creation operator

 $[\hat{a}, \hat{a}^{\dagger}] = 1 \rightarrow$ Bosonic commutation relation

Eigenstates of $\hat{a} \rightarrow \hat{a} | \alpha \rangle = \alpha | \alpha \rangle$, $\alpha \in \mathbb{C}$

Coherent states $|\alpha\rangle \rightarrow |\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{n \frac{\alpha^n}{\sqrt{n!}}} |n\rangle$

 $\{|\alpha\rangle\}$ normal but not orthogonal \rightarrow Overcomplete

Momentum \hat{p}	\leftrightarrow Charge \hat{q}
Position \hat{x}	\leftrightarrow Flux $\widehat{\Phi}$
Mass m	\leftrightarrow Capacitance C
Resonance frequency $\omega_{\rm r}$	$\leftrightarrow \omega_{\rm r} = 1/\sqrt{LC}$

$$\widehat{H}_{LC} = \hbar \omega_{\rm r} \left(\widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} \right)$$

 $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle,\alpha\in\mathbb{C}$

Bosonic field amplitude operator

 $\Rightarrow \hat{A}(t) \equiv \frac{1}{2}(\hat{a} + \hat{a}^{\dagger})$

For intuitive understanding

- \rightarrow Move to interaction picture
- $\boldsymbol{\rightarrow} \, \widehat{U}^{(\dagger)} = e^{(-)i\omega_{\mathrm{r}} t \hat{a}^{\dagger} \hat{a}}$

$$\rightarrow \hat{A}^{I}(t) \equiv \hat{U}\hat{A}\hat{U}^{\dagger} = \frac{1}{2}\left(\hat{a}e^{-i\omega_{\rm r}t} + \hat{a}^{\dagger}e^{+i\omega_{\rm r}t}\right)$$

Momentum \hat{p}	\leftrightarrow Charge \widehat{q}
Position \hat{x}	\leftrightarrow Flux $\widehat{\Phi}$
Mass m	\leftrightarrow Capacitance C
Resonance frequency $\omega_{\rm r}$	$_{\rm r} \leftrightarrow \omega_{\rm r} = 1/\sqrt{LC}$

$$\hat{A}(t) \equiv \frac{1}{2} \left(\hat{a} e^{-i\omega_{\rm r} t} + \hat{a}^{\dagger} e^{+i\omega_{\rm r} t} \right)$$

 $\hat{a}|\alpha\rangle = \alpha |\alpha\rangle, \alpha \in \mathbb{C}$

Classical limit

$$e^{-i\omega_{r}t} + \frac{\alpha^{*}}{2} \langle \alpha | \alpha \rangle e^{-i\omega_{r}t} + \frac{\alpha^{*}}{2} \langle \alpha | \alpha \rangle e^{+i\omega_{r}t}$$
$$= 1$$
$$= \frac{|\alpha|}{2} \left(e^{-i(\omega_{r}t + \phi)} + e^{+i(\omega_{r}t + \phi)} \right)$$
$$= |\alpha| \cos(\omega_{r}t + \phi)$$

 \rightarrow Oscillating field with amplitude $|\alpha|$ and phase $\phi = \arg \alpha$

Coherent state \rightarrow Most classical quantum state (expectation values obey classical equations of motion)

Spectrum of \widehat{H}_{LC}

$$\widehat{H}_{LC} = \hbar\omega_{\rm r} \left(\widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} \right)$$

Must consider coupling to external channel

- \rightarrow Loss rates γ_1 and γ_2
- \rightarrow Simplification $\rightarrow \gamma \equiv \gamma_1 = \gamma_2$

Challenge \rightarrow Describe interaction between a single mode field and a continuum of modes!

Measurement requires two components \rightarrow Input probe field \hat{a}_{in}

 \rightarrow Detected output field \hat{a}_{out}

Properties of \hat{a}_{in} and \hat{a}_{out}

- \rightarrow free (propagating) multimode fields
- ightarrow Field \hat{a} inside the resonator is a single mode-field
- ightarrow Transition mediated by coupling capacitors
- → Borrow input-output formalism from quantum optics!

R. Gross, A. Marx, F. Deppe, and K. Fedorov

© Walther-Meißner-Institut (2001 - 2020)

Input-output fundamentals

Propagating on-chip microwave fields are quasi-1D \rightarrow No polarization

Electric field operator of a free multi-mode field propagating along the +x-direction

D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 2008)

ż

Heisenberg picture \rightarrow Wavefunction constant \rightarrow Operators time-dependent \rightarrow Explicit time dependence of frequency space operators $\hat{b}(\omega) \rightarrow \hat{b}(t, \omega)$

$$\widehat{H} = \widehat{H}_{LC} + \hbar\omega \widehat{b}^{\dagger}(t,\omega)\widehat{b}(t,\omega) + i\hbar g(\omega)(\widehat{b}(t,\omega)\widehat{a}^{\dagger} - \widehat{b}^{\dagger}(t,\omega)\widehat{a})$$

$$\frac{d}{dt}\hat{b}(t,\omega) = \frac{i}{\hbar} \left[\hat{H}, \hat{b}(t,\omega)\right] + \frac{\partial}{\partial t}\hat{b}(t,\omega) \rightarrow \frac{d}{dt}\hat{b}(t,\omega) = -i\omega\hat{b}(t,\omega) + g(\omega)\hat{a}$$

 $\frac{d}{dt}\hat{b}(t,\omega) = -i\omega\hat{b}(t,\omega) + g(\omega)\hat{a}$

Initial condition

 $\hat{b}_0(\omega) \equiv \hat{b}(t_0, \omega)$ Final condition $\hat{b}_1(\omega) \equiv \hat{b}(t_1, \omega)$

Usually $t_0 = -\infty$ and $t_1 = \infty$ (free field)

Solutions

$$\operatorname{nput}(t_0 < t) \quad \rightarrow \quad \hat{b}(t, \omega) = e^{-i\omega(t-t_0)}b_0(\omega) + g(\omega) \int_{t_0}^t dt' \, e^{-i\omega(t-t')}a(t')$$

Output
$$(t < t_1) \rightarrow \hat{b}(t, \omega) = e^{-i\omega(t-t_1)}b_1(\omega) - g(\omega) \int_t^{t_1} dt' e^{-i\omega(t-t')}a(t')$$

$$\gamma_1 \equiv 2\pi g^2(\omega)$$
 $\hat{a}_{in}(t) \equiv -\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega(t-t_0)} \hat{b}_0(\omega)$

Output field – Analogous result

$$\hat{a}_{\rm out}(t) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{-i\omega(t-t_1)} \hat{b}_1(\omega)$$

$$\left[\hat{a}_{\text{out}}(t), \hat{a}_{\text{out}}^{\dagger}(t')\right] = \delta(t - t')$$

$$\frac{d}{dt}\hat{a}(t) = \frac{i}{\hbar} \left[\hat{H}_{LC}, \hat{a}(t)\right] - \frac{\gamma_1}{2}\hat{a}(t) + \sqrt{\gamma_1}\hat{a}_{in}(t)$$

$$\frac{d}{dt}\hat{a}(t) = \frac{i}{\hbar} \left[\hat{H}_{LC}, \hat{a}(t)\right] + \frac{\gamma_1}{2}\hat{a}(t) - \sqrt{\gamma_1}\hat{a}_{out}(t)$$

$$\hat{a}_{in}(t) + \hat{a}_{out}(t) = \sqrt{\gamma_1}\hat{a}(t)$$

Fourier integral

$$\hat{a}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega e^{-i\omega(t-t_0)} \hat{a}(\omega)$$

→ Solving differential equations simplifies to root finding!

$$\hat{a}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega e^{-i\omega(t-t_0)} \hat{a}(\omega)$$
$$\hat{H}_{LC} = \hbar \omega_r \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$
$$\hat{a}_{in}(t) + \hat{a}_{out}(t) = \sqrt{\gamma_1} \hat{a}(t)$$

$$\frac{d}{dt}\hat{a}(t) = \frac{i}{\hbar} \left[\hat{H}_{LC}, \hat{a}(t)\right] - \frac{\gamma_1}{2}\hat{a}(t) + \sqrt{\gamma_1}\hat{a}_{\rm in}(t)$$

$$-i\omega\hat{a}(\omega) = -i\omega_{\rm r}\hat{a}(\omega) - \frac{\gamma_1}{2}\hat{a}(\omega) + \sqrt{\gamma_1}\hat{a}_{\rm in}(\omega)$$

after applying \widehat{H}_{LC} and Fourier transform

$$\hat{a}_{in}(\omega) + \hat{a}_{out}(\omega) = \sqrt{\gamma_1}\hat{a}(\omega)$$

D. F. Walls & G. Milburn, Quantum Optics (Springer, Berlin-Heidelberg, 2008)

AS-Chap. 6.4 - 17

$$\hat{a}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega e^{-i\omega(t-t_0)} \hat{a}(\omega)$$
$$\hat{H}_{LC} = \hbar\omega_{\rm r} \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$
$$\hat{q}_{\rm in}(\omega) + \hat{q}_{\rm out}(\omega) = \sqrt{\gamma_1} \hat{a}(\omega)$$

Transmission coefficient $(\hat{b}_{in} = 0, \gamma_1 = \gamma_2 \equiv \gamma)$

 \rightarrow Now reflection and transmission (two ports) $\rightarrow \Gamma + T = 1$

$$\Rightarrow T \equiv \frac{\hat{b}_{\text{out}}}{\hat{a}_{\text{in}}} = \frac{\gamma}{\gamma - i(\omega - \omega_{\text{r}})}$$

→ Transmitted power $|T|^2$ is Lorentzian! (equals the classical result)

..... Resonator lifetime T_1

Energy-time uncertainty
$$\rightarrow \Delta E \Delta t \simeq \hbar \rightarrow \Delta \omega \Delta t \simeq 1$$

 $E = \hbar \omega$

Identify Δt with relaxation time $T_1 = \frac{1}{2\pi\Delta f}$ and dephasing time $T_2 = \frac{1}{\pi\Delta f}$

Typically, ω , γ , κ are angular frequencies, but f, T_1 , T_2 , T_2^* , T_{φ} are normal frequencies

..... Resonator lifetime T_1

 \rightarrow Internal dissipative/dielectric losses \rightarrow $Q_{\rm i}$

 \rightarrow Radiation losses $\rightarrow Q_{\rm rad}$

Loaded quality factor
$$\frac{1}{Q} = \frac{1}{Q_c} + \frac{1}{Q_i} + \frac{1}{Q_{rad}} + \cdots$$

 \rightarrow ...

2D resonators

Niobium on SiO₂-coated high-resistivity Si substrate @mK temperatures $\rightarrow f_0 = \text{few GHz}$

→ $Q_i \approx 10^5$ → $T_2 \lesssim 10 \,\mu s$

MBE grown (epitaxially) Al on sapphire substrate @ mK temperatures

→ $f_0 = 6.121 \text{ GHz}$ → $Q_i = 1.7 \times 10^6$, $Q_c = 4 \times 10^5$ → $T_2 \leq 0.1 \text{ ms}$

Megrant et al., APL 100, 113510 (2012)

IDAE GPUP. 41

3D resonators

$$T_2 = \frac{1}{\pi \Delta f}$$

- Loss sources for planar superconducting resonators
- \rightarrow Resistive or QP losses \rightarrow Superconductivity & low temperatures
- ightarrow Radiation losses ightarrow Clever design
- \rightarrow Problem: Dielectric losses from material defects (spurious TLS)
 - \rightarrow TLS in bulk substrate \rightarrow Use clean single crystal (sapphire, intrinsic Si)
 - ightarrow TLS at substrate-metal interface
 - → Need clean materials & growth processes!
- → Alternative: 3D cavity resonators
 - \rightarrow No more dielectric \rightarrow No TLS in cavity $\rightarrow Q_{\rm i} \approx 10^7 10^8$
 - ightarrow Reduce participation ratio of interace losses for embedded circuits
 - \rightarrow 3D transmon qubit $\rightarrow T_1 \lesssim 0.15$ ms

Paik et al., PRL 107, 240501 (2011)

Applications of quantum harmonic oscillators

Quantum HO is linear \rightarrow Not a qubit \rightarrow Not directly useful for quantum computation!

1 bit operation time:

of 1 bit operations:

$$t_{\rm op} > \frac{1}{\Delta \nu}$$
 (otherwise $|1\rangle \rightarrow |2\rangle$ -transitions are induced!)

$$\frac{T_{\text{dec}}}{t_{\text{op}}} = \frac{Q}{\nu_{01} t_{\text{op}}} < Q \begin{bmatrix} \Delta \nu \\ \nu_{01} \end{bmatrix}$$
Anharmonicity

AS-Chap. 6.4 - 27

Characteristic energies – Typical parameters

Al/AlO_x/Al junction with $A = 100 \times 100 \text{ nm}^2 \rightarrow C \approx 1 \text{ fF}$ and $I_c \approx 300 \text{ nA}$

- $\rightarrow E_C \approx 60 \ \mu eV$ and $E_I \approx 600 \ \mu eV$
- → Quantum effects observable only at $T \ll 0.5$ K (100 µeV ≈ 1 K)

Nowadays superconducting qubit zoo is larger

→ Transmon, camel-back, capacitively shunted 3JJ-FQB, fluxonium...

 \rightarrow "Traditional" classification via E_J/E_C increasingly difficult

AS-Chap. 6.4 - 29

F Yan et al., Engineering Framework for Optimizing Superconducting Qubit Designs, arXiv:2006.04130v1(2020).

- → Add shunt capacitor (transmon qubit)
- \rightarrow Slightly delocalized charge states with residual anharmonicity

 $E_{\rm I} \gg E_C$ (phase/flux regime) $\hbar\omega_{\rm p} \gg k_{\rm B}T$ $(\omega_p = \sqrt{8E_JE_C})$ $I_C L \approx \Phi_0 \rightarrow$ Requires large L (otherwise flux quantization kills our quantum variable)

 \blacksquare MQT causes level splitting Δ \rightarrow $|0\rangle$, $|1\rangle$ are symmetric and antisymmetric superpositions of $|+I_L\rangle$, $|-I_L\rangle$

> Theoretical prediction: Leggett (1984) Experimental realization:

Friedman et al. (2000)

$$\widehat{H} = 4E_C\widehat{N}^2 + E_J(1 - \cos\varphi) + \frac{\hbar}{2e}I_x\varphi$$

Additional "force term" due to current source

- → levels $|0\rangle$, $|1\rangle$ form the qubit → oscillator states differ in phase → *phase qubit* → $\Gamma_2 \gg \Gamma_1, \Gamma_0$ → pump ω_{12} for readout
- \rightarrow readout detects running phase (voltage)

 $|U_{m} = \Gamma_{2}$ $|I\rangle = \Gamma_{1}$ $|I\rangle = \Gamma_{1}$ $|I\rangle = \Gamma_{0}$ $|I\rangle = \Gamma_{0}$

 \rightarrow Significant anharmonicity

AS-Chap. 6.4 - 33

Martinis et al (2002)

Construction principle

→ Better decoupling from readout electronics → significantly longer decoherence times
 → Preferred over current-biased version

3-Josephson-junction persistent current flux qubit

single JJ in a loop (RF-SQUID flux & flux biased phase qubit)

- ightarrow Single quantum degree of freedom
- ightarrow Flux quantization fixes JJ phase for $\beta_L \ll 1
 ightarrow$ Requires $\beta_L \simeq 1$

J.E. Mooij et al., Science 285, 1036 (1999)
 T. P. Orlando et al., PRB 60, 15399-15413 (1999)

Persistent current flux qubit

→ 3 JJ in superconducting loop 1 (L_{loop} ≪ L_J → β_L ≪ 1)
→ Two junctions have identical size
→ Third junction smaller by factor α
→ E_J ≡ E_{J1} = E_{J2} and E_C ≡ E_{C1} = E_{C2}
→ E_{J3} = αE_J and E_{C3} = ^{E_C}/_α
→ E_J > E_C (phase regime) & ħω_p ≫ k_BT

Control knob

- \rightarrow External flux $\Phi_{\rm X}$ applied to loop
- → Still 2 quantum degrees of freedom left after flux quantization

Double-well potential

 $U(\varphi_1, \varphi_2, \varphi_3) = E_{\mathrm{J}} \left[2 - \cos \varphi_1 - \cos \varphi_2 + \alpha (1 - \cos \varphi_3) \right]$

Flux quantization

$$\Rightarrow \varphi_1 - \varphi_2 + \varphi_3 = -2\pi f \text{ with frustration } f \equiv \frac{\phi_x}{\phi_0}$$

 \rightarrow Signs are mere convention!

$$U(\varphi_1, \varphi_2) = E_{\rm J} \left[2 + \alpha - \cos \varphi_1 - \cos \varphi_2 - \alpha \cos(2\pi f + \varphi_1 - \varphi_2) \right]$$

Double-well potential in each unit cell!

 $U_{\rm I} = E_{\rm I}(1 - \cos\varphi)$

Double-well potential

Two stable minima at $(\varphi^*, -\varphi^*)$ and $(-\varphi^*, \varphi^*)$, where $\cos \varphi^* \equiv \frac{1}{2\alpha}$

Double well rotated by 45° in the $\varphi_1 \varphi_2$ -plane \rightarrow Variable transformation $\varphi_+ \equiv \frac{1}{2}(\varphi_1 + \varphi_2)$ $\varphi_- \equiv \frac{1}{2}(\varphi_1 - \varphi_2)$ $U(\varphi_+, \varphi_-) = E_J [2 + \alpha - 2\cos\varphi_+ \cos\varphi_- - \alpha\cos(2\pi f + 2\varphi_-)$ Variable relevant for qubit dynamics $\rightarrow \varphi$ Variable relevant for qubit dynamics $\rightarrow \varphi_{-}$

AS-Chap. 6.4 - 38

- → No tunneling → Degenerate ground state
 → Left/right well correspond to clockwise/anticlockwise circulating current
- \rightarrow Persistent current $\pm I_{\rm p}$

$$\begin{split} & \Phi_{\rm x} \neq \left(n + \frac{1}{2}\right) \Phi_0 \Rightarrow \text{Tilted double-well potential} \\ & \Rightarrow \text{Flux bias induces energy bias } \varepsilon(\Phi_{\rm x}) \\ & \Rightarrow \text{Near } \Phi_{\rm x} = \left(n + \frac{1}{2}\right) \Phi_0 \Rightarrow \varepsilon(\Phi_{\rm x}) = 2I_{\rm p} \Phi_0 \left(f - n - \frac{1}{2}\right) \end{split}$$

Quantum treatment

$$\widehat{N}_{1,2} \equiv -i\frac{\partial}{\partial\varphi_{1,2}} \qquad E_C \equiv \frac{e^2}{2C} \qquad \varphi_+ \equiv \frac{1}{2}(\varphi_1 + \varphi_2) \qquad \varphi_- \equiv \frac{1}{2}(\varphi_1 - \varphi_2)$$

 $\widehat{H} = 4E_C \left[\widehat{N}_1^2 + \widehat{N}_2^2\right] + E_J \left[2 + \alpha - 2\cos\widehat{\varphi}_+ \cos\widehat{\varphi}_- - \alpha\cos(2\pi f + 2\widehat{\varphi}_-)\right]$

Task \rightarrow convert \hat{N}_1 and \hat{N}_2 into \hat{N}_+ and \hat{N}_-

$$\begin{aligned} \frac{\widehat{N}_{1}^{2} + \widehat{N}_{2}^{2}}{-i} &= \left(\frac{\partial}{\partial\varphi_{1}}\right)^{2} + \left(\frac{\partial}{\partial\varphi_{2}}\right)^{2} = \left(\frac{\partial}{\partial\varphi_{+}}\frac{d\varphi_{+}}{d\varphi_{1}} + \frac{\partial}{\partial\varphi_{-}}\frac{d\varphi_{-}}{d\varphi_{1}}\right)^{2} + \left(\frac{\partial}{\partial\varphi_{+}}\frac{d\varphi_{+}}{d\varphi_{2}} + \frac{\partial}{\partial\varphi_{-}}\frac{d\varphi_{-}}{d\varphi_{2}}\right)^{2} \\ &= \frac{1}{4}\left(\frac{\partial}{\partial\varphi_{+}} + \frac{\partial}{\partial\varphi_{-}}\right)^{2} + \frac{1}{4}\left(\frac{\partial}{\partial\varphi_{+}} - \frac{\partial}{\partial\varphi_{-}}\right)^{2} = \frac{1}{2}\left[\left(\frac{\partial}{\partial\varphi_{+}}\right)^{2} + \left(\frac{\partial}{\partial\varphi_{-}}\right)^{2}\right] = \frac{\frac{1}{2}\left[\widehat{N}_{+}^{2} + \widehat{N}_{-}^{2}\right]}{-i} \end{aligned}$$

Flux qubit Hamiltonian

 $\widehat{H} = 2E_C[\widehat{N}_+^2 + \widehat{N}_-^2] + E_J[2 + \alpha - 2\cos\widehat{\varphi}_+\cos\widehat{\varphi}_- - \alpha\cos(2\pi f + 2\widehat{\varphi}_-)]$

Quantum treatment

$$f = \Phi_{\rm x}/\Phi_0$$

$$\widehat{H} = 2E_C[\widehat{N}_+ + \widehat{N}_-] + E_J[2 + \alpha - 2\cos\widehat{\varphi}_+\cos\widehat{\varphi}_- - \alpha\cos(2\pi f + 2\widehat{\varphi}_-)$$

Numerical diagonalization \rightarrow Eigenenergies E_n

Near $\Phi_{\rm X} = \left(n + \frac{1}{2}\right) \Phi_0 \rightarrow$ Approximate as two-level system with linear energy bias!

$$\delta \Phi_{\rm x} \equiv \Phi_0 \left(f - {\rm n} - \frac{1}{2} \right)$$

Energy bias $\varepsilon(\Phi_{\rm x}) = 2I_{\rm p}\delta\Phi_{\rm x}$ $\rightarrow |+I_{\rm p}\rangle$ and $|-I_{\rm p}\rangle$ are eigenstates of $\varepsilon(\Phi_{\rm x})\hat{\sigma}_z$

Tunneling rate Δ/h over potential barrier \rightarrow Tunnel splitting $\Delta \propto \exp(-\sqrt{E_J/E_C})$

$$\widehat{H} = \varepsilon(\Phi_{\rm x})\widehat{\sigma}_{\rm z} + \Delta\widehat{\sigma}_{\rm x}$$

$$E_1 - E_0 \equiv \hbar \omega_{\rm q}(\Phi_{\rm x}) = \sqrt{\varepsilon^2(\Phi_{\rm x}) + \Delta^2}$$

Bloch angle θ denotes operation point Φ_{x} $\Rightarrow \sin \theta \equiv \frac{\Delta}{\hbar \omega_{q}(\Phi_{x})}$ and $\cos \theta \equiv \frac{\varepsilon(\Phi_{x})}{\hbar \omega_{q}(\Phi_{x})}$

Persistent circulating current $\langle I_p \hat{\sigma}_z \rangle$ depends on $\Phi_x \rightarrow \langle I_p \hat{\sigma}_z \rangle = I_p \cos \theta$

AS-Chap. 6.4 - 43

AS-Chap. 6.4 - 44

AS-Chap. 6.4 - 45

Pulsed dc SQUID readout away from the degeneracy point

☑ K. Kakuyanagi et al., Phys. Rev. Lett. 98, 047004 (2007)
 F. Deppe et al., Phys. Rev. B 76, 214503 (2007)

Principle

- → Away from $\Phi_x = \Phi_0/2$, qubit eigenstates coincide with (anti-)clockwise circulating current states
- ightarrow Add/remove flux from SQUID loop
- → Increase/decrease $I_{c,SQUID}(\Phi_{x,SQUID})$

Protocol

- → Bias SQUID just below switching point (short switching pulse)
- \rightarrow Depending on qubit state switching or not
- \rightarrow Measure voltage or not
- ightarrow Hold pulse avoids retrapping ightarrow More signal

Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

AS-Chap. 6.4 - 47

High frequency noise causing resonant transitions

→ Physical coupling via σ_z (flux through loop)

$$\Rightarrow \sigma_z \to \cos\theta \ \sigma_z - \sin\theta \ \sigma_x$$

- $\rightarrow \langle 0 | \sigma_z | 1 \rangle = \sin \theta$
- \rightarrow Stronger near magic point (sin $\theta \simeq 1$)
- \rightarrow Inductive coupling $MI_{\rm p}I_{\rm noise}$

$$\rightarrow$$
 Stronger for large $\frac{\partial \varepsilon}{\partial \Phi_x} = 2I_p$

F. Deppe et al., Phys. Rev. B 76, 214503 (2007)

This data

$$\rightarrow S_{\phi}\left(\frac{\Delta}{\hbar}\right) \simeq 2 \times 10^{-20} \frac{\phi_0^2}{H_2}$$

AS-Chap. 6.4 - 48

G. Ithier et al., Phys. Rev. B 72, 134519 (2005).

A. Shnirman et al., Phys. Rev. Lett. 94, 127002 (2005).

Flux qubit – Dephasing rates

Depend on type of low frequency noise!

- \rightarrow Rates depend on the measurement protocol (filters!)
- \rightarrow Ramsey
 - \rightarrow Probes low-frequency noise $\rightarrow T_{2R}^{-1} = (2T_1^{-1}) + T_{\omega R}^{-1}$

 \rightarrow Spin echo

- $\rightarrow T_{2E}^{-1} = (2T_1^{-1}) + T_{\varphi E}^{-1}$
- \rightarrow Filters low-frequency noise

K. Kakuyanagi, F. Deppe *et al.*, PRL 98, 047004 (2007) F. Deppe et al., Phys. Rev. B 76, 214503 (2007) AS-Chap. 6.4 - 49

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

 \rightarrow This experiment

G. Ithier et al., Phys. Rev. B 72, 134519 (2005).

A. Shnirman et al., Phys. Rev. Lett. 94, 127002 (2005).

- \rightarrow Clearly cusped
- \rightarrow 1/f-noise dominates
- → Additional small white noise contribution

Flux qubit – dephasing rates

Predictions

→ White noise (Bloch-Redfield)

$$T_{\varphi}^{-1} = \frac{\pi}{\hbar} \left(\frac{\partial \varepsilon}{\partial \phi_{x}} \cos \theta \right)^{2} \\ \times S_{\varphi}^{BR}(\omega = 0)$$

- → Low-frequency spectrum important
- $\Rightarrow \langle 1 | \sigma_z | 1 \rangle = \cos \theta$
- $\rightarrow T(\Phi_{\rm x})$ is smooth function

 \rightarrow 1/f-noise

$$\Rightarrow S_{\phi}(\omega) = \frac{A_{1/f}}{\omega} \Rightarrow T_{\varphi E}^{-1} = \frac{1}{\hbar} \left| \frac{\partial \varepsilon}{\partial \phi_{x}} \cos \theta \right| \sqrt{A \ln 2} \Rightarrow \Phi_{x} \text{-dependence cusped}$$

K. Kakuyanagi, F. Deppe *et al.*, PRL 98, 047004 (2007) F. Deppe et al., Phys. Rev. B 76, 214503 (2007)

AS-Chap. 6.4 - 50

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

 \rightarrow Consistent (white noise should be frequencyindependent)

G. Ithier et al., Phys. Rev. B 72, 134519 (2005). A. Shnirman et al., Phys. Rev. Lett. 94, 127002 (2005). K. Kakuyanagi, F. Deppe et al., PRL 98, 047004 (2007) F. Deppe et al., Phys. Rev. B 76, 214503 (2007)

AS-Chap. 6.4 - 51

1/f noise independent of area of qubit loop local noise sources in close gubit environment

 \rightarrow Two-level fluctuators

Improve fabrication technology \rightarrow

Charge engineering – The Cooper pair box (CPB) Superconducting island with negligible self-capacitance \downarrow E_J, C_J C_g Hamiltonian (for any $E_J, E_C \equiv \frac{e^2}{2(C_g+C_J)}, n_g$) 2216

$$\widehat{H}_{\rm CPB} = 4E_C (\widehat{n} - n_{\rm g})^2 + E_{\rm J} (1 - \cos \widehat{\varphi})$$

Gate charge $n_g \equiv \frac{C_g V_g}{2e}$ induced by source V_g \rightarrow Adds/removes excess CP to/from island (always many equilibrium CP)

- \rightarrow Classical quantity
- \rightarrow May assume fractional values!

Charge regime $E_C \gtrsim E_J$ \rightarrow Charge is good quantum number

Schrödinger equation $\widehat{H}_{CPB}|\Psi_k\rangle = E_k|\Psi_k\rangle$ \rightarrow Mathieu equation for $|\widetilde{\Psi}_k\rangle \equiv |\Psi_k\rangle e^{-in_g\varphi}$

$$\frac{\partial^2 |\widetilde{\Psi}_k\rangle}{\partial \alpha^2} - 2\left(\frac{2E_{\rm J}}{E_{\rm C}}\right) \cos \alpha |\widetilde{\Psi}_k\rangle = \frac{4E_k}{E_{\rm C}} |\widetilde{\Psi}_k\rangle$$
$$\alpha = \alpha/2$$

Numerical solution \rightarrow Eigenenergies E_k

→ Near $n_{\rm g} = \frac{1}{2}$, energy levels look like hyperbola. Correct?

$$\widehat{H}_{\text{CPB}} = 4E_C (\widehat{n} - n_{\text{g}})^2 + E_{\text{J}} \cos \widehat{\varphi}$$

More typical parameters $\rightarrow E_C \simeq 5 \text{ GHz}, E_{\text{I}} \simeq 5 \text{ GHz}$

Two-level-representation of the CPB

Goal
$$\rightarrow$$
 Express $\hat{H}_{CPB} = 4E_C (\hat{n} - n_g)^2 + E_J \cos \hat{\varphi}$ as TLS near $n_g = \frac{1}{2}$

Charge states $|n\rangle \rightarrow \hat{n}|n\rangle = n|n\rangle$

$$\Rightarrow (\hat{n} - n_{\rm g})^2 = (\hat{n} - n_{\rm g}) \left(\sum_n |n\rangle \langle n| \right) (\hat{n} - n_{\rm g}) = \sum_n (n - n_{\rm g})^2 |n\rangle \langle n|$$

Commutation relations $[\hat{\mathbf{n}}, \hat{\varphi}] = 1$

$$\Rightarrow |n\rangle = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} d\varphi \exp(-in\hat{\varphi}) |\varphi\rangle$$

$$\Rightarrow \exp(ip\hat{\varphi}) |n\rangle = \frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} d\varphi \exp[-i(n+p)\hat{\varphi}] |\varphi\rangle = |n+p\rangle$$

$$\Rightarrow \exp(\pm i\hat{\varphi}) |n\rangle = |n\pm1\rangle \Rightarrow \cos\hat{\varphi} = \frac{1}{2} (\exp(i\hat{\varphi}) + \exp(-i\hat{\varphi})) =$$

$$= \frac{1}{2} \left(\sum_{n} |n\rangle \langle n| \right) (\exp(i\hat{\varphi}) + \exp(-i\hat{\varphi})) \left(\sum_{n} |n\rangle \langle n| \right) = \frac{1}{2} \sum_{n} (|n\rangle \langle n+1| + |n+1\rangle \langle n|)$$
AS-Chap. 6.4 - 56

 $|n\rangle \rightarrow \hat{n}|n\rangle = n|n\rangle$ **Two-level-representation of the CPB** $\exp(\pm i\hat{\varphi}) |n\rangle = |n \pm 1\rangle$ TLS $\rightarrow n \in \{0,1\}$ $\rightarrow \sum (n - n_{\rm g})^2 |n\rangle \langle n| \rightarrow \left(\frac{1}{2} - n_{\rm g}\right) \hat{\sigma}_z$ $\widehat{H}_{\rm CPB} = 4E_C (\widehat{n} - n_{\rm g})^2 + E_{\rm I} \cos \widehat{\varphi}$ $\rightarrow \frac{1}{2} \left(\sum |n\rangle \langle n| \right) (\exp(i\hat{\varphi}) + \exp(-i\hat{\varphi})) \left(\sum |n\rangle \langle n| \right)$ $\widehat{H}_{\rm CPB} = \frac{E_{\rm el}}{2}\widehat{\sigma}_z + \frac{E_{\rm J}}{2}\widehat{\sigma}_x$ $=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)(\exp(i\hat{\varphi})+\exp(-i\hat{\varphi}))(|0\rangle\langle 0|+|1\rangle\langle 1|)$ $E_{\rm el} \equiv 4E_C \left(\frac{1}{2} - n_{\rm g}\right)$ $= \frac{1}{2} (|0\rangle\langle 0| \exp(i\hat{\varphi}) |0\rangle\langle 0| + |0\rangle\langle 0| \exp(i\hat{\varphi}) |1\rangle\langle 1|$ $|1\rangle\langle 1|\exp(i\hat{\varphi})|0\rangle\langle 0|+|1\rangle\langle 1|\exp(i\hat{\varphi})|1\rangle\langle 1|$ + $|0\rangle\langle 0|\exp(-i\hat{\varphi})|0\rangle\langle 0| + |0\rangle\langle 0|\exp(-i\hat{\varphi})|1\rangle\langle 1|$ $= \frac{1}{2} (|0\rangle \langle 0|1\rangle \langle 0| + |0\rangle \langle 0|2\rangle \langle 1| + |1\rangle \langle 1|1\rangle \langle 0| + |1\rangle \langle 1|2\rangle \langle 1| + 0 + |0\rangle \langle 0|0\rangle \langle 1| + 0 + |1\rangle \langle 1|2\rangle \langle 1|1\rangle \langle 1|2\rangle \langle 1| + 0 + |1\rangle \langle 1|2\rangle \langle 1|1\rangle \langle 1|1\rangle \langle 1|$

AS-Chap. 6.4 - 58

AS-Chap. 6.4 - 59

From the Cooper pair box to the transmon qubit

Advantages of the CPB

- ightarrow Simple design (2JJ, $eta_L \ll 1$)
- → Coupling element $E_J \propto I_c$ (Flux qubit: $\Delta \propto \exp(-\sqrt{E_J/E_c})$)
- \rightarrow Voltages convenient for
 - ightarrow Coupling to other qubits
 - ightarrow Coupling to readout circuitry
 - ightarrow Coupling to control signals
- \rightarrow Large anharmonicity (few GHz)

 \rightarrow In first order insensitive to charge fluctuations at "sweet spot" $n_{\rm g} = n + \frac{1}{2}$

Big disadvantage

- \rightarrow Coherence times short due to susceptibility to 1/f charge noise
- → In practice: Coherence times of a few tens of nanoseconds even at the sweet spot! (Typical charge noise magnitude ≫ Typical flux noise magnitude)
- \rightarrow Idea \rightarrow Flatten energy dispersion

ż

The transmon qubit

(Transmission line shunted plasma oscillation qubit)

Take a CPB geometry and increase E_J/E_C

$$E_m(n_g) \approx E_m\left(n_g = \frac{1}{4}\right) - \frac{\epsilon_m}{2}\cos 2\pi n_g$$
$$\epsilon_m \approx (-1)^m E_C \frac{2^{4m+5}}{m} \sqrt{\frac{2}{\pi} \left(\frac{E_J}{2E_C}\right)^{\frac{m}{2} + \frac{3}{4}} e^{-\sqrt{\frac{8E_J}{E_C}}}}$$

- \rightarrow Charge dispersion decreases exponentially with $E_{\rm J}/E_{\rm C}$
- \rightarrow Anharmonicity decreases only polynomially with E_J/E_C
- → Optimum trade-off for $E_{\rm J}/E_{\rm C} \approx 50$
- ightarrow Few hundreds of MHz anharmonicity left
- \rightarrow Charge no longer good quantum number
- ightarrow Not tunable via gate voltage anymore ightarrow Tune via flux (dc SQUID)

ż

The transmon qubit

Embed into a resonator for

- \rightarrow Readout
- \rightarrow Filtering
- \rightarrow Control

The transmon is currently most successful qubit with respect to coherence times

Coherence of transmons mostly limited by spurious TLS (defects) in substrate and metal-substrate interface

→ 2D geometries → $10 - 40 \ \mu s$ → 3D geometries → up to 200 μs

The C-shunted flux qubit

 → Decreasing E_J/E_C and/or α reduces influence of flux noise by level flattening
 → However, sensitivity to charge noise on islands a,b,c is increased
 → Suppress charge noise by shunt capacitance C_{sh} = (β – α)C_J

→ Typically,
$$C_{\rm sh} \simeq 100 \ {\rm fF} \gg C_{\rm J} \simeq 5 \ {\rm fF}$$

→ First promising results $T_2^* \approx T_1 \simeq 1.5 \ \mu s$

J. Q. You *et al.,* Phys. Rev. B **75**, 140515(R) (2007). M. Steffen et al., Phys. Rev. Lett 105, 100502 (2010).

The C-shunted flux qubit

→ Optimize thin film fabrication as in transmon
 → Anharmonicity 800 MHz slightly larger
 than for typical transmon qubits

- than for typical transmon qubits
- \rightarrow Neverthless, transmon-like design

→ Noise sources limiting $T_1 \lesssim 55 \ \mu s \ @\Phi_0/2$

- \rightarrow Resonator loss
- \rightarrow Ohmic charge noise
- $\rightarrow 1/f$ flux noise
- → Temporal variations attributed to quasiparticles
- → Noise sources limiting $T_2 \simeq 85 \ \mu s \ @\Phi_0/2$
 - → Photon shot noise from residual thermal photons in the readout resonator

The C-shunted flux qubit

Device	N	$I_{\rm c}$ [nA]	$C_{\rm sh}$ [fF]	γ/N	ω_{01} [GHz]	\mathcal{A} [GHz]	\mathcal{A}/ω_{01}	$T_1 \ [\mu s]$	$T_{\rm 2Echo}$ [µs]
A	8	21	20	0.92	3.6	1.0	0.28	43.1 ± 7.5	70-100
В	8	21	30	0.95	2.8	0.8	0.29	23	1 (*)
С	8	21	30	0.92	2.6	1.0	0.38	82.9 ± 7.9	100-125
D	8	18	30	0.92	2.4	0.9	0.38	20	843
E	8	18	30	0.93	2.0	1.0	0.50	50	12
F	8	40	20	0.93	3.7	1.6	0.43	-	
G	8	40	20	0.98	4.7	1.2	0.26	10	7
H	8	40	20	1.0	3.4	1.9	0.56	23	15
I	16	14	20	0.84	3.0	0.9	0.30	50.6 ± 9.2	110-140
J	16	14	20	1.09	3.8	0.6	0.16	30	
K	16	27	20	0.88	2.6	1.0	0.38	30	20
CSFQ	2	60	50	1.2	4.7	0.5	0.11	35-55	70-90

F. Yan et al., arXiv:2006.04130v1(2020).