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Chapter 3

Physics of Josephson Junctions: The
Voltage State

In Chapter 2 we have considered Josephson junctions, for which the current was less than the maximum
Josephson current Im

s . Then, the junction resides in the zero voltage state which is equivalent to the
static state. In this chapter we generalize our discussion and treat the situation, where the junction
current is larger than the maximum Josephson current and therefore only part of the total current can
be carried by the Josephson current. That is, in addition to the Josephson current we have to include
other current channels carrying the excess current. In this situation the Josephson junction resides in the
finite voltage state, where the phase difference evolves in time. This state corresponds to the dynamic
state of the junction. One additional current channel is the resistive channel. At temperatures above
zero temperature there is a finite probability for Cooper pairs to be broken up by thermal excitation
thereby generating unpaired “normal” electrons. In the presence of a finite voltage across the junction
these normal electrons contribute to the current. In contrast to the Josephson current this normal current
channel is resistive. The second current channel is the capacitive channel due to the finite capacitance of
the Josephson junction. For example, a tunneling type superconductor/insulator/superconductor junction
just represents a parallel plate capacitor. In the present of a time varying junction voltage we have a finite
displacement current across this capacitor. Finally, noise is taken into account by adding a fluctuation
current.

In this chapter we first describe the additional current channels in the voltage state of a Josephson junc-
tion and then in section 3.2 discuss models for the description of the current-voltage characteristics. In
particular, we discuss Josephson junctions driven by dc and ac sources and analyze the effect of ther-
mal fluctuations. Initially, we describe the junction dynamics within a classical framework. Then, in
section 3.5 we show that this classical treatment is no longer valid for Josephson junctions with small
capacitance. We discuss the limits of the classical treatment and the relevance of secondary macroscopic
quantum effects. Finally, in section 3.6 we extend our discussion from zero-dimensional Josephson
junctions to extended junctions.
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3.1 The Basic Equation of the Lumped Josephson Junction

If we want to derive the basic equation describing the Josephson junction in the voltage state, we have to
consider the additional current channels relevant in the voltage state. In the following we will consider
the resistive and capacitive channel as well as an additional channels due to fluctuations (noise). In our
discussion we first consider lumped Josephson junctions that can be characterized by the integral current
values. Extended junctions will be discussed later in section 3.6.

3.1.1 The Normal Current: Junction Resistance

At finite temperatures (T > 0) there is a finite density of normal electrons due to thermal break-up of
Cooper pairs. The presence of the condensate of paired electrons makes the properties of these “normal
excitations” somewhat different from those in the normal state. We call them quasiparticles.

In the zero-voltage state of a Josephson junction the quasiparticles do not contribute to the junction
current. However, if the gauge-invariant phase difference changes in time resulting in a non-vanishing
junction voltage V according to the second Josephson equation, dϕ/dt = 2eV/h̄, then a quasiparticle
component of the total current, the normal current IN , is obtained. This current is a resistive current and
therefore the voltage-state of a Josephson junction is also called the resistive state.

We briefly discuss the temperature and voltage dependence of the normal current. First, for temperatures
close to the transition temperature (T . Tc) the energy 2∆(T ) (∆ is the energy gap) required to break
up a Cooper pairs is much smaller than kBT . Therefore, almost all Cooper pairs are broken up and the
concentration of quasiparticles is close to the electron density in the normal state. In this case we expect
that the current-voltage characteristic (IVC) is close to the usual Ohm’s law

IN = GN V , (3.1.1)

where GN = 1/RN is the normal conductance of the Josephson junction.

Second, if the junction voltage is above the so-called gap voltage

Vg =
∆1(T )+∆2(T )

e
, (3.1.2)

the external circuit provides sufficient energy eV to break up Cooper pairs. Here, ∆1(T ) and ∆2(T ) are
the energy gaps in the two junction electrodes. A Cooper pair is broken up in one of the electrodes
and the two newly formed quasiparticles pass to the other electrode. This process can set in only above
the gap voltage because a minimum energy ∆1(T )+ ∆2(T ) is required for this process. Hence, also for
|V |> Vg the IVC is expected to be close to an ohmic dependence independent of the temperature.

Third, for T � Tc and |V | < Vg there should be a vanishing normal current, since neither the thermal
energy kBT nor the energy eV supplied by the external circuit are sufficient to break up Cooper pairs.
That is, the quasiparticle density and hence the normal current is vanishingly small.

The IVC expected from our discussion is shown schematically in Fig. 3.1. For T > Tc and |V | > Vg an
ohmic dependence is obtained. For T � Tc and |V | < Vg the IVC depends on the sweep direction and
on the type of the external source (current or voltage source). Here, for a current source a hysteretic
IVC is obtained. The detailed reason for that will be discussed later in section 3.2.1. We note that if the
junction is driven by a current source, the total current through the junction, I = Is + IN is constant. Since
in the voltage state the supercurrent Is = Ic sinϕ is varying in time due to the time evolution of ϕ , also

© Walther-Meißner-Institut



Section 3.1 APPLIED SUPERCONDUCTIVITY 91
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Figure 3.1: Current-voltage characteristics (IVC) of a Josephson junction driven by a constant current source.
The voltage 〈V 〉 represents the time-averaged voltage. Curve (a) is for increasing and curve (b) for decreasing
driving current.

the normal current has to vary in time to keep the total current constant. Then, also the junction voltage
V = IN/GN is varying in time. The voltage shown in the IVCs of Fig. 3.1 is the time-averaged voltage
〈V 〉.

Summarizing our discussion we see that in the voltage state of a Josephson junction we have to take into
account the quasiparticle current. The quasiparticles are generated either by thermal excitation at finite
temperature or due to breaking up of Cooper pairs by the junction voltage even at zero temperature. A
circuit model that incorporates both the Josephson current and the normal current channel is shown in
Fig. 3.2.

At T = 0, the equivalent conductance for the normal channel is given by

GN(V ) =

{
0 for |V |< 2∆/e

1
RN

for |V | ≥ 2∆/e
. (3.1.3)

At finite temperatures thermally excited quasiparticles can tunnel already at voltages smaller than the gap
voltage resulting in a finite resistance Rsg(T ) called sub-gap resistance. The magnitude of the sub-gap
resistance, or equivalently the sub-gap conductance, is determined by the amount of thermally excited
quasiparticles and can be expressed as

Gsg(T ) =
1

Rsg(T )
=

n(T )
ntot

GN . (3.1.4)

Here, n(T ) is the density of excited quasiparticles at temperature T and ntot is the total density of electrons
in the normal state. Hence, at T > 0 we expect that the normal conductance channel can be characterized
by the voltage and temperature dependent conductance

GN(V,T ) =

{
1

Rsg(T ) for |V |< 2∆(T )/e
1

RN
for |V | ≥ 2∆(T )/e

. (3.1.5)

Here, the fact that the energy gap and thereby the gap voltage is temperature dependent has been included.
It is evident that the normal channel results in a nonlinear conductance GN(V,T ) that depends on voltage
and temperature.
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I

V

+

I = Ic sin ϕ

V =
Φ0   dϕ GN(V) C IFV = 2π   dt

Figure 3.2: Equivalent circuit for a Josephson junction including the Josephson current as well as the normal
current and the displacement current channel. Furthermore, noise is taken into account by a noise source
providing a fluctuation current.

Our discussion shows that the equivalent circuit of the Josephson junction including the Josephson cur-
rent and the normal current channel is characterized by a natural current scale Ic and a natural resistance
RN . Therefore, we can define a characteristic voltage

Vc ≡ IcRN =
Ic

GN
, (3.1.6)

which usually is called the IcRN-product of the Josephson junction.

We close this subsection by noting that we did not take into account any frequency dependence of the
normal conductance. Of course, at high frequency the normal electrons have to be accelerated resulting
in an inductive component of the normal channel and hence in a frequency dependent conductance.
However, in most cases the inductance of the superelectron channel dominates over that of the normal
channel and therefore we only use a frequency independent conductance for modeling the normal current
channel. Finally, we should emphasize that our discussion was focused on Josephson tunnel junctions
and did not include other junction types where the Josephson coupling is achieved by a normal metal, a
semiconductor, a micro-constriction, etc..

3.1.2 The Displacement Current: Junction Capacitance

In situations where not only V but also its time derivative dV/dt is nonzero, the displacement current ID

plays an important role. For most practical junctions the displacement current can be represented in the
usual form

ID = C
dV
dt

. (3.1.7)

Here, C is the junction capacitance, which is the same in the normal and the superconducting state. The
capacitance depends on the junction type and its size. For a planar tunnel junction with area Ai and an
insulating barrier of thickness d the junction capacitance is just given by

C =
εε0Ai

d
, (3.1.8)
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where ε is the dielectric constant of the barrier material. The displacement current results in an additional
current channel parallel to the Josephson and the normal current channel.

With V = Lcİs, IN = V GN and ID = CV̇ we can compare the current values in the three different current
channels at a given frequency. With Ls = Lc/cosϕ ≥ Lc and GN(V,T )≤ 1/RN we have

Is ≤
V

ωLc
IN ≤

V
RN

ID ' ωC V . (3.1.9)

3.1.3 Characteristic Times and Frequencies

If we characterize the three different current channels in the equivalent circuit shown in Fig. 3.2 by
the inductance Lc, the normal resistance RN and the capacitance C, we immediately can define three
characteristic time scales or, equivalently, frequencies. The first one is the plasma frequency of the
junction defined as

ωp =
1
τp
≡ 1√

LcC
=

√
2eIc

h̄C
. (3.1.10)

The plasma frequency scales proportional to
√

Jc/CA, where CA = C/A is the specific junction capaci-
tance. Evidently, for ω < ωp the displacement current is smaller than the Josephson current.

The second characteristic frequency is related to the Lc/RN time constant of the circuit:

ωc =
1
τc
≡ RN

Lc
=

2e
h̄

Vc =
2π

Φ0
Vc . (3.1.11)

Here, Lc = h̄
2eIc

is the Josephson inductance (cf. eq. (2.1.22)) characterizing the superconducting transport
channel. We see that ωc is just the inverse relaxation time in a system consisting of a normal current and
a supercurrent. Furthermore, it is seen from (3.1.11) that the characteristic junction frequency ωc directly
follows from the characteristic junction voltage Vc via the second Josephson equation. Therefore, ωc is
usually called the characteristic frequency of the Josephson junction. Evidently, the normal current is
smaller than the critical junction current for V < Vc or equivalently ω < ωc = RN/Lc.

The third characteristic frequency is defined by the RNC time constant of the equivalent circuit:

ωRC =
1

τRC
≡ 1

RNC
=

ω2
p

ωc
(3.1.12)

Evidently, the displacement current is smaller than the normal current for ω < 1/τRC.

In order to characterize the capacitance effect at all frequencies up to the frequency ωc corresponding to
the characteristic junction voltage Vc = IcRN one can use the dimensionless parameter

βC ≡ ω2
c

ω2
p

=
ωc

ωRC
= ωcτRC =

2e
h̄

IcR2
NC . (3.1.13)
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This parameter has been introduced by McCumber1 and Stewart2 and therefore is referred to as the
Stewart-McCumber parameter. It corresponds to the square of the quality factor

Q =
RC√
LC

=
ωp

ωRC
=

ωc

ωp
=
√

βC (3.1.14)

of a parallel LRC circuit. The quality factor Q compares the decay time constant of the amplitude of an
oscillating physical system to its oscillation period. Junctions with βC� 1 have small capacitance and/or
small resistance. These junctions have small RNC time constants (τRCωp� 1) and therefore are highly
damped. In contrast, junctions with βC� 1 are those with large capacitance and/or large resistance and
hence have a large RNC time constant (τRCωp� 1). These junctions are weakly damped.3

3.1.4 The Fluctuation Current

In many problems it is important to take into account fluctuations (noise). In most cases, this can be
done by using the Langevin method,4,5 that is, by including a random force in the system equation that
describes the fluctuation sources. As we will see below, for Josephson junctions the system equation
arises from summing up the different current contributions. Therefore, the random force is just some
fluctuation current IF(t), which is represented by a current noise source in the equivalent circuit shown
in Fig. 3.2.

Thermal Noise: There are three different types of fluctuations, namely thermal fluctuations, shot noise
and 1/ f noise. According to the Johnson-Nyquist formula6,7 for thermal noise the power spectral den-
sity of the current fluctuations are given by

SI( f ) =
4kBT
RN

. (3.1.15)

We note that this expression only holds for an Ohmic resistor at8

kBT � eV, h̄ω . (3.1.16)

The relative intensity of the thermal noise current can be expressed by the dimensionless parameter given
by the ratio of the thermal energy and the coupling energy of the Josephson junction

γ ≡ kBT
EJ

=
2e
h̄

kBT
Ic

. (3.1.17)

1D.E. McCumber, J. Appl. Phys. 39, 3113 (1968).
2W.C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
3Note that for large RN the conductance of the resistive channel is small and hence results in small damping due to a small

normal current.
4P. Langevin, Sur la theorie du mouvement brownien, Comptes Rendus 146, 604 (1908).
5Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press (1996).
6H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110 (1928).
7J.B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32, 97 97 (1928).
8The case h̄ω � kBT,eV is discussed in section 3.5.5. In this limit quantum fluctuations are dominant.
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This equation can be rewritten into the form

γ ≡ IT

IC
with IT =

2e
h̄

kBT . (3.1.18)

Here, IT is the equivalent thermal noise current. Inserting numbers we see that IT ' 0.15 µA at liquid
helium temperature (T = 4.2 K).

Shot Noise: If the voltage across the junction is large so that eV � kBT (V > 0.5 mV at 4.2 K), then
shot noise is of major importance and we have to use the Schottky formula9,10 to express the power
spectral density of the current fluctuations:

SI( f ) = 2eIN at eV � kBT, h̄ω . (3.1.19)

Shot noise consists of random fluctuations of the electric current in an electrical conductor, which are
caused by the fact that the current is carried by discrete charges (electrons). Shot noise is to be distin-
guished from current fluctuations in equilibrium, which happen without any applied voltage and without
any average current flowing. These equilibrium current fluctuations are known as Johnson-Nyquist noise
discussed above.

Shot noise is a Poisson process and the charge carriers which make up the current will follow a Poissonian
distribution. The strength of the current fluctuations can be expressed by the variance

∆I2 ≡ 〈(I−〈I〉)2〉 (3.1.20)

of the current I, where 〈I〉 is the average current. However, the value measured in this way depends
on the frequency range of fluctuations (bandwidth of the measurement): The measured variance of the
current grows linearly with bandwidth. Therefore, a more appropriate quantity is the noise power, which
is essentially obtained by dividing through the bandwidth (and, therefore, has the SI units A2/Hz). It can
be defined as the zero-frequency Fourier transform of the current-current correlation function:

S( f ) =
∫ +∞

−∞

(〈I(t)I(0)〉−〈I(0)〉2) dt . (3.1.21)

We note that this expression is the total noise power, which includes the equilibrium fluctuations
(Johnson-Nyquist noise).

1/ f Noise: At low frequencies 1/ f noise often is the dominant noise source. In contrast to thermal or
shot noise the physical nature of 1/ f noise is often not clear.11,12,13 Typically, for Josephson junctions
1/ f noise becomes dominant only below about 1 kHz. Therefore, in the following we will not consider
the effect of 1/ f noise, since its effect in most cases is negligible compared to the other noise sources.

9W. Schottky, Über spontane Stromschwankungen in verschiedenen elektrischen Leitern, Ann. Physik 57, 541 (1918).
10W. Schottky, Small-shot effect and flicker effect, Phys. Rev. 28, 74 (1926).
11Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press (1996).
12P. Dutta, P.M. Horn, Rev. Mod. Phys. 53, 497 (1981)
13F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme, Rep. Prog. Phys. 44, 532 (1981).
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3.1.5 The Basic Junction Equation

According to the discussion of the last subsections there are four essential components in the net current
I flowing through the Josephson junction. Kirchhoff’s law then requires that

I = Is + IN + ID + IF . (3.1.22)

This equation together with the voltage-phase relation

dϕ

dt
=

2e
h̄

V (3.1.23)

forms the basic equation for the Josephson junction. From (3.1.22) and (3.1.23) we can calculate I(t)
provided that V (t) is known and vice versa. In principle, after writing down this equation with concrete
expressions for the different current contributions the solid-state physics part of the problem has been
solved.

With the expressions derived above for the normal, the displacement and the fluctuation current we can
express (3.1.22) as

I = Ic sinϕ +GN(V )V +C
dV
dt

+ IF . (3.1.24)

Using (3.1.23) we obtain

I = Ic sinϕ +GN(V )
Φ0

2π

dϕ

dt
+C

Φ0

2π

d2ϕ

dt2 + IF . (3.1.25)

This equation is nonlinear with nonlinear coefficients. Due to these nonlinearities concepts such as
superposition fail. Furthermore, a nonintuitive behavior is obtained. For example, a dc driving current
results in a time-dependent voltage. In general, the behavior of the Josephson junction in the voltage
state is governed by a complex differential equation, which in most cases has to be solved numerically.
In the following we will make some simplifying assumptions to arrive at simple solutions of (3.1.25).
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3.2 The Resistively and Capacitively Shunted Junction Model

To gain some insight into the dynamics of the Josephson junction we simplify the model by taking the
normal conductance to be constant. That is, we assume

GN(V ) = G =
1
R

= const . (3.2.1)

We then arrive at the Resistively and Capacitively Shunted Junction (RCSJ) model. The equivalent
circuit of this model is shown in Fig. 3.3. The Josephson junction is characterized by the Josephson in-
ductance Ls = Lc/cosϕ with Lc = h̄/2eIc and the resistance R is usually taken to be the normal resistance
of the junction. However, more generally we can interpret R to be given by (3.1.5), so that the resistance
is given by Rsg, if the average junction voltage is below the gap voltage, and is RN , when the average
voltage is above the gap voltage. Of course this description can only be approximate, since the junction
voltage is time dependent. Nevertheless, the RCSJ-model will result in a still nonlinear but tractable
differential equation. Rewriting (3.1.25) we obtain(

h̄
2e

)
C

d2ϕ

dt2 +
(

h̄
2e

)
1
R

dϕ

dt
+ Ic

[
sinϕ− I

Ic
+

IF(t)
Ic

]
= 0 . (3.2.2)

Multiply by h̄
2e and using the Josephson coupling energy EJ0 = h̄Ic/2e and the normalized currents

i =
I
Ic

iF(t) =
IF(t)

Ic
(3.2.3)

we obtain(
h̄
2e

)2

C
d2ϕ

dt2 +
(

h̄
2e

)2 1
R

dϕ

dt
+

d
dϕ
{EJ0 [1− cosϕ− iϕ + iF(t)ϕ]} = 0 . (3.2.4)

In order to interpret this equation of motion we compare it to the equation of motion of a particle with
mass M and damping η in the potential U :

M
d2x
dt2 +η

dx
dt

+∇U = 0 . (3.2.5)

G C IFI V

+

Ls

Figure 3.3: Equivalent circuit for the Resistively and Capacitively Shunted Junction (RCSJ) Model. The
Josephson junction can be characterized by the inductance Ls = Lc/cosϕ with Lc = h̄/2eIc, the resistive
channel is approximated by a voltage independent conductance G.
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Epot

ϕM

I
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quantum 
tunneling

η

Figure 3.4: Analogy between the motion of the gauge-invariant phase difference of a Josephson junction and
the damped motion of a particle of mass M in the tilt washboard potential. Note that the applied currents
result in a tilt of the potential.

We immediately see that the equation of motion of the gauge-invariant phase difference of a Josephson
junction is equivalent to the motion of a particle of mass M and damping η in a potential U with

M =
(

h̄
2e

)2

C (3.2.6)

η =
(

h̄
2e

)2 1
R

(3.2.7)

U = EJ0 [1− cosϕ− iϕ + iF(t)ϕ] . (3.2.8)

This situation is visualized in Fig. 3.4. We see that the mass of the particle is proportional to the capac-
itance and the damping proportional to 1/R. Furthermore, the potential U is nothing else than the tilt
washboard potential (cf. eq. (2.1.14)).

Equation (3.2.4) is often written in reduced units. By using the normalized time

τ ≡ t
τc

=
t

2eIcR/h̄
(3.2.9)

as well as the Stewart-McCumber parameter βC (cf. (3.1.13)) we can write the basic equation (3.2.4)
describing the Josephson junction within the RCSJ approximation as

βC
d2ϕ

dτ2 +
dϕ

dτ
+ sinϕ− i− iF(τ) = 0 . (3.2.10)

We can use the analogy between the motion of the phase and that of a particle to discuss the meaning of
the plasma frequency.14 If we neglect damping and consider the case of zero driving current (horizontal
potential in Fig. 3.4) and small amplitudes (sinϕ ' ϕ), we can write (3.2.10) as

βC
d2ϕ

dτ2 +ϕ = 0 . (3.2.11)

14The expression plasma oscillation is used, since the oscillations show the same dispersion as plasma oscillations.
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θ ℓ
D

m

mg
Figure 3.5: The pendulum analogue of a Josephson junction. The torque D deflecting the pendulum is
represented by an unwinding mass.

The solution of this equation is

ϕ = c · exp

(
ı

τ√
βC

)
= c · exp

(
ı

t√
βCτc

)
= c · exp(ıωpt) . (3.2.12)

That is, the plasma frequency represents the oscillation frequency of the particle around the potential
minimum at small amplitudes.

We also note that there is a finite probability of the particle to tunnel through the potential well. This
process is known as the macroscopic quantum tunneling of the gauge-invariant phase difference and has
been observed experimentally. Furthermore, the phase particle can escape from the potential well by
thermal activation. These processes will be discussed in sections 3.5.6 and 3.4, respectively.

The pendulum analogue

Besides the motion of a particle of mass M in the tilt washboard potential another mechanical analogue
whose dynamics is described by an equation of the form (3.2.10) is the physical pendulum (see Fig. 3.5).
We consider a pendulum of mass m and length ` that is deflected by an angle θ with respect to the
normal by a torque D directed parallel to the rotation axis. The restoring torque is given by the length `
of the pendulum times the gravitational force mgsinθ . With these expressions we obtain the following
equation of motion:

D = Θ θ̈ +Γ θ̇ +mg` sinθ . (3.2.13)

Here, Θ = m`2 is the moment of inertia of the pendulum. The term Γθ̇ describes the damping of the
pendulum with the damping constant Γ.

If we compare (3.2.13) to (3.1.25) we immediately see that both equations are equivalent with the
assignments I ↔ D, Ic ↔ mg`, Φ0/2πR ↔ Γ, and CΦ0/2π ↔ Θ. The angle θ corresponds to the
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100 R. GROSS AND A. MARX Chapter 3

gauge invariant phase difference ϕ . Hence, in order to analyze the dynamics of the Josephson junc-
tion we just can consider the dynamics of an oscillating or rotating pendulum. For example, for D = 0
we can consider the oscillations of the pendulum around is equilibrium position. The oscillation fre-
quency is ω =

√
mg`/Θ =

√
g/`. This frequency of course corresponds to the plasma frequency

ωp =
√

2πIc/Φ0C of the Josephson junction what can be easily shown with the above assignments.
A finite torque acting on the pendulum corresponds to a finite current applied to the Josephson junction.
It results in a finite deflection angle θ0 of the pendulum or, equivalently, a finite value ϕ0 of the phase
difference across the Josephson junction. If the torque is large enough to deflect the pendulum by 90◦

(corresponding to Js = Jc sinϕ = Jc), any further increase of the torque results in a rotation of the pendu-
lum. In this case the average angular velocity θ̇ is larger than zero. Equivalently, ϕ̇ > 0 corresponds to
the finite voltage state of the Josephson junction.

3.2.1 Underdamped and Overdamped Josephson Junctions

The analogy between the motion of a “phase” particle in the tilt washboard potential and the motion
of the gauge-invariant phase difference of a Josephson junction can be used to discuss the difference
between underdamped and overdamped Josephson junctions. For underdamped Josephson junctions
(βC = 2eIcR2C/h̄� 1) the junction capacitance and/or the resistance are large. This means that the mass
M ∝ C of the particle is large and/or the damping η ∝ 1/R is small. In contrast, for overdamped junctions
(βC = 2eIcR2C/h̄� 1) the junction capacitance and/or the resistance are small, that is, the mass M of the
particle is small and/or the damping η is large.

Discussing the motion of the phase particle for this two limiting cases we start at an applied current larger
than the critical current, that is, at a strong tilt of the potential so that the particle can move freely down
the potential. Reducing the current we are reducing the tilt of the potential until at I < Ic local minima
are obtained. In the case of strong damping the particle will immediately stop its motion and will be
trapped in one of the local minima. This is due to the small mass or equivalently small kinetic energy
of the particle and the large damping. For the Josephson junction this means that the phase does no
longer evolve in time and the junction switches into the zero voltage state as soon as the applied current
is reduced below Ic (see Fig. 3.6a). The situation is completely different in the case of small damping. In
this case the massive particle has sufficient kinetic energy and due to the small damping can easily move
down the potential well even if there are local minima. In order to stop the particle, we have to bring the
potential almost to the horizontal position. For the Josephson junction this means that we have to reduce
the current almost to zero to achieve the zero voltage state of the junction (see Fig. 3.6b).

Starting from the zero voltage state at zero applied current and then increasing the current, both the
under- and overdamped junction stay in the zero voltage state until the critical current is reached. In
both cases the kinetic energy of the particle is zero and there is no reason why it should move down
the potential well (we are neglecting thermally activated processes or quantum tunneling of the phase).
However, above the critical current the behavior is different again. Whereas in the strongly damped case
the particle is moving slowly (corresponding to small voltage) at currents slightly above Ic due to the
strong damping, in the underdamped case the particle is immediately accelerating to an average velocity
corresponding to the average slope of the potential and the amount of damping.

This different behavior results in different current-voltage characteristics of under- and overdamped
Josephson junctions. Whereas for overdamped junctions the same IVC is obtained for increasing and
decreasing current, for the underdamped junction the average voltage depends on whether one is de-
creasing or increasing the current. Decreasing the current the underdamped junction stays in the voltage
state also below Ic due to the large kinetic energy and the small damping of the moving phase. Increasing
the current from zero current the underdamped junction stays in the zero voltage state until the critical
current, because now the particle has no kinetic energy and will therefore stay in the potential minimum

© Walther-Meißner-Institut



Section 3.2 APPLIED SUPERCONDUCTIVITY 101

<V>

I

Ic

-Ic

IcR/e

(a)

-IcR/e

<V>

I

Ic

-Ic

IcR/e

(b)

-IcR/e

Figure 3.6: Current-voltage characteristics of an overdamped (a) and underdamped (b) Josephson junction.
The arrows indicate the direction of the current variation.

even at small damping. In summary, this results in a hysteretic IVC of the underdamped Josephson junc-
tion as shown schematically in Fig. 3.6b. In contrast, for overdamped junctions the mass of the phase
particle and, hence, its kinetic energy is small and/or the damping is large. Therefore, the motion of
the phase particle is the same for increasing and decreasing the applied current. That is, overdamped
junctions do not have hysteretic IVCs.
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3.3 Response to Driving Sources

In the following subsections we will use the RCSJ-model to discuss the response of a Josephson junction
to external driving sources quantitatively.

3.3.1 Response to a dc Current Source

We first discuss the response of a Josephson junction to a dc current source. Doing so we start to consider
the time-averaged voltage of the junction in the presence of an applied dc current. We recall that in the
voltage state we have an oscillating Josephson current. With the oscillation period T we can write

〈V 〉 =
1
T

T∫
0

V (t) dt =
1
T

T∫
0

h̄
2e

dϕ

dt
dt =

1
T

h̄
2e

[ϕ(T )−ϕ(0)] =
Φ0

T
. (3.3.1)

Here, we have used the fact that during one oscillation period the phase difference changes by 2π , that
is, ϕ(T )−ϕ(0) = 2π . We see that the time-averaged voltage of the junction is determined by the flux
quantum divided by the oscillation period.

We also have to recall that for a driving dc current source the total current of the junction has to be
constant and equal to the driving current. That is, neglecting the fluctuation current we have to satisfy
the condition

I = Is(t)+ IN(t)+ ID(t) = Ic sinϕ(t)+
V (t)

R
+C

dV (t)
dt

= const , (3.3.2)

where

ϕ(t) =
t∫

0

2e
h̄

V (t ′) dt ′ . (3.3.3)

We see, that for I > Ic part of the current has to flow as normal or displacement current. This is only
possible of course at a finite junction voltage. The finite junction voltage, in turn, results in a time varying
Josephson current and, since the total current is fixed, in a temporal variation of the sum of the normal
and displacement current. This results in a time varying voltage V (t) and an even more complicated
non-sinusoidal oscillation of the Josephson current. The oscillating voltage has to be calculated self-
consistently. We immediately see that the oscillation period is T = Φ0/〈V 〉. The oscillation frequency is
then f = 〈V 〉/Φ0, which is just the Josephson frequency for a junction with an applied voltage equal to
the average junction voltage. Of course the normal current has the same periodicity, since the sum of the
currents is fixed by the applied current.

Fig. 3.7 shows the oscillating junction voltage for an applied current slightly above the critical current
and for I � Ic. For I & Ic, we have a highly non-sinusoidal oscillation with a long oscillation period.
The time averaged voltage, which is proportional to 1/T is very low. In the case I � Ic, most of the
current has to flow as a normal current resulting in a more constant junction voltage. That is, the relative
oscillation of the junction voltage is small. Then, the oscillation of the Josephson current and, in turn,
the normal current is almost sinusoidal resulting in an about sinusoidal variation of the junction voltage.
Note that for a sinusoidal oscillation of the Josephson current the time-average of the Josephson current
is zero. This results in a linear dependence of the time averaged voltage on the current, that is, in an
ohmic IVC.
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Figure 3.7: The variation of the junction voltage (a) and the Josephson current (b) with time for a current
biased Josephson junction at different values of the applied current: I/Ic = 1.05, 1.1, 1.5, and 3.0. The time
is normalized to τc = h̄/2eIcR. In (b) the curves for Is/Ic = 1.1, 1.5, and 3.0 are displaced vertically by 2, 4,
and 6, respectively.

Current-Voltage Characteristics

Strong Damping: For strong damping, βC � 1, and neglecting the noise current we can rewrite
(3.2.10) as

dϕ

dτ
+ sinϕ− i = 0 . (3.3.4)

If I ≤ Ic (i.e. i≤ 1), we expect that all current is flowing as supercurrent. Indeed we see that

ϕ = sin−1 i for i ≤ 1 (3.3.5)
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104 R. GROSS AND A. MARX Chapter 3

is a solution, since ϕ does not depend on time. The voltage-phase relation then implies that the junction
is in the zero voltage state.

When i > 1, the current can no longer flow as a pure supercurrent. Some of the current has to flow
through the resistive channel creating a finite junction voltage that will cause a temporal evolution of the
phase. Then, the full time dependence of (3.3.4) is required. Equation (3.3.4) can be solved by rewriting
it as

dτ =
dϕ

i− sinϕ
. (3.3.6)

Integration results in a periodic function ϕ(t) with period15

T =
2πτc√
i2−1

. (3.3.7)

With 〈V (t)〉= 1
T

T∫
0

V (t) dt = Φ0
T (cf. (3.3.1)) and using τc = Φ0

2π

1
IcR , we obtain

〈V (t)〉 = IcR

√(
I
Ic

)2

−1 for
I
Ic

> 1 . (3.3.8)

This current versus time-averaged voltage curve is shown in Fig. 3.8. For I ≤ Ic, the gauge-invariant
phase difference increases according to (3.3.5), but the voltage remains zero. As the applied current
exceeds the critical current Ic, part of the current must flow as a normal current through the resistive
channel thereby creating a nonvanishing voltage across the junction. This results in an oscillation of
the Josephson current and, in turn, of the normal current, since the total current is fixed by the external
circuit. In total this results in a complex oscillation of the junction voltage as shown in Fig. 3.7. The
time-averaged junction voltage is just given by the flux quantum divided by the oscillation period T .

15From the table of integrals we know that for a2 > 1 we have

∫ dx
a− sinx

=
2√

a2−1
tan−1

(
−1+a tan(x/2)√

a2−1

)
.

Integration of (3.3.6) then yields

τ− τ0 =
2√

i2−1
tan−1

(
−1+ i tan(ϕ/2)√

i2−1

)
for i > 1 .

Here, τ0 is an integration constant. Recalling that τ = t/τc and setting the integration constant equal to zero, we can solve this
equation for the gauge-invariant phase difference:

ϕ(t) = 2tan−1

{√
1− 1

i2
tan

(
t
√

i2−1
2τc

)
+

1
i

}
.

Although this equation is quite complex we see that ϕ(t) is periodic with a period

T =
2πτc√
i2−1

.
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Figure 3.8: Current versus time-averaged voltage for an overdamped Josephson junction (βC � 1). Also
shown are the time-averaged components of the normal and the supercurrent as well as the time evolution of
the junction voltage V (t) for two bias points A and B on the IVC.

Weak Damping: In the underdamped case, βC � 1, the characteristic frequency ωRC = 1/RNC is
very small. Therefore, at almost all frequencies the large junction capacitance is effectively shunting
the oscillating part of the junction voltage so that the junction voltage is almost constant: V (t) ' V .
Accordingly, the time evolution of the phase is almost linear

ϕ(t) =
2e
h̄

V t + const . (3.3.9)

The almost linear time dependence of the gauge-invariant phase difference in turn results in an about
sinusoidal oscillation of the Josephson current with a vanishing mean value

Is(t) = Ic sin
(

2e
h̄

Vt + const
)
' 0 . (3.3.10)

Thus, the total current has to be carried almost completely by the resistive channel and the IVC is given
by an ohmic dependence

I = IN(V ) =
V
R

(3.3.11)

down to low voltages V ' h̄ωRC/e� Vc = IcRN . Since the related current is I � Ic, this results in a
hysteretic IVC as already discussed qualitatively above. Recall that for a real junction we have a voltage
dependent normal resistance R = R(V ). Then, the IVC is determined by the voltage dependence of the
normal resistance.
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106 R. GROSS AND A. MARX Chapter 3

Additional Topic
Intermediate Damping: For βC ∼ 1, the calculation of the IVC cannot be carried out analytically
even for the simplest model. Examples for numerical calculations can be found in literature.16 These
calculations show that with increasing McCumber parameter the IVCs become more hysteretic (see
Fig. 3.9a). The so-called return-current IR, at which the junction switches back to the zero-voltage state
is decreasing with increasing βC. With finite damping, the return current is determined by the tilt of the
washboard at which the energy dissipated in advancing the phase from one minimum to the adjacent
exactly equals the work done by the drive current during this same motion. Using this criterion, we can
calculate the normalized return current iR = IR/Ic analytically for βC� 1.

If the applied current I is close to IR and thus for βC � 1 much smaller than Ic, we can neglect both
the normal current and the damping in zeroth order approximation. The junction equation than reads
as I = Ic sinϕ +C φ0

2π

d2ϕ

dt2 . In this case the energy is conserved and is equal to the work
∫

Fdx (compare
section 2.1.3) done by the drive current. Here, the generalized force is given by the current and the
generalized coordinate x by φ0

2π
ϕ . That is, the energy is given by the first integral of the junction equation:

E =
φ0

2π

ϕ∫
0

I dϕ
′ =

φ0

2π

ϕ∫
0

(
Ic sinϕ

′+C
φ0

2π

d2ϕ ′

dt2

)
dϕ
′

=
Φ0Ic

2π

(1− cosϕ)+
1

ω2
p

t∫
0

d2ϕ

dt ′2
dϕ

dt ′
dt ′


= EJ0

{
1
2

1
ω2

p

(
dϕ

dt

)2

+(1− cosϕ)

}
. (3.3.12)

Here, we have used EJ0 = Φ0Ic
2π

and ω2
p = 2πIc

Φ0C . Using this equation the energy dissipation can be expressed
explicitly. Within the RCSJ model we obtain

Wdiss =
T∫

0

INV dt =
T∫

0

IN
h̄
2e

dϕ

dt
dt =

2π∫
0

V
R

h̄
2e

dϕ =
2π∫
0

(
dϕ

dt

)(
h̄
2e

)2 1
R

dϕ

=
Φ0Vp

2πR

2π∫
o

{
2
(

E
EJ0
−1+ cosϕ

)}1/2

dϕ . (3.3.13)

Here, we have used dϕ/dt) from (3.3.12) and the plasma voltage

Vp = ωp
Φ0

2π
= ωp

h̄
2e

=
Vc√
βC

. (3.3.14)

The resistive state is only possible, if the minimum value of the junction kinetic energy is positive, that is,
if E ≥ 2EJ0. Thus, the limit I = IR corresponds to E = 2EJ0. In this limit the right hand side of (3.3.13)
can be calculated resulting in

Wdiss = 4
Φ0Ic

π

1√
βC

(3.3.15)

16K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986).
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Figure 3.9: (a) RCSJ model IVCs at intermediate damping. The arrows mark the return current values IR
at which the junction jumps back to the zero-voltage state. (b) The normalized return current IR/Ic plotted
versus the Stewart-McCumber parameter βC. The dashed line shows the large βC approximation according to
equation (3.3.16). The dotted line qualitatively shows the behavior at large damping (low βC).

and hence in

IR

Ic
=

4
π

1√
βC

. (3.3.16)

This result is plotted in Fig. 3.9b. Note that it is valid only for βC� 1.

3.3.2 Response to a dc Voltage Source

If we drive the junction by a dc voltage source, the phase difference will evolve linearly in time as ϕ(t) =
2e
h̄ Vdct + const and, in turn, the Josephson current Is(t) = Ic sinϕ(t) will oscillate sinusoidally. Then, the

time average of the Josephson current is zero. Furthermore, since dV/dt = 0, also the displacement
current is zero. Accordingly, the total current has to be carried by the normal current resulting in the IVC

I =
Vdc

RN
. (3.3.17)

That is, within the RCSJ model we obtain a simple ohmic dependence. In the more general case we have
a voltage dependent resistance RN(V ) and hence a nonlinear IVC.

3.3.3 Response to ac Driving Sources

In the previous section we have considered the response of a Josephson junction driven by a dc source.
We now use the RCSJ model to analyze the dynamics of a Josephson junction driven both by an ac and dc
source. We will see that the response of the supercurrent gives rise to constant-voltage Shapiro steps17

in the IVCs, whereas the photon-assisted tunneling response of the quasiparticles gives rise to shifted
images of the energy gap structure in the IVCs.

17S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).
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Figure 3.10: A dc and ac voltage source attached to an overdamped Josephson junction. The capacitance of
the junction is assumed to be negligibly small (large damping, βC� 1).

Response to an ac Voltage Source, Strong Damping

We first consider the most simple case of strong damping, βC� 1, and an applied voltage

V (t) = Vdc +V1 cosω1t . (3.3.18)

The equivalent circuit for this situation is shown in Fig. 3.10. From the integration of the voltage-phase
relation we obtain

ϕ(t) = ϕ0 +
2π

Φ0
Vdct +

2π

Φ0

V1

ω1
sinω1t , (3.3.19)

where ϕ0 is an integration constant. Inserting this into the current-phase relation we obtain

Is(t) = Ic sin
{

ϕ0 +
2π

Φ0
Vdct +

2π

Φ0

V1

ω1
sinω1t

}
. (3.3.20)

We see that the frequency of the Josephson current is a superposition of the constant frequency ωdc =
2π

Φ0
Vdc and a sinusoidally varying phase. Therefore, the frequency of the current is not the same as that of

the driving ac voltage source. The reason for this is the fact that the nonlinear current-phase relation can
couple different frequencies with the driving frequency.

In order to analyze the time dependence of the Josephson current we rewrite (3.3.20) as a Fourier series.
In order to do so we use the Fourier-Bessel series identity

eıbsinx =
+∞

∑
n=−∞

Jn(b) eınx . (3.3.21)

Here, Jn is the nth order Bessel function of first kind. It is evident from (3.3.20) that the argument of
the sine function is of the form (a+bsinx). Hence, in order to use the identity (3.3.21) we write

sin(a+bsinx) = ℑ

{
eı(a+bsinx)

}
. (3.3.22)

The Fourier-Bessel series together with the fact that J−n(b) = (−1)nJn(b) allows us to write

eı(a+bsinx) =
+∞

∑
n=−∞

Jn(b) eı(a+nx) =
+∞

∑
n=−∞

(−1)nJn(b) eı(a−nx) . (3.3.23)
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Finally, the imaginary part of (3.3.22) then gives

sin(a+bsinx) =
+∞

∑
n=−∞

(−1)nJn(b) sin(a−nx) . (3.3.24)

With x = ω1t, b = 2πV1
Φ0ω1

and a = ϕ0 +ωdct = ϕ0 + 2π

Φ0
Vdct, we can rewrite the current equation (3.3.20) as

Is(t) = Ic

+∞

∑
n=−∞

(−1)nJn

(
2πV1

Φ0ω1

)
sin [(ωdc−nω1)t +ϕ0] . (3.3.25)

We see that due to the nonlinear current-phase relation we obtain a current response, in which the fre-
quency ωdc couples to multiples of the driving frequency ω1.

The most interesting aspect of (3.3.25) is the fact that the ac voltage source driving the junction can result
in a dc current (denoted as Shapiro steps), if the argument of the sine function becomes zero. That is, we
obtain a dc current response for

ωdc = nω1 or Vdc = Vn = n
Φ0

2π
ω1 . (3.3.26)

For a specific n the amplitude of the average dc current is

|〈Is〉n| = Ic

∣∣∣∣Jn

(
2πV1

Φ0ω1

)∣∣∣∣ (3.3.27)

with the detailed value depending on the initial value ϕ0 (see inset of Fig. 3.11).

For all other voltages Vdc 6= Vn we have a series of sinusoidally time dependent terms with a vanishing dc
component. Thus, for Vdc 6= Vn we have

〈I〉 =
Vdc

RN
+ 〈 V1

RN
cosω1t〉 =

Vdc

RN
. (3.3.28)

We see that all the current has to be carried by the normal current resulting in an ohmic behavior. Only
for Vdc = Vn an average dc Josephson current appears. With respect to the IVCs this means that we have
an ohmic dependence with sharp current spikes at Vdc = Vn (see Fig. 3.11). The amplitude of the current
spikes is given by (3.3.27) and depends on the amplitude V1 of the ac source. The appearance of current
steps at fixed voltages Vn that already has been predicted by B. Josephson is due to the formation of
higher harmonics of the signal frequency due to the nonlinearity of the Josephson junction. The nth step
corresponds to the phase locking of the junction oscillation by this nth harmonic.

When we are applying for example an ac driving voltage source with ω1/2π = 10 GHz for various values
of the applied dc voltage Vdc, a constant dc current will appear at Vdc = 0 and Vn = n Φ0

2π
ω1 ' n ·20 µV.

That is, we obtain current steps in the IVCs, which have constant spacing δV = Φ0
2π

ω1 ' 20 µV. Note
that the spacing only depends on the frequency of the ac voltage source and on fundamental constants.
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Response to an ac Current Source, Strong Damping

In most experimental arrangements the external source has a larger impedance than the Josephson junc-
tion and therefore represents a current source. In this case Kirchhoff’s law allows us to write

Ic sinϕ +
1

RN

φ0

2π

dϕ

dt
= Idc + I1 sinω1t . (3.3.29)

Here, we again have neglected the displacement current what is possible only in the limit of strong
damping (βC� 1) and we also did not take into account fluctuations.

The nonlinear differential equation (3.3.29) is difficult to solve. In order to understand what is going
on we use the tilt washboard potential to perform a qualitative discussion (in the same way a qualitative
discussion can be performed based on the pendulum analogue). We recall that the current tilts the wash-
board potential. Therefore, the dc current can be considered to result in a constant tilt angle, whereas the
ac current results in oscillations around this tilt angle with the amplitude given by the amplitude I1 of the
ac current. If we increase Idc from zero at a constant ac amplitude I1 we expect that the junction stays in
the zero voltage state as long as Idc + I1 ≤ Ic at all times. In this case the tilt angle is always small enough
so that there is a local minimum in the tilted washboard potential.

As soon as Idc + I1 > Ic, the phase particle can leave the local minimum and move down the washboard
potential. However, due to the ac current the total current varies between Idc + I1 > Ic and Idc− I1 < Ic.
Therefore, for some part of the ac cycle the phase particle can move, whereas for the rest of the cycle
it is trapped again in a local minimum. In total the motion of the particle is complicated and therefore
it is difficult to calculate the resulting time-averaged voltage. An interesting situation appears when
the average junction voltage reaches the values Vn = n Φ0

2π
ω1 (compare (3.3.26)). For these values the

motion of the phase particle in the tilt washboard potential is synchronized by the ac driving current.
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Figure 3.12: The time-averaged junction voltage plotted versus the applied dc current for an overdamped
RCSJ model junction driven by a current source I(t) = Idc + I1 sinω1t (full line, I1/Ic ' 0.2). The dashed line
shows the RCSJ model IVC without ac driving current. Also shown is the ohmic line (dash dot). The inset
shows the tilt washboard potential. Due to the finite ac amplitude the tilt angle varies during one rf cycle.

For example, if the phase particle moves from one local minimum to the adjacent one during each cycle
T = 2π/ω1 of the ac source, there is a phase change ϕ̇/T = 2π/T = ω1. This corresponds to an average
voltage 〈V 〉= Φ0

2π
ϕ̇ = Φ0

2π
ω1. We see that this exactly corresponds to the voltage Vn of (3.3.26) for n = 1.

We can generalize our discussion and assume that during each cycle of the ac source the phase particle
is moving down n local minima. Then, the phase change is

ϕ̇ = n
2π

T
= n ω1 . (3.3.30)

This results in an average dc voltage of

〈V 〉 = n
Φ0

2π
ω1 = Vn . (3.3.31)

We see that for the voltages Vn given by (3.3.26) the phase particle is moving down the potential well by
a fixed number of minima during each cycle. That is we have a synchronization of the phase change with
the external ac source. This synchronization is not only possible for a particular value of the dc current
but for a complete interval of the dc current. The width of the dc current interval is proportional to the
amplitude of the current spike according to (3.3.27).

The resulting IVC is shown schematically in Fig. 3.12 for an overdamped junction. Note that the appear-
ance of the current steps occurs at precisely the values Vn given by (3.3.26). Experimental IVCs for an
underdamped and overdamped Josephson junction are shown in Fig. 3.13.

Response to ac Driving Sources: Intermediate Damping

So far we have discussed only the effect of strong damping by neglecting the junction capacitance. The
most visible effect of the junction capacitance on the IVCs is between the current steps rather than upon
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Figure 3.13: Experimental IVCs obtained for an underdamped and overdamped Nb Josephson junction under
microwave radiation. The IVCs clearly show the constant voltage steps at Vn = n Φ0

2π
ω1 (data from C.A.

Hamilton, Rev. Sci. Instr. 71, 3611 (2000)).

the steps themselves. With the increase of βC the supercurrent contribution to the IVCs at 〈V 〉 6= Vn

decreases, so that the IVCs become hysteretic in the vicinity of each step.18

3.3.4 Photon-Assisted Tunneling

In the discussion of the Shapiro steps we have approximated the normal resistance by an ohmic resistance
RN . However, in a superconducting tunnel junction the normal resistance R(V ) is highly nonlinear with a
sharp step at the gap voltage Vg = 2∆/e manifesting itself as a strong increase of the quasiparticle current
at Vg. Therefore, instead of using the simple approximation I = V/RN it is more appropriate to use the
quasiparticle tunneling current Iqp(V ). However, in the Iqp(V ) curve we have to take into account the
effect of the ac source on the quasiparticle tunneling. This can be done by the method introduced by
P.K. Tien and J.P. Gordon.19 They assumed that the effect of the rf driving voltage has no effect on
the internal energy levels of the two electrodes but shifts these levels up or down in one electrode with
respect to those in the other electrode as shown in Fig. 3.14. That means, that the energy of a quasiparticle
becomes Eqp +eV1 cosω1t so that the quantum mechanical phase factor exp(−ıEt/h̄) becomes frequency
modulated. It can be written as

exp
(
− ı

h̄

∫
(Eqp + eV1 cosω1)dt

)
= exp

(
− ı

h̄
Eqpt

)
· exp

(
−ı

eV1

h̄ω1
sinω1t

)
. (3.3.32)

Using the Bessel function identity as discussed above we can write the factor containing V1 as a sum of
terms of the form Jn(eV1/h̄ω1)e−ınω1t . This result can be interpreted as a splitting up of the quasiparticle
levels into many levels at Eqp±nh̄ω1 with probabilities given by the amplitude coefficient Jn(eV1/h̄ω1).

18see e.g. K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York
(1986).

19P.K. Tien, J.P. Gordon, Phys. Rev. 129, 647 (1963).
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Figure 3.14: Illustration of the periodic shift of the quasiparticle levels of a superconducting tunnel junction
due to an applied ac voltage of amplitude V1.

With this modified density of states the quasiparticle tunneling current is obtained to

Iqp(V ) =
+∞

∑
n=−∞

J 2
n

(
eV1

h̄ω1

)
I0
qp(V +nh̄ω1/e) . (3.3.33)

We see that the sharp increase of the quasiparticle tunneling current at the gap voltage is broken up into
many steps of smaller current amplitude at the voltages Vg±nh̄ω1/e. An experimental example is shown
in Fig. 3.15.

Note that the steps in the quasiparticle tunneling curve resemble the Shapiro steps that occur at voltages
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Figure 3.15: Quasiparticle current-voltage characteristics of a niobium SIS Josephson junction without and
with microwave irradiation of frequency 2πω1 = 230GHz corresponding to h̄ω1/e' 950 µV.

2005



114 R. GROSS AND A. MARX Chapter 3

Vn = nh̄ω1/2e. However, there are profound differences. First, the voltage separation of the quasiparticle
steps is just twice of that of the Shapiro steps because e and not 2e appears in the denominator. Second,
the steps have no constant voltage. The sharpness of the voltage is determined by the sharpness of the
increase of the quasiparticle tunneling curve at the gap voltage. Third, their amplitude varies as the
square of the Bessel function of the half argument.
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3.4 Additional Topic:
Effect of Thermal Fluctuations

In the previous subsections we have discussed the response of a RCSJ model Josephson junction to
external voltage or current sources. However, in our discussion we did not take into account fluctuations.
Therefore, in this section we analyze the effect of additional fluctuations. We will restrict our discussion
to thermal fluctuations, which have a correlation function20

〈IF(t)IF(t + τ)〉 =
2kBT
RN

δ (τ) . (3.4.1)

If the fluctuations are small, their effect are small phase fluctuations around the equilibrium value. Here,
small means that the mean square of the phase fluctuations 〈ϕ2〉 is much less than the width

∆ϕ = ϕ̃n−ϕn = π−2arcsin(i) (3.4.2)

of the potential well surrounding the point ϕn (compare (2.1.10) and Fig. 2.3 in section 2.1.3).

If the fluctuations become larger and 〈ϕ2〉 becomes comparable to (∆ϕ)2, there is a finite probability
for the phase to escape from the local minimum of the potential well to one of the adjacent states ϕn±1.
This probability can be characterized by the rates Γn±1 or the corresponding lifetimes τn±1 = h̄/Γn±1.
This is shown in Fig. 3.16. The escape of the phase to one of the adjacent minima results in a ±2π

change of the phase. Whereas for zero applied external current we have Γn+1 = Γn−1 and therefore the
time-averaged change of the phase difference, 〈ϕ̇〉, is equal to zero, there is a net time-averaged change
〈ϕ̇〉 6= 0 for I 6= 0, since now Γn+1 6= Γn−1. Once the phase has escaped from the potential minimum the
further evolution of the phase difference strongly depends on the damping of the junction.

In order to quantify the effect of thermal fluctuations we have to calculate the rates Γn±1 as a function of
the applied bias current and the intensity of the fluctuations. The simplest result can be again obtained in
the framework of the RCSJ model, when the Langevin equation has the form

I = Ic sinϕ +
1

RN

Φ0

2π

dϕ

dt
+C

Φ0

2π

d2ϕ

dt2 + IF . (3.4.3)

As the general theory of Brownian motion21,22 shows, this equation is equivalent to the following Fokker-
Planck equation:23,24,25,26,27

1
ωc

∂σ

∂ t
+

∂

∂ϕ
(σv)+

1
βC

∂

∂v
(σ [ f (ϕ)− v]) =

γ

β 2
C

∂ 2σ

∂v2 . (3.4.4)

20Note that according to the Wiener-Khintchine theorem the spectral density S( f ) of the fluctuations is twice the Fourier
transform of the correlation function. That is, equation (3.4.1) is equivalent to S( f ) = 4kBT/RN .

21H.A. Kramers, Physica 7, 284 (1940).
22S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
23A.D. Fokker, Die mittlere Energie rotierender elektrischer Dipole, Ann. Phys. 43, 810 (1914).
24M. Planck, Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie, Preuss. Akad. Wiss.

(1917), p.324
25Yu.M. Ivanchenko, L.A. Zilberman, Sov. Phys. JETP 55, 2395 (1968).
26V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).
27The Fokker-Planck equation has the form of a continuity equation in which the role of the flow in space is played by a

quantity J(r, t) consisting of a drift and a diffusion flow. Depending on the meaning of the variable r, it may be not only the
diffusion in the configuration space but also diffusion in the space of velocities, diffusion of energy, diffusion of the phase of
oscillation etc.
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Figure 3.16: The thermally activated motion of the phase in the presence of thermal fluctuations for zero
applied current and a finite applied current I < Ic. Small fluctuations result in fluctuations of the phase
particle around the potential minimum. Large fluctuations result in a finite probability to escape into one of
the adjacent phase states.

Here28,29

f (ϕ) = − 1
EJ0

∂U(ϕ)
∂ϕ

=
I
Ic
− sinϕ (3.4.5)

is the effective normalized force,

v =
dϕ/dt

ωc
=

V
IcRN

(3.4.6)

the effective normalized momentum, and σ(v,ϕ, t) is the probability density of finding the system at a
specific point (ϕ,v) in phase space at the time t. After σ is found from (3.4.4), the statistical average of
every variable X(ϕ,v, t) can be calculated as

〈X〉(t) =
+∞∫∫
−∞

σ(ϕ,v, t)X(ϕ,v, t) dϕdv . (3.4.7)

For small fluctuations (3.4.4) has the simple static (dσ/dt = 0) solution

σ(v, t) = F−1 exp
(
−G(ϕ,σ)

kBT

)
with (3.4.8)

F =
+∞∫∫
−∞

exp
(
−G(ϕ,σ)

kBT

)
dϕdv , (3.4.9)

28Yu. M. Ivanchenko, L.A. Zilberman, Sov. Phys. JETP 55, 2359 (1968).
29V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

© Walther-Meißner-Institut



Section 3.4 APPLIED SUPERCONDUCTIVITY 117

which is essentially the Boltzmann distribution. Here, G = E−F · x is the total energy with E the free
energy. We see that we have a constant probability

p =
+∞∫
−∞

dv
∫

ϕ≈ϕn

σ(ϕ,v) dϕ (3.4.10)

to find the system in the nth metastable state.

If the fluctuations are larger, the transition rate Γn±1 to the adjacent phase states becomes significant and
p can change in time. The corresponding law describing the amount of phase slippage is simply

d p
dt

= (Γn+1−Γn−1) p , (3.4.11)

if ωA/Γn±1� 1. Here, ωA is the so-called attempt frequency. In most cases Γn+1� Γn−1. Then, in the
limit ωA/Γn+1� 1 an universal expression can be derived for Γn+1 and ωA:30,31

Γn+1 =
ωA

2π
exp
(
− U0

kBT

)
(3.4.12)

with32,33

ωA =

{
ω0 = ωp(1− i2)1/4 for ωcτ � 1,

τ−1 = ωc(1− i2)1/2 for ωcτ � 1
. (3.4.13)

Here, U0 is given by (2.1.15) and ω0 and ωc are the plasma frequency and the characteristic frequency in
the washboard potential tilt by the applied current i = I/Ic, respectively. Note that at I = 0 the attempt
frequency ωA is given by the plasma frequency ωp, since this frequency represents the characteristic
frequency at which the phase oscillates back and forth in the potential well. In the presence of a finite
current, the potential is tilt and hence the characteristic frequency is not exactly the plasma frequency but
the frequency of small oscillations at around the minimum of the tilted washboard potential. It is evident
that unless I is close to Ic we have ωA ' ωp in good approximation. Note that in the limit of strong
damping (βC = ωcτRC � 1) one has to replace the undamped plasma frequency by the characteristic
frequency of an overdamped oscillator, namely ωA = ωp

√
βC = ωp

√
ωcRNC = ωc (compare (3.1.13) in

section 3.1.2).

3.4.1 Underdamped Junctions: Reduction of Ic by Premature Switching

For EJ0� kBT , the thermally activated escape from the potential minimum over the barrier height U0 to
the next minimum has a small probability ∝ exp(−U0(I)/kBT ) at each attempt. The dependence of the
barrier height on the applied current, U0(I), can be approximated well by

U0(I) ' 2EJ0

(
1− I

Ic

)3/2

. (3.4.14)

30H.A. Kramers, Physica 7, 284 (1940).
31S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
32Using the notation i = I/Ic, the minimum of the resulting potential occurs at ϕ = arcsin(i) (compare section 2.1.3). Here,

the curvature of the potential is d2U/dϕ2 = (h̄Ic/2e)cosϕ = (h̄Ic/2e)
√

1− i2 using the relation arcsinx = arccos
√

1− x2. The
classical frequency of small oscillations about the minimum is ωA = ωp(1− i2)1/4.

33If the McCumber parameter βC is smaller than the critical value
√

(1− i2) the oscillation process in the potential well
is aperiodic and the relaxation takes the time τ = 1/ωc

√
1− i2 (for a detailed discussion see K.K. Likharev, Dynamics of

Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986), section 3.2.)
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We see that U0 = 2EJ0 for I = 0 and U0→ 0 for I→ Ic.

Since the barrier height goes to zero on approaching the critical current, the escape probability increases
exponentially from a very small value ∼ ωA

2π
exp(−2EJ0/kBT ) at I� Ic up to a large value ∼ ωA/2π at

I ' Ic. Note that for an underdamped junction the phase will accelerate down the tilt washboard potential
until it reaches its average velocity determined by the damping ∼ 1/RN of the junction. That is, after the
phase has escaped from the potential well at the current I, the junction voltage switches to the value IRN .

Since the escape is a stochastic process, the exact escape current IM detected in an experiment will be
different every time ramping up the current. That is, we will measure a distribution of current values IM

characterized by a width δ I and a mean reduction 〈∆Ic〉= Ic−〈IM〉 below the critical current Ic obtained
in the absence of any fluctuations. The determination of these values requires numerical calculations.34

However, with the approximation (3.4.14) and the escape rate ∼ ωA
2π

exp(−U0(I)/kBT ) the mean depres-
sion of Ic can be approximated by35

〈∆Ic〉 = Ic−〈IM〉 ' Ic

[
kBT
2EJ0

ln
(

ωp∆t
2π

)]2/3

. (3.4.15)

Here, ∆t is the time spent sweeping the applied current through the dense part of the distribution of
observed critical current values. Since in experiments ∆t is of the order of seconds and ωp ∼ 1010s−1,
the logarithm typically is of the order of ln1010 ' 23� 1. Since the logarithm is so large, it only weakly
depends on the actual sweep rate of the applied current. Then, fluctuation effects cause a major reduction
in Ic as soon as kBT is larger than about 5% of EJ0. One can further show that the width δ I of the
distribution is approximately given by the mean depression of Ic divided by the same logarithmic factor.

3.4.2 Overdamped Junctions: The Ambegaokar-Halperin Theory

When a thermal noise current is included into the driving term, Ambegaokar and Halperin showed36

that the simple IVC for overdamped Josephson junctions, V = RN
√

I2− I2
c for I > Ic is fundamentally

modified. In particular, they found that the finite amount of phase slippage results in a nonvanishing
junction voltage even in the limit I→ 0. The corresponding resistance is the so-called phase slip resis-
tance

Rp = lim
I→0

〈V 〉
I

. (3.4.16)

This resistance has been calculated by Ambegaokar and Halperin for strong damping (βC� 1). They
obtained

Rp(T ) = RN

{
I0

[
γ0(T )

2

]}−2

(3.4.17)

with

γ0(T ) =
2EJ0(T )

kBT
=

Φ0Ic(T )
πkBT

. (3.4.18)

34T. Fulton, L.N. Dunkelberger, Phys. Rev. B9, 4760 (1974).
35For a detailed discussion see K. K. Likharev, Dynamics of Josephson Junctions and Circuits,

Gordon and Breach Science Publishers, New York (1986), section 3.4.
36V. Ambegaokar, B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).
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Figure 3.17: (a) Resistance versus temperature curve of a YBa2Cu3O7 grain boundary Josephson junction
showing the foot structure due to the thermally activated phase slippage. (b) Experimental Rp(T )/RN de-
pendence (diamonds) as well as theoretical curves according to (3.4.17) and (3.4.18) for γ0(T ) = Φ0Ic(T )

πkBT =
2EJ0(0)

kBT (1−T/Tc)2 with 2EJ0(0)
kBT ranging between 600 and 1400 (adapted from R. Gross et al., Phys. Rev. Lett.

64, 228 (1990)).

Here I0(x) = J0(ıx) is the modified Bessel function and we have used U0 = 2EJ0 what is justified
for I → 0. For EJ0/kBT � 1 the Bessel function dependence can be approximated by the exponential
dependence I0(x) = ex/2π

√
x resulting in

Rp(T )
RN

∝ EJ0 exp
(
−2EJ0

kBT

)
or (3.4.19)

〈ϕ̇〉 ∝
2eIcRN

h̄
exp
(
−2EJ0

kBT

)
= ωc exp

(
−2EJ0

kBT

)
. (3.4.20)

We see that the attempt frequency is given by the characteristic junction frequency ωc and not by the
plasma frequency. As already discussed above, this is caused by the strong damping (βC = ωcτRC� 1).
In this case one has to replace the undamped plasma frequency by the characteristic frequency of an
overdamped oscillator, namely ωA = ωp

√
βC = ωp

√
ωcRNC = ωc.

In terms of the tilt washboard potential model the phase particle in an overdamped Josephson junction dif-
fuses over the barriers in a continuous process rather than making a single escape as in the underdamped
limit. This difference occurs, since the strong damping brings the phase particle back into equilibrium in
the next local minimum before it can diffuse to the next barrier. Therefore, it has no chance to run away
as it was the case for the underdamped junction. The phase diffusion results in an activated nonlinear
resistance.

Fig. 3.17 shows the temperature dependence of the normalized junction resistance, Rp/RN , due to ther-
mally activated phase slippage. The data are obtained for an overdamped YBa2Cu3O7 grain boundary
Josephson junction.37 The thermally activated phase slippage manifests itself as a foot structure in the
R(T ) dependence of the Josephson junction. After the junction electrodes become superconducting be-
low the transition temperature Tc of the electrode material there is still a measurable resistance due to the
thermally activated phase slippage of the junction. This resistance becomes vanishingly small only at a

37R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koren, Thermally Activated Phase Slippage in High-Tc Grain Boundary
Josephson Junctions, Phys. Rev. Lett. 64, 228 (1990).
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Figure 3.18: Current-voltage characteristics calculated according to (3.4.21) for a strongly overdamped
Josephson junction (βC� 1). The normalized barrier height was γ0 = 0, 1, 2, 5, 10, 20, 50, and ∞.

much lower temperature, at which the coupling energy EJ0(T ) has become sufficiently large to suppress
the phase slippage. Also shown is a fit of the experimental data to equation (3.4.17). The fit can be used
to determine the temperature dependence of the junction critical current Ic(T ) close to Tc as shown in
Fig. 3.17 for a YBa2Cu3O7 grain boundary Josephson junction. A direct measurement of Ic(T ) close to
the critical temperature is difficult because of the finite slope of the IVCs due to thermally activated phase
slippage (see Fig. 3.18). Hence, it is impossible to define Ic as the current flowing without measurable
resistance.

Thermally activated phase slippage causes a rounding of the IVCs of Josephson junctions at I ∼ Ic. This
is evident, because already at current values I < Ic the phase can move down the tilt washboard potential
due to thermal activation resulting in a finite voltage. The IVCs in the presence of thermally activated
phase slippage are shown in Fig. 3.18. Of course the rounding strongly decreases with increasing γ0,
that is, with increasing barrier height. Note that the small linear resistance at low currents is the single
junction analog of the so-called thermally activated flux-flow resistance in bulk superconductors, in
which the activation energy is thought to be the energy to move a fluxon rather than the energy for a
phase slip in a single junction.

According to Ambegaokar and Halperin, for strong damping (βC� 1) the IVC can be calculated analyt-
ically giving

〈V 〉 =
2IcRN

γ0

eπγ0i−1
eπγ0i


2π∫
0

dϕ e−γ0iϕ/2I0

(
γ0 sin

ϕ

2

)
−1

, (3.4.21)

where i = I
Ic

.

We note that for small Josephson junctions (L < λJ) the measurement of the resistance Rp(T ) also can
be used to determine the magnetic field dependence of the critical current close to Tc. At constant
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temperature the magnetic field dependence of Rp(T ) is obtained to38,39

Rp(B) = RN

{
I0

[
γ0(B)

2

]}−2

(3.4.22)

with

γ0(B) =
2EJ0(B)

kBT
=

Φ0Ic(B)
πkBT

. (3.4.23)

38Stephan Schuster, Diploma Thesis, University of Tübingen (1993).
39B. Mayer, R. Gross, S. Schuster, A. Beck, L. Alff, Appl. Phys. Lett. 62, 783 (1993).
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3.5 Secondary Quantum Macroscopic Effects

3.5.1 Quantum Consequences of the Small Junction Capacitance

In our discussion so far we have treated the Josephson junction as a classical system. Both the gauge-
invariant phase difference ϕ and its time derivative ϕ̇ , which is proportional to the charge Q = CV =
h̄
2eCϕ̇ , have been treated as purely classical variables that in principle can be measured simultaneously
with arbitrary precision. Within our classical description the dynamics of a Josephson junction was
completely analogous to that of a classical particle of mass M = (h̄/2e)2C moving in the tilt washboard
potential or the motion of a pendulum (compare section 3.2).

In order to discuss the limits of this classical description let us consider a strongly underdamped junction.
If the phase ϕ changes in time (ϕ̇ ∝ V 6= 0), then the energy of the electric field is given by

K =
1
2

CV 2 =
Q2

2C
=

1
2

C
(

h̄
2e

)2

ϕ̇
2 =

1
2

EJ0
ϕ̇2

ω2
p

(3.5.1)

with Q ≡ CV =
∫

Idt. We see that this energy is just the energy related to the extra charge Q on one
junction electrode relative to the other due to the finite voltage V . With the energy contribution K of the
electric field and the potential energy U = EJ0(1− cosϕ) (cf. eq. (2.1.8)) of the junction we can express
the total energy of the junction as

E = K +U = EJ0

(
1− cosϕ +

1
2

ϕ̇2

ω2
p

)
. (3.5.2)

We see that it is very convenient to use ϕ as a principle variable (coordinate) of the system. In this case
U(ϕ) should be interpreted as the potential energy and K ∝ ϕ̇2 as the kinetic energy. Note that for an
overdamped junction equation (3.5.1) does not make sense, since such a junction is closely coupled to
the environment through its normal current IN and the energy is not conserved even over a short time
scale.

Returning to the current-phase and voltage-phase relation describing the Josephson junction there is no
doubt in their quantum nature. On the other hand, the structure of these equations contradicts basic
quantum mechanical principles. We are assuming that all variables (observables) characterizing the
state of the junction such as I, Q, V , ϕ , etc. can be measured simultaneously with arbitrary precision.
Quantum mechanics, however, does not allow this and, in general, only the probability distribution of
the variables can be calculated. From this we can conclude that the description of the Josephson junction
by the current-phase and voltage-phase relation is at best an approximate description of a more precise
quantum theory.

Following the recipes of quantum mechanics, we can just consider equation (3.5.2), E = Q2/2C+U(ϕ),
as the Hamiltonian of the junction. We can rewrite the kinetic energy as

K =
Q2

2C
=

1
2

1
(h̄/2e)2C

(
h̄
2e

Q
)2

. (3.5.3)

This equation corresponds to the mechanical analogue K = p2/2M. Hence, with the mass analogue
M = (h̄/2e)2C (cf. eq. (3.2.6)) the quantity h̄

2e Q corresponds to the momentum p. Therefore, we can
make the operator replacement

h̄
2e

Q → −ıh̄
∂

∂ϕ
, (3.5.4)
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that is, with the number N = Q/2e of Cooper pairs we can write

Q = −ı 2e
∂

∂ϕ
N = −ı

∂

∂ϕ
. (3.5.5)

Then, the form of the Hamiltonian is

H =
Q2

2C
+EJ0(1− cosϕ) = −(2e)2

2C
∂ 2

∂ϕ2 +EJ0(1− cosϕ)

= −4EC
∂ 2

∂ϕ2 +EJ0(1− cosϕ) . (3.5.6)

Here, EC = e2/2C is the charging energy of the junction for a single electron charge.40 Note that this
Hamiltonian describes only the Cooper pairs neglecting the quasiparticle degrees of freedom, which
however are unimportant as soon as we consider the case T = 0.

The commutation rule for the operators is obtained to

[ϕ,Q] = ı2e ; [ϕ,N] = ı or [ϕ,
h̄
2e

Q] = ıh̄ . (3.5.7)

Here N ≡ Q/2e is the deviation of the number of Cooper pairs in the junction electrodes from the equi-
librium value. Equation (3.5.7) simply represents the uncertainty relation for the number of Cooper pairs
and the phase difference:

∆N ·∆ϕ ≥ 1 . (3.5.8)

Note that this relation is completely analogous to the uncertainty relation between the number of photons
and the phase of coherent light.

In many situations it is convenient to use the variable φ = h̄
2e ϕ = Φ0

2π
ϕ corresponding to a magnetic flux.

In this case we have ∂/∂ϕ = h̄
2e ∂/∂φ and obtain the Hamiltonian

H =
Q2

2C
+EJ0

(
1− cos2π

φ

Φ0

)
= −(2e)2

2C
h̄2

(2e)2
∂ 2

∂φ 2 +EJ0

(
1− cos2π

φ

Φ0

)
= − h̄2

2C
∂ 2

∂φ 2 +EJ0

(
1− cos2π

φ

Φ0

)
(3.5.9)

and the commutator

[φ ,Q] = ıh̄ . (3.5.10)

That is, Q and φ are canonically conjugate variables just like coordinate x and momentum p.

40Note that in some cases EC = (2e)2/2C, that is, the charging energy of a Cooper pair is used.
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Figure 3.19: The Josephson coupling energy EJ0 and the charging energy EC plotted versus the junction area
Ai for three different critical current densities Jc. Note that EJ0 ∝ Jc ∝ exp(−2κd) decreases exponentially
with increasing thickness d of the tunneling barrier at constant junction area, whereas the charging energy
EC ∝ 1/C ∝ d increases only linearly with increasing barrier thickness. We therefore have taken the charging
energy the same for all three Jc values.

Equations (3.5.6) and (3.5.7) allow us to calculate the deviations of the junction properties from those
predicted by the “classical” description. These deviations are called secondary macroscopic effects to
be distinguished from the ordinary or primary effects like the Josephson effect itself.41,42

The degree of deviation from the classical description can be estimated by considering again an isolated
Josephson junction (I = 0) in the low damping limit. The potential energy is given by a cosine potential
EJ0(1− cosϕ) with a depth determined by the characteristic energy EJ0. Approximating this potential
close to a minimum by a parabolic potential, the Hamiltonian (3.5.6) reduces to that of a harmonic
oscillator with frequency ωp and level spacing h̄ωp. It is obvious that the classical description holds as
long as the level spacing is much smaller than the depth of the potential well, i.e. EJ0. That is, the degree
of deviation from the classical description depends on the ratio of the two energies

h̄ωp

EJ0
=

√
8EC

EJ0
. (3.5.11)

In order to get a feeling, in which cases the condition h̄ωp� EJ0 or EC� EJ0 holds for real Josephson
junctions, we have to recall that EC ∝ 1/C ∝ 1/A, whereas EJ0 ∝ Ic ∝ A. We hence immediately see
that we will enter the quantum regime (EC � EJ0) on decreasing the junction area. In order to make
an estimate we consider a planar tunnel junction of typical area Ai = 10 µm2 with a tunneling barrier of
thickness d = 1 nm and dielectric constant ε = 10. The critical current density is Jc ' 100 A/cm2 giving
a coupling energy EJ0 ' 3× 10−21J. With ε0 = 8.8× 10−12 F/m we obtain the junction capacitance
C = εε0Ai/d ' 9×10−13F and, hence, EC ' 1.6×10−26J. We see, that for this typical junction area and

41A.I. Larkin, K.K. Likharev, Yu.N. Ovchinnikov, Physica B 126, 414 (1985).
42A. Leggett, Suppl. Theor Phys. 69, 80 (1982).
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current density the charging energy EC is by about 5 orders of magnitude smaller than the Josephson
coupling energy EJ0 and also much smaller than kBT down to temperatures in the mK-regime. This is
justifying our classical treatment of Josephson junctions in the previous sections. However, we see that
the classical treatment is no longer possible for very small junctions or junctions with very small critical
current density Jc. This is shown in Fig 3.19, where we have plotted the Josephson coupling energy and
the charging energy as a function of the junction area for different values of the critical Josephson current
density. For the typical current density Jc = 100 A/cm2 the charging energy becomes comparable to the
coupling energy at a junction area of about 0.02 µm2 corresponding to a capacitance of about 1 fF. We
also see that in order to observe the quantum phenomena we have to go to temperatures below about
100 mK in order to have kBT � EC.

3.5.2 Limiting Cases: The Phase and Charge Regime

In the following we discuss the two limiting cases h̄ωp� EJ0 and h̄ωp� EJ0 corresponding to EC� EJ0
and EC� EJ0, respectively. We will see that for the former the phase is a well defined quantity, whereas
for the latter it is the charge. Hence, we denote the two limiting cases as the phase regime and the charge
regime.

The Phase Regime: h̄ωp� EJ0, EC� EJ0

In this limit, the lowest energy levels of the system are localized near the bottom of the potential wells,
that is, near the points ϕn = 2πn. For this case we can expand the cosϕ in the potential energy U into
a Taylor series with respect to small deviations δϕ = ϕ −ϕn and neglect all terms except (δϕ)2/2 +
const. Then, as already discussed above the Hamiltonian is reduced to that of a harmonic oscillator with
frequency ωp and the energy eigenvalues

En = h̄ωp

(
1+

1
2

)
. (3.5.12)

Our discussion shows that for h̄ωp/EJ0� 1 or, equivalently, EC/EJ0� 1 the ground state of the system
should be a narrowly peaked wave function centered at ϕ = ϕn in order to minimize the dominating term
EJ0 cosϕ . That is, the fluctuations in the phase are very small and according to ∆Q ·∆ϕ ≥ 2e those of
the charge Q on the electrodes large. The physical reason for this is simple. The large fluctuations of the
charge are possible due to the very small energy EC required to add an extra Cooper pair to a junction
electrode. That is, charge pairs can easily fluctuate back and forth resulting in a large uncertainty in the
extra charge Q on the junction electrodes and, hence, due to ∆Q ·∆ϕ ≥ 2e in a negligible uncertainty of
ϕ . Then, the dynamics of the phase can be treated classically. Since the phase is well defined we denote
the limit h̄ωp� EJ0 as the phase regime.

In order to find the energy levels of the system we can use the Hamiltonian (3.5.6)

H = −4EC
∂ 2

∂ϕ2 +EJ0(1− cosϕ) . (3.5.13)

With the parameters a = (E −EJ0)/EC, b = EJ0/2EC and z = ϕ/2 we can rewrite this Hamiltonian to
obtain the usual Mathieu equation

∂ 2Ψ

∂ z2 +(a+2bcos2z) Ψ = 0 . (3.5.14)
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This differential equation is well known from the periodic potential problem in solid-state physics, lead-
ing to energy bands in crystals. The general solution is the superposition

Ψ(ϕ) = ∑
q

cqψq (3.5.15)

of the Bloch waves

ψq(ϕ) = uq(ϕ) exp(ıqϕ) with uq(ϕ) = uq(ϕ +2π) . (3.5.16)

Here, q is a “charge” or “pair number” variable and uq(ϕ) is a periodic function with period 2π . If only
integer numbers of pairs are physically relevant, q is taking only integer values and Ψ would be 2π-
periodic. However, q is a continuous variable, since it does not represent the total charge on an isolated
piece of metal, but rather on the capacitor formed by the two junction electrodes. This charge can be
varied continuously for example by a third gate electrode, which can change the charge in the junction
region, although the tunnel current is restricted to the transfer of a discrete number of charges (e or 2e
depending on whether one considers unpaired or paired electrons).

Since the problem under consideration is one-dimensional, it can be solved easily by numerical means.
To get more insight into the physics we apply a variational approach to find an approximation for the
ground state by using a trial function. For EC/EJ0� 1, we use a Gaussian trial function

Ψ(ϕ) ∝ exp
(
− ϕ2

4σ2

)
, (3.5.17)

where the rms spread σ in ϕ is chosen to minimize the expectation value of (3.5.6). For EC/EJ0 � 1,
the minimum energy is

Emin = EJ0

(
1−
[

1−
√

2EC

EJ0

]2)
= EJ0

(
1−
[

1−
h̄ωp

2EJ0

]2
)

. (3.5.18)

That is, Emin ' 0 for h̄ωp
EJ0
� 1. Fig. 3.20 shows the energy diagram of the Josephson junction for

two different values of EC/EJ0. In Fig. 3.20a we have sketched the situation for the phase regime for
EC/EJ0 = 0.1 resulting in Emin ' 0.1EJ0. We note that we have a periodic potential EJ0(1− cosϕ) and
therefore always a finite tunneling coupling between the phase states in adjacent minima. However, the
tunneling probability is proportional to exp[−(2EJ0−E)/h̄ωp] (compare section 3.5.6) and therefore is
very small in the phase regime (h̄ωp� EJ0) and the lowest energy states ((2EJ0−E)∼ 2EJ0). Therefore,
the tunneling splitting of the low lying phase states is exponentially small and becomes significant only
for higher states with (2EJ0−E)� 2EJ0 as indicated by the broadening of the states in Fig. 3.20a.

The Charge Regime: h̄ωp� EJ0, EC� EJ0

In contrast, for the phase limit EC/EJ0 � 1 discussed above, now the term EC(∂ 2/∂ϕ2) is dominant.
To minimize it in the ground state the wave function Ψ(ϕ) should approach a constant. However, in
this case all values of the phase are equally probable. That is, phase fluctuations are very large and in
turn charge fluctuations small. The former are enabled by the small energy scale EJ0 required for phase
fluctuations by 2π and the latter are prevented by the large energy scale 4EC for charge fluctuations by
2e.
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Figure 3.20: Sketch of the energy diagrams of an isolated Josephson junction (I = 0) in the case of low
damping for (a) EC/EJ0 = 0.1 and (b) EC/EJ0 = 2.5.

In the charge limit, an appropriate trial function, which is periodic and satisfies the boundary conditions
of zero slope at the edges of the cell, is

Ψ(ϕ) ∝ (1−α cosϕ) , (3.5.19)

which yields the approximate ground-state energy

Emin ' EJ0

(
1− EJ0

8EC

)
. (3.5.20)

We see that in the charge limit h̄ωp � EJ0 or, equivalently, EC � EJ0 the binding energy is of second
order in EJ0, whereas it is of first order in the semi-classical limit of equation (3.5.18). In Fig. 3.20b we
have sketched the situation for the charge regime for EC/EJ0 = 2.5 resulting in Emin ' 0.95EJ0.

In the charge regime the periodic potential EJ0(1−cosϕ) is weak resulting in a strong coupling between
neighboring phase states and, in turn, in broad bands. This is evident by considering equation (3.5.14):
In the phase limit the factor b = EJ0/2EC is large, whereas it is small for the charge limit. This means
that we have a strong periodic potential in the phase limit and only a weak one in the charge regime.
We easily can compare this to the situation known for electrons moving in the periodic potential of a
crystal. A strong periodic potential results in a localization of the charge carriers (well defined position,
undefined momentum). This is equivalent to the phase regime, where we have a strong periodic potential
resulting in exponentially narrow bands located at the points En ' (n + 1

2)h̄ωp. In this case we have a
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Figure 3.21: Coulomb blockade for a small normal metal tunnel junction with capacitance C und tunneling
resistance R. The series resistor Rs must be sufficiently large to avoid the suppression of the Coulomb blockade
effect by quantum fluctuations.

well defined phase but an undefined charge state. In contrast, a weak periodic potential results in broad
energy bands and delocalized charge carriers with well defined momentum and undefined position. This
situation is equivalent to the charge regime, where we have a weak periodic potential resulting in broad
bands. In this case we have a well defined charge state but an undefined phase state.

3.5.3 Coulomb and Flux Blockade

Coulomb Blockade in Normal Metal Tunnel Junctions

In the charge regime the large energy EC results in the phenomenon called Coulomb blockade. To
discuss this phenomenon we consider a normal conducting tunnel junction with junction capacitance C
(see Fig. 3.21). Suppose the voltage across the junction is V and the related charge and energy Q = CV
and E = Q2/2C, respectively. Naively we could assume that there will be a finite tunneling current
as soon as there is a finite voltage across the junction. However, if a single electron tunnels from one
electrode to the other, the charge on the one electrode changes to Q− e. The electrostatic energy after
the tunneling process is then Ẽ = (Q−e)2/2C. Since the tunneling process is energetically allowed only
if Ẽ ≤ E, the tunneling current sets in only for |Q| ≥ e/2 or, equivalently,

|V | ≥ VCB =
e

2C
. (3.5.21)

We see that the tunneling process is only allowed above a certain threshold voltage. This effect is called
Coulomb blockade.43,44 Of course the Coulomb blockade can be experimentally observed only if EC >
kBT , i.e., if thermal fluctuations are small enough. This results in the condition C < e2/2kBT for the
capacitance (C . 1 fF at 1 K). For a tunnel junction with barrier thickness d = 1 nm and dielectric constant
ε = 5, the junction area has to be smaller than about 0.02 µm2 to observe the effect at a temperature of
about 1 K.

We further have to consider quantum fluctuations. The effect of quantum fluctuations can be estimated
using the uncertainty relation ∆E ·∆t ≥ h̄. Since the tunnel junction has a finite tunneling resistance,
charge fluctuations will decay with the characteristic time constant τRC = RC. If we use ∆t = 2πRC and
∆E = e2/2C we obtain e2R & h or R ≥ h/e2 = RK . We see that the tunneling resistance must be larger
than the quantum resistance RK = 24.6 kΩ. For a junction area A = 0.02 µm2 this results in a resistance
times area product of above about 1 µΩcm2. This can be easily satisfied.

43D.V. Averin, K.K. Likharev, J. Low Temp. Phys. 62, 345 (1986).
44T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987).
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Figure 3.22: Phase blockade for a Josephson junction with Josephson inductance Lc und tunneling resistance
R. The series resistor Rs must be sufficiently small to avoid the suppression of the phase blockade effect by
quantum fluctuations.

Coulomb Blockade in Superconducting Tunnel Junctions

In the last paragraph we only have considered a normal conducting tunnel junction. We now switch to
a superconducting tunnel junction. For simplicity we neglect the role of the unpaired quasiparticles and
their interaction with the condensate in the following.45 In our classical treatment of Josephson junc-
tions we have seen that there is a finite supercurrent flowing between the electrodes at zero voltage. The
magnitude of the supercurrent was determined by the phase difference of the macroscopic wave func-
tions describing the two electrodes. Charging effects have been completely neglected in this treatment.
However, we immediately see that for Q2/2C > kBT,eV the flow of the Cooper pairs with charge Q = 2e
is prevented by the Coulomb blockade and charging effects play a dominant role.46,47 In analogy to the
normal metal case we obtain the threshold voltage

|V | ≥ VCB =
2e
2C

=
e
C

. (3.5.22)

The blockade of the pair transport means that the charge on both electrodes is fixed. Due to the uncer-
tainty relation ∆Q ·∆ϕ ≥ 2e this means that the phase is completely smeared out. As already discussed
above, a well defined charge state results in a undefined phase and a loss of the Josephson effect. On the
other hand, a well defined phase state results in an undefined charge state and the loss of the Coulomb
blockade effect.

Phase or Flux Blockade in a Josephson Junction

In analogy to the Coulomb blockade in the charge regime we have a phase or flux blockade in the phase
regime (see Fig. 3.22). Due to the large Josephson coupling energy EJ0 = Φ0Ic/2π the phase ϕ cannot
be changed by applying a current across the junction, since it is trapped in one of the minima of the tilt
washboard potential. Only if we exceed the critical current Ic, phase changes are possible. That is, in
analogy to the Coulomb blockade in the charge regime we can speak about a phase blockade in the phase
regime with the critical current Ic playing the role of the blockade voltage VCB. Since a phase change of
2π is equivalent to moving a single flux quantum across a Josephson junction, we alternatively can denote
the phenomenon as flux blockade. Note that the flux quanta are crossing the junction perpendicular to
the current direction, whereas the charge carriers are tunneling in current direction.

45For a discussion of this point see M. Tinkham, Introduction to Superconductivity, McGraw-Hill Book Company, New York
(1996).

46M.T. Touminen. J.M. Hergenrother, T.S. Tighe, M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992); Phys. Rev. B 47, 11599
(1993).

47P. Joyez, P. Lafarge, A. Filipe, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 72, 2458 (1994).
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With the Josephson inductance Lc = h̄/2eIc we can write the Josephson coupling energy EJ0 = h̄Ic/2e =
Φ2

0/4π2Lc and we obtain the current value for the flux blockade to

IFB ≥ Ic =
Φ0/2π

Lc
=

Φ0

Lc
. (3.5.23)

Here, we have used Φ0 = Φ0/2π . We immediately see the analogy to equation (3.5.22) by making the
replacements I↔V , e↔Φ0 and C↔ L.

Of course the phase blockade effect can be observed only if EJ0� kBT , what can be easily satisfied by
using a sufficiently large junction area. The effect of quantum fluctuations can be estimated again using
the uncertainty relation ∆E ·∆t ≥ h̄. Since the tunnel junction has a finite tunneling resistance, phase or
equivalently voltage fluctuations will decay with the characteristic time constant τLR = Lc/R. If we use
∆t = 2πLc/R and ∆E = 2EJ0 = h̄Ic/e we obtain R . h/e2 = RK . We see that in the phase regime the
tunneling resistance must be smaller than the quantum resistance RK = 24.6 kΩ.

3.5.4 Coherent Charge and Phase States

Coherent Charge States

In order to discuss the effect of finite Josephson coupling on the charge states in the charge regime, we
consider the Cooper pair box sketched in the inset of Fig. 3.23. A Cooper pair box is a small supercon-
ducting island, which is coupled to a reservoir via a superconducting tunnel junction. The charge state
of the island can be changed continuously by a gate electrode. Suppose the island is in the charge state
|0〉 at Vg = 0. If we change the charge by n · 2e, we switch the island into the charge state |n〉. If the
different charge states would be completely independent, the energy of each state would correspond to a
parabola (Q−n ·2e)2/2CΣ with CΣ = C +Cg (see Fig. 3.23). These parabola are shown in Fig. 3.20b as
dashed lines. However, the charge states are only independent of each other for EJ0 = 0. For a small but
finite Josephson coupling there will be an interaction of the charge state |n〉 and |n + 1〉 at the crossing
points of the corresponding parabola at Q = (n+ 1

2) ·2e. The resulting coherent superposition states are
represented by the wave functions

Ψ± = a|n〉±b|n+1〉 , (3.5.24)

where a and b are complex numbers. As a consequence, we obtain a splitting of the charge energy
at the crossing points, which is called level anti-crossing. The magnitude of the splitting is given by
the Josephson coupling energy. A detailed discussion of the level anti-crossing for interacting quantum
two-level systems is given in Appendix F.

Fig. 3.23 shows the expected average charge 〈Q〉= 2e〈N〉 on the superconducting island as a function of
the applied gate voltage Vg. Without interaction of neighboring charge states |n〉 and |n + 1〉 a step-like
behavior is expected with a step height of 2e. However, in reality at the transition regions between the
different charge states (crossing points of the parabola shown in Fig. 3.20b) the steps are rounded due
to the finite interaction resulting in a superposition of the adjacent charge states. In experiments the
charge state of the superconducting island usually is measured using a single electron electrometer. The
expected dependence shown in Fig. 3.23 has been confirmed in experiments.48

The presence of a coherent quantum mechanical superposition of charge states has been measured re-
cently by Nakamura, Pashkin and Tsai.49 In their experiment they switched a Cooper pair box for a

48V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M.H. Devoret, Physica Scripta T 76, 165 (1998).
49Y. Nakamura, Yu.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999).; Physica B 280, 405 (2000); Phys. Rev. Lett. 87, 246601

(2001); Physica C 367, 191 (2002).
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Figure 3.23: Average charge number 〈N〉 = 〈Q〉/2e on a Cooper pair box as a function of the applied gate
voltage. The Cooper pair box consists of a superconducting island coupled via a tunnel junction of capacitance
C to a reservoir (see inset). The charge state of the island can be varied via a gate capacitor of capacitance
Cg. For a superconducting island without any interaction of the different charge states a step-like dependence
(dashed curve) is obtained. Due to the finite interaction between neighboring states |n〉 and |n+1〉 the steps
are rounded (solid line). For comparison, also the dependence expected for a normal conducting island without
interaction is shown (dash-dotted line).

short period ∆t from n = 0 to n = 1
2 by a pulsed gate. According to quantum mechanics, at n = 1

2 the
system is in a superposition state and coherently oscillates between the states |0〉 and |1〉 at a frequency
f = EJ0/h. The probability of finding the system in the charge state |0〉 after switching off the gate pulse
at the time ∆t, ranges between 0 and 1. It depends on the length ∆t of the gate pulse. Varying the length
of the gate pulse, a continuous oscillation of the probability between 0 and 1 is found. These oscillations
are called Rabi oscillations (see Appendix F). A more detailed discussion of the quantum dynamics of
coherent charge as well as phase states is given in Chapter 9.

Coherent Phase States

In the same way as we can generate coherent superposition states by the interaction of two adjacent
charge states, we can obtain coherent phase states by the interaction of two adjacent phase states. This
can be achieved for example by incorporating a single Josephson junction into a superconducting loop
of inductance L (rf-SQUID, see section 4.2). To the potential energy of the Josephson junction we then
have to add a term (Φ−Φext)2/2L = 1

2 LI2
cir due to the magnetic energy of the flux in the ring generated

by a circulating screening current Icir (compare section 4). The total potential is then given by (compare
(3.5.9))

U(φ) =
(φ −φext)2

2L
+EJ0

(
1− cos2π

φ

Φ0

)
. (3.5.25)

Here, φ = h̄
2e ϕ = Φ0

2π
ϕ and the flux Φ in the loop is related to the phase difference across the junction

by ϕ = 2π
Φ

Φ0
, i.e. Φ = φ . The potential (3.5.25) is shown in Fig. 3.24 for Φext = Φ0/2. We obtain
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Figure 3.24: Double well potential for the generation of phase superposition states calculated according to
(3.5.25) for Φext = Φ0/2 and βL = 2LIC/Φ0 = 3. Shown are the states |L〉 and |R〉 corresponding to clockwise
and anticlockwise circulating currents (solid lines) and the superposition states Ψ+ and Ψ− (dashed line) split
by 2∆. The thin dashed and dotted lines show the potential for Φext = 0.3Φ0 and 0.7Φ0, respectively.

a double well potential with two degenerate phase states |L〉 and |R〉 corresponding to a clockwise and
anticlockwise circulating current, respectively. The two phase states are tunnel coupled resulting in the
superposition states

Ψ± = a|L〉±b|R〉 (3.5.26)

with energies E± = ε0±∆ with ε0 the energy of the degenerate phase states and ∆ the tunnel splitting. If
we move away with the external flux from the value Φ0/2, the double well potential is tilted to the left
or the right lowering the |L〉 and |R〉 state, respectively.

Experimental evidence (e.g. Rabi oscillations) for the quantum coherent superposition states correspond-
ing to macroscopic quantum states has been found recently.50,51,52 Meanwhile several experimental ge-
ometries appropriate for the realization of a double well potential similar to that shown in Fig. 3.24 have
been studied.53,54 A detailed discussion of the quantum dynamics of the superposition state will follow
in Chapter 9.

3.5.5 Quantum Fluctuations

Quantum mechanics shows that the classical theory of the harmonic oscillator coincides with the quantum
one in all details but one: There is a finite motion of the quantum oscillator (quantum fluctuation) at the

50J.E. Mooji, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, Science 285, 1036 (1999).
51C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.P.J.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij,

Science 290, 773 (2000).
52J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Nature 406, 43 (2000).
53I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 299, 1869 (2003).
54Y. Yu, S. Han, X. Chu, S.-I. Chu, Z. Wang, Science 296, 889 (2002).
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lowest energy level n = 0. In general, a quantum fluctuation is the temporary change in the amount of
energy in a point in space, arising from Heisenberg’s uncertainty principle ∆E ·∆t ≥ h̄. That means that
conservation of energy can appear to be violated, but only for small times. This allows the creation of
virtual excitations.55

The quantum fluctuations can be described in a convenient way by including a Langevin force IF to the
classical basic junction equation, which has the adequate statistical properties.56,57,58 If we assume that
the junction environment is in thermal equilibrium, we can use the Callen-Welton fluctuation-dissipation
theorem and write the spectral density of IF as

SI( f ) = 2π SI(ω) = 4
E(ω,T )

RN
. (3.5.27)

Here, E(ω,T ) is the average energy of the quantum oscillator with frequency ω at temperature T :

E(ω,T ) =
h̄ω

2
+ h̄ω

1

exp
(

h̄ω

kBT

)
−1

=
h̄ω

2
coth

(
h̄ω

2kBT

)
. (3.5.28)

This expression describes the smooth transition from the Johnson-Nyquist formula (classical limit,
compare (3.1.15)) at low frequencies (h̄ω,eV � kBT ) to a purely quantum noise at high frequencies
(h̄ω � kBT,eV ).

In the classical limit (h̄ω,eV � kBT ) the argument of the coth-function is small and we can use the
approximation cothx' 1/x resulting in the classical Johnson-Nyquist formula

SI(ω) =
1

2π

4kBT
RN

(3.5.29)

In the quantum limit (h̄ω � kBT,eV ) the argument of the coth-function is large and we can use the
approximation cothx' 1 resulting in

SI(ω) =
1

2π

2h̄ω

RN
. (3.5.30)

3.5.6 Macroscopic Quantum Tunneling

One of the most convincing demonstrations of the quantum aspects of the Josephson effect is probably
the observation of macroscopic quantum tunneling in an underdamped Josephson junction. The process
of macroscopic quantum tunneling refers to the escape process of the “phase particle” from a minimum
of the tilted washboard potential by tunneling through the barrier (see Fig. 3.25) rather than by thermal
activation over the barrier as discussed in section 3.4. The process is called macroscopic because the
tunneling quantity is not a single electron but the phase variable, which describes the collective state of
a large, macroscopic number of electrons.

55In the modern view, energy is always conserved, but the eigenstates of the Hamiltonian (energy observable) are not the
same as (do not commute with) those of the particle number operators.

56H.B. Callen, T.E. Welton, Phys. Rev. 83, 34 (1951).
57I.R. Senitzky, Phys. Rev. 124, 642 (1961).
58M. Lax, Phys. Rev. 145, 110 (1966).
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Figure 3.25: Macroscopic quantum tunneling of the gauge-invariant phase difference. U0 is the barrier height
and E0 the energy of the “phase particle” with respect to the local minimum.

Quantum effects usually are difficult to be observed on a macroscopic scale, since they involve micro-
scopic objects. Since in macroscopic quantum tunneling the system switches from the zero voltage state
with the phase variable trapped in a minimum of the tilted washboard potential to the voltage state, where
the phase variable is running down the potential, the study of macroscopic quantum tunneling is a par-
ticularly sensitive technique to reveal quantum effects. The two states are easily distinguishable. The
only competing classical process is thermal activation over the barrier. However, this process can be
frozen out by going to low enough temperatures. Another process preventing the observation of quan-
tum effects is the presence of damping. It is reflected in the quantum Hamiltonian by coupling the phase
degree of freedom to an environmental Hamiltonian with many degrees of freedom. In our discussion
for simplicity we first neglect this coupling to the environment.

In the presence of a dc bias current, the Hamiltonian (3.5.6) is modified by the additional term−h̄Iϕ/2e.
As already discussed before, the minimum of the resulting potential occurs at ϕ = arcsin i with i = I/Ic

(compare (2.1.9)). The curvature of the potential at the minimum is59

∂ 2U
∂ϕ2 = EJ0

√
1− i2 (3.5.31)

and the classical frequency of small oscillations about the minimum is (compare (3.4.13))

ωA = ωp(1− i2)1/4 . (3.5.32)

When solved quantum mechanically, the ground state wave function of a harmonic oscillator in such
a potential minimum is approximately Gaussian, i.e. Ψ ∝ exp(−c · (δϕ)2), where δϕ is the deviation
of the phase from the minimum value.60 However, there is one important difference between the har-
monic oscillator solution and that for the tilted washboard potential: In contrast to the harmonic oscillator

59We use the relation arcsinx = arccos
√

1− x2.
60The wave function of the ground state of a harmonic oscillator is

Ψ0 = C0

(
µω0

π h̄

)1/4
exp
{
−µω0

2h̄
(δϕ)2

}
e−ıω0t/2 .
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potential, for the tilted washboard potential the barrier is of finite width. Therefore, there is an exponen-
tially small but finite tunneling amplitude through the barrier, which connects to an outgoing wave in
the unbounded space. Therefore, the eigenstates are forming a continuum. However, only those states
corresponding to the quasi-bound solutions have a high amplitude in the well of the potential. The energy
width Γ of these states is given by h̄/τ , where τ is the lifetime for the escape from the potential well.

In order to determine the wave function we have to solve the Schrödinger equation for the regions I to III
in Fig. 3.25 and then match the solutions at the boundaries (wave matching method). However, since we
are not interested in the detailed quantitative result, we disregard algebraic prefactors in the following and
concentrate on the exponential factor, which dominates the transmission probability through the barrier.
Within the WKB approximation method, in a one-dimensional situation the absolute square |Ψ(x)|2 of
the wave function of a particle with mass M and energy E decays in the barrier region as

|Ψ(x)|2 ∝ exp

−2
h̄

∫
II

√
2M[V (x)−E] dx

 . (3.5.33)

Here the integral extends over the region under the barrier (region II in Fig. 3.25). For a rough estimate
we can use a constant average barrier height VB of width ∆x so that (3.5.33) becomes

|Ψ(x)|2 ∝ exp
{
−2

h̄

√
2MVB ∆x

}
. (3.5.34)

If U(ϕ)� E0 = h̄ωA/2 is satisfied, that is, if the ground state energy of the harmonic oscillator is much
smaller than the barrier height, we can apply the quasi-classical WKB method to our problem. With
respect to the Josephson junction problem we have to replace ∆x by ∆ϕ and have to use M = (h̄/2e)2C
(see (3.2.6)). Then we obtain

|Ψ(ϕ)|2 ∝ exp

−2
h̄

∫
II

√
2
(

h̄
2e

)2

C
[
U(ϕ)− h̄ωA

2

]
dϕ

 . (3.5.35)

With U(ϕ)� h̄ωA/2 we can use the approximation U(ϕ)− h̄ωA
2 'U(ϕ). Again, for a rough estimate

we can use a constant average barrier height U0 of width ∆ϕ so that (3.5.35) becomes

|Ψ(ϕ)|2 ∝ exp
{
−
√

U0

EC
∆ϕ

}
(3.5.36)

with EC = e2/2C. This results in the decay rate

Γ =
ωA

2π
exp
{
−
√

U0

EC
∆ϕ

}
. (3.5.37)

For small tilt angles of the washboard potential we usually (except for very small junctions) have U0 '
2EJ0�EC and ∆ϕ ' 2π . Therefore, the transmission probability is very small. However, with increasing
bias current both U0 and ∆ϕ become smaller as

U0 ' 2EJ0(1− i2)3/2 and ∆ϕ ' π

√
1− i2 (3.5.38)
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and the transmission probability can become significant and can be measured.61,62,63

In the following, we briefly give an estimate for the temperature T ?, at which the rate for macroscopic
quantum tunneling becomes equal to that for thermal activation. Note that the rate for thermal activation
is proportional to exp(−U0/kBT ) and therefore also becomes exponentially large when increasing the
bias current to the critical current. This already indicates that the temperature T ? should depend only
weakly on the applied current. We start our discussion with I ' 0. In this limit, U0 ' 2EJ0, h̄ωp =√

8EJ0EC ' 2
√

U0EC. If we set ∆ϕ ' π , with these approximations we can rewrite (3.5.37) as

Γ =
ωp

2π
exp
{
−2π

U0

h̄ωp

}
(3.5.39)

and the rates for macroscopic quantum tunneling and thermal activation become equal at the temperature

kBT ? '
h̄ωp

2π
. (3.5.40)

For I > 0, we have to take into account the current dependent factors. We see that with
√

U0 ∝ (1−
i2)3/4 and ∆ϕ ∝ (1− i2)1/2 the exponent in (3.5.36) scales with (1− i2)5/4, whereas the exponent in the
Boltzmann factor exp(−U0/kBT ) scales as (1− i2)3/2. That is, they differ by (1− i2)1/4, which exactly
corresponds to the current dependence of the frequency ωA for small oscillations around the minimum.
Thus, for arbitrary currents below Ic we obtain the general result for the cross-over temperature64

kBT ? ' h̄ωA

2π
=

h̄ωp

2π
(1− i2)1/4 . (3.5.41)

For a typical plasma frequency of the order of 1011s−1 we obtain T ? ∼ 100 mK. This temperature is
easily accessible with dilution refrigerators.65

Additional Topic:
Effect of Damping

In our previous discussion we have neglected the effect of damping. To account for damping in quantum
tunneling we have to take into account the coupling of the system with the environment (heat bath). This

61R.F. Voss, R.A. Webb, Phys. Rev. Lett. 47, 265 (1981).
62J.M. Martinis, M.H. Devoret, J. Clarke, Phys. Rev. B 35, 4682 (1987).
63J. Clarke, A.N. Cleland, M.H. Devoret, D. Esteve, J.M. Martinis, Science 239, 992 (1988).
64For the decay rate we obtain the result

Γ =
ωA

2π

(
864πU0

h̄ωA

)1/2
exp
{
− 36U0

5h̄ωA

}
.

See K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986).
65We note that in a real experiments the rate for macroscopic quantum tunneling should also be large enough that a single

event can be measured at least within the lifetime of the person doing the experiment. If a convenient rate required for an
experiment is τ−1, we also have to satisfy the criterion

ωA exp
{
−
√

U0

EC
∆ϕ

}
≥ τ

−1 .

With
√

UB ∝ (1− i2)3/4 this can of course always be done by using i' 1. However, since due to technical reasons one usually
has to use i ≤ 0.99, this sets an upper limit for EJ0/EC. Therefore, in most experiments junctions with small critical currents
(typically smaller than 10 µA) and, hence, small EJ0 are used.
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results in a much more complicated problem that has been solved by Caldeira and Leggett within the
RCSJ model.66,67,68,69 According to this work the damping results in a multiplication of the decay rate
by the factor exp(−2πCU0τ/h̄) < 1, where C ' 1 for ωAτRC� 1 and C = 3/2 for ωAτRC� 1. That is,
damping strongly suppresses macroscopic quantum tunneling. Due to the strong suppression of quantum
tunneling the damped system follows the classical thermal activation behavior to lower temperatures.
The crossover temperature T ? in the presence of damping is no longer given by (3.5.41) but by a similar
expression, where ωA has been replaced by a damping dependent frequency ωR = 1/τ:

kBT ? ' h̄ωR

2π
(3.5.42)

with

ωR = ωA

{√
1+α2−α

}
. (3.5.43)

Here, α = 1/2RNCωA is a dimensionless damping parameter. Obviously, for α = 0 we recover the
result (3.5.40). For α � 1, we obtain ωR ' ωA/2α = ω2

ARNC� ωA.70 Hence, we obtain a much lower
cross-over temperature T ? and the observation of macroscopic quantum tunneling is more difficult. The
strong damping result can be understood by the fact that in the limit of strong damping one has to replace
the undamped oscillation frequency ωA around the minimum of the potential well by the characteristic
frequency of an overdamped oscillator, namely by ωA/2α = ω2

ARNC = ωR.

An experimental example is shown in Fig. 3.26, where the temperature dependence of the escape rate
described by an effective temperature Tesc is plotted versus the sample temperature for a “quantum junc-
tion” and a “classical junction”. In the experiment the capacitance was chosen to put the sample into the
lightly (quantum junction) and moderate damping regime (classical junction) in the presence of transmis-
sion line damping. Excellent agreement with theoretical predictions of the cross-over temperature was
found. It is also seen that the escape temperature follows the sample temperature in the classical regime
where thermal activation dominates. In the low temperature regime Tesc is a fictitious temperature, at
which the classical thermal activation would yield the same escape rate as the actual quantum tunneling.

Phase Diffusion by Macroscopic Quantum Tunneling

An interesting situation occurs in the study of small junctions with small coupling energy and high resis-
tance. In such junctions a finite resistance Rp is observed at low current, which is interpreted classically
as resulting from phase diffusion. The temperature dependence of Rp is described at least qualitatively
in terms of the classical thermally activated phase slippage (compare (3.4.17)). However, at very low
temperature the data appear to bottom out at a finite, temperature independent phase slippage rate. Qual-
itatively this is what one would expect, if macroscopic quantum tunneling takes over below a certain
cross-over temperature. Then a temperature independent value is expected for Rp determined by the rate
of macroscopic quantum tunneling given by (3.5.36) with U0 = 2EJ0 and ∆ϕ = π . However, until now
the validity of this interpretation is unclear.71

66A.O. Caldeira, A. Leggett, Phys. Rev. Lett. 46, 211 (1981).
67A.O. Caldeira, A. Leggett, Ann. Phys. 149, 374 (1983).
68A.I. Larkin, Yu.N. Ovchinnikov, JETP Lett. 37, 322 (1983).
69H. Grabert, Macroscopic Quantum Tunneling and Quantum Coherence in Josephson Systems, in “Superconducting Quan-

tum Interference Devices and their Applications”, H.-D. Hahlbohm and H. Lübbig eds., de Gruyter, Berlin (1985), p. 289.
70We use the approximation

√
1+α2 = α

√
1+1/α ' α(1+1/2α).

71For further discussion see M. Tinkham, Introduction to Superconductivity, McGraw-Hill Book Company, New York
(1996).
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Figure 3.26: Temperature dependence of the escape rate described by an effective temperature for a “quantum
junction” and a “classical junction”. The arrows mark the theoretically expected cross-over temperatures from
thermal activation to macroscopic quantum tunneling (data after Martinis et al., Phys. Rev. B 35, 4682
(1987)).
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3.6 Voltage State of Extended Josephson Junctions

In the previous sections we have assumed that the Josephson junction can be modeled as a lumped
element. That is, we have described the junction by integral quantities such as its maximum Josephson
current. Such a description is only possible for small Josephson junctions (W,L < λJ) in the absence of
an applied magnetic field. In this section we extend the discussion of extended Josephson junctions in
the zero voltage state (see section 2.2 and 2.3) to the finite voltage state.

3.6.1 Negligible Screening Effects

As we have done for the zero voltage state (cf. section 2.2.6), for simplicity we first consider the case,
where we can completely neglect the effect of the currents flowing in the junction electrodes. In this case
the magnetic flux density in the junction is determined solely by the applied magnetic field: B = Bex.
Furthermore, the junction voltage V is given by the applied voltage V0 throughout the junction. Then,
the time dependence of the gauge-invariant phase difference is the same everywhere and given by the
voltage-phase relation

∂ϕ

∂ t
=

2e
h̄

V0 = ω0 , (3.6.1)

whereas the spatial variation (for the junction geometry of Fig. 2.4) is given by

∂ϕ(z, t)
∂ z

=
2π

Φ0
tBBy(z, t) . (3.6.2)

Eqs. (3.6.1) and (3.6.2) are satisfied by a gauge-invariant phase difference given by

ϕ(z, t) = ϕ0 +ω0t +
2π

Φ0
BytB · z = ϕ0 +ω0t + k · z . (3.6.3)

This solution gives a periodic Josephson current distribution (compare discussion given in section 2.2.6)

Js(z, t) = Jc sin(ω0t + k · z+ϕ0) (3.6.4)

of exactly the same form as shown in Fig. 2.6. That is, the current distribution has the same form as the
Josephson vortices in the zero voltage case except that in the case of a finite voltage these vortices are
moving along the z-direction with a velocity (compare section 2.2.6 and Fig. 2.13)

vz =
ω0

k
=

V0

BytB
. (3.6.5)

This motion of Josephson vortices is completely analogous to the motion of Abrikosov vortices in a type
II superconductor.
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3.6.2 The Time Dependent Sine-Gordon Equation

We now take into account the effect of the Josephson currents on the time-dependent electromagnetic
fields. We consider a Josephson junction as shown in Fig. 2.4. The barrier is in the yz-plane, the magnetic
field is applied in y-direction resulting in phase variations along the z-direction. The applied current is
flowing in the negative x-direction. The magnetic flux density in the junction results both from the
externally applied field and the Josephson current density and must satisfy Ampère’s law. With B = µ0H
(we assume µ = 1) and D = εε0E we obtain

∇×B = µ0J+ εε0µ0
∂E
∂ t

. (3.6.6)

Here, µ0 and ε0 are the permeability and permittivity in vacuum, respectively, and ε is the dielectric
constant of the barrier material.

In contrast to section 2.2 and 2.3 we now have to take into account the term ∂E/∂ t, which was zero in
the zero voltage state of the junction. Then, for the geometry of Fig. 2.4 we obtain

∂By(z, t)
∂ z

= −µ0Jx(z, t)− εε0µ0
∂Ex(z, t)

∂ t
. (3.6.7)

Using (3.6.2) we obtain

∂ 2ϕ(z, t)
∂ z2 = −2π

Φ0
tB

{
µ0Jx(z, t)+ εε0µ0

∂Ex(z, t)
∂ t

}
. (3.6.8)

Then, with Ex =−V/d, Jx =−Jc sinϕ and ∂ϕ/∂ t = 2πV/Φ0 we can rewrite (3.6.8) as

∂ 2ϕ(z, t)
∂ z2 = −2π

Φ0
tB

{
µ0Jc sinϕ(z, t)+ εε0µ0

Φ0

2πd
∂ 2ϕ(z, t)

∂ t2

}
. (3.6.9)

With the definition (2.3.6) of the Josephson penetration depth, λJ ≡
√

Φ0
2πµ0tBJc

, we can rearrange this
equation and obtain a wave equation for the junction known as the time dependent Sine-Gordon equa-
tion:

∂ 2ϕ(z, t)
∂ z2 − 1

c2
∂ 2ϕ(z, t)

∂ t2 − 1
λ 2

J
sinϕ(z, t) = 0 . (3.6.10)

Here,

c =

√
d

εε0µ0tB
=

1
√

ε0µ0

√
d

ε(2λL +d)
= c

√
1

ε(1+2λL/d)
(3.6.11)

is the velocity of the TEM mode in the transmission line formed by the two junction electrodes and the
dielectric barrier named the Swihart velocity.72 Since ε ∼ 5− 10 and 2λL/d ∼ 50− 100, the Swihart

72J.C. Swihart, J. Appl. Phys. 32, 461 (1961).
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rubber ribbon

pendulap

Figure 3.27: Chain of pendula attached to a twistable rubber ribbon as a mechanical analogue for the phase
dynamics of a long Josephson junction. If one pendulum is deflected from its equilibrium position, the rubber
ribbon is locally twisted and exerts a torque on the neighboring pendula, which in turn are also deflected (not
shown).

velocity is usually by more than an order of magnitude smaller than the velocity of light in vacuum. Fur-
thermore, the wavelength is significantly reduced compared to free space. For example, microwaves at
f = 10 GHz, which have a free-space wavelength of about 3 cm, would have a wavelength in the junction
of only about 1 mm. This disparity of the wave velocities makes it difficult to couple electromagnetic
energy in and out of the junction.

Using the expressions for c and λJ we obtain

c
λJ

=
ωp

2π
= νp (3.6.12)

and we can rewrite the sine-Gordon equation as

λ
2
J

∂ 2ϕ(z, t)
∂ z2 − 4π2

ω2
p

∂ 2ϕ(z, t)
∂ t2 − sinϕ(z, t) = 0 . (3.6.13)

The mechanical analogue to the phase dynamics described by (3.6.10) or (3.6.13) is a chain of mechanical
pendula, which are attached to a twistable rubber ribbon (see Fig. 3.27). If we would have a spatially
homogeneous current density Jx(z) = const, the term ∂ 2ϕ

∂ z2 would vanish and we obtain the result of the
RCSJ model. For the pendulum analogue this would mean that we would establish a rigid connection
between all pendula so that all pendula have to rotate synchronously. The term λ 2

J
∂ 2ϕ

∂ z2 can be interpreted
within the pendulum model as the restoring torque, which is acting on a pendulum at position z by the
neighboring pendula. Since the pendula are fixed at a twistable rubber ribbon, a finite restoring force is
generated if the neighboring pendula are twisted against each other.

3.6.3 Solutions of the Time Dependent Sine-Gordon Equation

The time dependent Sine-Gordon equation is nonlinear and has many interesting types of behavior. We
only address a few simple cases. We restrict ourselves to quasi-one-dimensional junctions having a
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width W � λJ . We call these junctions short and long, if their length L is small and large compared to
the Josephson penetration depth λJ , respectively.

Short Junctions (L� λJ), Low and Intermediate Damping

In the short junction limit (L� λJ) we can neglect the z variation of ϕ so that the Sine-Gordon equation
reduces to

∂ 2ϕ(z, t)
∂ t2 +

ω2
p

4π2 sinϕ(z, t) = 0 . (3.6.14)

This equation is equivalent to the differential equation (compare section 3.2) found from the RCSJ model
approximation for zero damping (GN = 0) and zero bias current (I = 0). This is expected, since for
L� λJ the behavior of the lumped junction modeled by the RCSJ model should be recovered. Note
that the definition ω2

p = 2eIc/h̄C is equivalent to the ω2
p value in (3.6.14) with C/Ai = εε0/d, Ic/Ai = Jc

and c2 = 1/ε0µ0. Of course, the Sine-Gordon equation in the same way as the RCSJ model can be
generalized by the inclusion of a damping term which is proportional to ∂ϕ/∂ t.73 However, we will
not discuss the case of finite damping here. As already discussed in section 3.2, in the case of small
amplitudes we can use the approximation sinϕ ' ϕ , that is, we can linearize the differential equation. In
this case the solutions of (3.6.14) are plasma oscillations (compare (3.2.12)).

Long Junction Limit (L� λJ), Solitons

The time dependent Sine-Gordon equation is invariant under the Lorentz transformation, in which c plays
the role of the velocity of light. This can be seen by its structure. An interesting type of solution for the
(infinitely) long Josephson junction is the soliton or fluxon solution, which we already have discussed in
section 2.3.2 for the stationary case. The solution has the form

ϕ(z, t) = 4arctan

exp

± z−z0
λJ
− vz

c t√
1−
( vz

c

)2

 . (3.6.15)

This solution maintains the value ϕ = π at the moving point z = z0 + vzt and goes from 0 to 2π as
[z−(z0 +vzt)] goes from−∞ to +∞ for the upper sign (“fluxon”) and vice versa for the lower sign (“anti-
fluxon”). The solution represents a fluxon or anti-fluxon as shown in Fig. 2.14 moving with velocity vz

along the junction. In the pendulum analogue the fluxon corresponds to a local 360◦ twist of the rubber
ribbon with the twist axis parallel to the ribbon.

Under the action of the Lorentz force due to the applied current the fluxon is moved along the junction.
The fluxon behaves as a particle and suffers Lorentz contraction on approaching the Swihart velocity
c, which plays the role of the velocity of light. For example, if a fluxon moves along the z-direction,

it becomes narrower proportional to 1/
√

1− v2
z/c2. Furthermore, the moving fluxon causes a temporal

change of the local phase difference which according to the 2. Josephson equation corresponds to a
voltage. Hence, the moving fluxon corresponds to a voltage pulse, which is becoming sharper with
increasing velocity due to Lorentz contraction in order to satisfy the condition

∫
V dt = Φ0.

73D.W. McLaughlin, A.C. Scott, Phys. Rev. A 18, 1652 (1978).
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We also note that other solutions exist for the infinitely long lossless junction representing fluxon-fluxon
collisions, fluxon-anti-fluxon collisions, bound states, plasma waves etc.. Most of these solutions, which
will not be discussed here, have been observed experimentally.74,75,76

The linearized Sine-Gordon Equation: Josephson Plasma

Another class of solutions can be studied by linearizing the Sine-Gordon equation. Let

ϕ(z, t) = ϕ0(z)+ϕ1(z, t) , (3.6.16)

where ϕ0(z) is a time independent solution and ϕ1(z, t) is a small deviation from this solution, i.e. ϕ1�
ϕ0. Then, a good approximation is

sinϕ ' sinϕ0 +ϕ1 cosϕ0 . (3.6.17)

Substitution into the Sine-Gordon equation and keeping only linear terms in ϕ1 yields

∂ 2ϕ0

∂ z2 +
∂ 2ϕ1(z, t)

∂ z2 − 1
c2

∂ 2ϕ1(z, t)
∂ t2 − 1

λ 2
J

sinϕ0−
1

λ 2
J

cosϕ0 ϕ1(z, t) = 0 . (3.6.18)

With ∂ 2ϕ0
∂ z2 = 1

λ 2
J

sinϕ0 (ϕ0 has to satisfy the time independent Sine-Gordon equation) we obtain

∂ 2ϕ1(z, t)
∂ z2 − 1

c2
∂ 2ϕ1(z, t)

∂ t2 − 1
λ 2

J
cosϕ0 ϕ1(z, t) = 0 . (3.6.19)

If we further assume that ϕ0 varies slowly over the scale that ϕ1 changes, we can assume ϕ0 ' const. In
this case the solution is

ϕ1(z, t) = exp(−ı[kz−ωt]) (3.6.20)

and ω has to satisfy the dispersion relation

ω
2 = c2k2 +ω

2
p,J . (3.6.21)

Here, ωp,J is the Josephson plasma frequency and is given by

ω2
p,J

4π2 =
c2

λ 2
J

cosϕ0 . (3.6.22)

Note that for frequencies below ωp,J the wave vector k is imaginary so that no propagating solutions
exist. However, for ω > ωp,J modes will propagate and at ω = ωp,J the wavelength will be infinitely
long just as it is for the plasma frequency in a metal. With the typical values c∼ 0.05c and λJ ∼ 100 µm
for Nb Josephson junctions we obtain a Josephson plasma frequency of about 10 GHz.

In the pendulum analogue the Josephson plasma waves are obtained, if we deflect a single pendulum
within a coupled chain of pendula and then let it relax. This results in a wavelike excitation that prop-
agates along the chain. We note that the above discussion can be extended to the case of larger applied
currents. In this case the plasma frequency ωp,J has to be replaced by the current dependent frequency
ωp,J(1− i2)1/4.

74R.A. Fulton, R.C. Dynes, Solid State Commun. 12, 57 (1973).
75B. Duenholm, O.A. Levring, J. Mygind, N.F. Pedersen, O.H. Soerensen, M. Cirillo, Phys, Rev. Lett. 46, 1299 (1981).
76K. Nakajima, H. Mizusawa, Y. Sawada, H. Akoh, S. Takada, Phys. Rev. Lett. 65, 1667 (1990).
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Plane waves: If λJ is very large or the driving current is very small, we can completely neglect the
term sinϕ/λ 2

J and the Sine-Gordon equation reduces to the familiar linear wave equation

∂ 2ϕ(z, t)
∂ z2 − 1

c2
∂ 2ϕ(z, t)

∂ t2 = 0 . (3.6.23)

The solutions of this equation are simply plane waves with velocity c.

3.6.4 Additional Topic:
Resonance Phenomena

So far we have discussed Josephson plasma waves and fluxons as possible solutions of the time-
dependent sine-Gordon equation. The interaction of these excitations with the oscillating Josephson
current results in interesting resonance phenomena appearing as structures in the current-voltage char-
acteristics. In the following we will briefly address a few of them. We will do so, since some of these
dynamic phenomena are not only interesting with respect to nonlinear dynamics but also are used in
high-frequency applications of Josephson junctions.77 We will come back to them in chapters 6 and 7.

Flux-Flow Steps and the Eck peak

For Bext > 0, the Josephson current density is spatially modulated with a wave vector k = 2e
h̄ BytB. In

the voltage state, this spatially modulated current density is moving along the junction at velocity vz =
V/BytB. The oscillating Josephson current density can excite Josephson plasma waves. As for every
driven oscillator we expect a resonant behavior, if both the wave vector and the frequency of the two
excitations match.78 That is, the electromagnetic waves are expected to strongly couple to the Josephson
currents, if the wave velocity c matches the velocity vz of the moving vortex pattern. This occurs, when
the junction voltage is

VEck = cBytB =

√
d

εε0µ0tB
BytB =

ωp

2π

λJ

L
BytBL =

ωp

2π

λJ

L
Φ0

Φ

Φ0
, (3.6.24)

where we have used c = ωp
2π

λJ , and Φ = BytBL. The IVCs of Josephson junctions indeed show a current
peak at the matching condition. This peak was first found by R. E. Eck et al.79 and therefore is called
the the Eck peak. The so-called Eck voltage corresponds to the frequency

ωEck =
2e
h̄

VEck = ωp
λJ

L
Φ

Φ0
. (3.6.25)

The Eck peak can be interpreted as the result of the nonlinear interaction of the current wave given by
(3.6.4) with the traveling electromagnetic wave of the same velocity. In fact the traveling wave of current
(3.6.4) excites only the traveling wave of the same direction. When damping is low, the electromagnetic
wave reflected at the open end of the junction transmission line can travel back almost without any loss
of amplitude. Hence, a standing wave is formed. The Eck peak is therefore observed only at medium
damping and large junction length kL� 1 (with k = 2e

h̄ BytB this is equivalent to BytBL�Φ0/2π), where
the backward wave is significantly damped after reflection.

77For a detailed discussion of the dynamic behavior of long Josephson junctions see:
J. Bindslev-Hansen, P.E. Lindeloff, Rev. Mod. Phys. 56, 431 (1981).
M. Darula, T. Doderer, S. Beuven, Supercond. Sci. Techn. 12, R1 (1999).
K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986).

78Note that we have to deal with a nonlinear oscillator, which may have a much more complicated behavior in particular for
large driving amplitudes.

79R.E. Eck, D. J. Scalapino, B.N. Taylor, Phys. Rev. Lett. 13, 15 (1964).
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Figure 3.28: Schematic IVCs of a long Josephson tunnel junction at small damping and/or small magnetic
field (a) showing the Fiske steps at voltages Vn and at medium damping and/or medium magnetic field (b)
showing the Eck peak. Note that if the external source is a current source, there will be horizontal jumps in
the IVCs as indicated by the arrows, since the current is fixed by the external source.

The appearance of the Eck peak can be interpreted also as the result of a maximum velocity for moving
Josephson vortices. We already have discussed in section 3.6.1 that the Josephson vortices move under
the action of the Lorentz force of an applied current at a velocity vz = Vff/BytB (compare (3.6.5)). Of
course, the velocity vz depends on the damping and a steady state motion is obtained, if the Lorentz force
equals the friction force. We denote the resulting voltage as flux-flow voltage Vff. If we increase the
driving force, i.e. the applied current, we expect that vz and hence Vff is increasing. However, we have to
take into account that the maximum velocity is bound to c. That is, upon approaching c a further increase
of the current will no longer result in an increase of the velocity and the corresponding flux-flow voltage.
Therefore, in the IVCs we obtain a so-called flux-flow step at the limiting voltage

Vffs = c BytB = c
Φ

L
=

ωp

2π

λJ

L
Φ0

Φ

Φ0
. (3.6.26)

The current step in the IVC is therefore also called flow-flow step. We see that Vffs just corresponds to
the Eck voltage.

Fiske steps

A related effect is the observation of steps in the IVCs as first found by M. D. Fiske.80,81 The Fiske
steps occur at junction voltages Vn, where the frequency of the oscillating Josephson currents matches
the frequencies

ωn = 2π fn = 2π
c

2L
n =

πc
L

n (3.6.27)

80M.D. Fiske, Rev. Mod. Phys. 36, 221 (1964).
81D.D. Coon, M.D. Fiske, Phys. Rev. A 138, 744 (1965).
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of the electromagnetic cavity modes, which can be regarded as standing wave modes. Note that the two
junction electrodes separated by the insulating barrier can be regarded as a cavity with the eigenfrequen-
cies given by (3.6.27). The Fiske steps occur at the voltages

Vn =
h̄
2e

ωn = Φ0
c

2L
n =

ωp

2π

λJ

L
Φ0

n
2

. (3.6.28)

For a typical long junction with L ∼ 100 µm the first Fiske step appears at a frequency of the order of
10 GHz. The corresponding voltage is of the order of several tens of µV, which is much less than the gap
voltage (e.g. Vg ∼ 3 mV for Nb).

The wave length 2π/k of the Josephson current density modulated along the z-direction is proportional
to the applied magnetic field. The resonance condition L = c

2 fn
n = λ

2 n results in the condition kL = nπ

or, equivalently, that the applied magnetic flux Φ = BytBL should be equal to n Φ0
2 . These are exactly the

flux values for which the maximum Josephson current density of a short junction vanishes. At these flux
values the spatial distribution of the Josephson current density (compare Fig. 2.6) matches the standing
wave pattern in the junction allowing an effective nonlinear interaction between the oscillating current
modes and the electromagnetic waves. If the oscillating Josephson current has excited a standing wave,
it stays locked onto this standing wave for a certain current interval. In analogy to the Shapiro steps one
obtains current steps in the IVC called Fiske steps.

We briefly discuss the shape of the IVCs of underdamped extended junctions shown in Fig. 3.28. For
voltages that are not equal to VEck and Vn, the simple solution Js(z, t) = Jc sin(ω0t + k · z+ϕ0) is a good
approximation. This means that the time-average of the Josephson current vanishes, 〈Is〉 = 0, and that
the IVCs are given by IN(V ) = V/RN(V ). In the case of a tunnel junction the nonlinear quasiparticle
IVC is obtained. However, at all dc voltages close to Vn the nonlinear interaction of the current waves
(3.6.4) and the standing waves leads to narrow peaks (the Fiske steps) in the IVCs, whose height depends
on the applied magnetic field and can be of the order of Ic (see Fig. 3.28). The Fiske modes appear at
low damping. If the damping and/or the applied magnetic field is increasing, the width of the resonance
peaks at Vn is increasing so that they are merging into a single Eck peak at VEck.

Zero field steps

Fluxons can be trapped in long Josephson junctions also in the absence of an applied magnetic field.82

The motion of these fluxons under the Lorentz force of an applied current results in so-called zero field
steps in the IVCs of long Josephson junctions at zero external field. When a propagating fluxon reaches
the end of the junction transmission line, it is reflected back as an anti-fluxon. In a junction of length L, a
full period for moving back and forth takes the time T = 2L/vz. The associated phase change is 4π , since
the passage of a fluxon and the return of an anti-fluxon both change ϕ by 2π . Thus, in the relativistic
limit (vz→ c) reached at large bias current (large driving force), the dc voltage across the junction will
be

Vzfs = ϕ̇
h̄
2e

=
4π

T
h̄
2e

=
4π

2L/c
h̄
2e

=
h
2e

c
L

=
ωp

2π

λJ

L
Φ0 . (3.6.29)

If n fluxons are present in the junction, the voltage will be n times larger:

Vn,zfs = Φ0
c
L

n =
ωp

2π

λJ

L
Φ0 n . (3.6.30)

82A.V. Ustinov et al., Phys. Rev. Lett. 69, 1815 (1992).
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Figure 3.29: IVCs of an annular Nb/insulator/Pb Josephson junction containing a different number of trapped
fluxons as indicated by the numbers. The geometry of the junction is shown in the inset. The ring diameter
was about 100µm, the ring width about 10µm (after A.V. Ustinov et al., Phys. Rev. Lett. 69, 1815 (1992)).

These constant voltage values are referred to as zero field steps, because they are based on fluxons trapped
in the junction in the absence of an external field. An experimental example is shown in Fig. 3.29. We
see that Vn,zfs is just twice the Fiske step voltage Vn. Comparing (3.6.28) and (3.6.30) we see that this
is caused by the fact that for the Fiske steps the characteristic period for a 2π phase change is c/2L,
whereas it is c/L for the zero field step. The reason for this is the fact that in the zero-field step case the
fluxon has to move back and forth. We also see that Vffs = Vn,zfs for Φ/Φ0 = n. This is obvious, since
the introduction of n fluxons into the junction at zero field is equivalent to generating a flux Φ = nΦ0 by
applying a corresponding external field.

Interesting phenomena due to the motion and collision of fluxons can be observed in ring-shaped Joseph-
son junctions. For example, if one introduces a fluxon and an anti-fluxon in such a junction, they circulate
in opposite direction under the action of a finite driving current and collide during each round-trip. This
collision has been observed by Low Temperature Scanning Electron Microscopy.83 It was found that
the collision zone shrinks with increasing speed of the fluxon and anti-fluxon due to Lorentz contrac-
tion.84,85,86

Vortex-Cherenkov Radiation

Under certain conditions Josephson fluxons can move faster than c, that is, faster than light.87,88,89 This
is analogous to the motion of charged particles, which are moving in a medium at a velocity very close
to the velocity of light. If their velocity is larger than the velocity of light in the medium, they emit
electromagnetic radiation, which is called Cherenkov radiation. Such radiation can for example be seen

83R. Gross, D. Koelle, Low Temperature Scanning Electron Microscopy of Superconducting Thin Films and Josephson
Junctions , Reports on Progress in Physiscs 57, 651-741 (1994).

84S. Keil, I. V. Vernik, T. Doderer, A. Laub, H. Preßler, R. P. Huebener, N. Thyssen, A. V. Ustinov, and H. Kohlstedt , Phys.
Rev. B 54, 14948 (1996).

85S. G. Lachenmann, T. Doderer, R. P. Huebener, D. Quenter, J. Niemeyer, and R. Pöpel , Phys. Rev. B 48, 3295 (1993).
86A. Laub, T. Doderer, S. G. Lachenmann, R. P. Huebener, and V. A. Oboznov , Phys. Rev. Lett. 75, 1372 (1995).
87R.G. Mints, I.B. Snapiro, Phys. Rev. B 52, 9691 (1995).
88V.V. Kurin, A.V. Yulin, I.A. Sheresheskii, N.K. Vdovicheva, Phys. Rev. Lett. 80, 3372 (1998).
89E. Goldobin, A. Wallraff, N. Thyssen, A.V. Ustinov, Phys. Rev. B 57, 130 (1998); see also Phys. Rev. Lett. 79, 1365

(1997); Phys. Rev. B 66, 064527 (2001).
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as a blue lightning in water surrounding a nuclear reactor. In the same way fast fluxons are emitting
Josephson plasma waves called Vortex-Cherenkov radiation.
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Summary

Voltage State of Short Josephson Junctions:

• In the voltage state, the total current across a Josephson junction is given by the sum of the
Josephson current Is, the normal current IN , the displacement current ID and a fluctuation
current IF .

• In the RCSJ model the normal current channel is modeled by a voltage independent resistance
R. The equation of motion of the phase difference ϕ is given by

βC
d2ϕ

dτ2 +
dϕ

dτ
+ sinϕ− i− iF(τ) = 0

with τ = t/τc = t/(2eIcR/h̄). The motion of ϕ is equivalent to the motion of a particle with
mass M = (h̄/2e)2C in the tilted washboard potential U = EJ0[1− cosϕ− (I/Ic)ϕ] at damping
η = (h̄/2e)2/R.

The equivalent circuit is a parallel LCR oscillatory circuit with the nonlinear Josephson in-
ductance Ls = h̄/2eIc cosϕ = Lc/cosϕ , the junction capacitance C and the junction normal
resistance R. The oscillatory circuit is characterized by the characteristic frequencies

ωp =
√

1
LcC

=

√
2eIc

h̄C
ωc =

R
Lc

=
2eIcR

h̄
ωRC =

1
RC

and the quality factor

Q2 = βC ≡ 2e
h̄

IcR2C .

• Overdamped Josephson junctions (βC > 1) have non-hysteretic IVCs, whereas underdamped
junctions (βC < 1) show hysteretic IVCs.

• The IVC of an overdamped Josephson junction driven by a dc current source is given by

〈V (t)〉 = IcR

√(
I
Ic

)2

−1 for
I
Ic

> 1 .

• Driving a Josephson junction with a voltage V (t) = Vdc +V1 cosω1t results in current steps
(Shapiro steps) at voltages

Vn = n
Φ0

2π
ω1

with amplitudes

|〈Is〉n| = Ic

∣∣∣∣Jn

(
2πV1

Φ0ω1

)∣∣∣∣ .
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Secondary Quantum Macroscopic Effects:

• A classical description of the motion of ϕ is possible only in the phase regime (h̄ωp � EJ0
or, equivalently, EC = e2/2C � EJ0). The phase regime is present for junctions with large
area (typically 0.01−0.1 µm2) and hence small EC ∝ A−1 and large Josephson coupling energy
EJ0 ∝ A.

• For h̄ωp ∼ EJ0 or, equivalently, EC = e2/2C ∼ EJ0, the motion of ϕ has to be described fully
quantum mechanically. For Josephson junctions with negligible damping the adequate Hamil-
tonian is

H = −4EC
∂ 2

∂ϕ2 +EJ0(1− cosϕ) .

The variables ϕ and (h̄/2e)Q = (h̄/2e)2Cϕ̇ are canonically conjugate variables just like position
and momentum and obey the commutation rule

[ϕ,
h̄
2e

Q] = ıh̄ ,

resulting in the uncertainty relation

∆N ·∆ϕ ≥ 1

for the number of Cooper pairs N = Q/2e and the phase difference ϕ .

• In the phase regime (h̄ωp � EJ0 or, equivalently, EC = e2/2C� EJ0) we have ∆ϕ → 0 and
∆N → ∞, whereas in the charge regime (h̄ωp � EJ0 or, equivalently, EC = e2/2C� EJ0) we
have ∆N→ 0 and ∆ϕ → ∞.

• In the charge regime, at T = 0 charge tunneling between the junction electrodes is possible only
for VCB ≥ e/C due to the Coulomb blockade effect. In the phase regime, fluxon motion along
the junction is possible only for IFB ≥Φ0/Lc due to the flux blockade effect.

• At I < Ic and T > 0, the phase difference can escape from a local minimum of the tilted
washboard potential by thermal activation, resulting in a finite junction voltage by thermally
activated phase slippage.

• The phase difference ϕ also can escape from a local minimum of the tilted washboard potential
by tunneling through the potential barrier. This process is called macroscopic quantum tunnel-
ing, since the phase difference describing the collective state of a large number of electrons is
tunneling.

• The cross-over temperature between thermal and tunnel escape from a local potential well is

kBT ? ' h̄ωA

2π
=

h̄ωp

2π

[
1−
(

I
Ic

)2
]1/4

.
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Voltage State of Long Josephson Junctions:

• The equation of motion of the phase difference in long Josephson junctions is described by the
time-dependent Sine-Gordon equation

∂ 2ϕ(z, t)
∂ z2 − 1

c2
∂ 2ϕ(z, t)

∂ t2 − 1
λ 2

J
sinϕ(z, t) = 0 ,

where the Swihart velocity c is the propagation velocity of electromagnetic waves in the junction.

• Prominent solutions of the Sine-Gordon equation are plasma oscillations and solitons. The
nonlinear interaction of these excitations with the oscillating Josephson current results in various
resonant phenomena such as flux-flow steps, Fiske steps, or zero-field steps.
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