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Chapter 2

Physics of Josephson Junctions: The Zero
Voltage State

In this chapter we discuss the physics of Josephson junctions in the zero voltage state. In this situation
the Josephson current density Js always is smaller than the maximum Josephson current density Jc so
that the current is flowing as supercurrent that can be described by the macroscopic quantum approach.
The voltage state of Josephson junctions will be discussed in chapter 3. In the case of a finite junction
voltage the situation is more complex, since besides the Josephson current other types of current such as
a normal current or a displacement current have to be taken into account. These currents vanish in the
zero voltage state and hence make the treatment of this situation simple.

In section 2.1 we first restrict ourselves to cases where the junction area is small enough so that the
junction can be considered as a zero-dimensional or lumped element. Then the integral current rather
than the current density is sufficient to describe the Josephson junction properties. We will introduce the
Josephson coupling energy and the Josephson inductance as well as mechanical analogs for lumped
Josephson junctions.

In sections 2.2 and 2.3 we then relax the restriction on the junction area and discuss the junctions as
distributed systems, where the currents have a spatial dependence inside the junction itself. Here, the
discussion of the magnetic field dependence of the Josephson current density is the main topic.
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44 R. GROSS AND A. MARX Chapter 2

2.1 Basic Properties of Lumped Josephson Junctions

In many superconducting devices and circuits Josephson junctions with very small spatial dimensions are
used. Such small Josephson junctions can be understood by considering the gauge invariant phase differ-
ence and the current density to be uniform over the junction area. We will show later (see sections 2.2 and
2.3) that small means that the spatial extension of the junction area must be much smaller than a charac-
teristic screening length, the so-called Josephson penetration depth λJ . This screening length of a weak
superconducting system is the analog of the London penetration depth λL of a bulk superconductor and
sets the length scale over which variations of the supercurrent density occur. Therefore, the supercurrent
density across a Josephson junction can be assumed to be constant, if the junction area is much smaller
than this screening length. In the same way the supercurrent density in a bulk superconductor always can
be assumed constant, if the spatial dimensions of the bulk superconductor are much smaller the London
penetration depth.

We recall that the London penetration depth λL =
√

m?/µ0n?
s q?2 defines the length scale over which an

applied field can penetrate a bulk superconductor. Equivalently, it defines the surface layer, in which the
screening currents are flowing. This length scale typically ranges between several 10 nm and about 1 µm
for most superconductors. For a weak superconducting system as a Josephson junction the equivalent
screening length is much larger. This can be understood simply by the fact that in the weak region
connecting two bulk superconductors the density of Cooper pairs is strongly reduced. Since the screening
length is proportional to 1/

√
n?

s , the corresponding screening length λJ is strongly increased. It easily
can be larger than 100 µm. That is, even Josephson junctions with spatial dimensions of the order of
several 10 µm can be considered small.

2.1.1 The Lumped Josephson Junction

We call Josephson junctions with spatially homogeneous supercurrent density and phase difference
lumped junctions. Such junctions can be described by a supercurrent

Is =
∫
S

Js ·ds . (2.1.1)

The region of integration is the junction area S. The current-phase relation (1.3.7) can be rewritten in
terms of the currents as

Is(t) = Ic sinϕ(t) . (2.1.2)

The gauge-invariant phase difference is still given by

ϕ(t) = θ2(t)−θ1(t)−
2π

Φ0

2∫
1

A(r, t) ·dl . (2.1.3)

The voltage-phase relation ∂ϕ

∂ t = 2π

Φ0

2∫
1

E(r, t) ·dl can be simplified by noting that
2∫
1

E(r, t) ·dl is just the

voltage V (t) across the junction. Note that the voltage is constant across the junction area extending for
example in the yz-plane, since for a lumped junction the electric field is independent of y and z. The
voltage-phase relation then becomes

dϕ

dt
=

2π

Φ0
V . (2.1.4)
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Figure 2.1: The Josephson junction as a lumped circuit element, which is characterized by the crossed symbol
in circuit diagrams and is governed by the two Josephson equations. Left: “0”-junction, right: “π”-junction.

Note that we are now using the total derivative because for a lumped junction the phase difference ϕ

does not depend on any spatial coordinate.

Fig. 2.1 shows the symbol for a lumped Josephson junction along with the two equations describing the
junction. As we discuss later, we have to distinguish between “0”-junctions, for which Is = Ic sin(0 +
ϕ) = Ic sinϕ , and so-called “π”-junctions, for which Is = Ic sin(π +ϕ) =−Ic sinϕ . That is, for the same
phase difference ϕ the Josephson current Is is flowing in opposite directions for “0”- and “π”-junctions.
In the following subsections we discuss how energy can be stored in a lumped junction and how it
behaves when it is driven by external current or voltage sources.

2.1.2 The Josephson Coupling Energy

Due to the zero junction voltage, no energy will be dissipated in the junction residing in the supercon-
ducting (S) state. However, there is a finite energy stored in the junction. This energy can be considered
as a molecular binding energy caused by the finite overlap of the macroscopic wavefunctions of the two
weakly coupled superconductors. The magnitude of the binding energy becomes immediately evident
by considering the process of increasing the junction current from zero to a finite value I. Let the initial
value of the phase difference ϕ be zero at zero junction current. As we are increasing the current, accord-
ing to the current-phase relation also the phase difference ϕ has to change. Furthermore, according to the
voltage-phase relation a changing phase difference corresponds to a finite junction voltage. That is, on
increasing the current the external source has to supply energy that is determined by the integral of the
power I ·V during the current increase. Although the superelectrons can flow across the junction without
causing any resistance, on increasing the current we have to accelerate the superelectrons in the sample
and this requires a certain amount of energy. This energy is then stored by the moving superelectrons.
The described process can be viewed as a conversion of potential into kinetic energy. Upon reaching the
critical current Ic, the whole potential (“binding”) energy is converted into kinetic energy.

In order to calculate the energy stored in the Josephson junction we have to integrate the power from
time t = 0 when we start the current increase to time t = t0 when we are stopping the increase:

EJ =
t0∫

0

IsV dt . (2.1.5)

Here, V is the voltage applied during increasing the current from zero at t = 0 to the final value I at time
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Figure 2.2: The normalized Josephson current Is/Ic and the normalized coupling energy EJ/EJ0 plotted versus
the phase difference ϕ. Left: “0”-junction, right: “π”-junction

t0. Using the current-phase and the voltage-phase relation we obtain

EJ =
t0∫

0

(Ic sin ϕ̃)
(

Φ0

2π

dϕ̃

dt

)
dt . (2.1.6)

With the phase difference ϕ(0) = 0 and ϕ(t0) = ϕ we can write the integral as

EJ =
Φ0Ic

2π

ϕ∫
0

sin ϕ̃ dϕ̃ . (2.1.7)

Integration gives the energy stored in the junction as

EJ =
Φ0Ic

2π
(1− cosϕ) = EJ0 (1− cosϕ) . (2.1.8)

This energy is usually denoted as the Josephson coupling energy. Similar to the binding energy of a
molecule this energy results from the overlap (or coupling) of the wave functions of the two supercon-
ducting electrodes.

In Fig. 2.2 we have plotted the coupling energy and the Josephson current as a function of the phase
difference. The energy is lowest, if no current flows and ϕ is zero or a multiple of 2π . Therefore, such
junctions are denoted as “0” junctions. There are also other junctions (e.g. junctions with ferromagnetic
barrier layers) for which the state of lowest coupling energy is obtained for a phase difference of π or
(2n+1)π . These junctions are named “π” junctions.

We briefly discuss the order of magnitude of the Josephson coupling energy. For a junction with a
typical critical current of 1 mA we have EJ0 ' 3×10−19J what corresponds to the thermal energy kBT of
around 20 000 K. Therefore, thermal smearing effects are negligible. However, for junctions with very
small critical current this is different. For example, for Ic = 1 µA the coupling energy corresponds to the
thermal energy at around 20 K and, hence, thermal smearing effects become prominent as discussed in
chapter 3.
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2.1.3 The Superconducting State

According to the current-phase relation (2.1.2) a constant dc current imposed on a Josephson junction by
an external current source results in a constant phase difference

ϕ = ϕn = arcsin
(

I
Ic

)
+2πn (2.1.9)

ϕ = ϕ̃n = π− arcsin
(

I
Ic

)
+2πn (2.1.10)

for

− Ic ≤ I ≤+Ic . (2.1.11)

The constant phase difference results in dϕ/dt = 0. Hence, each of the solutions corresponds to zero
junction voltage and describes the superconducting state. We will call this situation the zero voltage state
or stationary (S) state.

In order to analyze the stability of the zero voltage state we use the potential energy Epot of the system
Josephson junction + current source. To find Epot we use the rule, which is general for any subsystem
(the Josephson junction in our case) under the action of a constant external force F (the applied current
in our case), saying that the total energy G is equal to the difference of the two terms:1

G = E−F · x . (2.1.12)

Here, E is the intrinsic (free) energy of the subsystem and x is its generalized coordinate corresponding
to the generalized force F = I. The coordinate should be chosen in a way that the product Fẋ gives the
power P flowing into the subsystem. Since for the Josephson junction the latter product equals to I ·V ,
the desirable coordinate is

x =
∫

V dt =
h̄
2e

ϕ + c =
Φ0

2π
ϕ + c , (2.1.13)

where c is an integration constant. The potential energy of the system is thus given by

Epot(ϕ) = EJ(ϕ)− I
(

Φ0

2π
ϕ + c

)
= EJ0

[
1− cosϕ− I

Ic
ϕ

]
+ c̃ . (2.1.14)

As shown by Fig. 2.3, the function Epot(ϕ) has the shape of a tilted washboard and is therefore often
called the tilted washboard potential. The washboard has minima and maxima for the values of the phase
difference given by (2.1.9) and (2.1.10), respectively. It is evident that the former solutions are stable
and the latter are unstable. We further note that the states corresponding to different n are physically
equivalent and therefore we usually only refer to the n = 0 solution.

1Note that in thermodynamics G is called the Gibbs energy (potential) of the subsystem, which has to be distinguished from
the free energy (Helmholtz energy) E.
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Figure 2.3: The potential energy Epot(ϕ) of a current biased lumped Josephson junction at various values of
the applied current. The potential is named tilted washboard potential.

By analyzing the tilted washboard potential, from (2.1.14) we can easily derive the difference U0 =
Epot(ϕn)−Epot(ϕ̃n) and the curvature k ≡ ∂ 2Epot/∂ϕ2 of the potential at the potential minimum. We
obtain2

U0 ≡ Epot(ϕn)−Epot(ϕ̃n) = 2EJ0

√1−
(

I
Ic

)2

− I
Ic

arccos
(

I
Ic

) (2.1.15)

k ≡
∂ 2Epot

∂ϕ2 = EJ0

√
1−
(

I
Ic

)2

. (2.1.16)

We see that these quantities approach zero for I→ Ic. Close to the critical current we have α ≡ 1−I/Ic�
1 and can use the following approximations

ϕ0 =
π

2
−
√

2α , ϕ̃0 =
π

2
+
√

2α (2.1.17)

U0 =
2
3

EJ0 (2α)2/3 (2.1.18)

k = EJ0 (2α)1/2 . (2.1.19)

We will see in chapter 3 that the tilted washboard potential is very useful for describing the dynamics of
Josephson junctions at I > Ic. It is evident from (2.1.14) and Fig. 2.3 that in this case there are no longer
any minima in the potential and consequently the phase will continuously increase resulting in a finite
junction voltage. The dynamics can be described by considering the phase as a particle moving down
the tilted washboard potential. However, in order to describe this process we have to determine the mass
of the particle and the damping of the motion. This can be done only after introducing the other current
components as the normal current and the displacement current in chapter 3.

2Here we use the equality arcsin(x) = (π/2)− arccos(x) = arccos
√

1− x2.
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2.1.4 The Josephson Inductance

Energy storage and conservation in the Josephson junction suggests that it can be considered as a non-
linear reactance. In order to clarify this we consider the time derivative of the current-phase relation

dIs

dt
= Ic cosϕ

dϕ

dt
. (2.1.20)

Using the voltage-phase relation we obtain

dIs

dt
= Ic cosϕ

2π

Φ0
V . (2.1.21)

This immediately shows that for small variations of the current around the value Is = Ic sinϕ the Joseph-
son junctions behaves as an inductance

Ls =
Φ0

2πIc cosϕ
= Lc

1
cosϕ

with Lc =
h̄

2eIc
. (2.1.22)

A very unusual property of this Josephson inductance is the fact that it can have negative values in the
intervals π/2 + 2πn < ϕ < 3π/2 + 2πn. Note that from the electrotechnical point of view the energy
EJ can be considered as stored in the inductance Ls. The fact that the Josephson inductance can have
negative values results in a behavior that is completely different from an ordinary nonlinear inductance.
This is immediately seen, if we apply a constant voltage V to the Josephson junction. In this case we
obtain an oscillating Josephson current as discussed already in section 1.3.1. Note that for an ordinary
inductance the current would not oscillate but just gradually increase. The oscillations of the supercurrent
are called Josephson oscillations and have been predicted in the original paper by Brian Josephson.
These oscillations accompany most processes in Josephson junctions and are of particular importance
for their dynamics as we will see in chapter 3.

2.1.5 Mechanical Analogs

The unusual properties of the supercurrent has stimulated the search for mechanical analogs that can be
used to better understand the dynamics of the Josephson junction. The first example is a plane mechanical
pendulum in a uniform gravity field. Here, the phase difference ϕ plays the role of the angle of the
pendulum with respect to its equilibrium position. The supercurrent corresponds to the torque and the
voltage to the angular velocity of the pendulum.

A second useful analog is a particle moving along the coordinate ϕ with velocity v ∝ dϕ/dt ∝ V in a
potential given by (2.1.14).
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2.2 Short Josephson Junctions

So far we only have considered zero-dimensional Josephson junctions with a spatially homogeneous
supercurrent density. We could describe these lumped elements by the integral Josephson current Is with
its maximum value Ic and the gauge-invariant phase difference ϕ . In this section we relax the condition of
spatially homogeneous values of the Josephson current density and the gauge-invariant phase difference
and allow now for spatial variations Js(r) and ϕ(r) of these quantities. We refer to such junctions as
extended Josephson junctions.

Discussing the physics of extended Josephson junctions we have to distinguish between two cases:

• Short Josephson junctions:

For short junctions the magnetic field generated by the Josephson current itself (self-field) is neg-
ligible compared to the externally applied magnetic field. We will show below that junctions can
be considered as short junctions, if the spatial dimensions of the junction area are smaller than a
characteristic length scale named Josephson penetration depth λJ .

• Long Josephson junctions:

For long Josephson junctions the magnetic field generated by the Josephson current itself is no
longer negligible. Long Josephson junctions have spatial dimensions larger than the Josephson
penetration depth λJ .

2.2.1 Quantum Interference Effects – Short Josephson Junction in an Applied Magnetic
Field

The description of superconductors by a macroscopic wave function manifests itself in a number of
interference effects. We already have seen in section 1.3 that the oscillation of the Josephson current in
the presence of a finite potential difference between the junction electrodes can be viewed as a temporal
interference between the macroscopic wave functions of the two superconducting electrodes. In the
following we show that we also can observe spatial interference in Josephson junctions, if we generate
spatial changes of the gauge invariant phase difference by applying an external magnetic field. We will
see that the observed interference effect is completely analogous to the diffraction at a slit in optics.

We consider the cross section of an extended Josephson junction as sketched in Fig. 2.4. The two junction
electrodes are separated by a thin insulating barrier of thickness d. The junction area L ·W extends in
the yz-plane and the current is flowing in the x-direction. We assume W,L� d so that effects of the
edges of the junction can be neglected. Each superconducting electrode is assumed to have thickness t1
and t2 larger than the London penetration depth λL1 and λL2 of the electrode material, respectively. An
external magnetic field is applied parallel to the y-direction, that is, Be = (0,By,0). Since the applied
field penetrates the superconducting electrode up to a thickness given by the London penetration depth,
we can define a magnetic thickness of the junction given by tB = d +λL1 +λL2.

In order to discuss the effect of the applied magnetic field on the Josephson current density Js we have
to determine the phase shift introduced between two positions P and Q along the z-axis separated by an
infinitesimal distance dz. The shift ϕ(Q)−ϕ(P) of the gauge-invariant phase difference between the two
points can be determined by considering the line integral along the contour shown in Fig. 2.4. We have
to demand that the total phase change along the closed contour is 2πn, that is∮

C

∇θ ·dl = 2π n

= (θQb−θQa)+(θPc−θQb)+(θPd −θPc)+(θQa−θPd )+2π n (2.2.1)
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Figure 2.4: Cross section of an extended Josephson junction. The current flows in x- direction, the magnetic
field is applied in y-direction. The broken line indicates the closed contour of integration. On the left hand
side the decay of the magnetic field in the junction electrodes over the length scale λL is indicated.

For the determination of the various terms we use the expressions for the gauge invariant phase gradient
in the bulk superconductors (compare (1.1.65))

∇θ =
2π

Φ0
(ΛJs +A) (2.2.2)

and the gauge-invariant phase difference across the barrier (compare (1.3.2))

ϕ = θ2−θ1−
2π

Φ0

2∫
1

A ·dl . (2.2.3)

The first and third term in (2.2.1) are the differences across the Josephson junction barrier and directly
follow from (2.2.3):

θQb−θQa = +ϕ(Q)+
2π

Φ0

Qb∫
Qa

A ·dl (2.2.4)

θPd −θPc = −ϕ(P)+
2π

Φ0

Pd∫
Pc

A ·dl . (2.2.5)
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The second and fourth term are differences in the superconducting material and are found from the
supercurrent equation (2.2.2) for ∇θ :

θPc−θQb =
Pc∫

Qb

∇θ ·dl = +
2π

Φ0

Pc∫
Qb

ΛJs ·dl+
2π

Φ0

Pc∫
Qb

A ·dl (2.2.6)

θQa−θPd =
Qa∫

Pd

∇θ ·dl = +
2π

Φ0

Qa∫
Pd

ΛJs ·dl+
2π

Φ0

Qa∫
Pd

A ·dl . (2.2.7)

Substituting (2.2.4) – (2.2.7) into (2.2.3) yields

ϕ(Q)−ϕ(P) = −2π

Φ0

∮
C

A ·dl− 2π

Φ0

Pc∫
Qb

ΛJs ·dl− 2π

Φ0

Qa∫
Pd

ΛJs ·dl . (2.2.8)

The integration of A is around a close contour and therefore is equal to the total flux Φ inside the area
enclosed by the contour. The integration of Js follows the same contour C but excludes the integration
over the insulating barrier. We rewrite this integral as an integral along the incomplete contour C′:

∮
C′

ΛJs ·dl =
Pc∫

Qb

ΛJs ·dl+
Qa∫

Pd

ΛJs ·dl . (2.2.9)

Then, the difference of the gauge-invariant phase difference between point Q and P is obtained to

ϕ(Q)−ϕ(P) = −2πΦ

Φ0
− 2π

Φ0

∮
C′

ΛJs ·dl . (2.2.10)

Discussing the magnitude of the line integral of the current density we can note the following: First, the
integration of the current density along one segment of the path in x-direction cancels with the contri-
bution of the adjacent path, which is only an infinitesimal distance dz away. Second, each part of the
integration in the z-direction is taken deep inside (� λL) the superconducting electrode, where the cur-
rent density induced by the applied field is exponentially small. Furthermore, the applied current is in the
negative x-direction. That is, it is perpendicular to the integration path along z and therefore contributes
nothing to the integral of the current density. Therefore, the line integral of the current density vanishes
and we obtain

ϕ(P)−ϕ(Q) =
2πΦ

Φ0
. (2.2.11)

We see that the normalized shift [ϕ(P)−ϕ(Q)]/2π of the gauge invariant phase difference is just given
by the normalized magnetic flux Φ/Φ0 threading the junction between the positions z and z+dz.

Since the magnetic field decays exponentially into each superconducting electrodes the total flux en-
closed by the contour line is

Φ = By(d +λL1 +λL2) dz = BytBdz . (2.2.12)
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Then, with ϕ(P)−ϕ(Q) = 2π

Φ0
BytBdz = ∂ϕ

∂ z dz we obtain

∂ϕ

∂ z
=

2π

Φ0
BytB (2.2.13)

We can use a similar argument by choosing point Q and P at an infinitesimal distance dy in the y-direction
and obtain

∂ϕ

∂y
= −2π

Φ0
BztB . (2.2.14)

In general, we can write

∇ϕ(r, t) =
2π

Φ0
tB [B(r, t)× x̂] , (2.2.15)

where x̂ is the unit vector in x-direction, that is the unit vector perpendicular to the junction area (anti-
parallel to the current flow in our case).

Integration of (2.2.13) gives

ϕ(z) =
2π

Φ0
BytBz+ϕ0 , (2.2.16)

where the integration constant ϕ0 is the phase difference at z = 0. Using the current-phase relation we
obtain the supercurrent density to

Js(y,z, t) = Jc(y,z) sin
(

2π

Φ0
tBByz+ϕ0

)
= Jc(y,z) sin(kz+ϕ0) (2.2.17)

with k = 2π

Φ0
tBBy. We see that Js varies sinusoidally along the z-direction with the oscillation period

∆z = 2π/k given by Φ0/tBBy. That is, ∆z is inversely proportional to the product of the applied field and
the effective magnetic thickness. We also immediately see that ∆ztBBy = Φ = Φ0, i.e. the magnetic flux
through the junction within a single oscillation period corresponds to a single flux quantum.

So far we have assumed that the thickness of the junction electrodes is much larger than the London
penetration depth. If t1 < λL1 and t2 < λL2 the magnetic field penetrates the complete electrode and the
Meißner shielding currents are less than those in thick electrodes. As a result the effective value of the
magnetic thickness of the junction increases and the magnetic thickness tB has to be replaced by

t̃B = d +λL1 coth
t1

λL1
+λL2 coth

t2
λL2

. (2.2.18)
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2.2.2 The Fraunhofer Diffraction Pattern

In this subsection we discuss, how the integral current Is =
∫∫

Js(y,z)dydz across the junction depends
on the applied magnetic field. We first integrate the maximum Josephson current density Jc(y,z) in the
direction of the applied magnetic field. If the external field is in y-direction (Be = (0,By,0)) we obtain

ic(z) =

W/2∫
−W/2

Jc(y,z) dy . (2.2.19)

With this expression, according to (2.2.17) we obtain

Is(By) =

L/2∫
−L/2

ic(z) sin(kz+ϕ0) dz . (2.2.20)

This expression is equivalent to

Is(By) = ℑ

eıϕ0

∞∫
−∞

ic(z) eıkz dz

 , (2.2.21)

where k = 2π

Φ0
tBBy. Since ic(z) is zero outside the junction, i.e. for |z| > L/2, we have replaced the

integration limits by ±∞.

In general, the integral in (2.2.21) is a complex number with magnitude and phase. When the integral is
multiplied by eıϕ0 , only the phase but not the magnitude changes. Therefore, the maximum Josephson
current Im

s is just given by the magnitude of the integral, that is by

Im
s (By) =

∣∣∣∣∣∣
∞∫
−∞

ic(z) eıkz dz

∣∣∣∣∣∣ . (2.2.22)

This integral represents a Fourier integral, that is, the magnetic field dependence of the maximum Joseph-
son current Im

s is given by the Fourier transform of the function ic(z). This is completely analogous to
optics, where the intensity of the light behind a slit of width L and transmission function ic(z) is given by
the Fourier transform of the transmission function.

If the maximum Josephson current density Jc(y,z) of the junction is spatially homogeneous, the magni-
tude of ic(z) is constant for−L/2≤ z≤+L/2 and zero for |z|> L/2. In this case the Im

s (By) dependence
is equivalent to the diffraction pattern of a slit of width L with constant transmission ic. The diffraction
pattern is the well known Fraunhofer diffraction pattern shown by Fig. 2.5:

Im
s (Φ) = Ic

∣∣∣∣∣sin kL
2

kL
2

∣∣∣∣∣ = Ic

∣∣∣∣∣sin πΦ

Φ0
πΦ

Φ0

∣∣∣∣∣ . (2.2.23)

Here, Φ = BytbL is the flux through the junction and Ic = icL. We note that the experimental observation
of the Fraunhofer diffraction pattern Im

s (Φ) given by (2.2.23) was very important to prove the Josephson
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Figure 2.5: Magnetic field dependence of the maximum Josephson current Im
s of a short Josephson junction.

On the left the maximum current density integrated along the magnetic field direction, ic(z) =
∫

Jc(y,z)dy, is
shown for the case of a spatially homogeneous maximum current density Jc(y,z).

tunneling of Cooper pairs. From the experimental point of view it was unclear whether the measured
supercurrent in a superconductor/insulator/superconductor tunnel junction is flowing as a homogeneous
Josephson tunneling current or just through small pinholes in the tunneling barrier. However, if the
latter would have been true, no Fraunhofer diffraction pattern would have been observed for the Im

s (Φ)
dependence.

To understand the shape of the Im
s (Φ) dependence we consider the spatial distribution of is(z) =∫

Js(y,z)dy along the z-direction for a magnetic field applied in y-direction. For zero field, that is
Φ = 0 the gauge-invariant phase difference is constant, ϕ(z) = ϕ0, and hence is(z) = const. The
maximum Josephson current is obtained for ϕ0 = −π/2, that is, Js(y,z) = −Jc(y,z) (note that the
current is flowing in negative x-direction, see Fig. 2.6a). If we feed a current less than the maxi-
mum Josephson current through the junction, we have ϕ0 6= π/2 and the local current density is just
Js(y,z) = Jc(y,z)sinϕ0 < Jc(y,z).

We next consider the case of an externally applied magnetic flux of Φ = Φ0/2. In this case according to
(2.2.16) the gauge-invariant phase difference ϕ(z) varies as

ϕ(z) =
2πΦ

Φ0

z
L

+ϕ0 =
πz
L

+ϕ0 . (2.2.24)

Therefore, the supercurrent density varies sinusoidally with z. The difference of the phases between the
two edges of the junction is

ϕ(L/2)−ϕ(−L/2) = π . (2.2.25)

That means that half of a full oscillation period fits into the junction. This situation is shown in Fig. 2.6b.
Which half period to put into the junction depends on the choice of ϕ0. In Fig. 2.6b we have made the
choice ϕ0 = −π/2. In this case the phase difference increases from −π at z = −L/2 to 0 at z = +L/2.
This choice gives the maximum possible Josephson current Im

c in negative x-direction. Note that for
ϕ = 0 we obtain a vanishing total Josephson current.
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Figure 2.6: The Josephson current density distribution along a small Josephson junction extending from −L/2
to +L/2 in z-direction. (a) Φ = 0, ϕ0 =−π/2 (b) Φ = 1

2 Φ0, ϕ0 =−π/2, (c) Φ = Φ0, ϕ0 = 0 and (d) Φ = 3
2 Φ0,

ϕ0 = +π/2. The magnetic field is applied in y-direction. The external current is applied in negative x-direction.

In Fig. 2.6c and d we show the situation for Φ = Φ0 and Φ = 3
2 Φ0, respectively. For Φ = Φ0 the total

phase difference from one edge of the junction to the other is 2π and a complete oscillation period of the
Josephson current density fits into the junction. In this case the total Josephson current is zero irrespective
of the choice of ϕ0. For Φ = 3

2 Φ0 the total phase difference from one edge to the other is 3π and one and
a half oscillation periods of the Josephson current density fit into the junction. The current from the full
period is zero and the total current is determined by a half period. Of course, the total current is smaller
than for Φ = Φ0/2 when a half period fits the whole junction. This shows that the Josephson current
generally tends to decrease with increasing applied magnetic field as shown in Fig. 2.5.

In order to illustrate the magnetic field dependence of the maximum Josephson current as the result of
a spatial interference effect of the macroscopic wave functions in the two superconducting electrodes
we consider Fig. 2.7. Superconductor 1 is described by a plane wave with the plane of constant phase
parallel to the barrier. In the same way, superconductors 2 is described by a plane wave, however, with
the plane of constant phase tilted due to the phase shift caused by the magnetic field By. The phase shift
at position z is given by δϕ(z) = 2π

Φ0
BytBz + ϕ0. For the situation shown in Fig. 2.7 we immediately see

that each partial wave has a counterpart with a phase shift of π causing destructive interference. This is
just the situation where the total Josephson current through the junction is zero.

We discuss in more detail the situation for Φ = Φ0 shown in Fig. 2.6c. Evidently in this situation the
Josephson current density flows in negative and positive x-direction on the left and right side of the
junction, respectively. The question is, how the supercurrent density can have such pattern across the
insulating barrier without any net driving current. The solution is shown in Fig. 2.8. The supercurrent
on the left side turns around in the bottom electrode so as to match the supercurrent density in the
insulator on the right side. Actually the supercurrent has to bend to avoid the penetration of the applied
magnetic field into the electrode material over a length scale larger than the London penetration depth.
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Figure 2.7: Illustration of the magnetic field dependence of the maximum Josephson current as a spatial
quantum interference phenomenon. The applied magnetic field By causes a position dependent phase shift
δϕ(z) = 2π

Φ0
BytBz+ϕ0 (we have chosen ϕ0 = 0 for simplicity).

The resulting supercurrent density pattern resembles the pattern of an Abrikosov vortex in a type-II
superconductor and is known as Josephson vortex. Note that in contrast to an Abrikosov vortex the
Josephson vortex does not need to have a normal core. The vortex core is located in the barrier region
where the pair density is exponentially small.

x

d

L1
t1

zy
d

L2
t2

Figure 2.8: The supercurrent distribution in the superconducting electrodes and across the insulator for the
case Φ = Φ0. The pattern in known as the Josephson vortex.
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Arbitrary Magnetic Field Direction

We consider a short Josephson junction as shown in Fig. 2.4 and let the applied magnetic field lie in an
arbitrary direction within the plane of the junction barrier so that

Be = By ŷ+Bz ẑ . (2.2.26)

Here, ŷ and ẑ are the unit vectors in y- and z-direction. By generalizing the arguments given above, for
this situation the magnetic field dependence of the maximum Josephson current can be expressed as

Im
s (Φ) = Ic

∣∣∣∣∣sin πΦy
Φ0

πΦy
Φ0

∣∣∣∣∣
∣∣∣∣∣sin πΦz

Φ0
πΦz
Φ0

∣∣∣∣∣ , (2.2.27)

where Φy = BytbL and Φz = BztbW . Equivalently, we can write

Im
s (Be) =

∣∣∣∣∣∣
∫
S

Jc(y,z) eık·r dS

∣∣∣∣∣∣ . (2.2.28)

Here, S = L ·W is the junction area, r the position vector in the two-dimensional yz-plane, and dS the
differential area element in that plane.

2.2.3 Determination of the Maximum Josephson Current Density

In real Josephson junctions usually the critical current density Jc(y,z) is spatially inhomogeneous due
imperfections of the fabrication process or a spatially varying thickness of the tunneling barrier. That is,
this quantity usually is not known. Therefore, for researchers fabricating Josephson junctions it would be
very desirable to be able to determine the spatial distribution Jc(y,z) experimentally. A suitable method
would be the measurement of the Im

s (Φ) dependence. However, it is evident from (2.2.22) or (2.2.23)
that the distribution Jc(y,z) cannot be derived from the measured Im

s (Φ) dependence by performing an
inverse Fourier transformation. The reason for that is that in a measurement only the amplitude of the
complex function Is(Φ) is measured but not the phase. Therefore, the back transformation of Im

s (Φ) to
obtain ic(y,z) is not possible.3

By making some assumptions about the properties of the function ic(z) one can restore ic(z) approxi-
mately from the measured Im

s (Φ) dependence. For example, if ic(z) is symmetrical with respect to the
junction midpoint, we obtain

ic(z−L/2) =
1
π

∞∫
0

|Im
s (k)|cos(kz)(−1)n(k)dk , (2.2.29)

where k = 2π

Φ0
tBBy and n is the number of zeros of |Im

s (k)| between 0 and k. Analyzing this equation we
see that the secondary maxima of the diffraction pattern are increased or reduced, if ic(z) increases or

3We note that in principle also the phase can be measured directly using specific junction configurations. However, this has
not yet been used in experiments. See e.g. L. D. Jackel, R. A. Buhrman, W. W. Webb, Phys. Rev. B 10, 2782 (1974); J. R.
Waldram, J. M. Lumley, Rev. Phys. Appl. 10, 7 (1975); J. E. Meservey, P. W. Tedrow, D. Paraskevopoulos, IEEE Trans. Magn.
11, 720 (1975); R. Rifkin, B.S. Deaver, Phys, Rev. B 13, 3894 (1976).
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Figure 2.9: Left: Gaussian shaped junction area extending in the yz-plane. For spatially homogeneous Jc(y,z)
the current density integrated in y-direction, ic(z) =

∫
Jc(y,z)dy corresponds to a Gaussian profile. Right:

Magnetic field dependence of the maximum Josephson current as a function of the flux through junction. The
magnetic field is applied in y-direction.

decreases towards the junction edges, respectively.4 Note that ic(z) is determined by applying the field
in y-direction and measuring Im

s (Φ). In the same way, we can determine ic(y) by applying the magnetic
field in z-direction and measuring the corresponding Im

s (Φ). The two-dimensional distribution Jc(y,z)
can be determined by measuring Im

s (Φ) for various field directions.

In order to get information on Jc(y,z) on a very small length scale, we have to measure the Im
s (Φ) de-

pendence up to high magnetic fields. If we could do a Fourier back transformation, the spatial resolution
would be given by 2π/k. With k = 2π

Φ0
tBBy and Φ = BytBL we obtain

2π

k
=

Φ0

tB

1
By

= L
Φ0

Φ
. (2.2.30)

We see that the spatial resolution is proportional to 1/By. If we are measuring the Im
s (Φ) dependence

only up to Φ/Φ0 = 1, we obtain a spatial resolution only of the order of the junction length L.

In some applications of Josephson junction (e.g. x-ray detectors) the Josephson current has to be sup-
pressed by an applied magnetic field. Therefore, a Im

s (Φ) dependence having only a central maximum
and vanishing side lobes is desirable. This can be achieved by generating a ic(z) dependence that is close
to a Gaussian profile

ic(z) = ic(0) exp
(
− z2

2σ2

)
. (2.2.31)

Since the Fourier transform of a Gaussian profile again is a Gaussian profile, we obtain a Im
s (Φ) depen-

dence that has no side lobes

Im
s (Φ) =

√
1

2π
ic(0)L exp

(
−σk2) =

√
1

2π
ic(0)L exp

(
−σ

4π2

L2
Φ2

Φ2
0

)
. (2.2.32)

As shown in Fig. 2.9, a Gaussian profile of ic(z) can be achieved by not choosing a rectangular shaped
junction geometry but a shape that well approaches a Gauss curve. For homogeneous Jc(y,z) then ic(z)
is close to a Gauss profile resulting in a good suppression of the side lobes of the Im

c (Φ) curve.

4A. Barone, G. Paterno, M. Russo, R. Vaglio, physica status solidi A 41, 393 (1977).
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Figure 2.10: Comparison of the measurement of the maximum Josephson current (right) and an optical
diffraction experiment (left). Note that in optics the second Fourier transformation recovers an image Pi of
the transmission function P0.

Additional Topic:
The Supercurrent Auto-correlation Function

We briefly compare the measurement of the maximum Josephson current as a function of an applied
magnetic field to an optical diffraction experiment (see Fig. 2.10). In the optical diffraction experiment
a plane wave is illuminating an object (e.g. a slide) with a transmission function P0(z). This transmis-
sion function corresponds to the spatial distribution ic(z) of the maximum Josephson current density
integrated along the field direction (y-direction for the situation shown in Fig. 2.10). In the simplest
case the transmission function is that of an ideal slit, which is constant inside and zero outside the slit.
This would correspond to an ideal rectangular shaped junction with spatially homogeneous Jc(y,z). In
the more general case the transmission probability or equivalently ic(z) may vary along z as shown in
Fig. 2.10.

For the optics experiment, the measurement of the Im
s (By) dependence corresponds to the observation of

the square root of the light intensity Pt in the focal plane after the first lens system Lt . However, in optics
in the focal plane both the amplitude and the phase are recovered and, hence, a back-transformation of
Pt can be made by a second lens system Li resulting in an image Pi of the original transmission function
P0. This is just the well known optical imaging process. The spatial resolution of this imaging process
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Figure 2.11: (a) The supercurrent auto-correlation function for an ideal slit function ic(z) obtained for a
rectangular shaped Josephson junction with homogeneous critical current density Jc(y,z). (b) The supercurrent
auto-correlation function for a periodic function ic(z). The auto-correlation function shows a modulation with
the periodicity of the periodic function.

depends on how many diffraction orders are used for reconstructing the image. In Fig. 2.10 we only
have shown the 0th as well as the ±1st order for simplicity. For the Im

c (By) measurement, in principle
the same process could be performed, if both the amplitude and the phase of Im

c (By) could be measured.
Then, in the imaging process the spatial resolution of the ic(z) image would be given by the number of
side lobes of the diffraction pattern used for the reconstruction process. However, as already discussed
above, in an experiment we are only measuring the amplitude of Im

c (By) and not the phase. Therefore, in
a second Fourier transformation we can back-transform only the intensity (Im

c )2(By). As we discuss now,
the Fourier transform of the intensity distribution is just the auto-correlation function of the supercurrent
distribution along the junction.

In general, the auto-correlation function is defined as

AC(δ ) =
∞∫
−∞

ic(z) ic(z+δ ) dz . (2.2.33)

This expression shows, that the auto-correlation function is just obtained by calculating the overlap
between the function ic(z) and the same function shifted by δ . This is illustrated in Fig. 2.11a, where we
have plotted the auto-correlation function for a simple slit function. It is evident that the auto-correlation
function is a linearly decreasing function. If the function ic(z) is not constant across the width L of the slit
but varies strongly as schematically shown in Fig. 2.11b, the auto-correlation function no longer shows
a linear decrease but a rich fine structure. Only the envelop shows a linear decay.

Using the Wiener-Khintchine theorem 5,6 we can express the auto-correlation function of the supercur-

5N. Wiener, Generalized harmonic analysis, Acto Mathematica 55, 117 (1930).
6A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse, Math. Ann. 109, 604 (1934).
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rent distribution ic(z) in terms of the intensity of the Im
s (By) dependence:

AC(δ ) =
∞∫
−∞

|Im
s (k)|2 eikδ dk , (2.2.34)

where k = 2π

Φ0
tBBy = 1

L 2π
Φ

Φ0
. We immediately see that the spatial information contained in the autocor-

relation function depends on the k, or equivalently the magnetic field interval, used in the measurement
of the Im

s (By) dependence. According to (2.2.30) we have the spatial resolution 2π/k = L Φ0
Φ

. That is,
recording the Im

s (By) dependence up to the 100th side lobe (equivalent to Φ0
Φ

= 0.01) we have a spatial
resolution of 0.01 times the junction width.

Note that already the envelop of the |Im
s (By)|2 curve contains valuable statistical information on the su-

percurrent distribution.7 If we have for example inhomogeneities of ic(z), which have a probability
distribution p(a) ∝ 1/a, that is, if the probability times the characteristic length scale a of the inhomo-
geneity is constant, then the envelop of the |Im

s (By)|2 curve follows a 1/By dependence. Therefore, we
speak about “spatial 1/ f noise”.8 The presence of such inhomogeneities can be checked easily in the
experiment by plotting log |Im

s (By)|2 versus logBy. In such a plot one should obtain a straight line with
a slope of −1. If, in contrast, the supercurrent distribution would be formed by a random distribution of
filaments of width a, then the envelop of the autocorrelation function should be a constant function up to
k = 2π/a and then should fall off proportional to 1/B2

y . In this case we speak of “spatial shot noise”.9

These two examples show that the analysis of the autocorrelation function can yield valuable statistical
information on inhomogeneities of the critical current density.

An experimental example is shown in Fig. 2.12. Here, the Im
s (By) dependence of a YBa2Cu3O7−δ

grain boundary Josephson junction has been measured up to an applied magnetic field of 5 Tesla. In a
log |Im

s (By)| versus logBy plot one obtains a slope of about−0.65 corresponding to log |Im
s (By)|2 ∝ 1/B1.3

y .
From this observation one can conclude that there are spatial inhomogeneities in the supercurrent distri-
bution that have a probability distribution p(a) ∝ 1/a1.5. That is, inhomogeneities with smaller charac-
teristic length scale a have higher probability.

2.2.4 Additional Topic:
Direct Imaging of the Supercurrent Distribution

Since it is difficult to derive the spatial distribution of the maximum Josephson current density from
measurements of Im

s (Φ), direct imaging methods have been developed.10 In these imaging methods
the Josephson junction is scanned by a focused electron or laser beam and the change δ Im

s (y,z) of the
maximum Josephson current is measured as a function of the beam position (y,z). As discussed in more
detail in Appendix B, the measured change δ Im

s (y,z) of the integral junction current in first approximation

7see e.g. O. M. Fröhlich, H. Schulze, A. Beck, R. Gerdemann, R. Gross, R. P. Huebener, IEEE Trans. Appl. Supercond. 5,
2188 (1995); O. M. Fröhlich, H. Schulze, A. Beck, B. Mayer, L. Alff, R. Gross, R. P. Huebener, Appl. Phys. Lett. 66, 2289
(1995).

8In the analysis of fluctuating time signals one is plotting the intensity of the Fourier transform of the time signal (the power
spectral density S) versus frequency and often obtains a 1/ f dependence. This is the signature of so-called 1/ f noise that is
ubiquitous in nature. The power spectral density S( f ) corresponds to |Im

c (By)|2.
9In the analysis of time signals the random appearance of spikes of constant width δ t is known to appear due to the discrete

nature of physical quantities (e.g. the electronic charge in charge transport). The resulting noise is called shot noise. This noise
is white, that is, frequency independent up to high frequencies f ∝ 1/δ t and then falls of as 1/ f 2.

10for a review see R. Gross, D. Kölle, Low Temperature Scanning Electron Microscopy of Superconducting Thin Films and
Josephson Junctions, Reports on Progress in Physics 57, 651-741 (1994).
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Figure 2.12: (a) Im
s vs By dependence of a YBa2Cu3O7−δ grain boundary Josephson junction recorded for

decreasing magnetic field at T = 20K. The inset shows Im
s vs By−Boff on a log-log scale. (b) Modulation

of Im
s with varying By for opposite sweep directions as indicated by the arrows at a base field B0 = 12T. The

curve for increasing field is shifted vertically by 0.2µA for clarity (from O. Fröhlich et al., Appl. Phys. Lett.
66, 2289 (1995)).

is directly proportional to the local critical current density Jc(y,z). Hence, by scanning the junction and
measuring δ Im

s (y,z) simultaneously, a two-dimensional image of Jc(y,z) is obtained.

The local perturbation of the focused electron or laser beam can be modeled in most cases by a local
thermal heating effect. Therefore, the spatial resolution of the imaging technique is not determined by
the diameter of the focused electron or laser beam, but by the so-called thermal healing length, which
determines the diameter of the heated sample region. Typically, for superconducting thin film structures
this length scale is of the order of 1 µm.

2.2.5 Additional Topic:
Short Josephson Junctions: Energy Considerations

After having found the spatial distribution of the maximum Josephson current density we now discuss
the energy E associated with a short Josephson junction. Doing so, we derive a criterion for the nota-
tion “short”. We will see that short means smaller than a characteristic length scale λJ , the Josephson
penetration depth.
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The junction energy is given by the sum

E = ES +EI , (2.2.35)

where ES is the energy stored in the superconducting electrodes and EI the energy stored in the insulating
barrier. The energy stored in the superconducting electrodes is the sum of the magnetic field energy and
the kinetic energy of the superelectrons. It is given by

Es =
1

2µ0

∫
Vs

(
B2 + µ0ΛJ2

s
)

dV , (2.2.36)

where the integration is over the superconducting volume Vs. This expression, which can be derived from
the first London equation, is not valid for the insulating barrier. Here, instead of the kinetic energy of the
superelectrons we have to use the Josephson coupling energy EJ . We obtain

EI =
1

2µ0

∫
Vi

B2 dV +
∫
Vi

1
d

EJ

Ai
dV . (2.2.37)

Here, Vi = Ai ·d is the volume of the insulator with Ai the junction area and d the barrier thickness. With
EJ/Ai = Φ0Jc

2π
(1− cosϕ) (compare (2.1.8)) we obtain

EI =
1

2µ0

∫
Vi

B2 dV +
∫
Ai

Φ0Jc(y,z)
2π

[1− cosϕ(z)] dydz . (2.2.38)

Here, the second term has been integrated over the barrier thickness d thus leaving only an integral over
the junction area Ai extending in the yz-plane.

With (2.2.36) and (2.2.38) we obtain the total energy

E =
1

2µ0

∫
Vs+Vi

B2 dV +
1
2

∫
Vs

ΛJ2
s dV +

∫
Ai

Φ0Jc(y,z)
2π

[1− cosϕ(z)] dydz . (2.2.39)

We are now able to give a definition of a short junction by comparing the different energy contributions.
We will call a junction short, if the energy EB stored in the junction due to the external field (first and
second term on the right hand side) is much larger than the Josephson coupling energy EJ (third term on
the right hand side), that is EB� EJ .

We first consider EB given by the first two integrals in (2.2.39). If the thickness of the superconducting
electrodes is larger than the London penetration depth, the first integral dominates so that

EB =
1

2µ0

∫
Vs+Vi

B2 dV . (2.2.40)

Note that the magnetic flux density penetrates the superconducting electrodes only up to a length given
by the London penetration depth. Therefore, the integration volume is given by W ·L · (d +2λL) = Ai · tB
(compare Fig. 2.4). Hence, we obtain

EB =
1

2µ0
B2

yWLtB =
1

2µ0

Φ2W
tBL

, (2.2.41)
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where we have used Φ = ByLtB.

We next consider the Josephson coupling energy (energy due to the currents in the junction) given by the
last integral in (2.2.39). If we assume for simplicity a spatially homogeneous Jc(y,z), we obtain

EJ =
Φ0Ic

2π
−

W/2∫
−W/2

L/2∫
−L/2

Φ0Jc(y,z)
2π

cosϕ(z) dydz

=
Φ0Ic

2π
−

L/2∫
−L/2

Φ0ic(z)
2π

cosϕ(z) dz =
Φ0Ic

2π
− Φ0Ic

2π

sin πΦ

Φ0
πΦ

Φ0

cosϕ(0) , (2.2.42)

where we have used ϕ(z) = 2πΦ

Φ0

z
L +ϕ0 (compare (2.2.24)).

Comparing EJ and EB for the typical flux of one flux quantum in the junction area, the condition EB� EJ

can be written as

1
2µ0

Φ2
0W

tBL
� Φ0Ic

2π
. (2.2.43)

With the critical current density Jc = Ic/WL this inequality can be expressed as

L � λ̃J ≡

√
πΦ0

µ0JctB
. (2.2.44)

Hence, a junction is considered short, if its length L is small compared to the characteristic length scale
λ̃J . This length is equal to the so-called Josephson penetration depth λJ introduced in section 2.3 within
a factor of the order of unity. In the discussion of long Josephson junctions in section 2.3 we will see,
how λJ is entering the equations describing these junction as a natural length scale.

2.2.6 The Motion of Josephson Vortices

Above we have seen that vortices can be used to visualize the Josephson current density in a current
driven junction. We now discuss the situation, where Josephson vortices are moving along the junction
in z-direction at a constant velocity vz.

For a short Josephson junction the magnetic field due to the Josephson current density itself can be
neglected compared to the external field and we can therefore assume that the flux density in the junction
is given by the external field Be = (0,By,0). Hence, the gauge-invariant phase difference must satisfy
equation (2.2.14):

∂ϕ

∂ z
=

2π

Φ0
BytB . (2.2.45)

Due to the motion of the vortices a temporal change of the phase difference at a specific position is
obtained. Since the passage of a complete vortex with flux content Φ0 changes the phase difference by
2π we can write

∂ϕ

∂ t
=

2π

Φ0

∂Φ

∂ t
. (2.2.46)
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Figure 2.13: (a) The linear increase of the gauge-invariant phase difference along the junction and with
increasing time. (b) The corresponding Josephson current density Js along the junction as a function of time.

With the magnetic flux given by Φ = BytBz we obtain

∂ϕ

∂ t
=

2π

Φ0
BytB

∂ z
∂ t

=
2π

Φ0
BytB vz . (2.2.47)

The solution to (2.2.45) and (2.2.47) is

ϕ(z, t) =
2π

Φ0
BytB(z− vzt)+ϕ(0) = k(z− vzt)+ϕ(0) . (2.2.48)

That is, the gauge-invariant phase difference is increasing linearly in space and time. This situation is
shown in Fig. 2.13a, where we have plotted ϕ(z, t). In order to obtain the temporal and spatial evolution
of the Josephson current density, we have to use the current-phase relation and obtain

Js(y,z, t) = Jc(y,z) sin [k(z− vzt)] . (2.2.49)

Comparing (2.2.49) to (2.2.17) shows that the current density through the junction has the same spatial
pattern as for the stationary vortices but the pattern itself moves at a constant velocity vz according to our
assumption (see Fig. 2.13b).

The current density pattern can be considered as a vortex with a period p = L Φ0
Φ

. That is, if the flux in
the junction corresponds to one flux quantum, Φ = Φ0, the period is L. For Φ > Φ0 and Φ < Φ0 the
period is smaller and larger than the junction length L, respectively. With the period p we can define the
number of vortices in the junction as

NV =
L
p

=
Φ

Φ0
. (2.2.50)

The amount ∆ϕ the gauge-invariant phase difference changes along the junction is then given by

∆ϕ = 2π
Φ

Φ0
= 2π NV . (2.2.51)
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That is, the change of ϕ is just given by 2π times the number of vortices in the junction. We can now
consider the rate, at which vortices are passing the junction. This rate is given by

dNV

dt
=

1
2π

d∆ϕ

dt
. (2.2.52)

Since according to the voltage-phase relation a temporal change of the gauge-invariant phase difference
is equal to 2π

Φ0
V , where V is the junction voltage, we obtain

dNV

dt
=

V
Φ0

. (2.2.53)

That is, the constant motion of the vortices across the junction is causing a constant junction voltage
proportional to the rate, at which vortices are moving across the junction. We note that this relationship is
completely analogous to the motion of Abrikosov vortices across a type-II superconductor perpendicular
to the current direction resulting in the so-called flux-flow voltage. A more detailed discussion is given
in chapter 3.
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2.3 Long Josephson Junctions

In section 2.2 we have neglected the self-field effect by the Josephson current density. This is possible
only if the spatial dimensions W,L of the junction are small compared to the Josephson penetration depth.
In this section we relax this assumption and discuss long Josephson junctions with spatial dimensions
larger than the Josephson penetration depth.

2.3.1 The Stationary Sine-Gordon Equation

We again consider the junction geometry shown in Fig. 2.4. We also note that the derivation of expression
(2.2.15) describing the spatial variation of the gauge-invariant phase difference due to a magnetic flux
density is general. That is, for the geometry shown in Fig. 2.4 with the external magnetic field applied
parallel to the y-direction we can write

∂ϕ

∂ z
=

2π

Φ0
BytB . (2.3.1)

However, in contrast to short junctions now the magnetic flux density results both from the externally
applied field and the Josephson current density and must satisfy Ampère’s law. With B = µ0H and
D = ε0E we obtain

∇×B = µ0J+ εε0µ0
∂E
∂ t

. (2.3.2)

Here, µ0 and ε0 are the permeability and permittivity in vacuum, respectively, and ε is the dielectric
constant of the barrier material.

As in section 2.2 we only consider the zero voltage state, that is, we have ∂E/∂ t = 0. Then, for the
geometry of Fig. 2.4 Ampère’s law gives

∂By(z)
∂ z

= −µ0Jx(z) . (2.3.3)

With this expression we can write the spatial derivative of (2.3.1) as

∂ 2ϕ(z)
∂ z2 =

2π tB
Φ0

∂By(z)
∂ z

= −2πµ0 tB
Φ0

Jx(z) . (2.3.4)

Assuming that Jc(y,z) = const and remembering that the current is flowing in negative x-direction, that
is, Jx(y,z) =−Js(y,z) so that Jx(z) =−Jc sinϕ(z) expression (2.3.4) can be rewritten as

∂ 2ϕ(z)
∂ z2 =

2πµ0 tBJc

Φ0
sinϕ(z) =

1
λ 2

J
sinϕ(z) (2.3.5)

with the Josephson penetration depth

λJ ≡

√
Φ0

2πµ0tBJc
. (2.3.6)
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Note that λJ is about equal to the characteristic length scale λ̃J derived in section 2.2 (compare (2.2.44))
within a factor of the order unity. Equation (2.3.5) shows that the gauge-invariant phase difference
follows a nonlinear differential equation called stationary Sine-Gordon equation (SSGE).11 Formally,
solutions of this equation can be expressed in terms of elliptic Jacobi functions.12,13 A typical boundary
problem for this equation admits, however, several such solutions and only some of them can be realized.
In many situations, the stationary Sine-Gordon equation has to be solved numerically.

We close this subsection by emphasizing that for a two-dimensional junction we have the two-
dimensional stationary Sine-Gordon equation

∂ 2ϕ(y,z)
∂y2 +

∂ 2ϕ(y,z)
∂ z2 =

1
λ 2

J
sinϕ(y,z) . (2.3.7)

Additional Topic:
Analytical Solutions of the SSGE

We consider a few simple cases where we can solve the SSGE (2.3.5) analytically. First we note that we
can linearize (2.3.5) for small arguments. Then, with sinϕ ' ϕ we have

∂ 2ϕ(z)
∂ z2 =

1
λ 2

J
ϕ(z) (2.3.8)

with the solution

ϕ(z) = ϕ(0) e−z/λJ . (2.3.9)

Then, from (2.3.1) we obtain for the magnetic field By(z) along the junction to

By(z) = −ϕ(0)
2π

Φ0

λJtB
e−z/λJ . (2.3.10)

This expression shows that λJ is a decay length for the magnetic field justifying the expression penetra-
tion depth.

With ∂By(z)
∂ z =−µ0Jx(z), for the current flowing at the edges of the junction we obtain

Jx(z = 0) =
1
λJ

By(z = 0)
µ0

. (2.3.11)

Since the junction can stay in the Meißner state as long as Jx ≤ Jc, Meißner solutions are possible for

By(z = 0) ≤ µ0JcλJ . (2.3.12)

We next consider the case of a small junction with L� λJ . Equation (2.3.5) can then be approximated by
∂ 2ϕ(z)

∂ z2 ' 0 resulting in ∂ϕ(z)
∂ z ' const. That is, we obtain the well known result of the short junction. Note

that according to (2.3.4) the approximation ∂ 2ϕ(z)
∂ z2 ' 0 is equivalent to neglecting the self-field effect of

the current. This again demonstrates that the condition for a short junction is equivalent to the assumption
of neglecting self-fields.

11J. Rubinstein, J. Math. Phys. 11, 258 (1970).
12I.O. Kulik, Sov. Phys. JETP 51, 1952 (1966).
13C.S. Owen, D.J. Scalapino, Phys. Rev. 164, 538 (1967).
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Figure 2.14: Magnetic flux and current density distribution as well as the variation of the gauge-invariant
phase difference for a the Josephson vortex solution of the stationary Sine-Gordon equation.

2.3.2 The Josephson Vortex

A possible solution of the SSGE is the particular solution

ϕ(z) = ±4arctan
{

exp
(

z− z0

λJ

)}
+2πn (2.3.13)

which can be verified by substitution into (2.3.5). The corresponding magnetic field can be found from
(2.3.1) to

By(z) = ± Φ0

πλLtB

1

cosh
(

z−z0
λJ

) . (2.3.14)

The Josephson current density is obtained form (2.3.3) to

Jx(z) = −Js(z) = = ± Φ0

πµ0λ 2
L tB

sinh
(

z−z0
λJ

)
cosh

(
z−z0

λJ

) (2.3.15)

= ±2Jc

sinh
(

z−z0
λJ

)
cosh

(
z−z0

λJ

) . (2.3.16)

Note that for a general solution of a differential equation we not only have to know the particular solution
but also the homogeneous solutions in order to match the boundary conditions. However, we will restrict
ourselves here to those cases where only the particular solution is needed.

A particular important example is the case where the origin is chosen at z0 and ϕ(z) is chosen to vanish
at z =±∞ in a junction of infinite length. In this case the particular solution is the full solution satisfying
the boundary conditions. The corresponding magnetic field and current distribution is shown in Fig. 2.14.
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The magnetic field and the Josephson current density decay with the characteristic length scale λJ . Inter-
estingly, the Josephson current density does not have a maximum at the position where the magnetic field
has its maximum. Integrating the magnetic flux density and the current density along the junction we
see that the total Josephson current is zero and the total flux is equal to Φ0. That is, we have a situation
similar to that shown in Fig. 2.6c and Fig. 2.8. Therefore, we can interpret this special solution of the
SSGE as a Josephson vortex in a long Josephson junction. The different signs in (2.3.13) – (2.3.16)
correspond to different orientations or polarizations of the vortex. It is evident that the Josephson vortex
is confined to a length of the order of the Josephson penetration depth λJ .

Additional Topic:
Energy of the Josephson Vortex Solution

As we have done for a short junction, we can calculated the energy E for a long Josephson junction. In
fact the expression (compare (2.2.39))

E =
1

2µ0

∫
Vs+Vi

B2 dV +
1
2

∫
Vs

ΛJ2
s dV +

∫
Ai

Φ0Jc(y,z)
2π

[1− cosϕ(z)] dydz (2.3.17)

also holds for long Josephson junctions with the energy (compare (2.2.36))

Es =
1

2µ0

∫
Vs

(
B2 + µ0ΛJ2

s
)

dV (2.3.18)

stored in the superconductor and the energy (compare (2.2.38))

EI =
1

2µ0

∫
Vi

B2 dV +
∫
Ai

Φ0Jc(y,z)
2π

[1− cosϕ(z)] dydz . (2.3.19)

stored in the insulator.

In the following we calculate the stored energy for the vortex solution of the long junction. Here, we
again assume that the junction electrodes are much thicker than the London penetration depth so that the
first term dominates in the expression for Es. Then we have

E =
1

2µ0

∫
Vs+Vi

B2 dV +
∫
Ai

Φ0Jc(y,z)
2π

[1− cosϕ(z)] dydz . (2.3.20)

Using ∂ϕ/∂ z = 2πBytB/Φ0 to express the magnetic flux density By in terms of the gauge-invariant phase
difference ϕ , we obtain after integrating over y and x 14

E =
Φ0JcW

2π

∞∫
−∞

{
1
2

λ
2
J

(
∂ϕ(z)

∂ z

)2

+[1− cosϕ(z)]

}
dz . (2.3.21)

14We obtain B2
y/2µ0 = (∂ϕ/∂ z)2 Φ2

0/8π2t2
Bµ0 = (∂ϕ/∂ z)2(Φ0Jc/2πtB) 1

2 λ 2
J . Integration over y gives just the junction width

W and integration over x gives the magnetic thickness tB. That is
∫∫

(Φ0Jc/2πtB) 1
2 λ 2

J dxdy = (Φ0JcW/2π) 1
2 λ 2

J .
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With the expression (2.3.13) for ϕ(z) we can now calculate the energy stored in the vortex solu-
tion. In order to do so we use the trigonometric identity 1− cosϕ = 2sin2(ϕ/2). With ϕ(z) =
4arctan

{
exp
(

z−z0
λJ

)}
=−2sin−1(1/cosh(z/λJ)) we obtain

1− cosϕ(z) = 2
1

cosh2
(

z
λJ

) . (2.3.22)

Furthermore, the first term in the integral can be simplified by using (2.3.14):

1
2

λ
2
J

(
∂ϕ

∂ z

)2

= 2
1

cosh2
(

z
λJ

) . (2.3.23)

Hence, we obtain

E =
2Φ0JcW

π

∞∫
−∞

1

cosh2
(

z
λJ

) dz =
4Φ0JcWλJ

π
. (2.3.24)

With this expression we can write down the energy per unit length of the Josephson vortex to

EVortex =
EI

W
=

4Φ0JcλJ

π
. (2.3.25)

Note that the energy of the vortex is positive. That is, its formation is impossible without external fields
and/or currents supplying the required energy.

With expression (2.3.25) for the vortex energy per unit length we can find the magnetic flux density Bc1,
at which the vortex will first enter the junction in complete analogy to the lower critical field of a type-II
superconductor.15 For a type-II superconductor the lower critical field is given by

Bc1 =
µ0

Φ0
EVortex . (2.3.26)

Hence, in analogy the lower critical field of a long Josephson junction is

Bc1 =
4µ0JcλJ

π
=

2Φ0

π2λJtB
. (2.3.27)

This result can be understood intuitively. Bc1 is just about the magnetic flux density of a single flux
quantum distributed over an area tB ·λJ .

15see e.g. T. P. Orlando, K. A. Delin, Foundations of Applied Superconductivity, Addison-Wesley, New York (1991); section
6.5.
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2.3.3 Junction Types and Boundary Conditions

If we consider the stationary Sine-Gordon equation (SSGE) we see that only the properties of the tunnel-
ing barrier (barrier thickness d or equivalently Jc) and the junction electrodes (London penetration depth
λL) are entering. In contrast, the geometry of the junction electrodes are not entering the differential
equation. However, the geometry of the junction electrodes determine how the current is flowing into the
junction area and therefore is entering the boundary conditions.

In order to solve the SSGE we have to know the magnetic flux density at the edges of the junction. That
is, we have to know the boundary conditions (compare (2.2.15))

∂ϕ

∂ z

∣∣∣∣
z=0

=
2πtB
Φ0

By

∣∣∣∣
z=0

(2.3.28)

∂ϕ

∂ z

∣∣∣∣
z=L

=
2πtB
Φ0

By

∣∣∣∣
z=L

(2.3.29)

∂ϕ

∂y

∣∣∣∣
y=0

= −2πtB
Φ0

Bz

∣∣∣∣
y=0

(2.3.30)

∂ϕ

∂y

∣∣∣∣
y=W

= −2πtB
Φ0

Bz

∣∣∣∣
y=W

. (2.3.31)

The main problem is that the magnetic flux density is determined by both the external applied flux density
Bex and the flux density Bel of the current density in the junction electrodes:

B = Bex +Bel . (2.3.32)

In contrast to short junctions we no longer can neglect Bel . Unfortunately, in many cases the geometry of
the junction electrodes is complicated and, hence, it is difficult to calculate the magnetic flux density at
the junction edges. Moreover, the current density distribution in the junction electrodes is determined by
the spatial distribution of the Josephson current density itself. That is, the boundary conditions depend
on the solution of the SSGE. Therefore, in many cases numerical iteration methods have to be used to
solve the SSGE self-consistently.16,17,18

In the following we discuss the boundary conditions for a few simple one-dimensional junction geome-
tries. Here, one-dimensional means that the junction dimension in one direction (the y-direction in the
following) is much smaller than the Josephson penetration depth. Then, for this junction direction self-
field effects of the current can be usually neglected. In the following subsections we classify the junctions
into three main types, namely

• overlap junctions,

• inline junctions, and

• grain boundary junctions.

16J. Mannhart, J. Bosch, R. Gross, R. P. Huebener, Calculation of the Josephson Current Distribution in Two-dimensional
Tunnel Junctions, Phys. Lett. A 121, 241 (1987).

17J. Mannhart, J. Bosch, R. Gross, R. P. Huebener, Spatial Distribution of the Maximum Josephson Current in Superconduct-
ing Tunnel Junctions, J. Low Temp. Phys. 70, 459 (1988).

18B. Mayer, H. Schulze, G. M. Fischer, R. Gross, Nonlocal Response of Grain Boundary Type Josephson Junctions to Local
Perturbation, Phys. Rev. B 52, 7727 (1995).
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Figure 2.15: The geometry of the overlap (a), the grain boundary (b) and the inline Josephson junction (c).
The junction plane always extends in the yz-plane. The width W of the junction is small, whereas the length
L of the junction is large compared to the Josephson penetration depth λJ . Also indicated is the direction of
the electrode current Iel and the resulting magnetic field Bel .

We discuss the boundary conditions for these junction types and the resulting stationary Sine-Gordon
equation.

The geometries of the three main junction types are shown in Fig. 2.15. For the overlap junction the
junction area is formed by a short overlap of width W of the bottom and the top junction electrodes
extending in y-direction. The one-dimensional junction of length L extends in z-direction, that is, per-
pendicular to the direction of the current flow in the electrodes (x-direction). Therefore, the magnetic
field Bel generated by the electrode current Iel at the junction edges is parallel to the z-direction and,
hence, perpendicular to the short side of the junction. Therefore, the magnetic flux Φel = BelWtB is
negligibly small due to the very small width W of the junction. Note that the field component Bel

x is
perpendicular to the junction area and has no influence on the gauge-invariant phase difference (compare
(2.2.15)).

For the inline junction the situation is different. Here, the junction area is formed by a long overlap of
length L of the bottom and the top junction electrodes extending in the z-direction. The width W again is
very small so that we have a one-dimensional junction extending in the z-direction. The important point
is that in contrast to the overlap junction the long side of the junction now is parallel to the direction of the
current flow in the electrodes (z-direction). Therefore, the magnetic field Bel generated by the electrode
current Iel at the junction edges is parallel to the y-direction and, hence, perpendicular to the long side
of the junction. Therefore, the magnetic flux Φel = BelLtB is significant due to the large length L� λJ

of the junction and has to be taken into account. As for the overlap junction the field component Bel
x is

perpendicular to the junction area and therefore has no influence on the gauge-invariant phase difference.

For the grain boundary junction geometry we have somehow a mixture of the overlap and inline geom-
etry. Here, the junction area is not formed by an overlap of the bottom and the top electrode, but both
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electrodes are attached to each other face to face. This junction configuration has been widely used for
the high temperature superconductors. For these materials a Josephson junction could be obtained by
putting an epitaxial film on a bicrystalline substrate. Since the high temperature superconducting film
takes the in-plane orientation of the bicrystalline substrate, an individual grain boundary could be intro-
duced into the epitaxial film with the grain boundary angle determined by the substrate. This artificial
grain boundary was found to act as junction barrier resulting in a Josephson junction.19 Therefore, this
junction type is called grain boundary Josephson junction. In the grain boundary geometry the junction
area extending in the yz-plane is not parallel to the surface of the electrodes (xz-plane) as for the overlap
and inline geometry but perpendicular to it. Therefore, the electrode current Iel is now flowing perpen-
dicular to the junction area and not parallel to it as for the overlap and inline geometry. The width W of
the junction is small and the length L of the junction large compared to the Josephson penetration depth
resulting in a one-dimensional junction extending in the z-direction. In contrast to the overlap and inline
geometry now both the y- and z-component of the magnetic field Bel generated by the electrode current
Iel lie in the junction plane. Whereas the component Bel

z can be neglected due to the small width W of
the junction, the component Bel

y has to be taken into account, since it is perpendicular to the long side of
the junction.

Overlap Junctions

For the overlap junction the magnetic field Bel
z due to the electrode current flowing in the bottom and top

electrode can be expressed as20

Bel
z ' ±µ0

2
Iel

L
. (2.3.33)

We see that the electrode current is generating only a field component in z-direction. With the external
magnetic field applied in y-direction, the total field in z-direction is only determined by Bel and we can
write the boundary conditions (2.3.30) and (2.3.31) as21

∂ϕ

∂y

∣∣∣∣
y=0

= +
2πtB
Φ0

Bel
z

∣∣∣∣
y=0

= +
1

λ 2
J

Iel

2JcL
(2.3.34)

∂ϕ

∂y

∣∣∣∣
y=W

= −2πtB
Φ0

Bel
z

∣∣∣∣
y=W

= − 1
λ 2

J

Iel

2JcL
. (2.3.35)

With W � λJ , the gauge-invariant phase difference ϕ can have only a very small variation in y-direction.
Therefore, we can use the Ansatz

ϕ(y,z) = ϕ(z)+ f (y) .

With the boundary conditions (2.3.34) and (2.3.35) we obtain for an arbitrary y position between the two
edges

∂ f
∂y

=
2πtB
Φ0

µ0Iel

2L

(
1− 2y

W

)
19For a review see R. Gross, Grain Boundary Josephson Junctions in the High Temperature Superconductors in Interfaces in

High-Tc Superconducting Systems, S. L. Shinde and D. A. Rudman eds., Springer Verlag, New York (1994), pp. 176-210.
20We use

∮
Bds = µ0Iel and

∮
Bds' Bel

z ·2L. We also assume that the current distribution in the electrodes is homogeneous.
The case of an inhomogeneous current distribution will be discussed below in the subsection on mixed overlap and inline
junction geometries.

21Note that Bel
z is in negative z-direction for y = 0 and in positive z-direction for y = W .
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and hence

∂ 2ϕ

∂y2 = −2πtB
Φ0

µ0Iel

LW
= −2πtBµ0Jc

Φ0

Iel

Ic
= − 1

λ 2
J

Iel

Ic
= − 1

λ 2
J

γ , (2.3.36)

where γ ≡ Iel/Ic. With the solution for ∂ 2ϕ

∂y2 we obtain from (2.3.7)

∂ 2ϕ(z)
∂ z2 − 1

λ 2
J

sinϕ(y,z) =
1

λ 2
J

γ . (2.3.37)

For the field component in y-direction we have By = Bex
y and we obtain the boundary conditions

∂ϕ

∂ z

∣∣∣∣
z=0

= +
2πtB
Φ0

Bex
y

∣∣∣∣
z=0

(2.3.38)

∂ϕ

∂ z

∣∣∣∣
z=L

= +
2πtB
Φ0

Bex
y

∣∣∣∣
z=L

. (2.3.39)

Inline Junctions

For the inline junction the magnetic field Bel
y due to the electrode current flowing in the bottom and top

electrode can be expressed as

Bel
y ' ±µ0

2
Iel

W
. (2.3.40)

We see that the electrode current is generating only a field component in y-direction. With the external
magnetic field applied in y-direction, the total field in y-direction is then determined by the sum Bex

y +Bel
y .

Since W � λJ and since we have no magnetic field component in z-direction, we can assume ∂ 2ϕ

∂y2 ' 0
and we arrive at the differential equation for the inline junction

∂ 2ϕ(z)
∂ z2 − 1

λ 2
J

sinϕ(y,z) = 0 . (2.3.41)

For the field parallel to the y-direction we have By = Bex
y +Bel

y and we can write the boundary conditions
(2.3.28) and (2.3.29) as22

∂ϕ

∂ z

∣∣∣∣
z=0

= +
2πtB
Φ0

(
Bex

y −
µ0Iel

2W

)
z=0

(2.3.42)

∂ϕ

∂ z

∣∣∣∣
z=L

= +
2πtB
Φ0

(
Bex

y +
µ0Iel

2W

)
z=L

. (2.3.43)

These are the boundary conditions for a so-called symmetric inline junction, where the current in the top
and bottom electrode are flowing in the same direction. In an asymmetric inline junction the current in

22Note that the field due to the electrode current is in negative y-direction at z = 0 and in positive y-direction for z = L.
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Figure 2.16: The geometry of an asymmetric inline junction. In contrast to the symmetric inline junction the
electrode currents in the top and bottom electrode are flowing in opposite direction. At z = L the electrode
current density becomes zero, since along the junction length the current injected at z = 0 in the top electrode
is tunneling to the bottom electrode and flowing back in opposite direction.

the top and bottom electrode are flowing in opposite direction as shown in Fig. 2.16. In this case we have
the boundary conditions

∂ϕ

∂ z

∣∣∣∣
z=0

= +
2πtB
Φ0

(
Bex

y −
µ0Iel

W

)
z=0

(2.3.44)

∂ϕ

∂ z

∣∣∣∣
z=L

= +
2πtB
Φ0

(
Bex

y
)

z=L . (2.3.45)

These boundary conditions are evident, since now the field at z = 0 is twice of that of the symmetric
inline junction, whereas the field at z = L vanishes.

Mixed Overlap and Inline Junctions

We can have two situation, where we obtain an inline admixture to an overlap junction geometry:

1. Overlap junctions for which the width of the junction electrodes is larger or smaller than the actual
junction length L (see Fig. 2.17a and b).

2. The electrode current is not distributed homogeneously over the cross-section of the electrode.
This is the case, if the thickness of the electrodes is larger than the London penetration depth
λL. Then, the current density distribution in the junction electrodes is peaked at the edges of the
junctions (see Fig. 2.17c).

Note that for the overlap geometry the electrode current always was flowing only in y-direction resulting
in a magnetic field component Bel

z which is perpendicular to the short side of the junction. However, as
shown in Fig. 2.17 for the two cases mentioned above there is always a finite electrode current Iel

z at the
edges of the junction area, which is parallel to the z-direction and results in a magnetic field component
Bel

y in y-direction. This field component is perpendicular to the long side of the junction and corresponds
to the field component of the inline geometry. Therefore, for the situations shown in Fig. 2.17 we speak
about a mixed overlap and inline geometry.

The inline admixture to an overlap type junction can be formally characterized by a dimensionless pa-
rameter s which ranges between 0 and 1. Here, s = 0 corresponds to a pure overlap junction and s = 1 to
a pure inline junction. With this parameter we obtain the stationary Sine-Gordon equation to

∂ 2ϕ(z)
∂ z2 − 1

λ 2
J

sinϕ(z) = (1− s)
1

λ 2
J

γ (2.3.46)

2005



78 R. GROSS AND A. MARX Chapter 2

z

x

y

L
W

Iel

Iel
(a)

z

x

y

L
W

Iel

Iel

z

x

y

W

Iel

Iel

L

(b) (c)

Figure 2.17: The geometry of mixed overlap and inline junctions. In (a) and (b) the width of the electrodes
is larger and smaller than the junction length L, respectively, resulting in an electrode current parallel to the
z-direction both in the bottom and top electrode. In (c) an electrode current density peaked at the electrode
edges results in an electrode current parallel to the z-direction at the edges of the junction area.

with γ ≡ Iel/Ic. The boundary conditions are

∂ϕ

∂ z

∣∣∣∣
z=0

= +
2πtB
Φ0

(
Bex

y − s
µ0Iel

2W

)
z=0

(2.3.47)

∂ϕ

∂ z

∣∣∣∣
z=L

= +
2πtB
Φ0

(
Bex

y + s
µ0Iel

2W

)
z=L

. (2.3.48)

Grain Boundary Josephson Junctions

In grain boundary junctions the junction area is perpendicular to the direction of the electrode currents.
This is different to overlap and inline junctions, where the junction area is parallel to the direction of the
electrode currents. In contrast to the overlap junction for the grain boundary junction geometry we have
to take into account the y-component of the magnetic field Bel due to the electrode currents:

Bel
y ' ±µ0

2
Iel

L
. (2.3.49)
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For the overlap geometry this field was perpendicular to the junction area and had no effect on the gauge-
invariant phase difference. In contrast, for the grain boundary junctions Bel

y is parallel to the junction area.
The field component Bel

y results in a finite inline admixture. Writing Bel
y as

Bel
y ' ±µ0

2
W
L

Iel

W
= s

µ0

2
Iel

W
(2.3.50)

we see by comparison with (2.3.47) and (2.3.48) that the amount of inline admixture is just s =W/L� 1,
since the length L of the grain boundary junction usually is much larger than the width W . Our analysis
shows that the grain boundary junction can be considered as an overlap junction with a small inline
admixture. Therefore, we can use the expression for the mixed overlap and inline geometry and the
stationary Sine-Gordon equation can be written as

∂ 2ϕ(z)
∂ z2 − 1

λ 2
J

sinϕ(z) =
(

1−W
L

)
1

λ 2
J

γ = (1− s)
1

λ 2
J

γ . (2.3.51)

The boundary conditions are

∂ϕ

∂ z

∣∣∣∣
z=0

=
2πtB
Φ0

(
Bex

y +
W
L

µ0Iel

2W

)
z=0

(2.3.52)

∂ϕ

∂ z

∣∣∣∣
z=L

=
2πtB
Φ0

(
Bex

y −
W
L

µ0Iel

2W

)
z=L

. (2.3.53)

We note that for an electrode thickness larger than the London penetration depth λL the electrode current
is peaked at the junction edges. This results in an additional inline admixture as already discussed above.

2.3.4 Additional Topic:
Josephson Current Density Distribution and Maximum Josephson Current

After having found the stationary Sine-Gordon equation and the boundary conditions for the various
junction types we can calculate the Josephson current distribution Js(y,z) in the junction as well as the
maximum Josephson current. We perform this calculation only for a few simple cases assuming that the
critical current density Jc(y,z) is homogeneous across the junction. We start with the zero field case.

Overlap Junction: Bex = 0

We first consider an overlap junction with a spatially homogeneous electrode current distribution. For
zero external magnetic field we have ∂ϕ/∂ z = 0 at both junction edges according to (2.3.38) and (2.3.39).
Therefore, ∂ 2ϕ/∂ z2 = 0 and we obtain the following trivial solution of the SSGE (2.3.36)

ϕ(z) = arcsin(γ)+2πn = const. (2.3.54)

and hence for the Josephson current density

Js(z) = Jc sinϕ(z) = const. (2.3.55)
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Figure 2.18: The geometry (a) and the Josephson current distribution of a long inline Josephson junction.
The Josephson current density Js is restricted to the boundaries of the junction thereby resulting in the Meißner
state of the long inline Josephson junction.

The maximum Josephson current in this case is

Im
s =

∫
Ai

Js dA = Jc ·LW = Jc ·Ai . (2.3.56)

Here, Ai = LW is the junction area.

For the overlap junction we obtain the important result that for zero applied magnetic field the Josephson
current density is constant across the junction area and the maximum Josephson current is increasing
linearly with increasing junction area.

Inline Junction: Bex = 0

In contrast to the overlap junction, for the inline junction we have to take into account the magnetic
field due to the electrode current. Qualitatively, we can find the current distribution by recalling that a
superconducting system always wants to stay in the Meißner state, that is, it wants to expel the magnetic
field. As shown in Fig. 2.18, in an inline junction the Meißner state can be achieved by restricting the
Josephson current density to the left and right edge of the junction. Then, the electrode current flowing
in the top and bottom electrode are the same along the junction and their magnetic fields cancel each
other. In this way the inner of the junction resides in the Meißner state. This situation is similar to a
bulk superconductor, where the supercurrent density flows only on the surface of the sample and decays
exponentially away from the surface. There, the characteristic decay length is the London penetration
depth λL. For a Josephson junction an exponential decay is obtained only in the linear approximation
(compare (2.3.8) to (2.3.10)). However, due to the nonlinearity of the Sine-Gordon equation the Joseph-
son current density is zero at the edges, increases to the maximum value Jc at a depth equal to about λJ

and than decays again so that the Josephson current density is restricted to an edge region with a length
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Figure 2.19: The maximum Josephson current Im
s plotted as a function of the junction length for a pure overlap

and inline geometry as well as for different amount s of an inline admixture to the pure overlap geometry. Also
shown is the Im

s (L) dependence for an overlap junction with an inhomogeneous electrode current distribution
Jel(z) according to (2.3.58).

of about 2λJ . A detailed calculation shows that the integral maximum Josephson current is

Im
s =

∫
Ai

Js dA = Jc ·4WλJ . (2.3.57)

That is, in contrast to the overlap junction, for which the maximum Josephson current increases linearly
with the junction length, the maximum Josephson current of an inline junction is independent of the
junction length L. This is evident from Fig. 2.18. Since the Josephson current density is restricted to the
edges of the junction, an increase of the junction length above a value of about L = 4λJ does no longer
increase the integral junction current.

Grain Boundary Junction: Bex = 0

For the grain boundary junction we have an overlap type geometry with a certain amount of inline
admixture. If the thickness t of the electrodes of the grain boundary Josephson junction is smaller than
the London penetration depth, the current distribution in the electrodes is quite homogeneous and, hence,
the inline admixture is s =W/L = t/L (compare (2.3.50) and Fig. 2.15). Since usually t/L� 1, the inline
admixture is small and the maximum Josephson current is expected to increase linearly with increasing
junction length.

As shown in Fig. 2.19 this has been indeed observed experimentally. The experimental data obtained for
the grain boundary junctions follow the theoretical estimate for the overlap junction. Fig. 2.19 also shows
that with increasing inline admixture the increase of the maximum Josephson current with increasing
junction length L becomes more flat and finally vanishes for a pure inline junction.
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In Fig. 2.19 we also show the effect of a spatially inhomogeneous current distribution in the junction
electrodes. Assuming for an overlap junction an electrode current distribution

Jel(z) =
L

π
√

z(L− z)
, (2.3.58)

which is peaked at the edges of the junction, we obtain

Im
s (L) = 2.35

√
L . (2.3.59)

That is, the maximum Josephson current does no longer increase linearly with L but proportional to the
square root of the junction length.

The Magnetic Field Dependence of the Maximum Josephson Current

The magnetic field dependence of the maximum Josephson current in the presence of an applied magnetic
field has to be calculated numerically in most cases.23,24,25 A convenient way to calculate the local
Josephson current density as well as the integral maximum Josephson current is the use of an iteration
method as described in Appendix C.

Fig. 2.20a and b show the magnetic field dependence of the maximum Josephson current for a symmetric
overlap junction with a reduced junction length L/λJ = 5 and 10. Qualitatively, we can understand the
Im
s (Bex) dependence of the symmetric junction as follows: For small applied fields the junction can screen

the applied external field by a circulating screening current. This current flows in opposite direction at
both junction edges and adds to the external applied transport current. Since the local Josephson current
density cannot exceed Jc, the integral maximum Josephson current of the junction decreases, since at one
junction edge the screening current flows in the same direction as the transport current. This is shown in
Fig. 2.20d where we have plotted the Js(z) dependence of an overlap junction for increasing applied field.
On the left junction edge the screening current is in the same direction as the applied current, whereas
it is opposite on the right edge. It can be seen that with increasing applied field the screening current is
increasing until it reaches the critical value at the right edge. Then vortices start to penetrate the junction
resulting in an oscillating Js(z) dependence.

We can use Ampère’s law ∂By(z)/∂ z = −µ0Jx(z) to estimate the maximum field value that can be
screened by the junction. Assuming for simplicity an exponential decay of the applied field in the junc-
tion, Bex

y (z) ∝ exp(−z/λJ) (linear approximation), we obtain ∂By(z)/∂ z = − 1
λJ

Bex
y (z) = −µ0Jx(z) and

hence Jx = 1
λJ

Bex
y

µ0
. Since Jx ≤ Jc we can estimate the maximum field value that can be screened by the

junction to Bc = µ0JcλL. Within a factor of unity this rough estimate is equal to the lower critical field
Bc1 of a long Josephson junction (compare (2.3.27)). Indeed, for Bex ≥ Bc1 = 4

π
µ0JcλJ a state with one

vortex in the junction is energetically more favorable.

The state with no vortex in the junction is called the Meißner state of the junction. For fields larger than
the lower critical field Bc1 a state with one or more vortices inside the junction is more favorable. This
can be seen in Fig. 2.20, where the symbols mark the maximum Josephson current values for the different
vortex states. It can be seen that for a certain external field the 1-vortex solution has a higher maximum
Josephson current than the Meißner state solution, that is, the 1-vortex solution is energetically more

23see e.g. A. Barone and G. Paterno, Physics and Application of the Josephson Effect, John Wiley & Sons, New York (1982).
24S. Pagano, B. Ruggiero and E. Sarnelli, Phys. Rev. B 43, 5364 (1991).
25S. Pagano, B. Ruggiero, M. Russo and E. Sarnelli, in Nonlinear Superconductive Electronics and Josephson Devices,

G. Constabile, S. Pagano, N. F. Pedersen, and M. Russo eds., Plenum Press, New York (1991).
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Figure 2.20: Im
s plotted versus the applied magnetic field Bex for a symmetric overlap junction with L/ΛJ = 5

(a) und L/ΛJ = 10 (b). The symbols mark the solutions for the different vortex states. The solid line shows
the envelop of the different solutions. In (c) Js(z) as well as ϕ(z) is shown along the junction for a magnetic
field close to Bc1. In (d) the change of Js(z) with increasing applied magnetic field is shown. Only for the
highest field vortices can penetrate the junction as can be seen by the oscillating Js(z) dependence.

favorable. Note that on increasing the magnetic field starting from zero, so that initially the junction is
in its Meißner state, the penetration of vortices will start only at a field Bmax > Bc1. This relation can be
understood in terms of vortex pinning at the sharp edges of the uniform junction. It can be shown that
Bmax = π

2 Bc1 = 2µ0JcλJ for an infinitely long junction.26

It is also important to note that for a large Josephson junction the variation of the gauge invariant phase
difference along the junction is nonlinear (see Fig. 2.20c). This is in contrast to short junctions, where
the phase difference was increasing linearly along the junction resulting in a sinusoidal variation of the
Josephson current density. The reason for this behavior was the fact that we could neglect the magnetic
field of the current and therefore had a spatially homogeneous total magnetic field B = Bex. For long
junctions, however, we have to take into account the field of the current what results in a spatially varying
total field B = Bex + Bel . Therefore, the spatial variation of ϕ(z) along the junction and, in turn, of the
Josephson current density Js(z) = Jc sinϕ(z) is more complicated.

In Fig. 2.21 we have plotted the magnetic field dependence of the maximum Josephson current for
symmetric overlap and inline junctions as well as for an asymmetric inline junction. The junctions have
a reduced length L/λJ = 10. It can be seen that the overlap junction has the highest zero field Josephson
current, since here the maximum Josephson current is proportional to the junction length, Im

s = JcWL.
In contrast, as discussed above for the inline junction the maximum Josephson current saturates as a

26 K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986).
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Figure 2.21: Im
s plotted versus the applied magnetic field Bex for a symmetric overlap and inline junction as

well as for an asymmetric inline junction with L/ΛJ = 10. T

Im
s = 4JcWλJ . The asymmetric inline junction shows a highly asymmetric Im

s (Bex) dependence. This can
be understood as follows (compare Fig. 2.16): The magnetic fields generated by the electrode currents
flowing in the bottom and top electrode point in the same direction for the asymmetric inline junction.
Now, this field direction can be parallel or anti-parallel to the external field. For anti-parallel orientation
the external magnetic field is compensating the field of the electrode currents thereby causing a reduction
of the total magnetic field. Therefore the maximum Josephson current is increasing with increasing
applied field. In contrast, for parallel orientation the applied field is adding to the field of the electrode
currents causing an increase of the total field and, hence, the maximum Josephson current is decreasing
with increasing applied field.

2.3.5 The Pendulum Analog

In order to get some insight into the nature of the solutions for ϕ we recall that the stationary Sine-Gordon
equation has the same form as the differential equation for a pendulum. If we make the transcriptions
z→ t, ϕ → θ and 1/λ 2

L → ω2
0 = g/L, where θ is the angle of the pendulum measured from the top of

its circular orbit, and ω0 is its natural frequency. In terms of this transcription, the solutions for ϕ found
by neglecting the effect of the electrode currents corresponds to the motion of the pendulum whirling
around and around with so much kinetic energy that gravitational acceleration is negligible. In the Sine-
Gordon equation this limit corresponds to λJ → ∞ so that d2ϕ/dz2 = 0 and dϕ/dz = const resulting in
a sinusoidal variation of the Josephson current density.

If we consider now a pendulum moving with less energy, but still sufficient energy to have nonzero
kinetic energy at the top of the circle, the motion of θ(t), which is equivalent to ϕ(z), will be periodic
but anharmonic. This leads to a non-sinusoidal, periodically reversing current distribution Js(z). Each
cycle of the oscillating current contains one flux quantum. Unlike the sinusoidal case these Josephson
vortices are actually localized entities, since they are spaced with a separation exceeding λJ .

We finally discuss the Meißner limit of a junction of length L. The Meißner solution corresponds to a
pendulum moving with an energy that is just sufficient to go over the top. In this case, starting with an
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initial angular velocity (dθ/dt)0 from an initial angle −θ0 at the time t corresponding to −L/2, the pen-
dulum decelerates nearly exponentially as it rises. It moves very slowly for a long time (corresponding
to the interior length of the junction), while going over the top, and then exponentially accelerates down
the other side, recovering the initial angular velocity at θ0 (at a time t corresponding to +L/2).

If the angular velocity at the top is negligible compared to the initial value, then θ0 and (dθ/dt)0 are
connected by the conservation of energy and are not independent. Translating back to the junction
problem we see that the corresponding initial condition is

(
2π

Φ0
BytB

)2

=
(

dϕ

dz

)2

0
=

2
λ 2

J
(1− cosϕ0) . (2.3.60)

Solving this equation for cosϕ0, we obtain

cosϕ0 = 1− 1
2

(
By

µ0JcλJ

)2

. (2.3.61)

Thus, for small fields we can use the approximation cosx = 1− 1
2 x2 and the phase difference ϕ0 at the

edges of the junction is given by

ϕ0 =
By

µ0JcλJ
. (2.3.62)

If we want to estimate the strongest field that can be screened by the junction, we have to consider the
case at which the pendulum is starting from the bottom, that is, ϕ0 = π . Then we obtain

Bmax = 2µ0JcλJ . (2.3.63)

This field is just the highest field for which the Meißner solution is possible. Actually, the screening at
Bmax is only metastable. The maximum value for which screening is thermodynamically stable has been
derived above to Bc1 = 4µ0JcλJ/π (compare (2.3.27)). Note that for fields close to Bc1 screening is no
longer exponential, but rather becomes so in the interior when ϕ has become small.
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Summary

Short Josephson Junctions:

• We can distinguish between short and long Josephson junctions depending on whether their
spatial dimensions (width, length) are smaller or larger than the Josephson penetration depth

λJ ≡

√
Φ0

2πµ0tBJc

• The Josephson coupling energy is given by

EJ =
Φ0Ic

2π
(1− cosϕ) = EJ0 (1− cosϕ)

and can be viewed as a molecular binding energy of two weakly coupled superconductors.

• In an equivalent circuit, an ideal Josephson element can be represented by a nonlinear inductance

Ls =
Φ0

2πIc cosϕ
= Lc

1
cosϕ

with Lc =
h̄

2eIc
.

• The potential energy of a current biased Josephson junction is given by the tilted washboard
potential

Epot(ϕ) = EJ(ϕ)− Φ0

2π
I = EJ0

[
1− cosϕ− I

Ic
ϕ

]
.

• A magnetic field By applied parallel to the junction plane (yz-plane) results in a phase gradient

∂ϕ

∂ z
=

2π

Φ0
BytB

in z-direction proportional to By and the magnetic thickness tB. Due to this phase gradient the
Josephson current density oscillates in space as

Js(y,z, t) = Jc(y,z) sin
(

2π

Φ0
tBByz+ϕ0

)
= Jc(y,z) sin(kz+ϕ0) .

The integral Josephson current is given by the modulus of the Fourier transform of ic(z) (the
critical current density integrated along the field direction):

Im
s (By) =

∣∣∣∣∣∣
∞∫
−∞

ic(z) eıkz dz

∣∣∣∣∣∣
For a rectangular junction with homogeneous critical current density, ic corresponds to the
transmission function of a slit and Im

s (By) is given by a Fraunhofer diffraction pattern.
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Long Josephson Junctions:

• The spatial distribution of the gauge invariant phase difference is given by the stationary Sine-
Gordon equation (SSGE)

∂ 2ϕ(y,z)
∂y2 +

∂ 2ϕ(y,z)
∂ z2 =

2πµ0 tBJc

Φ0
sinϕ(y,z) =

1
λ 2

J
sinϕ(y,z) .

The solution of the SSGE requires the knowledge of the boundary conditions. Since the boundary
conditions are determined by the flux density at the edges of the junction, which in turn depends
on ϕ(y,z), a self-consistent solution is required.

• Depending on the boundary conditions, three basic junction types can be distinguished: inline,
overlap, and grain boundary junctions.

• A possible solution of the SSGE is the particular solution

ϕ(z) = ±4arctan
{

exp
(

z− z0

λJ

)}
+2πn

describing a Josephson vortex.
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