Applied Superconductivity:

Josephson Effect and Superconducting Electronics

Manuscript to the Lectures during WS 2003/2004, WS 2005/2006, WS 2006/2007, WS 2007/2008, WS 2008/2009, and WS 2009/2010

Prof. Dr. Rudolf Gross <sup>and</sup> Dr. Achim Marx

Walther-Meißner-Institut Bayerische Akademie der Wissenschaften and Lehrstuhl für Technische Physik (E23)

Technische Universität München

Walther-Meißner-Strasse 8 D-85748 Garching Rudolf.Gross@wmi.badw.de

© Walther-Meißner-Institut — Garching, October 2005

# Contents

|   | Pref | face    |                                                                                           | xxi |
|---|------|---------|-------------------------------------------------------------------------------------------|-----|
| I | Fou  | ndatio  | ns of the Josephson Effect                                                                | 1   |
| 1 | Mac  | roscopi | ic Quantum Phenomena                                                                      | 3   |
|   | 1.1  | The M   | lacroscopic Quantum Model                                                                 | 3   |
|   |      | 1.1.1   | Coherent Phenomena in Superconductivity                                                   | 3   |
|   |      | 1.1.2   | Macroscopic Quantum Currents in Superconductors                                           | 12  |
|   |      | 1.1.3   | The London Equations                                                                      | 18  |
|   | 1.2  | Flux Q  | Quantization                                                                              | 24  |
|   |      | 1.2.1   | Flux and Fluxoid Quantization                                                             | 26  |
|   |      | 1.2.2   | Experimental Proof of Flux Quantization                                                   | 28  |
|   |      | 1.2.3   | Additional Topic:<br>Rotating Superconductor                                              | 30  |
|   | 1.3  | Joseph  | son Effect                                                                                | 32  |
|   |      | 1.3.1   | The Josephson Equations                                                                   | 33  |
|   |      | 1.3.2   | Josephson Tunneling                                                                       | 37  |
| 2 | JJs: | The Ze  | ero Voltage State                                                                         | 43  |
|   | 2.1  | Basic   | Properties of Lumped Josephson Junctions                                                  | 44  |
|   |      | 2.1.1   | The Lumped Josephson Junction                                                             | 44  |
|   |      | 2.1.2   | The Josephson Coupling Energy                                                             | 45  |
|   |      | 2.1.3   | The Superconducting State                                                                 | 47  |
|   |      | 2.1.4   | The Josephson Inductance                                                                  | 49  |
|   |      | 2.1.5   | Mechanical Analogs                                                                        | 49  |
|   | 2.2  | Short.  | Josephson Junctions                                                                       | 50  |
|   |      | 2.2.1   | Quantum Interference Effects – Short Josephson Junction in an Applied Mag-<br>netic Field | 50  |

|   |            | 2.2.2             | The Fraunhofer Diffraction Pattern                                                        | 54  |
|---|------------|-------------------|-------------------------------------------------------------------------------------------|-----|
|   |            | 2.2.3             | Determination of the Maximum Josephson Current Density                                    | 58  |
|   |            | 2.2.4             | Additional Topic:<br>Direct Imaging of the Supercurrent Distribution                      | 62  |
|   |            | 2.2.5             | Additional Topic:         Short Josephson Junctions: Energy Considerations                | 63  |
|   |            | 2.2.6             | The Motion of Josephson Vortices                                                          | 65  |
|   | 2.3        | Long J            | osephson Junctions                                                                        | 68  |
|   |            | 2.3.1             | The Stationary Sine-Gordon Equation                                                       | 68  |
|   |            | 2.3.2             | The Josephson Vortex                                                                      | 70  |
|   |            | 2.3.3             | Junction Types and Boundary Conditions                                                    | 73  |
|   |            | 2.3.4             | Additional Topic:<br>Josephson Current Density Distribution and Maximum Josephson Current | 79  |
|   |            | 2.3.5             | The Pendulum Analog                                                                       | 84  |
| 3 | He         | The Vo            | Itage State                                                                               | 89  |
| 5 | <b>3</b> 1 | The Ba            | asic Equation of the Lumped Iosephson Junction                                            | 90  |
|   | 5.1        | 311               | The Normal Current: Junction Resistance                                                   | 90  |
|   |            | 3.1.2             | The Displacement Current: Junction Capacitance                                            | 92  |
|   |            | 3.1.3             | Characteristic Times and Frequencies                                                      | 93  |
|   |            | 3.1.4             | The Fluctuation Current                                                                   | 94  |
|   |            | 3.1.5             | The Basic Junction Equation                                                               | 96  |
|   | 3.2        | The Re            | esistively and Capacitively Shunted Junction Model                                        | 97  |
|   |            | 3.2.1             | Underdamped and Overdamped Josephson Junctions                                            | 100 |
|   | 3.3        | Respor            | nse to Driving Sources                                                                    | 102 |
|   |            | 3.3.1             | Response to a dc Current Source                                                           | 102 |
|   |            | 3.3.2             | Response to a dc Voltage Source                                                           | 107 |
|   |            | 3.3.3             | Response to ac Driving Sources                                                            | 107 |
|   |            | 3.3.4             | Photon-Assisted Tunneling                                                                 | 112 |
|   | 3.4        | Additio<br>Effect | onal Topic:<br>of Thermal Fluctuations                                                    | 115 |
|   |            | 3.4.1             | Underdamped Junctions: Reduction of $I_c$ by Premature Switching                          | 117 |
|   |            | 3.4.2             | Overdamped Junctions: The Ambegaokar-Halperin Theory                                      | 118 |
|   | 3.5        | Second            | lary Quantum Macroscopic Effects                                                          | 122 |
|   |            | 3.5.1             | Quantum Consequences of the Small Junction Capacitance                                    | 122 |
|   |            |                   |                                                                                           |     |

v

|    |     | 3.5.2              | Limiting Cases: The Phase and Charge Regime          | 125 |
|----|-----|--------------------|------------------------------------------------------|-----|
|    |     | 3.5.3              | Coulomb and Flux Blockade                            | 128 |
|    |     | 3.5.4              | Coherent Charge and Phase States                     | 130 |
|    |     | 3.5.5              | Quantum Fluctuations                                 | 132 |
|    |     | 3.5.6              | Macroscopic Quantum Tunneling                        | 133 |
|    | 3.6 | Voltage            | e State of Extended Josephson Junctions              | 139 |
|    |     | 3.6.1              | Negligible Screening Effects                         | 139 |
|    |     | 3.6.2              | The Time Dependent Sine-Gordon Equation              | 140 |
|    |     | 3.6.3              | Solutions of the Time Dependent Sine-Gordon Equation | 141 |
|    |     | 3.6.4              | Additional Topic:<br>Resonance Phenomena             | 144 |
| II | Ap  | plicatio           | ons of the Josephson Effect                          | 153 |
| 4  | SQU | IDs                |                                                      | 157 |
|    | 4.1 | The dc             | -SQUID                                               | 159 |
|    |     | 4.1.1              | The Zero Voltage State                               | 159 |
|    |     | 4.1.2              | The Voltage State                                    | 164 |
|    |     | 4.1.3              | Operation and Performance of dc-SQUIDs               | 168 |
|    |     | 4.1.4              | Practical dc-SQUIDs                                  | 172 |
|    |     | 4.1.5              | Read-Out Schemes                                     | 176 |
|    | 4.2 | Additio<br>The rf- | onal Topic:<br>SQUID                                 | 180 |
|    |     | 4.2.1              | The Zero Voltage State                               | 180 |
|    |     | 4.2.2              | Operation and Performance of rf-SQUIDs               | 182 |
|    |     | 4.2.3              | Practical rf-SQUIDs                                  | 186 |
|    | 4.3 | Additio<br>Other S | onal Topic:<br>SQUID Configurations                  | 188 |
|    |     | 4.3.1              | The DROS                                             | 188 |
|    |     | 4.3.2              | The SQIF                                             | 189 |
|    |     | 4.3.3              | Cartwheel SQUID                                      | 189 |
|    | 4.4 | Instrun            | nents Based on SQUIDs                                | 191 |
|    |     | 4.4.1              | Magnetometers                                        | 192 |
|    |     | 4.4.2              | Gradiometers                                         | 194 |
|    |     | 4.4.3              | Susceptometers                                       | 196 |

|   |      | 4.4.4    | Voltmeters                                                  |
|---|------|----------|-------------------------------------------------------------|
|   |      | 4.4.5    | Radiofrequency Amplifiers                                   |
|   | 4.5  | Applic   | ations of SQUIDs                                            |
|   |      | 4.5.1    | Biomagnetism                                                |
|   |      | 4.5.2    | Nondestructive Evaluation                                   |
|   |      | 4.5.3    | SQUID Microscopy                                            |
|   |      | 4.5.4    | Gravity Wave Antennas and Gravity Gradiometers              |
|   |      | 4.5.5    | Geophysics                                                  |
| 5 | Digi | tal Elec | tronics 215                                                 |
|   | 5.1  | Superc   | conductivity and Digital Electronics                        |
|   |      | 5.1.1    | Historical development                                      |
|   |      | 5.1.2    | Advantages and Disadvantages of Josephson Switching Devices |
|   | 5.2  | Voltag   | e State Josephson Logic                                     |
|   |      | 5.2.1    | Operation Principle and Switching Times                     |
|   |      | 5.2.2    | Power Dissipation                                           |
|   |      | 5.2.3    | Switching Dynamics, Global Clock and Punchthrough           |
|   |      | 5.2.4    | Josephson Logic Gates                                       |
|   |      | 5.2.5    | Memory Cells                                                |
|   |      | 5.2.6    | Microprocessors                                             |
|   |      | 5.2.7    | Problems of Josephson Logic Gates                           |
|   | 5.3  | RSFQ     | Logic                                                       |
|   |      | 5.3.1    | Basic Components of RSFQ Circuits                           |
|   |      | 5.3.2    | Information in RSFQ Circuits                                |
|   |      | 5.3.3    | Basic Logic Gates                                           |
|   |      | 5.3.4    | Timing and Power Supply                                     |
|   |      | 5.3.5    | Maximum Speed                                               |
|   |      | 5.3.6    | Power Dissipation                                           |
|   |      | 5.3.7    | Prospects of RSFQ                                           |
|   |      | 5.3.8    | Fabrication Technology                                      |
|   |      | 5.3.9    | RSFQ Roadmap                                                |
|   | 5.4  | Analog   | g-to-Digital Converters                                     |
|   |      | 5.4.1    | Additional Topic:Foundations of ADCs256                     |
|   |      | 5.4.2    | The Comparator                                              |
|   |      | 5.4.3    | The Aperture Time                                           |
|   |      | 5.4.4    | Different Types of ADCs                                     |
|   |      |          |                                                             |

| 6 | The | Josephson Voltage Standard 26                                       | <u>í9</u> |
|---|-----|---------------------------------------------------------------------|-----------|
|   | 6.1 | Voltage Standards                                                   | 0         |
|   |     | 6.1.1 Standard Cells and Electrical Standards                       | 0         |
|   |     | 6.1.2 Quantum Standards for Electrical Units                        | 1         |
|   | 6.2 | The Josephson Voltage Standard                                      | '4        |
|   |     | 6.2.1 Underlying Physics                                            | '4        |
|   |     | 6.2.2 Development of the Josephson Voltage Standard                 | '4        |
|   |     | 6.2.3 Junction and Circuit Parameters for Series Arrays             | '9        |
|   | 6.3 | Programmable Josephson Voltage Standard                             | 31        |
|   |     | 6.3.1 Pulse Driven Josephson Arrays                                 | 33        |
| 7 | Sup | erconducting Photon and Particle Detectors 28                       | 35        |
|   | 7.1 | Superconducting Microwave Detectors: Heterodyne Receivers           | 36        |
|   |     | 7.1.1 Noise Equivalent Power and Noise Temperature                  | 36        |
|   |     | 7.1.2 Operation Principle of Mixers                                 | 37        |
|   |     | 7.1.3 Noise Temperature of Heterodyne Receivers                     | 90        |
|   |     | 7.1.4 SIS Quasiparticle Mixers                                      | 92        |
|   |     | 7.1.5 Josephson Mixers                                              | 96        |
|   | 7.2 | Superconducting Microwave Detectors: Direct Detectors               | 97        |
|   |     | 7.2.1 NEP of Direct Detectors                                       | )8        |
|   | 7.3 | Thermal Detectors                                                   | )0        |
|   |     | 7.3.1 Principle of Thermal Detection                                | )0        |
|   |     | 7.3.2 Bolometers                                                    | )2        |
|   |     | 7.3.3 Antenna-Coupled Microbolometers                               | )7        |
|   | 7.4 | Superconducting Particle and Single Photon Detectors                | 4         |
|   |     | 7.4.1 Thermal Photon and Particle Detectors: Microcalorimeters      | .4        |
|   |     | 7.4.2 Superconducting Tunnel Junction Photon and Particle Detectors | 8         |
|   | 7.5 | Other Detectors                                                     | 28        |
| 8 | Mic | rowave Applications 32                                              | <u>29</u> |
|   | 8.1 | High Frequency Properties of Superconductors                        | 30        |
|   |     | 8.1.1 The Two-Fluid Model                                           | 30        |
|   |     | 8.1.2 The Surface Impedance                                         | 33        |
|   | 8.2 | Superconducting Resonators and Filters                              | 36        |
|   | 8.3 | Superconducting Microwave Sources                                   | 37        |
|   |     |                                                                     |           |

| 9  | Sup | erconducting Quantum Bits                                                          | 339   |
|----|-----|------------------------------------------------------------------------------------|-------|
|    | 9.1 | Quantum Bits and Quantum Computers                                                 | . 341 |
|    |     | 9.1.1 Quantum Bits                                                                 | . 341 |
|    |     | 9.1.2 Quantum Computing                                                            | . 343 |
|    |     | 9.1.3 Quantum Error Correction                                                     | . 346 |
|    |     | 9.1.4 What are the Problems?                                                       | . 348 |
|    | 9.2 | Implementation of Quantum Bits                                                     | . 349 |
|    | 9.3 | Why Superconducting Qubits                                                         | . 352 |
|    |     | 9.3.1 Superconducting Island with Leads                                            | . 352 |
| II | [ A | nhang                                                                              | 355   |
| A  | The | Josephson Equations                                                                | 357   |
| B  | Ima | ging of the Maximum Josephson Current Density                                      | 361   |
| С  | Nun | nerical Iteration Method for the Calculation of the Josephson Current Distribution | 363   |
| D  | Pho | ton Noise                                                                          | 365   |
|    | Ι   | Power of Blackbody Radiation                                                       | . 365 |
|    | II  | Noise Equivalent Power                                                             | . 367 |
| E  | Qub | its                                                                                | 369   |
|    | Ι   | What is a quantum bit ?                                                            | . 369 |
|    |     | I.1 Single-Qubit Systems                                                           | . 369 |
|    |     | I.2 The spin-1/2 system                                                            | . 371 |
|    |     | I.3 Two-Qubit Systems                                                              | . 372 |
|    | II  | Entanglement                                                                       | . 373 |
|    | III | Qubit Operations                                                                   | . 375 |
|    |     | III.1 Unitarity                                                                    | . 375 |
|    |     | III.2 Single Qubit Operations                                                      | . 375 |
|    |     | III.3 Two Qubit Operations                                                         | . 376 |
|    | IV  | Quantum Logic Gates                                                                | . 377 |
|    |     | IV.1 Single-Bit Gates                                                              | . 377 |
|    |     | IV.2 Two Bit Gates                                                                 | . 379 |
|    | V   | The No-Cloning Theorem                                                             | . 384 |
|    | VI  | Quantum Complexity                                                                 | . 385 |
|    | VII | The Density Matrix Representation                                                  | . 385 |

| • |   |
|---|---|
|   | v |
|   | л |
|   |   |

| F | Two  | Level Systems 38                                                 | 89 |
|---|------|------------------------------------------------------------------|----|
|   | Ι    | Introduction to the Problem                                      | 89 |
|   |      | I.1 Relation to Spin-1/2 Systems                                 | 90 |
|   | II   | Static Properties of Two-Level Systems                           | 90 |
|   |      | II.1 Eigenstates and Eigenvalues                                 | 90 |
|   |      | II.2 Interpretation                                              | 91 |
|   |      | II.3 Quantum Resonance                                           | 94 |
|   | III  | Dynamic Properties of Two-Level Systems                          | 95 |
|   |      | III.1 Time Evolution of the State Vector                         | 95 |
|   |      | III.2 The Rabi Formula                                           | 95 |
| G | The  | Spin 1/2 System 39                                               | 99 |
|   | Ι    | Experimental Demonstration of Angular Momentum Quantization      | 99 |
|   | II   | Theoretical Description                                          | 01 |
|   |      | II.1 The Spin Space                                              | 01 |
|   | III  | Evolution of a Spin 1/2 Particle in a Homogeneous Magnetic Field | 02 |
|   | IV   | Spin 1/2 Particle in a Rotating Magnetic Field                   | 04 |
|   |      | IV.1 Classical Treatment                                         | 04 |
|   |      | IV.2 Quantum Mechanical Treatment                                | 06 |
|   |      | IV.3 Rabi's Formula                                              | 07 |
| H | Lite | ature 40                                                         | 09 |
|   | Ι    | Foundations of Superconductivity                                 | 09 |
|   |      | I.1 Introduction to Superconductivity                            | 09 |
|   |      | I.2 Early Work on Superconductivity and Superfluidity            | 10 |
|   |      | I.3 History of Superconductivity                                 | 10 |
|   |      | I.4 Weak Superconductivity, Josephson Effect, Flux Structures    | 10 |
|   | II   | Applications of Superconductivity                                | 11 |
|   |      | II.1 Electronics, Sensors, Microwave Devices                     | 11 |
|   |      | II.2 Power Applications, Magnets, Transportation                 | 12 |
|   |      | II.3 Superconducting Materials                                   | 12 |
| I | SI-E | nheiten 41                                                       | 13 |
|   | Ι    | Geschichte des SI Systems                                        | 13 |
|   | II   | Die SI Basiseinheiten                                            | 15 |
|   | III  | Einige von den SI Einheiten abgeleitete Einheiten                | 16 |
|   | IV   | Vorsätze                                                         | 18 |
|   | V    | Abgeleitete Einheiten und Umrechnungsfaktoren                    | 19 |

J Physikalische Konstanten

# **List of Figures**

| 1.1  | Meissner-Effect                                                                                       | 19 |
|------|-------------------------------------------------------------------------------------------------------|----|
| 1.2  | Current transport and decay of a supercurrent in the Fermi sphere picture                             | 20 |
| 1.3  | Stationary Quantum States                                                                             | 24 |
| 1.4  | Flux Quantization in Superconductors                                                                  | 25 |
| 1.5  | Flux Quantization in a Superconducting Cylinder                                                       | 27 |
| 1.6  | Experiment by Doll and Naebauer                                                                       | 29 |
| 1.7  | Experimental Proof of Flux Quantization                                                               | 29 |
| 1.8  | Rotating superconducting cylinder                                                                     | 31 |
| 1.9  | The Josephson Effect in weakly coupled superconductors                                                | 32 |
| 1.10 | Variation of $n_s^{\star}$ and $\gamma$ across a Josephson junction                                   | 35 |
| 1.11 | Schematic View of a Josephson Junction                                                                | 36 |
| 1.12 | Josephson Tunneling                                                                                   | 39 |
| 2.1  | Lumped Josephson Junction                                                                             | 45 |
| 2.2  | Coupling Energy and Josephson Current                                                                 | 46 |
| 2.3  | The Tilted Washboard Potential                                                                        | 48 |
| 2.4  | Extended Josephson Junction                                                                           | 51 |
| 2.5  | Magnetic Field Dependence of the Maximum Josephson Current                                            | 55 |
| 2.6  | Josephson Current Distribution in a Small Josephson Junction for Various Applied Mag-<br>netic Fields | 56 |
| 2.7  | Spatial Interference of Macroscopic Wave Funktions                                                    | 57 |
| 2.8  | The Josephson Vortex                                                                                  | 57 |
| 2.9  | Gaussian Shaped Josephson Junction                                                                    | 59 |
| 2.10 | Comparison between Measurement of Maximum Josephson Current and Optical Diffrac-<br>tion Experiment   | 60 |
| 2.11 | Supercurrent Auto-correlation Function                                                                | 61 |
| 2.12 | Magnetic Field Dependence of the Maximum Josephson Current of a YBCO-GBJ                              | 63 |

| 2.13 | Motion of Josephson Vortices                                                                                                     | 66 |
|------|----------------------------------------------------------------------------------------------------------------------------------|----|
| 2.14 | Magnetic Flux and Current Density Distribution for a Josephson Vortex                                                            | 70 |
| 2.15 | Classification of Junction Types: Overlap, Inline and Grain Boundary Junction                                                    | 74 |
| 2.16 | Geometry of the Asymmetric Inline Junction                                                                                       | 77 |
| 2.17 | Geometry of Mixed Overlap and Inline Junctions                                                                                   | 78 |
| 2.18 | The Josephson Current Distribution of a Long Inline Junction                                                                     | 80 |
| 2.19 | The Maximum Josephson Current as a Function of the Junction Length                                                               | 81 |
| 2.20 | Magnetic Field Dependence of the Maximum Josephson Current and the Josephson Current Density Distribution in an Overlap Junction | 83 |
| 2.21 | The Maximum Josephson Current as a Function of the Applied Field for Overlap and Inline Junctions                                | 84 |
| 3.1  | Current-Voltage Characteristic of a Josephson tunnel junction                                                                    | 91 |
| 3.2  | Equivalent circuit for a Josephson junction including the normal, displacement and fluc-<br>tuation current                      | 92 |
| 3.3  | Equivalent circuit of the Resistively Shunted Junction Model                                                                     | 97 |
| 3.4  | The Motion of a Particle in the Tilt Washboard Potential                                                                         | 98 |
| 3.5  | Pendulum analogue of a Josephson junction                                                                                        | 99 |
| 3.6  | The IVCs for Underdamped and Overdamped Josephson Junctions                                                                      | 01 |
| 3.7  | The time variation of the junction voltage and the Josephson current                                                             | 03 |
| 3.8  | The RSJ model current-voltage characteristics                                                                                    | 05 |
| 3.9  | The RCSJ Model IVC at Intermediate Damping                                                                                       | 07 |
| 3.10 | The RCJ Model Circuit for an Applied dc and ac Voltage Source                                                                    | 08 |
| 3.11 | Overdamped Josephson Junction driven by a dc and ac Voltage Source                                                               | 10 |
| 3.12 | Overdamped Josephson junction driven by a dc and ac Current Source $\ldots \ldots \ldots \ldots 1$                               | 11 |
| 3.13 | Shapiro steps for under- and overdamped Josephson junction                                                                       | 12 |
| 3.14 | Photon assisted tunneling                                                                                                        | 13 |
| 3.15 | Photon assisted tunneling in SIS Josephson junction                                                                              | 13 |
| 3.16 | Thermally Activated Phase Slippage                                                                                               | 16 |
| 3.17 | Temperature Dependence of the Thermally Activated Junction Resistance 1                                                          | 19 |
| 3.18 | RSJ Model Current-Voltage Characteristics Including Thermally Activated Phase Slippage 1                                         | 20 |
| 3.19 | Variation of the Josephson Coupling Energy and the Charging Energy with the Junction Area                                        | 24 |
| 3.20 | Energy diagrams of an isolated Josephson junction                                                                                | 27 |
| 3.21 | The Coulomb Blockade                                                                                                             | 28 |

| 3.22 | The Phase Blockade                                                                                                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.23 | The Cooper pair box                                                                                                                                |
| 3.24 | Double well potential for the generation of phase superposition states                                                                             |
| 3.25 | Macroscopic Quantum Tunneling                                                                                                                      |
| 3.26 | Macroscopic Quantum Tunneling at Large Damping                                                                                                     |
| 3.27 | Mechanical analogue for phase dynamics of a long Josephson junction                                                                                |
| 3.28 | The Current Voltage Characteristic of an Underdamped Long Josephson Junction 145                                                                   |
| 3.29 | Zero field steps in IVCs of an annular Josephson junction                                                                                          |
| 4.1  | The dc-SQUID                                                                                                                                       |
| 4.2  | Maximum Supercurrent versus Applied Magnetic Flux for a dc-SQUID at Weak Screening162                                                              |
| 4.3  | Total Flux versus Applied Magnetic Flux for a dc SQUID at $\beta_L > 1$                                                                            |
| 4.4  | Current-voltage Characteristics of a dc-SQUID at Negligible Screening                                                                              |
| 4.5  | The pendulum analogue of a dc SQUID                                                                                                                |
| 4.6  | Principle of Operation of a dc-SQUID                                                                                                               |
| 4.7  | Energy Resolution of dc-SQUIDs                                                                                                                     |
| 4.8  | The Practical dc-SQUID                                                                                                                             |
| 4.9  | Geometries for thin film SQUID washers                                                                                                             |
| 4.10 | Flux focusing effect in a $YBa_2Cu_3O_{7-\delta}$ washer $\ldots \ldots 175$ |
| 4.11 | The Washer dc-SQUID                                                                                                                                |
| 4.12 | The Flux Modulation Scheme for a dc-SQUID                                                                                                          |
| 4.13 | The Modulation and Feedback Circuit of a dc-SQUID                                                                                                  |
| 4.14 | The rf-SQUID                                                                                                                                       |
| 4.15 | Total flux versus applied flux for a rf-SQUID                                                                                                      |
| 4.16 | Operation of rf-SQUIDs                                                                                                                             |
| 4.17 | Tank voltage versus rf-current for a rf-SQUID                                                                                                      |
| 4.18 | High $T_c$ rf-SQUID                                                                                                                                |
| 4.19 | The double relaxation oscillation SQUID (DROS)                                                                                                     |
| 4.20 | The Superconducting Quantum Interference Filter (SQIF)                                                                                             |
| 4.21 | Input Antenna for SQUIDs                                                                                                                           |
| 4.22 | Various types of thin film SQUID magnetometers                                                                                                     |
| 4.23 | Magnetic noise signals                                                                                                                             |
| 4.24 | Magnetically shielded room                                                                                                                         |
| 4.25 | Various gradiometers configurations                                                                                                                |

| 4.26 | Miniature SQUID Susceptometer                                          |
|------|------------------------------------------------------------------------|
| 4.27 | SQUID Radio-frequency Amplifier                                        |
| 4.28 | Multichannel SQUID Systems                                             |
| 4.29 | Magnetocardiography                                                    |
| 4.30 | Magnetic field distribution during R peak                              |
| 4.31 | SQUID based nondestructive evaluation                                  |
| 4.32 | Scanning SQUID microscopy                                              |
| 4.33 | Scanning SQUID microscopy images                                       |
| 4.34 | Gravity wave antenna                                                   |
| 4.35 | Gravity gradiometer                                                    |
| 5.1  | Cryotron                                                               |
| 5.2  | Josephson Cryotron                                                     |
| 5.3  | Device performance of Josephson devices                                |
| 5.4  | Principle of operation of a Josephson switching device                 |
| 5.5  | Output current of a Josephson switching device                         |
| 5.6  | Threshold characteristics for a magnetically and directly coupled gate |
| 5.7  | Three-junction interferometer gate                                     |
| 5.8  | Current injection device                                               |
| 5.9  | Josephson Atto Weber Switch (JAWS)                                     |
| 5.10 | Direct coupled logic (DCL) gate                                        |
| 5.11 | Resistor coupled logic (RCL) gate                                      |
| 5.12 | 4 junction logic (4JL) gate                                            |
| 5.13 | Non-destructive readout memory cell                                    |
| 5.14 | Destructive read-out memory cell                                       |
| 5.15 | 4 bit Josephson microprocessor                                         |
| 5.16 | Josephson microprocessor                                               |
| 5.17 | Comparison of latching and non-latching Josephson logic                |
| 5.18 | Generation of SFQ Pulses                                               |
| 5.19 | dc to SFQ Converter                                                    |
| 5.20 | Basic Elements of RSFQ Circuits                                        |
| 5.21 | RSFQ memory cell                                                       |
| 5.22 | RSFQ logic                                                             |
| 5.23 | RSFQ OR and AND Gate                                                   |

| 5.24 | RSFQ NOT Gate                                                                 |
|------|-------------------------------------------------------------------------------|
| 5.25 | RSFQ Shift Register                                                           |
| 5.26 | RSFQ Microprocessor                                                           |
| 5.27 | RSFQ roadmap                                                                  |
| 5.28 | Principle of operation of an analog-to-digital converter                      |
| 5.29 | Analog-to-Digital Conversion                                                  |
| 5.30 | Semiconductor and Superconductor Comparators                                  |
| 5.31 | Incremental Quantizer                                                         |
| 5.32 | Flash-type ADC    265                                                         |
| 5.33 | Counting-type ADC                                                             |
| 6.1  | Weston cell                                                                   |
| 6.2  | The metrological triangle for the electrical units                            |
| 6.3  | IVC of an underdamped Josephson junction under microwave irradiation          |
| 6.4  | International voltage comparison between 1920 and 2000                        |
| 6.5  | One-Volt Josephson junction array                                             |
| 6.6  | Josephson series array embedded into microwave stripline                      |
| 6.7  | Microwave design of Josephson voltage standards                               |
| 6.8  | Adjustment of Shapiro steps for a series array Josephson voltage standard 281 |
| 6.9  | IVC of overdamped Josephson junction with microwave irradiation               |
| 6.10 | Programmable Josephson voltage standard                                       |
| 7.1  | Block diagram of a heterodyne receiver                                        |
| 7.2  | Ideal mixer as a switch                                                       |
| 7.3  | Current response of a heterodyne mixer                                        |
| 7.4  | IVCs and IF output power of SIS mixer                                         |
| 7.5  | Optimum noise temperature of a SIS quasiparticle mixer                        |
| 7.6  | Measured DSB noise temperature of a SIS quasiparticle mixers                  |
| 7.7  | High frequency coupling schemes for SIS mixers                                |
| 7.8  | Principle of thermal detectors                                                |
| 7.9  | Operation principle of superconducting transition edge bolometer              |
| 7.10 | Sketch of a HTS bolometer                                                     |
| 7.11 | Specific detectivity of various bolometers                                    |
| 7.12 | Relaxation processes in a superconductor after energy absorption              |
| 7.13 | Antenna-coupled microbolometer                                                |

| Schematic illustration of the hot electron bolometer mixer         |
|--------------------------------------------------------------------|
| Hot electron bolometer mixers with different antenna structures    |
| Transition-edge sensors                                            |
| Transition-edge sensors                                            |
| Functional principle of a superconducting tunnel junction detector |
| Circuit diagram of a superconducting tunnel junction detector      |
| Energy resolving power of STJDs                                    |
| Quasiparticle tunneling in SIS junctions                           |
| Quasiparticle trapping in STJDs                                    |
| STJDs employing lateral quasiparticle trapping                     |
| Superconducting tunnel junction x-ray detector                     |
| Equivalent circuit for the two-fluid model                         |
| Characteristic frequency regimes for a superconductor              |
| Surface resistance of Nb and Cu                                    |
| Konrad Zuse 1945                                                   |
| Representation of a Qubit State as a Vector on the Bloch Sphere    |
| Operational Scheme of a Quantum Computer                           |
| Quantum Computing: What's it good for?                             |
| Shor, Feynman, Bennett and Deutsch                                 |
| Qubit Realization by Quantum Mechanical Two level System           |
| Use of Superconductors for Qubits                                  |
| Superconducting Island with Leads                                  |
| The Bloch Sphere $S^2$                                             |
| The Spin-1/2 System                                                |
| Entanglement – an artist's view                                    |
| Classical Single-Bit Gate                                          |
| Quantum NOT Gate                                                   |
| Classical Two Bit Gate                                             |
| Reversible and Irreversible Logic                                  |
| Reversible Classical Logic                                         |
| Reversible XOR (CNOT) and SWAP Gate                                |
| The Controlled U Gate                                              |
|                                                                    |

| E.11 | Density Matrix for Pure Single Qubit States                        | 386 |
|------|--------------------------------------------------------------------|-----|
| E.12 | Density Matrix for a Coherent Superposition of Single Qubit States | 387 |
| F.1  | Energy Levels of a Two-Level System                                | 392 |
| F.2  | The Benzene Molecule                                               | 394 |
| F.3  | Graphical Representation of the Rabi Formula                       | 396 |
| G.1  | The Larmor Precession                                              | 100 |
| G.2  | The Rotating Reference Frame                                       | 104 |
| G.3  | The Effective Magnetic Field in the Rotating Reference Frame       | 405 |
| G.4  | Rabi's Formula for a Spin 1/2 System    4                          | 108 |

# **List of Tables**

| 5.1 | Switching delay and power dissipation for various types of logic gates                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.2 | Josephson 4 kbit RAM characteristics (organization: 4096 word x 1 bit, NEC)                                                                                                       |
| 5.3 | Performance of various logic gates                                                                                                                                                |
| 5.4 | Possible applications of superconductor digital circuits (source: SCENET 2001)                                                                                                    |
| 5.5 | Performance of various RSFQ based circuits                                                                                                                                        |
| 7.1 | Characteristic materials properties of some superconductors                                                                                                                       |
| 8.1 | Important high-frequency characteristic of superconducting and normal conducting 334                                                                                              |
| E.1 | Successive measurements on a two-qubit state showing the results $A$ and $B$ with the corresponding probabilities $P(A)$ and $P(B)$ and the remaining state after the measurement |

### **Chapter F**

## **Quantum Mechanical Two-Level Systems**

We have seen that quantum bits can be represented by every two-level quantum system. There are numerous cases in physics, which can be in first order approximation treated simply as such kind of system. For example, a system with two states whose energies are close and differ very much from those of all other states of the system can be view as a two-level system. Therefore, we briefly summarize here the basic properties of quantum mechanical two-level systems. In particular we address the effect of an external perturbation as well as an internal interaction on the two states. The general treatment of a two-level system will provide some general and important ideas such as quantum resonance, oscillation between two levels etc..

### I Introduction to the Problem

We consider a system with a two-dimensional state space. As an orthonormal basis we choose the system of the two eigenstates  $|\phi_1\rangle$  and  $|\phi_2\rangle$  (cf. (I.2) and I.3)) of the Hamiltonian  $\mathcal{H}_0$ , whose eigenvalues are  $E_1$  and  $E_2$ , respectively:

$$\mathscr{H}_0|\phi_1\rangle = E_1|\phi_1\rangle \tag{I.1}$$

$$\mathscr{H}_0|\phi_2\rangle = E_2|\phi_1\rangle . \tag{I.2}$$

We further take into account an external perturbation or interactions internal to the system, which are not contained in  $\mathcal{H}_0$ , which is called the unperturbed Hamiltonian. The total Hamiltonian then becomes

$$\mathscr{H} = \mathscr{H}_0 + \mathscr{W} \tag{I.3}$$

with the perturbation or coupling  $\mathcal{W}$ . The eigenvalues of  $\mathcal{H}$  are denoted by  $|\Psi_+\rangle$  and  $|\Psi_-\rangle$  with the corresponding eigenvalues  $E_+$  and  $E_-$ :

$$\mathscr{H}|\Psi_{+}\rangle = E_{+}|\Psi_{+}\rangle$$
 (I.4)

$$\mathscr{H}|\Psi_{-}\rangle = E_{-}|\Psi_{-}\rangle$$
 (I.5)

For simplicity, we will assume that  $\mathscr{W}$  is time-independent. In the basis of  $\{|\phi_1\rangle, |\phi_2\rangle\}$  of the unperturbed eigenstates of  $\mathscr{H}_0$ , the perturbation  $\mathscr{W}$  is represented by a Hermitian matrix

$$\mathscr{W} = \begin{pmatrix} \mathscr{W}_{11} & \mathscr{W}_{12} \\ \mathscr{W}_{21} & \mathscr{W}_{22} \end{pmatrix} . \tag{I.6}$$

 $\mathscr{W}_{11}$  and  $\mathscr{W}_{22}$  are real and moreover  $\mathscr{W}_{12} = \mathscr{W}_{21}^{\star}$ .

In the absence of any perturbation or coupling the possible eigenenergies of the system are  $E_1$  and  $E_2$  and the states  $|\phi_1\rangle$  and  $|\phi_2\rangle$  are stationary states, i.e. if the system is prepared in one of these states it stays there forever.

We now have to evaluate what happens if we are introducing a finite coupling  $\mathcal{W}$ . The consequences of the coupling are the following:

•  $E_1$  and  $E_2$  are no longer the possible eigenstates of the system.

If we are measuring the energy of the system only the two values  $E_+$  and  $E_-$  are possible, which generally differ from  $E_1$  and  $E_2$ . Therefore, we first have to calculate the new eigenenergies  $E_+$  and  $E_-$  in terms of  $E_1$  and  $E_2$  and the matrix elements  $\mathcal{W}_{ij}$  of the coupling  $\mathcal{W}$ . That is, we have to study the effect of the coupling on the position of the energy levels.

•  $|\phi_1
angle$  and  $|\phi_2
angle$  are no longer stationary states.

Since  $|\phi_1\rangle$  and  $|\phi_2\rangle$  are in general no longer eigenstates of the total Hamiltonian  $\mathscr{H}$ , they are no longer stationary states. If the system stays in the state  $|\phi_1\rangle$  at the time t = 0, there is a certain probability  $P_{12}(t)$  for finding the system in the state  $|\phi_2\rangle$  at time t. That is,  $\mathscr{W}$  introduces transitions between the two unperturbed states. This justifies the name "coupling" for  $\mathscr{W}$ . The dynamic aspect of the effect of  $\mathscr{W}$  is the second problem we have to address.

#### I.1 Relation to Spin-1/2 Systems

It can be shown that the Hamiltonian  $\mathscr{H}$  has the same form as that of a spin 1/2 placed in a static magnetic field **B**, whose components  $B_x$ ,  $B_y$  and  $B_z$  are expressed in terms of  $E_1$  and  $E_2$  and the matrix elements  $\mathscr{W}_{ij}$ . That means that we can associate with every two-level system a spin 1/2 placed in a static field **B** and described by a Hamiltonian of identical form. The spin is then called a *fictitious spin*. All results we are deriving in the following can then be interpreted in a simple geometric way in terms of a magnetic moment, Larmor precession and other concepts used for spin 1/2 systems. This geometrical interpretation often helps to get a helpful illustration of what is going on. For a discussion of the spin-1/2-system, see Appendix G.

### **II** Static Properties of Two-Level Systems

#### **II.1** Eigenstates and Eigenvalues

We first write the Hamiltonian  $\mathscr{H}$  in the  $\{|\phi_1\rangle, |\phi_2\rangle\}$  basis of the unperturbed eigenstates:

$$\mathscr{H} = \begin{pmatrix} \mathscr{H}_0 + \mathscr{W}_{11} & \mathscr{W}_{12} \\ \mathscr{W}_{21} & \mathscr{H}_0 + \mathscr{W}_{22} \end{pmatrix} . \tag{II.7}$$

With  $|\Psi\rangle = a|\phi_1\rangle + b|\phi_2\rangle$  we obtain the eigenvalue equation

$$\begin{pmatrix} E_1 + \mathcal{W}_{11} - E & \mathcal{W}_{12} \\ \mathcal{W}_{12}^{\star} & E_2 + \mathcal{W}_{22} - E \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0 .$$
(II.8)

#### © Walther-Meißner-Institut

Upon diagonalization of the matrix we find the eigenvalues

$$E_{+} = \frac{1}{2}(E_{1} + W_{11} + E_{2} + W_{22}) + \frac{1}{2}\sqrt{(E_{1} + W_{11} - E_{2} - W_{22})^{2} + 4|W_{12}|^{2}}$$
(II.9)

$$E_{-} = \frac{1}{2}(E_1 + W_{11} + E_2 + W_{22}) - \frac{1}{2}\sqrt{(E_1 + W_{11} - E_2 - W_{22})^2 + 4|W_{12}|^2} .$$
(II.10)

We immediately see that  $E_+$  and  $E_-$  are identical to  $E_1$  and  $E_2$  for W = 0. The corresponding eigenvectors can be written as

$$|\Psi_{+}\rangle = \cos\frac{\theta}{2}e^{-\iota\varphi/2}|\phi_{1}\rangle + \sin\frac{\theta}{2}e^{+\iota\varphi/2}|\phi_{2}\rangle$$
(II.11)

$$|\Psi_{-}\rangle = -\sin\frac{\theta}{2}e^{-\iota\varphi/2}|\phi_{1}\rangle + \cos\frac{\theta}{2}e^{+\iota\varphi/2}|\phi_{2}\rangle , \qquad (II.12)$$

where the angle  $\theta$  and  $\phi$  are given by

$$\tan \theta = \frac{2|W_{12}|}{E_1 + W_{11} - E_2 - W_{22}}$$
(II.13)

$$W_{21} = |W_{21}| e^{i\varphi} . (II.14)$$

#### **II.2** Interpretation

In order to discuss the above results we first will do a graphical representation of the effect of coupling. The most interesting effect of the perturbation  $\mathcal{W}$  is the fact that it possesses off-diagonal matrix elements  $\mathcal{W}_{12} = \mathcal{W}_{21}^{\star}$ . If the off-diagonal terms would vanish, the eigenstates of  $\mathcal{H}$  would be the same as those of  $\mathcal{H}_0$  and the new eigenenergies would be  $E_1 + W_{11}$  and  $E_2 + W_{22}$ . Since the diagonal terms of the perturbation are not very interesting, we will assume  $W_{11} = W_{22} = 0$  in the following. With this assumption the expression for the eigenenergies simplify to

$$E_{+} = \frac{1}{2}(E_{1} + E_{2}) + \frac{1}{2}\sqrt{(E_{1} - E_{2})^{2} + 4|W_{12}|^{2}}$$
(II.15)

$$E_{-} = \frac{1}{2}(E_{1} + E_{2}) - \frac{1}{2}\sqrt{(E_{1} - E_{2})^{2} + 4|W_{12}|^{2}}$$
(II.16)

with

$$\tan \theta = \frac{2|W_{12}|}{E_1 - E_2} \qquad 0 \le \theta < \pi \qquad (II.17)$$
$$W_{12} = |W_{21}| e^{i\varphi} . \qquad (II.18)$$

By introducing the two parameters

$$E_m \equiv \frac{1}{2}(E_1 + E_2)$$
 (II.19)

$$\Delta \equiv \frac{1}{2}(E_1 - E_2) \tag{II.20}$$

we obtain



Figure F.1: Variation of the eigenenergies  $E_+$  and  $E_-$  as a function of the parameter  $\Delta = (E_1 - E_2)/2$ . Also shown are the energies  $E_1$  and  $E_2$  (dashed lines).

$$E_{+} = E_{m} + \frac{1}{2}\sqrt{\Delta^{2} + 4|W_{12}|^{2}}$$
(II.21)

$$E_{-} = E_{m} - \frac{1}{2}\sqrt{\Delta^{2} + 4|W_{12}|^{2}} . \qquad (II.22)$$

We see that a variation of  $E_m$  corresponds to a shift of the eigenenergies  $E_+$  and  $E_-$  along the energy axis. It can be further seen from (F.II.11) to (F.II.14) that the eigenstates  $|\Psi_+\rangle$  and  $|\Psi_-\rangle$  are not affected by changes of  $E_m$ . We therefore are not interested in the effect of  $E_m$ . In the following we will set the origin of the energy scale such that  $E_m = 0$ .

The influence of the parameter  $\Delta$  is more interesting. In Fig. F.1 we have plotted the variation of the eigenenergies  $E_+$ ,  $E_-$ ,  $E_1$  and  $E_2$  as a function of the parameter  $\Delta = (E_1 - E_2)/2$ . It is evident that for  $E_1$  and  $E_2$  two straight lines are obtained with slopes +1 and -1, respectively. According to (F.II.21) and (F.II.22),  $E_+$  and  $E_-$  describe two branches of a hyperbola, which is symmetrical with respect to the  $E = E_m$  and  $\Delta = 0$  axis. The asymptotes of the hyperbola are the two straight lines associated with the unperturbed levels. The minimum separation between the two branches is  $2|W_{12}|$ . We immediately see that  $E_+ \rightarrow E_1$  and  $E_- \rightarrow E_2$  for  $E_1 > E_2$  as well as  $E_+ \rightarrow E_2$  and  $E_- \rightarrow E_1$  for  $E_1 < E_2$ .

Discussing the effect of the coupling on the position of the energy levels we see the following: First, in the absence of any coupling the levels ( $E_1$  and  $E_2$ ) cross at the position ( $E = E_m, \Delta = 0$ ). Under the effect of the off-diagonal coupling the two perturbed levels  $E_+$  and  $E_-$  repel each other, i.e. the energy values move further apart from each other, and we obtain the typical *anti-crossing behavior*. We also see that for any  $\Delta$  we have

$$|E_{+} - E_{-}| > |E_{1} - E_{2}| . (II.23)$$

This result is well known from other fields of physics. For example, in electronic circuit theory the coupling separates the normal frequencies.

#### © Walther-Meißner-Institut

Near the asymptotes we have  $|\Delta| \gg |W_{12}|$  and the expressions (F.II.21) and (F.II.22) can be expanded into a power series in  $|W_{12}/\Delta|$ :

$$E_{+} = E_{m} + \Delta \left( 1 + \frac{1}{2} \left| \frac{W_{12}}{\Delta} \right|^{2} + \dots \right)$$
(II.24)

$$E_{-} = E_{m} - \Delta \left( 1 + \frac{1}{2} \left| \frac{W_{12}}{\Delta} \right|^{2} + \dots \right)$$
(II.25)

On the other hand, for  $\Delta$  close to zero we obtain

$$E_{+} = E_{m} + |W_{12}| \tag{II.26}$$

$$E_{-} = E_{m} - |W_{12}| . (II.27)$$

From this we immediately see that the effect of coupling is more important when the two unperturbed levels have about the same energy. The effect is then of first order as seen from (F.II.26) and (F.II.27), whereas according to (F.II.24) and (F.II.25) it is of second order for  $|\Delta| \gg |W_{12}|$ .

We next have to discuss the effect of the coupling on the eigenstates. With the parameters  $E_m$  and  $\Delta$  we can rewrite (F.II.17) as

$$\tan\theta = \frac{|W_{12}|}{\Delta} . \tag{II.28}$$

That is, for strong coupling, i.e.  $\Delta \ll |W_{12}|$ , we have  $\theta \simeq \pi/2$ . In contrast, for weak coupling, i.e.  $\Delta \gg |W_{12}|$ , we have  $\theta \simeq 0$ . Then, at the center of the hyperbola when  $E_1 = E_2$ , ( $\Delta = 0$ ) we have

$$|\Psi_{+}\rangle = \frac{1}{\sqrt{2}} \left[ e^{-\iota \varphi/2} |\phi_{1}\rangle + e^{+\iota \varphi/2} |\phi_{2}\rangle \right]$$
(II.29)

$$|\Psi_{-}\rangle = \frac{1}{\sqrt{2}} \left[ -e^{-\iota \varphi/2} |\phi_1\rangle + e^{+\iota \varphi/2} |\phi_2\rangle \right] . \tag{II.30}$$

Near the asymptotes, when  $|\Delta| \gg |W_{12}|$  (weak coupling), we obtain in first order of  $|W_{12}|/\Delta$ :

$$|\Psi_{+}\rangle = e^{-i\phi/2} \left[ |\phi_{1}\rangle + e^{+i\phi} \frac{|W_{12}|}{2\Delta} |\phi_{2}\rangle + \dots \right]$$
(II.31)

$$|\Psi_{-}\rangle = e^{+\iota\varphi/2} \left[ |\phi_{2}\rangle - e^{-\iota\varphi} \frac{|W_{12}|}{2\Delta} |\phi_{1}\rangle + \dots \right] . \tag{II.32}$$

As expected, for weak coupling ( $\Delta \ll |W_{12}|$ ) the perturbed states differ only slightly from the unperturbed ones. According to (F.II.31) the state  $\Psi_+\rangle$  differs from  $\phi_1\rangle$  only by the global phase factor  $e^{-i\varphi/2}$  with an additional small contribution of the state  $\phi_2\rangle$ . According to (F.II.32) the same is true for  $\Psi_-\rangle$ . On the other hand, for strong coupling ( $\Delta \gg |W_{12}|$ ) according to (F.II.29) and (F.II.30) the states  $|\Psi_+\rangle$  and  $|\Psi_-\rangle$  are very different from the unperturbed states  $|\phi_1\rangle$  and  $|\phi_2\rangle$ , since they are linear superpositions of them with coefficients of the same modulus.



Figure F.2: The two possible configurations of the double bonds in a benzene molecule (top) and of the circulating current in a superconducting loop containing a Josephson junction (bottom).

#### II.3 Quantum Resonance

We briefly discuss the case where the eigenenergies of  $\mathcal{H}_0$  are two-fold degenerate, i.e.  $E_1 = E_2 = E_m$ . In this case the coupling  $W_{12}$  lifts the degeneracy as discussed above giving rise to a level with reduced energy. That means that if the ground state of a physical system is two-fold degenerate and all other levels are sufficiently far away any purely off-diagonal coupling between the corresponding states is causing a reduction of the ground state energy of the system.

There are many examples of this phenomenon such as the resonance stabilization of the benzene C<sub>6</sub>H<sub>6</sub> molecule shown in Fig. F.2. The ground state of the molecule includes three double bonds between neighboring carbons. The eigenfunctions  $|\phi_1\rangle$  and  $|\phi_2\rangle$  correspond to the two possible configurations of the double bonds shown in Fig. F.2. By symmetry reasons we expect that the ground state energy of the system is  $\langle \phi_1 | \mathscr{H} | \phi_1 \rangle = \langle \phi_2 | \mathscr{H} | \phi_2 \rangle = E_m$  resulting in a two-fold degenerate ground state. However, the off-diagonal matrix element  $\langle \phi_1 | \mathscr{H} | \phi_2 \rangle$  is not zero resulting in a finite coupling between the states  $|\phi_1\rangle$  and  $|\phi_2\rangle$ . This gives rise to two distinct energy levels with one having an energy lower than  $E_m$ . Therefore, the benzene molecule is more stable than we would have expected and the true ground state of the molecule is not represented by one of the two configurations shown in Fig. F.2. The true ground state rather is a superposition of the two configurations.

Further examples are the ionized hydrogen molecule  $H_2^+$  consisting of two protons and one electron. Again there are two possible configuration with the electron localized at proton 1 and proton 2 with degenerate energies. By a finite coupling of these two configurations we again obtain a states with reduced energy. In this state the electron is no longer localized at one of the protons but is delocalized. It is this delocalization which is by reducing the potential energy responsible for the chemical bond.

In chapter 9 as a further example we discuss a superconducting loop with an odd number of Josephson junctions. For half of a flux quantum in the loop there are two degenerate states with circulating currents in opposite direction. Again by a finite coupling a state with lowered energy is achieved given by a superposition of the two configurations.

#### © Walther-Meißner-Institut

### **III** Dynamic Properties of Two-Level Systems

#### **III.1** Time Evolution of the State Vector

We assume a state vector at the instant t given by the superposition

$$|\Psi(t)\rangle = a(t)|\phi_1\rangle + b(t)|\phi_2\rangle . \tag{III.33}$$

The evolution of the state vector is determined by the Schrödinger equation

$$i\hbar \frac{d}{dt} |\Psi(t)\rangle = (\mathscr{H}_0 + \mathscr{W}) |\Psi(t)\rangle = (\mathscr{H}_0 + \mathscr{W}) (a(t)|\phi_1\rangle + b(t)|\phi_2\rangle) .$$
(III.34)

By projecting this equation onto the basis vectors  $|\phi_1\rangle$  and  $|\phi_2\rangle$ , we obtain (for  $W_{11} = W_{22} = 0$ ):

$$i\hbar \frac{d}{dt}a(t) = E_1a(t) + W_{12}b(t)$$
 (III.35)

$$i\hbar \frac{d}{dt}b(t) = W_{21}a(t) + E_2b(t)$$
 (III.36)

For finite coupling  $(|W_{12}| \neq 0)$  we obtain a linear system of homogeneous coupled differential equations. In order to solve this system we have to look for the eigenvectors  $\Psi_+$  with eigenvalue  $E_+$  and  $\Psi_-$  with eigenvalue  $E_-$  of the operator  $\mathscr{H} = \mathscr{H}_0 + \mathscr{W}$ , whose matrix elements are the coefficients of equations (F.III.35) and (F.III.36). We then have to decompose  $\Psi(0)$  in terms of  $\Psi_+$  and  $\Psi_-$  as

$$|\Psi(0)\rangle = \alpha |\Psi_{+}\rangle + \beta |\Psi_{-}\rangle , \qquad (III.37)$$

where  $\alpha$  and  $\beta$  are determined by the initial conditions. We then have

$$|\Psi(t)\rangle = \alpha e^{-iE_{+}t/\hbar} |\Psi_{+}\rangle + \beta e^{-iE_{-}t/\hbar} |\Psi_{-}\rangle , \qquad (III.38)$$

which enables us to derive a(t) and b(t) by projecting  $|\Psi(t)\rangle$  onto the basis states  $|\phi_1\rangle$  and  $|\phi_2\rangle$ .

It can be shown that a system with the basis state given by (F.III.38) oscillates between the two unperturbed states  $|\phi_1\rangle$  and  $|\phi_2\rangle$ . To demonstrate that we assume that  $|\Psi(0)\rangle = |\phi_1\rangle$  and calculate the probability  $P_{12}(t)$  of finding the system in the basis state  $|\phi_2\rangle$  at the time *t*.

#### III.2 The Rabi Formula

We first express the state  $|\Psi(0)\rangle = |\phi_1\rangle$  on the  $\{|\Psi_+\rangle, |\Psi_-\rangle\}$  basis. By inverting the expressions (F.II.11) and (F.II.12) we obtain

$$|\Psi(0)\rangle = |\phi_1\rangle = e^{+\iota\phi/2} \left[\cos\frac{\theta}{2}|\Psi_+\rangle - \sin\frac{\theta}{2}|\Psi_-\rangle\right] . \tag{III.39}$$

Using the time evolution (F.III.38) we then obtain

$$|\Psi(t)\rangle = e^{+\iota\varphi/2} \left[ \cos\frac{\theta}{2} e^{-\iota E_+ t/\hbar} |\Psi_+\rangle - \sin\frac{\theta}{2} e^{-\iota E_- t/\hbar} |\Psi_-\rangle \right] .$$
(III.40)



Figure F.3: Variation of the probability  $P_{12}$  of finding the system in state  $|\varphi_2\rangle$  at time t, when it was in state  $|\varphi_1\rangle$  at t = 0.  $P_{12}(t)$  is shown for three different values of the parameter  $\xi = |W_{12}|^2/(E_1 - E_2)^2$  (weak coupling:  $\xi \ll 1$ , strong coupling:  $\xi \gg 1$ ).

The probability amplitude of finding the system in state  $|\phi_2\rangle$  at time t is given by

$$\begin{aligned} \langle \phi_2 | \Psi(t) \rangle &= e^{+\iota \varphi/2} \left[ \cos \frac{\theta}{2} e^{-\iota E_+ t/\hbar} \langle \phi_2 | \Psi_+ \rangle - \sin \frac{\theta}{2} e^{-\iota E_- t/\hbar} \langle \phi_2 | \Psi_- \rangle \right] \\ &= e^{+\iota \varphi/2} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \left[ e^{-\iota E_+ t/\hbar} - e^{-\iota E_- t/\hbar} \right] . \end{aligned}$$
(III.41)

With this expression we obtain

$$P_{12}(t) = |\langle \phi_2 | \Psi(t) \rangle|^2 = \frac{1}{2} \sin^2 \theta \left[ 1 - \cos \left( \frac{E_+ - E_-}{\hbar} t \right) \right]$$
  
=  $\sin^2 \theta \sin^2 \left( \frac{E_+ - E_-}{2\hbar} t \right)$ . (III.42)

Using the expression (F.II.15) and (F.II.16) for  $E_+$  and  $E_-$  we can rewrite this equation to obtain the so called *Rabi formula* 

$$P_{12}(t) = \frac{2|W_{12}|^2}{4|W_{12}|^2 + (E_1 - E_2)^2} \sin^2 \left[\sqrt{4|W_{12}|^2 + (E_1 - E_2)^2} \frac{t}{2\hbar}\right] .$$
(III.43)

We see from (F.III.42) and (F.III.43) that  $P_{12}(t)$  oscillates with the frequency  $(E_+ - E_-)/\hbar$ , which is the Bohr frequency of the system. We further see that  $P_{12}(t)$  varies between zero and a maximum value equal to  $\sin^2 \theta$ , which is obtained for the times  $t = (2n+1)\pi\hbar/(E_+ - E_-)$  with n = 0, 1, 2, 3, ... (see Fig. F.3). According to (F.III.43) the value of  $\sin^2 \theta$  as well as the oscillation frequency are functions of  $|W_{12}|$  and  $(E_1 - E_2)$ .

For  $E_1 = E_2$  we have  $(E_+ - E_-)/\hbar = 2|W_{12}|/\hbar$ . Then, according to (F.III.43)  $P_{12}(t)$  has the maximum possible value of unity at the moments  $t = (2n+1)\pi\hbar/2|W_{12}|$ . That is, the system that is originally in the state  $|\phi_1\rangle$  at t = 0 is in the state  $|\phi_2\rangle$  at  $t = \pi\hbar/2|W_{12}|$ . Evidently any coupling between two states of equal

energy causes the system to oscillate completely between the two states at a frequency proportional to the coupling. This phenomenon is known also for classical systems. For example, when we couple two pendulums of the same frequency by suspending them from the same support and we set only pendulum 1 into motion at t = 0, we will have after a certain time pendulum 1 in complete rest whereas pendulum 2 is oscillating with the initial amplitude of pendulum 1.

Fig. F.3 shows that the oscillation period  $(E_+ - E_-)/\hbar$  of  $P_{12}(t)$  decreases when  $(E_1 - E_2)$  increases due to a decrease of the parameter  $\xi = |W_{12}|^2/(E_1 - E_2)^2$  at constant  $|W_{12}|$ . Note that for weak coupling  $(|W_{12}| \ll E_1 - E_2)$  we have  $\xi \ll 1$  and hence  $\sin^2 \theta$  becomes very small. This is not surprising, since in the case of weak coupling the state  $|\phi_1\rangle$  is very close to the stationary state  $\Psi_+\rangle$  and therefore the system starting at state  $|\phi_1\rangle$  evolves very little over time.

Above we have mentioned the  $H_2^+$  molecule as an example for a two-level system. According to the result (F.III.43) we expect an oscillation of the electron between the two protons of the molecule at a frequency given by the Bohr frequency  $(E_+ - E_-)/\hbar$  given by the two stationary states  $\Psi_+\rangle$  and  $\Psi_-\rangle$  of the molecule. This oscillation corresponds to an oscillation of the mean value of the electric dipole moment of the molecule. Therefore, when the molecule is not in a stationary state, an oscillating dipole field can appear. Such an oscillating dipole can exchange energy with an electromagnetic field of the same frequency. Hence, this frequency must be seen in the absorption and emission spectrum of the molecule. Of course, the same is true for a superconducting flux or charge qubit representing a two-level system. In many experiments the interaction of an electromagnetic field of varying frequency with the qubit has been measured showing absorption/emission features at the characteristic frequency  $(E_+ - E_-)/\hbar$ .