

(single)

natural

atom

Analogy to quantum optics

supercond. qubit

Analogy to quantum optics

Cavity QED

Circuit QED

Quantum electrodynamics with superconducting circuits A. Blais et al., Phys. Rev. A 69, 062320 (2004)

Natural vs. artificial atoms Natural atoms Artificial solid-state atoms Å Size nm-cm **Transition frequencies** IR – UV μ-wave **Design flexibility** None Large **Tunability** Small Large **Selection rules** Relaxed, controllable Strict Lasing or masing Multiple atoms Single atom **Effective dipole moment** Small Large Short (ns-ms) **Coherence times** Long (min, s) **Interaction strengths** Large (MHz-GHz) Small (Hz-kHz)

ż

Large interaction strengths in superconducting circuits – The qubit

Large interaction strengths in superconducting circuits – The resonator

Superconducting LC resonators

Large mode volume (3D!)

Small mode volume ($V_{\rm m} \approx 10^{-12} {\rm m}^3$)

Vacuum field amplitudes
$$E_0 = \sqrt{\frac{\hbar\omega_r}{2\epsilon_0 V_m}}, B_0 = \sqrt{\frac{\mu_0 \hbar\omega_r}{2V_m}}$$

 $E_0^2/\omega_{
m r}$, $B_0^2/\omega_{
m r}$ small

 \rightarrow Small interaction strengths

 $E_0^2/\omega_{
m r}$, $B_0^2/\omega_{
m r}$ large

→ Large interaction strength

T. Niemczyk et al., Supercond. Sci. Technol. 22, 034009 (2009).

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Circuit QED vs. cavity QED – Key advantages

- \rightarrow Better prospect of scalability
- \rightarrow Larger interaction strengths outweigh inferior quantum coherence
 - \rightarrow More quantum operations per coherence time
 - → Fundamental quantum effects observable on single-photon level

The light-matter interaction Hamiltonian

→ Dipole interaction between atom and cavity field

→ Interaction energy $\hbar g$ → (Vacuum field amplitude) x (Atomic dipole moment)

$$\hat{H}_{qr} = \frac{\hbar\omega_q}{2}\hat{\sigma}_z + \hbar\omega_r\hat{a}^{\dagger}\hat{a} + \hbar g(\hat{a}^{\dagger} + \hat{a})(\hat{\sigma}^- + \hat{\sigma}^+)$$
$$= \hat{\sigma}_x$$

Known as the quantum Rabi model because of its relation to the Rabi Hamiltonian

Vaccum Rabi oscillations

ightarrow Dipole interaction between atom and cavity field

 \rightarrow Interaction energy $\hbar g \rightarrow$ (Vacuum field amplitude) x (Atomic dipole moment)

$$\widehat{H}_{qr} = \frac{\hbar\omega_q}{2}\widehat{\sigma}_z + \hbar\omega_r\widehat{a}^{\dagger}\widehat{a} + \frac{\hbar g(\widehat{a}^{\dagger} + \widehat{a})}{(\widehat{\sigma}^- + \widehat{\sigma}^+)}$$

Classical driving field $\propto \cos \omega t \propto (e^{-i\omega t} + e^{+i\omega t})$

- → RWA → Coherent population (Rabi) oscillations for $\omega = \omega_q$
- → Driving field in the ground state $(|g_{\min}| = 0)$
- \rightarrow No oscillations

Quantum driving field $\propto (\hat{a} + \hat{a}^{\dagger})$

- ightarrow Full quantum version of Rabi Hamiltonian
- → RWA→ Quantum oscillations for $\omega_r = \omega_q$
- → Driving field ground state is the vacuum $(|g_{\min}| = |g_{vac}| > 0)$
- \rightarrow Vacuum Rabi oscillations
- → Vacuum Rabi oscillations describe the coherent exchange of an excitation between qubit and resoantor → Signature of a quantum system

The Jaynes-Cummings Hamiltonian for light-matter interaction

 \rightarrow Dipole interaction between atom and cavity field

 \rightarrow Interaction energy $\hbar g \rightarrow$ (Vacuum field amplitude) x (Atomic dipole moment)

Effect of the interaction term $\widehat{H}_{\text{JC,int}} = \hbar g (\hat{a}^{\dagger} \hat{\sigma}^{-} + \hat{a} \hat{\sigma}^{+})$

→ Start in $|n + 1, g\rangle$ → $(\hat{a}^{\dagger}\hat{\sigma}^{-} + \hat{a}\hat{\sigma}^{+})|n + 1, g\rangle = \sqrt{n + 1}|n, e\rangle$

→ Start in $|n, e\rangle$ → $(\hat{a}^{\dagger}\hat{\sigma}^{-} + \hat{a}\hat{\sigma}^{+})|n, e\rangle = \sqrt{n+1}|n+1, g\rangle$

→ $\hat{H}_{\text{JC,int}}$ couples only states within the same level pair ("JC doublet") → \hat{H}_{IC} decouples into infinite direct product of 2 × 2-matrices

$$\rightarrow \widehat{H}_{JC,n} \begin{pmatrix} |n,e\rangle \\ |n+1,g\rangle \end{pmatrix} = \hbar \begin{pmatrix} n\omega_{r} + \frac{\omega_{q}}{2} & g\sqrt{n+1} \\ g\sqrt{n+1} & (n+1)\omega_{r} - \frac{\omega_{q}}{2} \end{pmatrix} \begin{pmatrix} |n,e\rangle \\ |n+1,g\rangle \end{pmatrix}$$

→ Result is general (only inspired by intuition!)

The Jaynes-Cummings Hamiltonian for light-matter interaction

 $\widehat{H}_{\rm JC}^{\rm int} = \hbar g \big(\widehat{\sigma}^- \widehat{a}^\dagger e^{i\delta t} + \widehat{\sigma}^+ \widehat{a} e^{-i\delta t} \big)$

 $\delta \equiv \omega_{\rm q} - \omega_{\rm r}$

Detuning $\delta \gg g \rightarrow$ Qualitative discussion

- → No transitions (energy mismatch)
- ightarrow Heisenberg uncertainty allows for the creation of

excitations from the vacuum for time $\delta t \simeq \frac{\hbar}{\delta E}$

ightarrow Excitation needs to jump back

\rightarrow Level shifts

- \rightarrow Second-order effect (enery scale g^2/δ)
- → Eigenstates still predominantly resonatorlike or qubit-like with small admixture of other component

$$\widehat{H}_{JC} = \hbar \omega_{r} \widehat{a}^{\dagger} \widehat{a} + \frac{\hbar \omega_{q}}{2} \widehat{\sigma}_{z} + \hbar g \left(\widehat{a}^{\dagger} \widehat{\sigma}^{-} + \widehat{a} \widehat{\sigma}^{+} \right)$$
$$\widehat{H}_{JC}^{int} = \hbar g \left(\widehat{\sigma}^{-} \widehat{a}^{\dagger} e^{i\delta t} + \widehat{\sigma}^{+} \widehat{a} e^{-i\delta t} \right) \qquad \delta \equiv \omega_{q} - \omega_{r}$$

Detuning $\delta \gg g \rightarrow$ Quantitative discussion $\rightarrow \hat{U}$ cancels first-order photon exchange terms

 $\hbar g(\hat{a}^{\dagger}\hat{\sigma}^{-}+\hat{a}\hat{\sigma}^{+})$

→ Develop up to second order in $\frac{g}{\delta} \rightarrow \widehat{H}^{(2)} = \widehat{U}\widehat{H}_{JC}\widehat{U}^{\dagger} = \sum_{n} \frac{\widehat{A}^{n}}{n!} \widehat{H}_{JC} \sum_{m} \frac{(\widehat{A}^{\dagger})^{m}}{m!} \equiv \sum_{n,m} \widehat{H}_{nm}$ $= \hat{H}_{00} + \hat{H}_{01} + \hat{H}_{10} + \hat{H}_{02} + \hat{H}_{11} + \hat{H}_{02}$ $\rightarrow \text{ Neglect terms with } \left(\frac{g}{\delta}\right)^2 \rightarrow \widehat{H}^{(2)} = \hbar \left(\omega_r + \frac{g^2}{\delta}\widehat{\sigma}_z\right) \widehat{a}^{\dagger} \widehat{a} + \frac{\hbar}{2} \left(\omega_q + \frac{g^2}{\delta}\right) \widehat{\sigma}_z$ Ac Stark / Zeeman shift Lamb shift \rightarrow Qubit readout, dispersive gates,

R. Gross, A. Marx, F. Deppe,

A. Blais et al., Phys. Rev. A 69, 062320 (2004)

\rightarrow Two-tone spectroscopy

- → Send probe tone $\omega_{\rm rf} = \omega_{\rm r} + \frac{g^2}{\delta}$
- \rightarrow Sweep spectroscopy tone $\omega_{\rm s}$
- \rightarrow When the qubit is in $|e\rangle$, the transmission magnitude will drop drastically from blue to green curve
- \rightarrow Mixed state \rightarrow Reduced shift, but still ok
- → Transmission phase can also be used!
- ightarrow Measurement operator $\hat{\sigma}_z$ commutes with qubit Hamiltonian
 - \rightarrow Quantum nondemolition measurement
 - \rightarrow Qubit wave function may be projected, but neither destroyed nor unknown

Dispersive protocol for quantum state transfer

$$\widehat{U} = e^{\frac{g}{\delta}(\widehat{\sigma}_{A}^{+}\hat{a} - \widehat{\sigma}_{A}^{-}\hat{a}^{\dagger} + \widehat{\sigma}_{B}^{+}\hat{a} - \widehat{\sigma}_{B}^{-}\hat{a}^{\dagger})}$$

 \rightarrow Couple two transmon qubits A and B to the same resonator

→ Use resonator as quantum bus for state transfer

$$\rightarrow \hat{H}^{(2)} = \frac{\hbar\omega_{A}}{2}\hat{\sigma}_{z}^{A} + \frac{\hbar\omega_{B}}{2}\hat{\sigma}_{z}^{B} + \hbar\left(\omega_{r} + \frac{g^{2}}{\delta_{A}}\hat{\sigma}_{z}^{A} + \frac{g^{2}}{\delta_{B}}\hat{\sigma}_{z}^{B}\right)\hat{a}^{\dagger}\hat{a} + \hbar J(\hat{\sigma}_{A}^{-}\hat{\sigma}_{B}^{+} + \hat{\sigma}_{A}^{+}\hat{\sigma}_{B}^{-})$$

Dispersive (2nd order) qubit-qubit coupling

$$J = \frac{g^2}{2} \left(\frac{1}{\delta_{\rm A}} + \frac{1}{\delta_{\rm B}} \right)$$
$$-\hat{\sigma}^- \hat{\sigma}^+$$

 $\rightarrow \hat{\sigma}_{A}^{-} \hat{\sigma}_{B}^{+} + \hat{\sigma}_{A}^{+} \hat{\sigma}_{B}^{-} \text{ can be understood from } \hat{\sigma}_{z} = \hat{\sigma}^{+} \hat{\sigma}^{-} - \hat{\sigma}^{-} \hat{\sigma}^{+}$

ightarrow Virtual from qubit A to the resonator and back to qubit B

ightarrow Minus sign from different signs of the mode voltages at the qubit positions

J. Majer et al., Nature 449, 443-447 (2007)

a

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

ightarrow Both qubits dispersively shift the resonator

- ightarrow Only virtual photons exchanged with the bus
 - \rightarrow Bus can also be used for readout without degrading qubit coherence

Dispersive protocol for quantum state transfer

$$\delta_{A,B} \equiv \omega_{A,B} - \omega_{r}$$

$$\widehat{U} = e^{\frac{g}{\delta}(\widehat{\sigma}_{\rm A}^+ \hat{a} - \widehat{\sigma}_{\rm A}^- \hat{a}^\dagger + \widehat{\sigma}_{\rm B}^+ \hat{a} - \widehat{\sigma}_{\rm B}^- \hat{a}^\dagger)}$$

$$\widehat{H}^{(2)} = \frac{\hbar\omega_{\rm A}}{2}\widehat{\sigma}_z^{\rm A} + \frac{\hbar\omega_{\rm B}}{2}\widehat{\sigma}_z^{\rm B} + \hbar\left(\omega_{\rm r} + \frac{g^2}{\delta_{\rm A}}\widehat{\sigma}_z^{\rm A} + \frac{g^2}{\delta_{\rm B}}\widehat{\sigma}_z^{\rm B}\right)\,\widehat{a}^{\dagger}\widehat{a} + \hbar J(\widehat{\sigma}_{\rm A}^{-}\widehat{\sigma}_{\rm B}^{+} + \widehat{\sigma}_{\rm A}^{+}\widehat{\sigma}_{\rm B}^{-})$$

J. Majer et al., Nature 449, 443-447 (2007)

Protocol

- → Qubits detuned at different frequencies → Coupling off, $J \simeq 0$
- \rightarrow Bring one qubit to $|e\rangle$ using a π -pulse
- → Apply strong & detuned Stark shift pulse to bring qubits into resonance

 $\rightarrow \frac{J}{2\pi} \simeq 23 \text{ MHz}$ for time Δt

→ After the pulse ($J \simeq 0$ again) send readout pulse to resonator

Results

- \rightarrow Qubits coherently exchange population
- → Curved slope due to residual Rabi drive by the off-resonant Stark tone

Resonant regime of the JC Hamiltonian

$$|3,g\rangle = 2g\sqrt{3} |2,e\rangle$$

$$|2,g\rangle = 2g\sqrt{2} |1,e\rangle$$

$$|1,g\rangle = 2g |0,e\rangle$$

|0, g>

Dotuming S = 0

$$\widehat{H}_{\rm JC}^{\rm int} = \hbar g \big(\widehat{\sigma}^- \widehat{a}^\dagger e^{i\delta t} + \widehat{\sigma}^+ \widehat{a} e^{-i\delta t} \big)$$

 $\delta \equiv \omega_{\rm q} - \omega_{\rm r}$

Detuning $\delta = 0$

$$\rightarrow \hat{H}_{\rm JC} = \hbar \omega_{\rm r} \hat{a}^{\dagger} \hat{a} + \frac{\hbar \omega_{\rm q}}{2} \hat{\sigma}_z + \hbar g \left(\hat{a}^{\dagger} \hat{\sigma}^- + \hat{a} \hat{\sigma}^+ \right)$$

- → Degenerate levels { $|n, e\rangle$, $|n + 1, g\rangle$ } split into JC doublets { $|\pm, n\rangle$ } due to coupling $g\sqrt{n+1}$
- \rightarrow Ground state is the vacuum $|g, 0\rangle$

Dynamics?

- → Create non-eigenstate, e.g., $|n, e\rangle$ by nonadiabatically detuning the qubit, sending a π -pulse and tuning it back to resonance
- → Coherent population exchange between qubit and resonator $|n, e\rangle \leftrightarrow |n + 1, g\rangle$
- → Vacuum Rabi oscillations with *n*-photon Rabi frequency $\Omega_n \equiv 2g\sqrt{n+1}$

Coherent dynamics

→ Dynamics governed by interaction Hamiltonian and initial state |Ψ₀⟩ ≡ |Ψ_q(t = 0), Ψ_r(t = 0)⟩
→ On resonance (ω_q = ω_r) → $\hat{H}_{JC}^{int} = \hbar g (\hat{\sigma}^{-} \hat{a}^{\dagger} + \hat{\sigma}^{+} \hat{a})$ time-independent
→ |Ψ_{|Ψ₀⟩(t)⟩ ≡ |Ψ_q(t), Ψ_r(t)⟩ = e^{igt(\hat{\sigma}^{-} \hat{a}^{\dagger} + \hat{\sigma}^{+} \hat{a})|Ψ₀⟩ = \sum_{n} \frac{(igt)^{n}}{n!} (\hat{\sigma}^{-} \hat{a}^{\dagger} + \hat{\sigma}^{+} \hat{a})^{n} |Ψ₀⟩}}

 \rightarrow Initial state is ground state, $|\Psi_0\rangle = |g, 0\rangle$

$$\Rightarrow |\Psi_{|g,0\rangle}(t)\rangle = \sum_{n} \frac{(igt)^{n}}{n!} \left(\hat{\sigma}^{-} \hat{a}^{\dagger} + \hat{\sigma}^{+} \hat{a}\right)^{n} |g,0\rangle$$

$$\Rightarrow \left(\hat{\sigma}^{-} \hat{a}^{\dagger} + \hat{\sigma}^{+} \hat{a}\right)^{n} |g,0\rangle = \begin{cases} |g,0\rangle & \text{for } n=0\\ 0 & \text{for } n>0 \end{cases}$$

$$\Rightarrow |\Psi_{|g,0\rangle}(t)\rangle = |g,0\rangle$$

 \rightarrow No time evolution when starting from an eigenstate!

 \rightarrow Coherent dynamics in doublet $|\pm, n\rangle$

Coherent dynamics

 \rightarrow Initial state is $|e,n\rangle$

$$\begin{split} |\Psi_{|\Psi_{0}\rangle}(t)\rangle &= \sum_{n} \frac{(igt)^{n}}{n!} \left(\hat{\sigma}^{-} \hat{a}^{\dagger} + \hat{\sigma}^{+} \hat{a}\right)^{n} |\Psi_{0}\rangle \\ \\ \hat{a}^{\dagger} |n\rangle &= \sqrt{n+1} |n+1\rangle \\ \\ \hat{a} |n\rangle &= \sqrt{n} |n-1\rangle \end{split}$$

- $\rightarrow |\Psi_{|\mathbf{e},n\rangle}(t)\rangle = \cos(g\sqrt{n+1}t)|\mathbf{e},n\rangle + i\sin(g\sqrt{n+1}t)|\mathbf{g},n+1\rangle$
- \rightarrow Qubit and resonator exchange an excitation at rate $g\sqrt{n+1}$
- → Vacuum Rabi oscillations

→ Initial state has arbitrary cavity component, $|\Psi_{|e,\Psi_r\rangle}\rangle \equiv |e\rangle \otimes \sum_n c_n |n\rangle = \sum_n c_n |e,n\rangle$

$$\Rightarrow \left| \Psi_{|\mathbf{e},n\rangle}(t) \right\rangle = \sum_{n} c_{n} \left[\cos\left(g\sqrt{n+1}t\right) |\mathbf{e},n\rangle + i \sin\left(g\sqrt{n+1}t\right) |\mathbf{g},n+1\rangle \right]$$

- \rightarrow Superposition of noncommensurate oscillations
- \rightarrow Beatings, collapse and revivals etc.

Experimental demonstration of vacuum Rabi oscillations

- ightarrow Phase qubit capacitively coupled to a coplanar waveguide resonator
- ightarrow Readout method: Switching method using a dedicated readout SQUID

Experimental demonstration of vacuum Rabi oscillations

→ Sequential generation of Fock states putting one excitation after another → Confirms $\sqrt{n+1}$ -dependence of the vacuum Rabi frequency

M. Hofheinz et al., Nature 454, 310-314 (2004)

2

Experimental demonstration of vacuum Rabi oscillations

 \rightarrow Initial state $|g, \alpha\rangle \rightarrow$ Beatings and collapse & revival features observed

ż

Strong coupling regime

- ightarrow Definition motivated goal of observing quantum coherent dynamics
- ightarrow Vacuum Rabi dynamics happens at rate g
- → Qubit decays at rate $\gamma \approx \Gamma_1 + \Gamma_{\varphi}$, resonator at rate κ
- $\rightarrow g > \kappa + \gamma$ required to see at leat one Vacuum Rabi flop
 - \rightarrow Strong coupling regime
 - \rightarrow "Order-of-magnitude" citerion

Parameter	Symbol	3D optical	3D microwave	1D circuit
Resonance or transition frequency	$\omega_{\rm r}/2\pi,\Omega/2\pi$	350 THz	51 GHz	10 GHz
Vacuum Rabi frequency	$g/\pi, g/\omega_{\rm r}$	220 MHz, 3×10 ⁻⁷	47 kHz, 1×10 ⁻⁷	100 MHz, 5×10^{-3}
Transition dipole	d/ea0	~1	1×10^{3}	2×10^4
Cavity lifetime	$1/\kappa, Q$	10 ns, 3×10^{7}	$1 \text{ ms}, 3 \times 10^8$	160 ns, 10 ⁴
Atom lifetime	$1/\gamma$	61 ns	30 ms	2 µs
Atom transit time	t _{transit}	≥50 µs	$100 \ \mu s$	œ
Critical atom number	$N_0 = 2\gamma\kappa/g^2$	6×10^{-3}	3×10^{-6}	$\leq 6 \times 10^{-5}$
Critical photon number	$m_0 = \gamma^2 / 2g^2$	3×10^{-4}	3×10^{-8}	$\leq 1 \times 10^{-6}$
Number of vacuum Rabi flops	$n_{\rm Rabi}=2g/(\kappa+\gamma)$	~10	~5	$\sim 10^{2}$

Large coupling strength outweighs restricted coherence of superconducting circuits

Selection rules & Symmetry breaking

$$\widehat{H}_{\mathrm{TLS}} = \frac{\varepsilon}{2}\widehat{\sigma}_z + \frac{\Delta}{2}\widehat{\sigma}_x$$

- ightarrow Selection rules \leftrightarrow Concept of parity
 - \rightarrow Interaction can be dipolar, quadrupolar,...
 - \rightarrow Dipolar interaction
 - ightarrow Only odd transitions (between levels of different parity) are allowed

\rightarrow Natural atoms

- \rightarrow Symmetry of atomic potential \rightarrow Strict selection rules
- \rightarrow Dipolar \rightarrow EM field naturally couples to dipole moment
- \rightarrow Quadrupolar \rightarrow Requires strong field gradient (crystal fields)

\rightarrow Quantum circuits

- \rightarrow Normally dipolar, quadrupolar for gradiometric designs
- \rightarrow Well-defined parity only for symmetric qubit potential
- → Selection rules not always present
- \rightarrow Experimental access to selection rules

\rightarrow Multi-photon excitations

Y-X Liu *et al.*, Phys. Rev. Lett. **95**, 087001 (2005).
F. Deppe *et al.*, Nature Phys. **4**, 686-691 (2008).
T. Niemczyk *et al.*, ArXiv:1107.0810 (2011)

Selection rules & Symmetry breaking

→ Parity operator $\hat{\Pi}$

- \rightarrow Eigenvalues +1 (even parity) and -1 (odd parity)
- \rightarrow Qubit parity operator is $\hat{\Pi} = -\hat{\sigma}_z$
 - $\rightarrow \hat{\Pi} |g\rangle = |g\rangle$ and $\hat{\Pi} |e\rangle = -|e\rangle$
- ightarrow Parity related to symmetry of the potential
 - → Resonator potential symmetric (parabola!)
 - → Parity well defined, $\hat{\Pi}_{\rm r} = {\rm e}^{i\pi\hat{a}^{\dagger}\hat{a}}$
 - ightarrow Flux qubit potential only symmetric at degeneracy point arepsilon=0
 - \rightarrow For $\varepsilon \neq 0$, parity is no longer well defined

ightarrow Parity gives rise to selection rules

→ Interaction operators \hat{B}_{\pm} exhibit symmetries! → Even operator $\hat{B}_{+} \leftrightarrow \hat{\Pi}\hat{B}_{+}\hat{\Pi} = +\hat{B}_{+} \leftrightarrow \text{Commutator} [\hat{\Pi}, \hat{B}_{+}] = 0$ → Odd operator $\hat{B}_{-} \leftrightarrow \hat{\Pi}\hat{B}_{-}\hat{\Pi} = -\hat{B}_{-} \leftrightarrow \text{Anticommutator} \{\hat{\Pi}, \hat{B}_{+}\} = 0$ → $\langle \Psi_{\text{odd}} | \hat{B}_{+} | \Psi_{\text{even}} \rangle = \langle \Psi_{\text{odd}} | \hat{\Pi}\hat{B}_{+}\hat{\Pi} | \Psi_{\text{even}} \rangle = -\langle \Psi_{\text{odd}} | \hat{B}_{+} | \Psi_{\text{even}} \rangle = 0$ $\langle \Psi_{\text{even}} | \hat{B}_{+} | \Psi_{\text{odd}} \rangle = \langle \Psi_{\text{even}} | \hat{\Pi}\hat{B}_{+}\hat{\Pi} | \Psi_{\text{odd}} \rangle = -\langle \Psi_{\text{even}} | \hat{B}_{+} | \Psi_{\text{odd}} \rangle = 0$ → Transitions between levels of different parity forbidden for even operators → Investigate qubit-driving-field coupling operators

$$\widehat{H}_{\text{TLS}} = \frac{\varepsilon}{2}\widehat{\sigma}_z + \frac{\Delta}{2}\widehat{\sigma}_x$$
$$\omega_{\text{q}} = \sqrt{\varepsilon^2 + \Delta^2}$$
$$\sin\theta = \frac{\Delta}{\hbar\omega_{\text{q}}}, \cos\theta = \frac{\varepsilon}{\hbar\omega_{\text{q}}}$$

Second-order Hamiltonian using $\omega_{q} = 2\omega$ $\Rightarrow \widehat{H}^{(2)} = \hbar \frac{\omega_{q}}{2} \widehat{\sigma}_{z} + \hbar \omega_{r} \widehat{a}^{\dagger} \widehat{a} - \hbar g \sin \theta (\widehat{a}^{\dagger} \widehat{\sigma}^{-} + \widehat{a} \widehat{\sigma}^{+})$ $- \frac{\Omega^{2}}{4\Delta} \sin^{2} \theta \cos \theta (\widehat{\sigma}^{-} e^{i2\omega t} + \widehat{\sigma}^{+} e^{-i2\omega t}) - \frac{\Omega^{2}}{8\Delta} \sin^{3} \theta \widehat{\sigma}_{z}$ Two-photon Rabi drive can excite qubit only for $\epsilon \neq 0$

AS-Chap. 6.5 - 36

Selection rules & Symmetry breaking

- \rightarrow Qubit degeneracy point ($\varepsilon = 0$) interaction picture
 - \rightarrow One-photon drive operator $\hat{\sigma}_x$ has odd parity, $\left\{-\hat{\sigma}_z, \frac{\Omega}{4}\hat{\sigma}_x\right\} = 0$ $\sin\theta = \frac{\Delta}{\hbar\omega_0}, \cos\theta = \frac{\varepsilon}{\hbar\omega_0}$
 - \rightarrow One-photon transitions allowed
 - → Two-photon drive operator has even parity, $\left[-\hat{\sigma}_{z},\frac{\Omega^{2}}{8\lambda}\hat{\sigma}_{z}\right]=0$
 - ightarrow Two-photon transitions forbidden
 - \rightarrow Dipolar selection rules
 - ightarrow Artificial atom behaves like natural atom

 \rightarrow Away from qubit degeneracy point ($\epsilon \neq 0$) interaction picture

- $\rightarrow \hat{\sigma}_z \rightarrow \cos\theta \, \hat{\sigma}_z \sin\theta \, \hat{\sigma}_x \rightarrow$ Drive operator does not have a well-defined parity
- \rightarrow Both one- and two-photon transitions allowed
- ightarrow Artificial atom different from natural atom
- ightarrow Physics in circuit QED goes beyond the physics of cavity QED

0 5 mm 0.1 mm С 40 µm d ωs ω_{rf} VNA 300 K amplifier attenuated input line

Selection rules & Symmetry breaking

In two-tone spectroscopy, the one-photon dip is clearly visible at the qubit degeneracy point

 $\widehat{H}_{\text{TLS}} = \frac{\varepsilon}{2}\widehat{\sigma}_z + \frac{\Delta}{2}\widehat{\sigma}_x$

Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020) ż

$$\widehat{H}_{\text{TLS}} = \frac{\varepsilon}{2}\widehat{\sigma}_z + \frac{\Delta}{2}\widehat{\sigma}_x$$

Two-photon dip not observed near the qubit degeneracy point

Bare qubit resonator anticrossing observable (no drive photons put into resonator)

6.5 Quadrupole moment and selective driving

- → Antenna pair allows for in-situ control of interaction parity via phase difference φ
 → Probe magnetic dipole & quadrupole SRs
- → Gradiometric $\varepsilon(\Phi_{\rm X})$ with tunable $\Delta(\Phi_{\rm X})$
- → Potential symmetry controlled via gradiometer loop

6.5 Gradiometric flux qubit: dipole & quandrupole moments $\widehat{H}_{\text{TLS}} = \frac{\varepsilon}{2}\widehat{\sigma}_z + \frac{\Delta}{2}\widehat{\sigma}_x$ J. Goetz et al., Phys. Rev. Readout → CPW Resonator Lett. 121, 060503 (2018) \rightarrow Qubit at current antinode of fundamental mode → Antenna-resonator coupling small 50 um $i \frac{\omega_d t + \varphi}{antenna}$ resonator ω_{d} antenna qub 500 nm

6.5 Gradiometric flux qubit: dipole & quandrupole moments

 $\varepsilon(\Phi_{\rm x})$

Ultrastrong light-matter coupling

ightarrow Qubit-resonator coupling naturally determined by quantum Rabi Hamiltonian

$$\rightarrow \hat{H}_{qr} = \frac{\hbar\omega_q}{2}\hat{\sigma}_z + \hbar\omega_r\hat{a}^{\dagger}\hat{a} + \hbar g(\hat{\sigma}^+\hat{a} + \hat{\sigma}^-\hat{a}^{\dagger} + \hat{\sigma}^+\hat{a}^{\dagger} + \hat{\sigma}^-\hat{a})$$

- \rightarrow Maximum coupling strengths
 - \rightarrow Linear coupling
 - → Mutual inductance (capacitance) limited by self inductance (capacitance)

$$\rightarrow g \leq \sqrt{\omega_{\rm q}\omega_{\rm r}}$$

- → Simplified discussion → $\omega_q = \omega_r \equiv \omega$
 - → Dimensionless coupling strength $g/\omega \leq 1$
- ightarrow Superconducting circuits
 - \rightarrow Nonlinear coupling via kinetic inductance or Josephson inductance
 - $\rightarrow g/\omega > 1$ expected to be possible

Ultrastrong light-matter coupling

- ightarrow Regimes of light-matter coupling
 - → Jaynes-Cummings regime $(g/\omega \ll 1)$
 - ightarrow Coupling is small perturbation to self energy terms
 - \rightarrow Excitation exchange dynamics (vacuum Rabi oscillations)
 - ightarrow Counterrotating terms can be neglected by RWA
 - ightarrow Number of excitations is a conserved quantity
 - \rightarrow Ground state $|0,g\rangle$
 - → Ultrastrong coupling (USC) regime
 - \rightarrow Deviations from JC Hamiltonian observable in experiment
 - \rightarrow Ground state has contributions with n > 0
 - → Perturbative treatment still possible (modified population oscillation physics)
 - ightarrow In practice typically for $g/\omega\gtrsim 0.1$
 - → Deep strong coupling regime $g/\omega > 1.5$
 - → Parity chain physics (coherent dynamics happens within two subgoups of states characterized by odd/even parity)
 - → The "dark regime of USC" $(g/\omega \simeq 1)$
 - \rightarrow No intuition/analytics, only numerics

Ultrastrong light-matter coupling

$$\widehat{H}_{\rm JC} = \frac{\hbar\omega_{\rm q}}{2}\widehat{\sigma}_z + \hbar\omega_{\rm r}\widehat{a}^{\dagger}\widehat{a} + \hbar g(\widehat{\sigma}^{+}\widehat{a} + \widehat{\sigma}^{-}\widehat{a}^{\dagger})$$

 \downarrow RWA breaks down

$$\widehat{H}_{qr} = \frac{\hbar\omega_q}{2}\widehat{\sigma}_z + \hbar\omega_r\widehat{a}^{\dagger}\widehat{a} + \hbar g(\widehat{\sigma}^+\widehat{a} + \widehat{\sigma}^-\widehat{a}^{\dagger} + \widehat{\sigma}^+\widehat{a}^{\dagger} + \widehat{\sigma}^-\widehat{a})$$

Ultrastrong coupling regime

- \rightarrow Counterrotating term effects are observable in experiment
- → In practice typically for $\frac{g}{\omega} \gtrsim 10\%$

Experimental strategies

- \rightarrow Dynamics (no more vacuum Rabi oscillations) \rightarrow Complicated & demanding
- \rightarrow Ground state photons \rightarrow Demanding, few photons (
- \rightarrow Spectroscopy (anticrossing) \rightarrow Only quantitative change
- \rightarrow Nonconservation of excitation number \rightarrow Multimode setup, natural!

Use nonlinear $L_{\rm J}$ as mutual inductance between qubit an resonator!

Ultrastrong light-matter coupling

 ω_{rf} = probe frequency Color code \rightarrow Transmission magnitude

Large anticrossings (expected for large g)

- \rightarrow Almost unaffected, no qualitative change, could well be JC
- \rightarrow Reason \rightarrow Only single excitation involved!
- → This experiment → g/ω up to 0.12 (recently g/ω up to 1.4 has been demonstrated with flux qubits)

T. Niemczyk et al., Nature Phys. 6, 772 (2010).

Ultrastrong light-matter coupling

 ω_{rf} = probe frequency Color code \rightarrow Transmission magnitude

Small anticrossings

- \rightarrow Qualitative difference to JC observable (anticrossing vs. crossing)
- \rightarrow Reason: coupling of states with different number of excitations
- → Experimental proof for existence of counterrotating wave terms

T. Niemczyk et al., Nature Phys. 6, 772 (2010).