AS-Chap. 6.6 - 1

Propagating microwave states (photons)

 $\frac{\omega}{2\pi}$ ~ 1 – 10 GHz

Fundamental and applied questions:

- \rightarrow Does emitted microwave radiation exhibit quantum properties?
- \rightarrow Such as, commutation relations, superposition, entanglement?

 $|-\psi\rangle + |-\psi\rangle$ $|-\psi\rangle + |-\psi\rangle$

Quantum optics:

- \rightarrow Yes, expected due to field quantization
- ightarrow Confirmed by experiments

Quantum propagating microwaves:

- \rightarrow Expected in analogy to optics
- → Experimental proof required!

Microwave losses

- ightarrow May inhibit observation of quantum properties of propagating microwaves
- ightarrow May prohibit applications of quantum microwaves (in communication or sensing)

Fundamental technological considerations & obstacles

Superconducting cables

 \rightarrow Losses per km?

- 2020)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001

- \rightarrow 0.002 dB/m for coaxial cables
- \rightarrow 0.005 dB/m for 3D-waveguides
- \rightarrow 0.001 dB/m for commercial optical fibres

→ Coherent propagation distance ℓ_{coh} sufficient?

→ Furthermore, in resonators, microwave signals travel back and forth many times before losing coherence ($T_1 \simeq 100 \ \mu s - 1 \ ms$)

→
$$\ell_{\rm coh} \approx 3 \times 10^8 \frac{\rm m}{\rm s} T_1 \simeq 10 - 100 \rm \, km$$

comparable to optics

M. Pfeifer, Bachelor thesis, TUM (2020).E. Xie, PhD thesis , TUM (2019).P. Kurpiers et al., EPJ Quantum Technol. 4, 8 (2017).

comparable

Envisioned applications of propagating quantum microwaves

- → Superconducting cables require cooling!
 - ightarrow Short- or medium-distance applications certainly feasible
 - \rightarrow QIP platforms such as SQC also require cooling \rightarrow compatible!
- ightarrow Technological compatibility to SQC
 - \rightarrow No frequency conversion losses
 - ightarrow Natural candidate for chip-to-chip quantum communication with SQC

Fundamental technological considerations & obstacles

Free-space propagation

\rightarrow Atmospheric transparency windows

ightarrow Classical illumination with microwaves used for radar

- ightarrow Known to pass through clouds, fog, and rain
- → Typical frequencies < 20 GHz ($\lambda = \frac{3 \times 10^8 \frac{\text{m}}{\text{s}}}{f} \simeq 1.5$ cm)
- → Compatible with SQC (superconducting gap of aluminum still twice as large)

Quantization of the electromagnetic field

F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008)

 \rightarrow Source-free (free field!) Maxwell equations $\nabla B = 0, \quad \nabla \times E = -\frac{\partial B}{\partial t}, \quad \nabla D = 0, \quad \nabla \times H = \frac{\partial D}{\partial t} \quad (B = \mu_0 H, D = \epsilon_0 E, \mu_0 \epsilon_0 = c^{-2})$ \rightarrow Coulomb gauge ($\nabla A = 0$) $\rightarrow B = \nabla \times A$, $E = -\frac{\partial A}{\partial t}$ $\rightarrow A(r,t)$ satisfies wave equation $\nabla^2 A = \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2}$ → Separate vector potential $A(r,t) = A^{(+)}(r,t) + A^{(-)}(r,t)$ into \rightarrow right-propagating components $A^{(+)}(\mathbf{r},t)$ varying with $e^{-i\omega t}$ for $\omega > 0$ \rightarrow left-propagating components $A^{(-)}(\mathbf{r},t)$ varying with $e^{i\omega t}$ for $\omega > 0$ \rightarrow Restrict field to finite volume $\rightarrow A^{(+)}(\mathbf{r},t) = \sum_{k} c_{k} \mathbf{u}_{k}(\mathbf{r}) e^{-i\omega_{k}t}$ \rightarrow Fourier coefficients c_k constant for free field \rightarrow vector mode functions $u_k(r)$ → satisfy wave equations $\left(\nabla^2 + \frac{\omega_k^2}{c^2}\right) u_k(r) = 0$ \rightarrow satisfy transversality condition $\nabla u_k(\mathbf{r}) = 0$ \rightarrow form orthonormal set $\int_{V} dr \, \boldsymbol{u}_{k}^{\star}(\boldsymbol{r}) \boldsymbol{u}_{k'}(\boldsymbol{r}) = \delta_{kk'}$

 \rightarrow depend on boundary conditions

Quantization of the electromagnetic field

F. D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 2008)

 \rightarrow General example for boundary conditions

- \rightarrow periodic (travelling waves)
- \rightarrow reflecting walls (standing waves)

 \rightarrow Here: plane wave functions suitable for cubic volume with side lengths L

$$\rightarrow u_k(r) = \frac{1}{L^{3/2}} \hat{e}^{(\lambda)} e^{ikr}$$

→ wave vector
$$\mathbf{k} = (k_x, k_y, k_z)$$
 with $k_{x,y,z} = \frac{2\pi}{L} n_{x,y,z}$ and $n_{x,y,z} \in \mathbb{Z}$

- $\rightarrow \hat{e}^{(\lambda)}$ perpendicular to k
- → typically no polarization in microwaves propagating in waveguides → polarization vector $\hat{e}^{(\lambda)} = \hat{e}$

→ Quantization of classical Fourier amplitudes

 $\Rightarrow a_k, a_k^* \Rightarrow \hat{a}_k, \hat{a}_k^{\dagger} \text{ with commutation relations } \left[\hat{a}_k, \hat{a}_{k'}^{\dagger}\right] = \delta_{kk'}$ $\Rightarrow A(\mathbf{r}, t) = \sum_k \sqrt{\frac{\hbar}{2\omega_k \epsilon_0}} \left[\hat{a}_k \mathbf{u}_k(\mathbf{r}) e^{-i\omega t} + \hat{a}_k^{\dagger} \mathbf{u}_k^*(\mathbf{r}) e^{i\omega t}\right]$ $\Rightarrow E(\mathbf{r}, t) = i \sum_k \sqrt{\frac{\hbar\omega_k}{2\epsilon_0}} \left[\hat{a}_k \mathbf{u}_k(\mathbf{r}) e^{-i\omega t} - \hat{a}_k^{\dagger} \mathbf{u}_k^*(\mathbf{r}) e^{i\omega t}\right]$ $\Rightarrow \text{Hamiltonian } \hat{H} = \frac{1}{2} \int d\mathbf{r} \left(\epsilon_0 E^2 + \mu_0 H^2\right) = \sum_k \hbar\omega_k \left(\hat{a}_k^{\dagger} \hat{a}_k + \frac{1}{2}\right)$ $\Rightarrow \text{quantum states } |\psi_k\rangle \text{ of each mode can now be discussed independently!}$

Continuos variables (CV) vs. discrete variables (DV)

Classical single-mode electromagnetic waves $A \cos(\omega t + \phi)$ \rightarrow equivalent description $P \cos \omega_k t + Q \sin \omega_k t$ with field quadratures $Q = A \cos \phi$ and $P = A \sin \phi$ \rightarrow in engineering, P is often called I \rightarrow field quadratures analogous to momentum/position in mechanics \rightarrow field quantization $\rightarrow [\hat{Q}, \hat{P}] = \frac{i}{2} \iff (\Delta P)(\Delta Q) \ge \frac{1}{4}$

Single-mode quantum field $\rightarrow \hat{H}_{HO} = \hat{P}^2 + \hat{Q}^2 = \hbar \omega_k \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$

Continuous-variable basis

- → Set of eigenstates of either \hat{P} or \hat{Q} also forms basis
- → Natural states are Gaussian states (coherent, squeezed, thermal)

Discrete-variable basis

- \rightarrow Fock basis $\{|n\rangle\}$
- → Single photons |1⟩ are the natural quantity of interest

→ Any quantum state can be expressed either in CV or in DV
→ Any quantum task (QIP, QSim, Qcomm, QIIIu) can be expressed in CV or DV
→ Nevertheless a particular basis may be more suitable for a particular problem

Annihilation operator $\hat{a} \equiv \frac{\omega_{r}C\bar{\Phi}+i\hat{q}}{\sqrt{2\omega_{r}C\hbar}}$ Creation operator $\hat{a}^{\dagger} \equiv \frac{\omega_{r}C\bar{\Phi}-i\hat{q}}{\sqrt{2\omega_{r}C\hbar}}$ $\hat{H}_{HO} = E_{kin} + E_{pot} = \frac{\hat{p}^{2}}{2m} + \frac{1}{2}m\omega_{r}^{2}\hat{x}^{2}$ $\hat{P} \equiv \sqrt{\frac{1}{2\hbar m\omega_{r}}}\hat{p}^{2}, \hat{Q} \equiv \sqrt{\frac{m\omega_{r}}{2\hbar}}\hat{x}^{2}$

6.6 Discrete and continuous variables

As an alternative to the discrete encoding, one can use the eigenstates $\{|x\rangle\}$ of a continuous-valued operator \hat{x} .

Expressing quantum microwave states

- \rightarrow General quantum state described by the desity matrix $\hat{\rho} = \sum_{\Psi} P_{\Psi} |\Psi\rangle\langle\Psi|$
 - $\rightarrow P_{\Psi} = \text{Classical probability to be in state } |\Psi\rangle \rightarrow P_{\Psi} > 0 \text{ and } \sum_{\Psi} P_{\Psi} = 1$
 - → expectation value of operator $\hat{O} \rightarrow \langle \hat{O} \rangle = \text{Tr}[\hat{O}\hat{\rho}]$
 - \rightarrow normalization \rightarrow Tr[$\hat{\rho}$] = 1
 - \rightarrow complex matrix entries \rightarrow not easy to visualize

\rightarrow Phase space representation of a quantum state

- ightarrow ideal classical states ightarrow points in phase space
- \rightarrow noisy classical states
 - \rightarrow ordinary probability distribution P(q, p) in phase space
 - \rightarrow q, p are the phase space variables associated with Q, P
 - $\rightarrow P(q,p)dqdp$ is the probability to find the system in state (q,p)
- \rightarrow quantum states
 - → Heisenberg uncertainty relation $(\Delta P)(\Delta Q) \ge \frac{1}{4}$ as "quantum noise"
 - \rightarrow in general, requires also negative probability densities
 - → quasi-probability distribution W(q, p) with $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(q, p) dq dp = 1$
 - → Wigner function $W(q,p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \langle q \frac{\zeta}{2} | \hat{\rho} | q + \frac{\zeta}{2} \rangle e^{ip\zeta} d\zeta$ and $\zeta \in \mathbb{R}$

6.6 Gaussian microwave states

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Coherent state $|\alpha\rangle \equiv |Q + iP\rangle = \widehat{D}(\alpha)|0\rangle$

→ Produced by displacement operator $\widehat{D}(\alpha) \equiv e^{\alpha \hat{a}^{\dagger} - \alpha^{\star} \hat{a}}$ applied to vacuum

$$\Rightarrow W_{\rm coh}(q,p) = \frac{2}{\pi} e^{-2\left[(q-Q)^2 + (p-P)^2\right]} > 0$$

→ Coherent states are "most classical" quantum states - do not generate entanglement

6.6 Gaussian microwave states

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Thermal state $\hat{\rho}_{\text{th}}$ with $\bar{n} \equiv Tr[\hat{a}^{\dagger}\hat{a}\hat{\rho}_{\text{th}}] = 1$ $\Rightarrow W_{\text{th}}(q,p) = \frac{1}{\pi(\bar{n}+\frac{1}{2})}e^{-\frac{q^2+p^2}{\bar{n}+\frac{1}{2}}} > 0$

 \rightarrow In the high-temperature limit $k_{\rm B}T \gg \hbar\omega_k$, thermal states can be considered to be classical

→ Thermal states are also classical - do not generate entanglement

6.6 Gaussian microwave states

Fedorov © Walther-Meißner-Institut (2001 - 2020) R. Gross, A. Marx, F. Deppe, and K.

Squeezed vacuum determined by complex squeezing parameter $\xi \equiv re^{i\varphi}$ \Rightarrow Produced by squeezing operator $\hat{S}(\xi) \equiv e^{\frac{1}{2}\left[\xi^*\hat{a}^2 - \xi(\hat{a}^{\dagger})^2\right]}$ applied to vacuum \Rightarrow r determines the amount of squeezing and φ the squeezing direction in phase space $\Rightarrow W_{sq}(q,p) = \frac{2}{\pi}e^{-(e^{2r}+e^{-2r})|q+ip|^2 - \frac{1}{2}(e^{2r}-e^{-2r})(e^{-i\varphi}|q+ip|^2+e^{i\varphi}|q-ip|^2)} > 0$ \Rightarrow Since $(\Delta P)^2 < \frac{1}{4}$, one must have $(\Delta Q)^2 \ge \frac{1}{4(\Delta P)^2}$ to satisfy the Heisenberg relation \Rightarrow Squeezed states are nonclassical - produce entanglement when applied to a beamsplitter with vacuum at the other input port

6.6 Quantum entanglement

Not entangled, separable (product) states:

 $|\Psi\rangle = |\Psi_1\rangle \bigotimes |\Psi_2\rangle$

QE is a unique property of a **composite system**, where one cannot describe its subparts independently of each other.

practical applications of entanglement:

- ightarrow quantum communication
- \rightarrow quantum sensing

6.6 Generation of squeezed microwaves

6.6 Generation of squeezed microwaves

- λ/4 resonator in coplanar waveguide (CPW) geometry
- flux-tunable resonant frequency

$$L_{\rm SQUID}(\Phi) = \frac{\Phi_0}{4\pi I_c \left| \cos\left(\pi \frac{\Phi}{\Phi_0}\right) \right|}$$

6.6 Generation of squeezed microwaves

Gross, A. Marx, F. Deppe, and K. Fedorov ⓒ Walther-Meißner-Institut (2001 - 2020)

6.6 Non-Gaussian microwave states

Wigner function examples

Fock (number) states

- ightarrow Have a radially symmetric Wigner function
- → The vacuum $|0\rangle$ is a Gaussian state with the vacuum variace of $0.5\hbar\omega$
- → Finite number states $|n \ge 1\rangle$ are nonclassical..
 - → ..because their Wigner function can become negative
 - → ..because they produce path-entanglement when applied to a beamsplitter with vacuum at the other input port
- ightarrow Typically generated employing qubits

6.6 Tomography of propagating microwaves

State reconstruction of propagating quantum microwaves

No efficient photon detectors

Difficult task!

Off-the-shelf linear amplifiers

Add $\bar{n} \approx 10$ of noise to signal

Two common approaches: 1. Parametric amplifiers

2. Signal recovery methods (measure signal moments)

6.6 Tomography of propagating microwaves

Kowledge of all moments is equivalent to knowlege of the Wigner function or density matrix.

Expectation values of all signal moment up to order n

$$\begin{array}{c} \langle C_1^{n-1} C_2 \rangle \\ \downarrow \\ \langle a^n \rangle, \langle \chi_1^n \rangle, \langle \chi_2^n \rangle \end{array}$$

Iteratively obtain all signal & detector noise moments

Nondeterministic & quantum signals up to order $n \rightarrow \text{Record}$ all moments $\langle Q_1^j Q_2^k P_1^\ell P_2^m \rangle$ with $j + k + \ell + m \leq n$ and $j, k, \ell, m \in \mathbb{N}_0$

6.6 Tomography of propagating microwaves

Dual-path state reconstruction of propagating quantum microwaves

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

max a

Intuition for order n = 2

→ Use statistical independence of amplifier noise signals in different paths $\langle \chi_1 \chi_2 \rangle = \langle \chi_1 \rangle \langle \chi_2 \rangle = 0$ → $\langle C_{1,2} \rangle = \langle a + \chi_{1,2} \rangle =$ $\langle a \rangle + \langle \chi_{1,2} \rangle = \langle a \rangle$ → $\langle C_{1,2}^2 \rangle = \langle (a + \chi_{1,2})^2 \rangle =$ $\langle a^2 + a \chi_{1,2} + \chi_{1,2} a +$