Applied Superconductivity:

Josephson Effect and Superconducting Electronics

Manuscript to the Lectures during WS 2003/2004, WS 2005/2006, WS 2006/2007, WS 2007/2008, WS 2008/2009, and WS 2009/2010

Prof. Dr. Rudolf Gross ^{and} Dr. Achim Marx

Walther-Meißner-Institut Bayerische Akademie der Wissenschaften and Lehrstuhl für Technische Physik (E23)

Technische Universität München

Walther-Meißner-Strasse 8 D-85748 Garching Rudolf.Gross@wmi.badw.de

© Walther-Meißner-Institut — Garching, October 2005

Contents

	Pref	face		xxi
I	Fou	ndatio	ns of the Josephson Effect	1
1	Mac	roscopi	ic Quantum Phenomena	3
	1.1	The M	lacroscopic Quantum Model	3
		1.1.1	Coherent Phenomena in Superconductivity	3
		1.1.2	Macroscopic Quantum Currents in Superconductors	12
		1.1.3	The London Equations	18
	1.2	Flux Q	Quantization	24
		1.2.1	Flux and Fluxoid Quantization	26
		1.2.2	Experimental Proof of Flux Quantization	28
		1.2.3	Additional Topic: Rotating Superconductor	30
	1.3	Joseph	son Effect	32
		1.3.1	The Josephson Equations	33
		1.3.2	Josephson Tunneling	37
2	JJs:	The Ze	ero Voltage State	43
	2.1	Basic	Properties of Lumped Josephson Junctions	44
		2.1.1	The Lumped Josephson Junction	44
		2.1.2	The Josephson Coupling Energy	45
		2.1.3	The Superconducting State	47
		2.1.4	The Josephson Inductance	49
		2.1.5	Mechanical Analogs	49
	2.2	Short.	Josephson Junctions	50
		2.2.1	Quantum Interference Effects – Short Josephson Junction in an Applied Mag- netic Field	50

		2.2.2	The Fraunhofer Diffraction Pattern	54
		2.2.3	Determination of the Maximum Josephson Current Density	58
		2.2.4	Additional Topic: Direct Imaging of the Supercurrent Distribution	62
		2.2.5	Additional Topic: Short Josephson Junctions: Energy Considerations	63
		2.2.6	The Motion of Josephson Vortices	65
	2.3	Long J	osephson Junctions	68
		2.3.1	The Stationary Sine-Gordon Equation	68
		2.3.2	The Josephson Vortex	70
		2.3.3	Junction Types and Boundary Conditions	73
		2.3.4	Additional Topic: Josephson Current Density Distribution and Maximum Josephson Current	79
		2.3.5	The Pendulum Analog	84
3	He	The Vo	Itage State	89
5	3 1	The Ba	asic Equation of the Lumped Iosephson Junction	90
	5.1	311	The Normal Current: Junction Resistance	90
		3.1.2	The Displacement Current: Junction Capacitance	92
		3.1.3	Characteristic Times and Frequencies	93
		3.1.4	The Fluctuation Current	94
		3.1.5	The Basic Junction Equation	96
	3.2	The Re	esistively and Capacitively Shunted Junction Model	97
		3.2.1	Underdamped and Overdamped Josephson Junctions	100
	3.3	Respor	nse to Driving Sources	102
		3.3.1	Response to a dc Current Source	102
		3.3.2	Response to a dc Voltage Source	107
		3.3.3	Response to ac Driving Sources	107
		3.3.4	Photon-Assisted Tunneling	112
	3.4	Additio Effect	onal Topic: of Thermal Fluctuations	115
		3.4.1	Underdamped Junctions: Reduction of I_c by Premature Switching	117
		3.4.2	Overdamped Junctions: The Ambegaokar-Halperin Theory	118
	3.5	Second	lary Quantum Macroscopic Effects	122
		3.5.1	Quantum Consequences of the Small Junction Capacitance	122

v

		3.5.2	Limiting Cases: The Phase and Charge Regime	125
		3.5.3	Coulomb and Flux Blockade	128
		3.5.4	Coherent Charge and Phase States	130
		3.5.5	Quantum Fluctuations	132
		3.5.6	Macroscopic Quantum Tunneling	133
	3.6	Voltage	e State of Extended Josephson Junctions	139
		3.6.1	Negligible Screening Effects	139
		3.6.2	The Time Dependent Sine-Gordon Equation	140
		3.6.3	Solutions of the Time Dependent Sine-Gordon Equation	141
		3.6.4	Additional Topic: Resonance Phenomena	144
II	Ap	plicatio	ons of the Josephson Effect	153
4	SQU	IDs		157
	4.1	The dc	-SQUID	159
		4.1.1	The Zero Voltage State	159
		4.1.2	The Voltage State	164
		4.1.3	Operation and Performance of dc-SQUIDs	168
		4.1.4	Practical dc-SQUIDs	172
		4.1.5	Read-Out Schemes	176
	4.2	Additio The rf-	onal Topic: SQUID	180
		4.2.1	The Zero Voltage State	180
		4.2.2	Operation and Performance of rf-SQUIDs	182
		4.2.3	Practical rf-SQUIDs	186
	4.3	Additio Other S	onal Topic: SQUID Configurations	188
		4.3.1	The DROS	188
		4.3.2	The SQIF	189
		4.3.3	Cartwheel SQUID	189
	4.4	Instrun	nents Based on SQUIDs	191
		4.4.1	Magnetometers	192
		4.4.2	Gradiometers	194
		4.4.3	Susceptometers	196

		4.4.4	Voltmeters
		4.4.5	Radiofrequency Amplifiers
	4.5	Applic	ations of SQUIDs
		4.5.1	Biomagnetism
		4.5.2	Nondestructive Evaluation
		4.5.3	SQUID Microscopy
		4.5.4	Gravity Wave Antennas and Gravity Gradiometers
		4.5.5	Geophysics
5	Digi	tal Elec	tronics 215
	5.1	Superc	conductivity and Digital Electronics
		5.1.1	Historical development
		5.1.2	Advantages and Disadvantages of Josephson Switching Devices
	5.2	Voltag	e State Josephson Logic
		5.2.1	Operation Principle and Switching Times
		5.2.2	Power Dissipation
		5.2.3	Switching Dynamics, Global Clock and Punchthrough
		5.2.4	Josephson Logic Gates
		5.2.5	Memory Cells
		5.2.6	Microprocessors
		5.2.7	Problems of Josephson Logic Gates
	5.3	RSFQ	Logic
		5.3.1	Basic Components of RSFQ Circuits
		5.3.2	Information in RSFQ Circuits
		5.3.3	Basic Logic Gates
		5.3.4	Timing and Power Supply
		5.3.5	Maximum Speed
		5.3.6	Power Dissipation
		5.3.7	Prospects of RSFQ
		5.3.8	Fabrication Technology
		5.3.9	RSFQ Roadmap
	5.4	Analog	g-to-Digital Converters
		5.4.1	Additional Topic:Foundations of ADCs256
		5.4.2	The Comparator
		5.4.3	The Aperture Time
		5.4.4	Different Types of ADCs

6	The	Josephson Voltage Standard 26	<u>í9</u>
	6.1	Voltage Standards	0
		6.1.1 Standard Cells and Electrical Standards	0
		6.1.2 Quantum Standards for Electrical Units	1
	6.2	The Josephson Voltage Standard	'4
		6.2.1 Underlying Physics	'4
		6.2.2 Development of the Josephson Voltage Standard	'4
		6.2.3 Junction and Circuit Parameters for Series Arrays	'9
	6.3	Programmable Josephson Voltage Standard	31
		6.3.1 Pulse Driven Josephson Arrays	33
7	Sup	erconducting Photon and Particle Detectors 28	35
	7.1	Superconducting Microwave Detectors: Heterodyne Receivers	36
		7.1.1 Noise Equivalent Power and Noise Temperature	36
		7.1.2 Operation Principle of Mixers	37
		7.1.3 Noise Temperature of Heterodyne Receivers	90
		7.1.4 SIS Quasiparticle Mixers	92
		7.1.5 Josephson Mixers	96
	7.2	Superconducting Microwave Detectors: Direct Detectors	97
		7.2.1 NEP of Direct Detectors)8
	7.3	Thermal Detectors)0
		7.3.1 Principle of Thermal Detection)0
		7.3.2 Bolometers)2
		7.3.3 Antenna-Coupled Microbolometers)7
	7.4	Superconducting Particle and Single Photon Detectors	4
		7.4.1 Thermal Photon and Particle Detectors: Microcalorimeters	.4
		7.4.2 Superconducting Tunnel Junction Photon and Particle Detectors	8
	7.5	Other Detectors	28
8	Mic	rowave Applications 32	<u>29</u>
	8.1	High Frequency Properties of Superconductors	30
		8.1.1 The Two-Fluid Model	30
		8.1.2 The Surface Impedance	33
	8.2	Superconducting Resonators and Filters	36
	8.3	Superconducting Microwave Sources	37

9	Sup	erconducting Quantum Bits	339
	9.1	Quantum Bits and Quantum Computers	. 341
		9.1.1 Quantum Bits	. 341
		9.1.2 Quantum Computing	. 343
		9.1.3 Quantum Error Correction	. 346
		9.1.4 What are the Problems?	. 348
	9.2	Implementation of Quantum Bits	. 349
	9.3	Why Superconducting Qubits	. 352
		9.3.1 Superconducting Island with Leads	. 352
II	[A	nhang	355
A	The	Josephson Equations	357
B	Ima	ging of the Maximum Josephson Current Density	361
С	Nun	nerical Iteration Method for the Calculation of the Josephson Current Distribution	363
D	Pho	ton Noise	365
	Ι	Power of Blackbody Radiation	. 365
	II	Noise Equivalent Power	. 367
E	Qub	its	369
	Ι	What is a quantum bit ?	. 369
		I.1 Single-Qubit Systems	. 369
		I.2 The spin-1/2 system	. 371
		I.3 Two-Qubit Systems	. 372
	II	Entanglement	. 373
	III	Qubit Operations	. 375
		III.1 Unitarity	. 375
		III.2 Single Qubit Operations	. 375
		III.3 Two Qubit Operations	. 376
	IV	Quantum Logic Gates	. 377
		IV.1 Single-Bit Gates	. 377
		IV.2 Two Bit Gates	. 379
	V	The No-Cloning Theorem	. 384
	VI	Quantum Complexity	. 385
	VII	The Density Matrix Representation	. 385

•	
	v
	л

F	Two	Level Systems 38	89
	Ι	Introduction to the Problem	89
		I.1 Relation to Spin-1/2 Systems	90
	II	Static Properties of Two-Level Systems	90
		II.1 Eigenstates and Eigenvalues	90
		II.2 Interpretation	91
		II.3 Quantum Resonance	94
	III	Dynamic Properties of Two-Level Systems	95
		III.1 Time Evolution of the State Vector	95
		III.2 The Rabi Formula	95
G	The	Spin 1/2 System 39	99
	Ι	Experimental Demonstration of Angular Momentum Quantization	99
	II	Theoretical Description	01
		II.1 The Spin Space	01
	III	Evolution of a Spin 1/2 Particle in a Homogeneous Magnetic Field	02
	IV	Spin 1/2 Particle in a Rotating Magnetic Field	04
		IV.1 Classical Treatment	04
		IV.2 Quantum Mechanical Treatment	06
		IV.3 Rabi's Formula	07
H	Lite	ature 40	09
	Ι	Foundations of Superconductivity	09
		I.1 Introduction to Superconductivity	09
		I.2 Early Work on Superconductivity and Superfluidity	10
		I.3 History of Superconductivity	10
		I.4 Weak Superconductivity, Josephson Effect, Flux Structures	10
	II	Applications of Superconductivity	11
		II.1 Electronics, Sensors, Microwave Devices	11
		II.2 Power Applications, Magnets, Transportation	12
		II.3 Superconducting Materials	12
I	SI-E	nheiten 41	13
	Ι	Geschichte des SI Systems	13
	II	Die SI Basiseinheiten	15
	III	Einige von den SI Einheiten abgeleitete Einheiten	16
	IV	Vorsätze	18
	V	Abgeleitete Einheiten und Umrechnungsfaktoren	19

J Physikalische Konstanten

List of Figures

1.1	Meissner-Effect	19
1.2	Current transport and decay of a supercurrent in the Fermi sphere picture	20
1.3	Stationary Quantum States	24
1.4	Flux Quantization in Superconductors	25
1.5	Flux Quantization in a Superconducting Cylinder	27
1.6	Experiment by Doll and Naebauer	29
1.7	Experimental Proof of Flux Quantization	29
1.8	Rotating superconducting cylinder	31
1.9	The Josephson Effect in weakly coupled superconductors	32
1.10	Variation of n_s^{\star} and γ across a Josephson junction	35
1.11	Schematic View of a Josephson Junction	36
1.12	Josephson Tunneling	39
2.1	Lumped Josephson Junction	45
2.2	Coupling Energy and Josephson Current	46
2.3	The Tilted Washboard Potential	48
2.4	Extended Josephson Junction	51
2.5	Magnetic Field Dependence of the Maximum Josephson Current	55
2.6	Josephson Current Distribution in a Small Josephson Junction for Various Applied Mag- netic Fields	56
2.7	Spatial Interference of Macroscopic Wave Funktions	57
2.8	The Josephson Vortex	57
2.9	Gaussian Shaped Josephson Junction	59
2.10	Comparison between Measurement of Maximum Josephson Current and Optical Diffrac- tion Experiment	60
2.11	Supercurrent Auto-correlation Function	61
2.12	Magnetic Field Dependence of the Maximum Josephson Current of a YBCO-GBJ	63

2.13	Motion of Josephson Vortices	66
2.14	Magnetic Flux and Current Density Distribution for a Josephson Vortex	70
2.15	Classification of Junction Types: Overlap, Inline and Grain Boundary Junction	74
2.16	Geometry of the Asymmetric Inline Junction	77
2.17	Geometry of Mixed Overlap and Inline Junctions	78
2.18	The Josephson Current Distribution of a Long Inline Junction	80
2.19	The Maximum Josephson Current as a Function of the Junction Length	81
2.20	Magnetic Field Dependence of the Maximum Josephson Current and the Josephson Current Density Distribution in an Overlap Junction	83
2.21	The Maximum Josephson Current as a Function of the Applied Field for Overlap and Inline Junctions	84
3.1	Current-Voltage Characteristic of a Josephson tunnel junction	91
3.2	Equivalent circuit for a Josephson junction including the normal, displacement and fluc- tuation current	92
3.3	Equivalent circuit of the Resistively Shunted Junction Model	97
3.4	The Motion of a Particle in the Tilt Washboard Potential	98
3.5	Pendulum analogue of a Josephson junction	99
3.6	The IVCs for Underdamped and Overdamped Josephson Junctions	01
3.7	The time variation of the junction voltage and the Josephson current	03
3.8	The RSJ model current-voltage characteristics	05
3.9	The RCSJ Model IVC at Intermediate Damping	07
3.10	The RCJ Model Circuit for an Applied dc and ac Voltage Source	08
3.11	Overdamped Josephson Junction driven by a dc and ac Voltage Source	10
3.12	Overdamped Josephson junction driven by a dc and ac Current Source $\ldots \ldots \ldots \ldots 1$	11
3.13	Shapiro steps for under- and overdamped Josephson junction	12
3.14	Photon assisted tunneling	13
3.15	Photon assisted tunneling in SIS Josephson junction	13
3.16	Thermally Activated Phase Slippage	16
3.17	Temperature Dependence of the Thermally Activated Junction Resistance 1	19
3.18	RSJ Model Current-Voltage Characteristics Including Thermally Activated Phase Slippage 1	20
3.19	Variation of the Josephson Coupling Energy and the Charging Energy with the Junction Area	24
3.20	Energy diagrams of an isolated Josephson junction	27
3.21	The Coulomb Blockade	28

3.22	The Phase Blockade
3.23	The Cooper pair box
3.24	Double well potential for the generation of phase superposition states
3.25	Macroscopic Quantum Tunneling
3.26	Macroscopic Quantum Tunneling at Large Damping
3.27	Mechanical analogue for phase dynamics of a long Josephson junction
3.28	The Current Voltage Characteristic of an Underdamped Long Josephson Junction 145
3.29	Zero field steps in IVCs of an annular Josephson junction
4.1	The dc-SQUID
4.2	Maximum Supercurrent versus Applied Magnetic Flux for a dc-SQUID at Weak Screening162
4.3	Total Flux versus Applied Magnetic Flux for a dc SQUID at $\beta_L > 1$
4.4	Current-voltage Characteristics of a dc-SQUID at Negligible Screening
4.5	The pendulum analogue of a dc SQUID
4.6	Principle of Operation of a dc-SQUID
4.7	Energy Resolution of dc-SQUIDs
4.8	The Practical dc-SQUID
4.9	Geometries for thin film SQUID washers
4.10	Flux focusing effect in a $YBa_2Cu_3O_{7-\delta}$ washer $\ldots \ldots 175$
4.11	The Washer dc-SQUID
4.12	The Flux Modulation Scheme for a dc-SQUID
4.13	The Modulation and Feedback Circuit of a dc-SQUID
4.14	The rf-SQUID
4.15	Total flux versus applied flux for a rf-SQUID
4.16	Operation of rf-SQUIDs
4.17	Tank voltage versus rf-current for a rf-SQUID
4.18	High T_c rf-SQUID
4.19	The double relaxation oscillation SQUID (DROS)
4.20	The Superconducting Quantum Interference Filter (SQIF)
4.21	Input Antenna for SQUIDs
4.22	Various types of thin film SQUID magnetometers
4.23	Magnetic noise signals
4.24	Magnetically shielded room
4.25	Various gradiometers configurations

4.26	Miniature SQUID Susceptometer
4.27	SQUID Radio-frequency Amplifier
4.28	Multichannel SQUID Systems
4.29	Magnetocardiography
4.30	Magnetic field distribution during R peak
4.31	SQUID based nondestructive evaluation
4.32	Scanning SQUID microscopy
4.33	Scanning SQUID microscopy images
4.34	Gravity wave antenna
4.35	Gravity gradiometer
5.1	Cryotron
5.2	Josephson Cryotron
5.3	Device performance of Josephson devices
5.4	Principle of operation of a Josephson switching device
5.5	Output current of a Josephson switching device
5.6	Threshold characteristics for a magnetically and directly coupled gate
5.7	Three-junction interferometer gate
5.8	Current injection device
5.9	Josephson Atto Weber Switch (JAWS)
5.10	Direct coupled logic (DCL) gate
5.11	Resistor coupled logic (RCL) gate
5.12	4 junction logic (4JL) gate
5.13	Non-destructive readout memory cell
5.14	Destructive read-out memory cell
5.15	4 bit Josephson microprocessor
5.16	Josephson microprocessor
5.17	Comparison of latching and non-latching Josephson logic
5.18	Generation of SFQ Pulses
5.19	dc to SFQ Converter
5.20	Basic Elements of RSFQ Circuits
5.21	RSFQ memory cell
5.22	RSFQ logic
5.23	RSFQ OR and AND Gate

5.24	RSFQ NOT Gate
5.25	RSFQ Shift Register
5.26	RSFQ Microprocessor
5.27	RSFQ roadmap
5.28	Principle of operation of an analog-to-digital converter
5.29	Analog-to-Digital Conversion
5.30	Semiconductor and Superconductor Comparators
5.31	Incremental Quantizer
5.32	Flash-type ADC 265
5.33	Counting-type ADC
6.1	Weston cell
6.2	The metrological triangle for the electrical units
6.3	IVC of an underdamped Josephson junction under microwave irradiation
6.4	International voltage comparison between 1920 and 2000
6.5	One-Volt Josephson junction array
6.6	Josephson series array embedded into microwave stripline
6.7	Microwave design of Josephson voltage standards
6.8	Adjustment of Shapiro steps for a series array Josephson voltage standard 281
6.9	IVC of overdamped Josephson junction with microwave irradiation
6.10	Programmable Josephson voltage standard
7.1	Block diagram of a heterodyne receiver
7.2	Ideal mixer as a switch
7.3	Current response of a heterodyne mixer
7.4	IVCs and IF output power of SIS mixer
7.5	Optimum noise temperature of a SIS quasiparticle mixer
7.6	Measured DSB noise temperature of a SIS quasiparticle mixers
7.7	High frequency coupling schemes for SIS mixers
7.8	Principle of thermal detectors
7.9	Operation principle of superconducting transition edge bolometer
7.10	Sketch of a HTS bolometer
7.11	Specific detectivity of various bolometers
7.12	Relaxation processes in a superconductor after energy absorption
7.13	Antenna-coupled microbolometer

Schematic illustration of the hot electron bolometer mixer
Hot electron bolometer mixers with different antenna structures
Transition-edge sensors
Transition-edge sensors
Functional principle of a superconducting tunnel junction detector
Circuit diagram of a superconducting tunnel junction detector
Energy resolving power of STJDs
Quasiparticle tunneling in SIS junctions
Quasiparticle trapping in STJDs
STJDs employing lateral quasiparticle trapping
Superconducting tunnel junction x-ray detector
Equivalent circuit for the two-fluid model
Characteristic frequency regimes for a superconductor
Surface resistance of Nb and Cu
Konrad Zuse 1945
Representation of a Qubit State as a Vector on the Bloch Sphere
Operational Scheme of a Quantum Computer
Quantum Computing: What's it good for?
Shor, Feynman, Bennett and Deutsch
Qubit Realization by Quantum Mechanical Two level System
Use of Superconductors for Qubits
Superconducting Island with Leads
The Bloch Sphere S^2
The Spin-1/2 System
Entanglement – an artist's view
Classical Single-Bit Gate
Quantum NOT Gate
Classical Two Bit Gate
Reversible and Irreversible Logic
Reversible Classical Logic
Reversible XOR (CNOT) and SWAP Gate
The Controlled U Gate

E.11	Density Matrix for Pure Single Qubit States	386
E.12	Density Matrix for a Coherent Superposition of Single Qubit States	387
F.1	Energy Levels of a Two-Level System	392
F.2	The Benzene Molecule	394
F.3	Graphical Representation of the Rabi Formula	396
G.1	The Larmor Precession	100
G.2	The Rotating Reference Frame	104
G.3	The Effective Magnetic Field in the Rotating Reference Frame	405
G.4	Rabi's Formula for a Spin 1/2 System 4	108

List of Tables

5.1	Switching delay and power dissipation for various types of logic gates
5.2	Josephson 4 kbit RAM characteristics (organization: 4096 word x 1 bit, NEC)
5.3	Performance of various logic gates
5.4	Possible applications of superconductor digital circuits (source: SCENET 2001)
5.5	Performance of various RSFQ based circuits
7.1	Characteristic materials properties of some superconductors
8.1	Important high-frequency characteristic of superconducting and normal conducting 334
E.1	Successive measurements on a two-qubit state showing the results A and B with the corresponding probabilities $P(A)$ and $P(B)$ and the remaining state after the measurement

Chapter 8

Microwave Applications

Superconducting devices find brought applications in passive microwave devices such as filters or resonators. These applications are based on the very small losses due to the small microwave surface resistance of superconducting materials. Therefore, the quality factor of superconducting microwave resonators and filters is larger than for equally sized normalconducting devices. In the same way, at the same quality factor superconducting microwave resonators and filters can be made much smaller. This is in particular important for satellite or space applications. In this Chapter we briefly discuss the foundations of superconducting passive microwave devices and describe a few prominent devices structures and applications.

Superconducting devices based on Josephson junctions can serve as sources for microwave radiation. Here, the underlying principle is based on the voltage-frequency relation $V = f\Phi_0$, which immediately suggests that a Josephson junction can be used as a voltage controlled oscillator with f/V = 483597.9 GHz/V. In this Chapter we also present the foundations of superconducting microwave sources based on Josephson junction.

8.1 High Frequency Properties of Superconductors

8.1.1 The Two-Fluid Model

Already in 1934, that is long before the development of BCS theory, **Cornelius Gorter** and **H.B.G. Casimir** developed the two fluid model of superconductors.^{1,2} The model is based on the concept that there are two fluids in superconductors, namely a superfluid with carrier density n_s and a normal fluid with carrier density n_n with the total carrier density given by

$$n = n_n + \frac{n_s}{2} . (8.1.1)$$

Here, the factor $\frac{1}{2}$ arises from the fact that the carriers of the superfluid are pairs with charge -2e. We will use the two-fluid model together with Ohm's law

$$\frac{1}{\sigma_n} \mathbf{J}_n = \mathbf{E}$$
(8.1.2)

and the linearized first London equation (compare (1.1.70) and (1.1.71))

$$\frac{\partial}{\partial t}(\Lambda \mathbf{J}_s) = \frac{\partial}{\partial t}(\mu_0 \lambda_L^2 \mathbf{J}_s) = \mathbf{E}$$
(8.1.3)

to describe the relation of the normal and superfluid current density and the electric field. In (8.1.3)

$$\Lambda \equiv \frac{m_s^{\star}}{n_s^{\star}q^{\star 2}} \tag{8.1.4}$$

is the London coefficient and

$$\lambda_L \equiv \sqrt{\frac{m_s^*}{\mu_0 n_s^* q^{*2}}} \tag{8.1.5}$$

the *London penetration depth* (compare (1.1.63) and (1.1.64)). Here, $q^* = -2e$ and m_s^* are the charge and the effective mass of the carrier forming the superfluid.

For a harmonic current with angular frequency ω (8.1.3) can be written as

$$\iota \omega \Lambda \mathbf{J}_{s} = \iota \omega \mu_{0} \lambda_{L}^{2} \mathbf{J}_{s} = \frac{1}{\sigma_{s}} \mathbf{J}_{s} = \mathbf{E}$$
(8.1.6)

with the purely imaginary conductivity of the superfluid

$$\sigma_s = \frac{n_s^* q^{\star 2}}{\iota \omega m_s^*} = \frac{1}{\iota \omega \Lambda} = \frac{1}{\iota \omega \mu_0 \lambda_L^2} . \tag{8.1.7}$$

¹D. Shoenberg, *Superconductivity*, Cambridge University Press, Cambridge (1965), pp. 194-196.

²T. van Duzer, Principles of Superconducting Devices and Circuits, Elsevier, New York, Amsterdam, London (1981), p. 124.

To derive the equivalent relations for the normal fluid we write the normal current as $\mathbf{J}_n = n_n e \mathbf{v}_n$, where \mathbf{v}_n is the average velocity of the normal carriers, and assume that the normal carriers have to satisfy Newton's law³

$$m_n^{\star} \left(\frac{d\mathbf{v}_n}{dt} + \frac{\mathbf{v}_n}{\tau} \right) = e\mathbf{E} . \tag{8.1.8}$$

Here, τ is the scattering time of the normal carriers and m_n^* and e the effective mass and charge of the normal carriers. Again, for a sinusoidal current with angular frequency ω we obtain

$$\mathbf{J}_n = \left(\frac{n_n e^2}{m_n^{\star}}\right) \frac{\tau}{1 + \iota \omega \tau} \mathbf{E} = \sigma_n \mathbf{E} . \qquad (8.1.9)$$

The complex conductivity of the normal current can be expressed as

$$\sigma_n = \sigma_{n1} - \iota \sigma_{n2} = \left(\frac{n_n e^2 \tau}{m_n^*}\right) \frac{1 - \iota \omega \tau}{1 + (\omega \tau)^2} = \sigma_0 \frac{n_n}{n} \frac{1 - \iota \omega \tau}{1 + (\omega \tau)^2} .$$
(8.1.10)

Here, $\sigma_0 = n_n e^2 \tau / m_n^*$ is the usual normal state Drude conductivity. With (8.1.2), (8.1.3) and (8.1.6) together with the expressions for the conductivities and Maxwell's equations we can derive the high-frequency properties of superconductors.

Note that the conductivities σ_n and σ_s show a strong temperature dependence below T_c due to the temperature variation of the normal and superfluid density. At $T = T_c$ we have $n_s = 0$ and $n_n = n$. Below T_c the superfluid density increases and the normal fluid density decreases as

$$\frac{n_n}{n} = \left(\frac{T}{T_c}\right)^4 \tag{8.1.11}$$

$$\frac{n_s}{2n} = 1 - \left(\frac{T}{T_c}\right)^{T} . \tag{8.1.12}$$

At T = 0 all the carriers are condensed into the superfluid and we have $n_s = n/2$ and $n_n = 0$.

In an electrotechnical language the two-fluid model can be visualized by the equivalent circuit shown in Fig. 8.1. The superfluid channel which does not contribute to the loss and has purely imaginary conductivity can be modeled by an inductor $L_s(T)$. The normal channel has a conductivity composed of a imaginary and a real part. The former, represented by the inductor $L_n(T)$, is due to the inertia of the charge carriers and the latter, represented by the resistor $R_n(T)$, due scattering induced loss. Note that the inductor L_n in the normal channel is often neglected which is similar to modeling the normal channel as nondispersive (frequency independent).

We can use the equivalent circuit to classify different frequency regimes. Evidently at $\omega = 0$ all the current is carried by the nondissipative superconducting channel. However, increasing the frequency the conductivity of the superfluid density becomes finite and decreases with frequency. Therefore, the contribution of \mathbf{J}_s decreases with increasing frequency and becomes equal to \mathbf{J}_n at the cross-over frequency $\omega_{ns} = R_n/L_s$. That is, the superfluid dominates in the low-frequency regime $0 \le \omega \le \omega_{ns}$. In the high-frequency regime the normal channel dominates. We further can discuss the question at which frequency there is a cross-over between an ohmic (nondispersive) response to an inductive (dispersive) response in

³The quantity *e* represents the unit of the electric charge with an electron having the charge -e.

Figure 8.1: Equivalent circuit for the two-fluid model of a superconductor.

the normal channel. Evidently this occurs at the frequency $\omega_{\tau} = R_n/L_n = 1/\tau$. That is, in the frequency regime $\omega_{ns} \leq \omega \leq 1/\tau$ the ohmic response and for $\omega \geq 1/\tau$ the inductive response of the normal channel is dominant. In the high-frequency regime we restrict our discussion to $\omega < \omega_{\Delta} = \Delta/\hbar$. Above the gap frequency ω_{Δ} the microwave photons can break up Copper pairs and the situation becomes more complicated. For a superconductor with $\Delta = 1$ meV the gap frequency ω_{Δ} is about 1 THz. Note that $\tau_{ns} = L_s/R_n$ increases strongly with decreasing temperature due to the increase of L_s and the decrease of R_n associated with the temperature variation of n_n and n_s . Therefore, the cross-over frequency ω_{ns} increase with decreasing temperature and typically becomes larger than ω_{τ} as shown in Fig. 8.2. In this case there is no frequency regime where the ohmic normal channel dominates.

Figure 8.2: Characteristic frequency regimes for a superconductor for different temperatures.

Using equations (8.1.7) and (8.1.10) we obtain the total conductivity of a superconductor to

$$\sigma = \sigma_{s} + \sigma_{n} = \frac{n_{n}e^{2}\tau}{m_{n}^{\star}} \frac{1}{1 + (\omega\tau)^{2}} - \iota \frac{n_{n}e^{2}\tau}{m_{n}^{\star}} \frac{\omega\tau}{1 + (\omega\tau)^{2}} - \iota \frac{1}{\omega\mu_{0}\lambda_{L}^{2}} .$$
(8.1.13)

At frequencies $\omega \tau \ll 1$ this can be simplified to

$$\sigma = \sigma_1 - \iota \sigma_2 = \frac{n_n e^2 \tau}{m_n^*} - \iota \frac{1}{\omega \mu_0 \lambda_L^2} , \qquad (8.1.14)$$

where σ_1 and σ_2 are the real and imaginary components of the complex conductivity. The real part represents the loss from the normal carriers, whereas the imaginary part represents the kinetic energy of the superconductive carriers.

© Walther-Meißner-Institut

8.1.2 The Surface Impedance

Normal Metals

The surface impedance is defined as the characteristic impedance seen by a plane wave incident perpendicular upon a flat surface of a conductor. It is given by the ratio of the electric and the magnetic field at the surface. For thick normalconducting materials the surface impedance is equal to the bulk wave impedance Z which can be derived from Maxwell's equations to

$$Z_{s} = R_{s} + \iota X_{s} = \sqrt{\frac{\iota \mu_{0} \omega}{\sigma_{0}}} = (1+\iota) \sqrt{\frac{\mu_{0} \omega}{2\sigma_{0}}} = (1+\iota) \frac{\mu_{0} \omega \delta_{0}}{2} .$$
(8.1.15)

Here, $\sigma_0 = ne^2 \tau / m^{\star}$ is the normal state conductivity and

$$\delta_0 = \sqrt{\frac{2}{\mu_0 \omega \sigma_0}} \tag{8.1.16}$$

is the normal state field penetration depth. For a normal metal at frequencies $\omega \tau \ll 1$, i.e. in the ohmic regime, the conductivity is a real number and according to (8.1.16) the surface resistance R_s and the surface reactance X_s are equal:

$$R_s = X_s = \sqrt{\frac{\mu_0 \omega}{2\sigma_0}} = \frac{\mu_0 \omega \delta_0}{2} . \tag{8.1.17}$$

We see that for normal metals both R_s and X_s are proportional to $\sqrt{\omega}$.

Superconductors

In order to derive the surface impedance of a superconductor we the normal state conductivity σ_0 in (8.1.16) by the total conductivity of a superconductor and obtain

$$Z_{s} = R_{s} + \iota X_{s} = \sqrt{\frac{\iota \mu_{0} \omega}{\sigma}} = \left[\frac{\sigma_{n} \frac{1}{1 + (\omega \tau)^{2}} - \iota \sigma_{n} \frac{\omega \tau}{1 + (\omega \tau)^{2}} - \iota \frac{1}{\omega \mu_{0} \lambda_{L}^{2}}}{\iota \omega \mu_{0}} \right]^{-1/2}$$
$$= \iota \omega \mu_{0} \left[\iota \omega \mu_{0} \sigma_{n} \frac{1}{1 + (\omega \tau)^{2}} + \omega \mu_{0} \sigma_{n} \frac{\omega \tau}{1 + (\omega \tau)^{2}} + \frac{1}{\lambda_{L}^{2}} \right]^{-1/2} .$$
(8.1.18)

. ...

At frequencies $\omega \tau \ll 1$ this can be simplified to

$$Z_{s} = \frac{\iota \omega \mu_{0}}{\lambda_{L}} \left[1 + \iota \omega \mu_{0} \lambda_{L}^{2} \sigma_{n} \right]^{-1/2} = \iota \sqrt{\frac{\omega \mu_{0}}{\sigma_{2}}} \left[1 + \iota \frac{\sigma_{1}}{\sigma_{2}} \right]^{-1/2} , \qquad (8.1.19)$$

where we have used $\sigma = \sigma_1 + \iota \sigma_2$ with $\sigma_1 = \sigma_n$ and $\sigma_2 = 1/\omega\mu_0\lambda_L^2$. We can now further simplify (8.1.19) by taking into account that $\sigma_1 \ll \sigma_2$ for temperatures not to close to T_c . With $(1+x)^{-1/2} \simeq 1 - \frac{1}{2}x$ we obtain

$$Z_s = \iota \sqrt{\frac{\omega \mu_0}{\sigma_2}} \left(1 - \iota \frac{\sigma_1}{2\sigma_2} \right) = \sqrt{\frac{\omega \mu_0 \sigma_1^2}{2\sigma_2^3}} + \iota \sqrt{\frac{\omega \mu_0}{\sigma_2}} .$$
(8.1.20)

Table 8.1: Conductivity σ , penetration depth δ_0 due to the normal skin effect, London penetration depth λ_L , surface resistance R_s and surface reactance X_s of normal conductors and superconductors for $\omega \tau \ll 1$ and temperatures $T \ll T_c$.

	normal conductor	superconductor
conductivity	$\sigma_0 = \frac{ne^2\tau}{m_n^\star}$	$\sigma_1 + \iota \sigma_2 = \frac{ne^2\tau}{m_n^\star} \left(\frac{n_n}{n}\right) - \iota \frac{1}{\omega\mu_0\lambda_L^2}$
field penetration depth	$\delta_0 = \sqrt{2/\omega\mu_0\sigma_0}$	$\delta_s = \lambda_L$
surface resistance	$R_s=rac{1}{2}\omega\mu_0\delta_0=\sqrt{rac{\omega\mu_0}{2\sigma_0}}$	$R_s = \frac{1}{2}\omega^2 \mu_0^2 \lambda_L^3 \sigma_0\left(\frac{n_n}{n}\right)$
surface reactance	$X_s = \frac{1}{2}\omega\mu_0\delta_0 = \sqrt{\frac{\omega\mu_0}{2\sigma_0}}$	$X_s = \omega \mu_0 \lambda_L$

Using expression (8.1.14) for σ_1 and σ_2 we finally obtain

$$Z_s = R_s + \iota X_s = \frac{\omega^2 \mu_0^2 \lambda_L^3 n_n e^2 \tau}{2m_n^*} + \iota \omega \mu_0 \lambda_L = \frac{1}{2} \omega^2 \mu_0^2 \lambda_L^3 \sigma_0 \left(\frac{n_n}{n}\right) + \iota \omega \mu_0 \lambda_L .$$
(8.1.21)

We see that the surface resistance, the real part of Z_s , increases proportional to ω^2 in contrast to normal conductors, where $R_s \propto \sqrt{\omega}$. Furthermore, it increases proportional to λ_L^3 and the conductivity $\sigma_0 n_n/n$ of the normal fluid. In Table 8.1 the most main characteristics of superconductors are compared to those of normal metals.

Fig. 8.3 shows the theoretically expected surface resistance as a function of frequency for the superconductor Nb and the normal metal Cu. We see that for frequencies below about 100 GHz the surface resistance of Nb is considerably lower than for Cu at 77 K. At high frequencies there is a cross-over due to the much weaker frequency dependence of the surface resistance of normal metals. Note that the surface resistance is expected to be further reduced by going to lower temperatures due to the strong decrease of n_n . At $T/T_c \ll 1$, $\lambda_L(T) \simeq const$ and $n_n \propto \exp(-2\Delta_0/k_BT)$. Therefore, an exponential decrease of R_s with decreasing T is expected. However, this behavior is usually not observed in experiment. Rather a temperature independent residual surface resistance is measured at very low T, which is attributed to material defects. For Nb this residual resistance is as low as $10^{-9}\Omega/\Box$ at 10 GHz, whereas it reaches only about $10^{-5}\Omega/\Box$ for YBa₂Cu₃O_{7- δ} films.

Kinetic Inductance

The surface reactance X_s , the imaginary part of the surface impedance, is purely inductive. The equivalent inductance L_k is denoted as *kinetic inductance*

$$L_k = \mu_0 \lambda_L . \tag{8.1.22}$$

The kinetic inductance reflects the kinetic energy of the carriers of the superfluid.

Finally we note that the phenomenological model used above id based on local theory, which is valid only as long as the coherence length ξ of a superconductor is much smaller than the London penetration

© Walther-Meißner-Institut

Figure 8.3: Intrinsic surface resistance versus frequency for Nb and oxygen free high conductance (OFHC) Cu. For Cu, $\sigma_0 = 10^8 \Omega^{-1} m^{-1}$, for Nb, $\lambda(0) = 85 \text{ nm}$ and $\sigma_0 = 10^8 \Omega^{-1} m^{-1}$ were used.

depth λ_L . This is for example the case for extreme type-II superconductors such as the high temperature superconductors. In contrast, for type-I superconductors we have $\xi > \lambda_L$. In this case the above treatment is non longer valid and we have to used a more complicated nonlocal theory.⁴

⁴A.B. Pippard, An experimental and theoretical study of the relation between magnetic field and current in a superconductor, Proc. Roy. Soc. (London), A **216**, 547-568 (1963).

8.2 Superconducting Resonators and Filters

in preparation

337

8.3 Superconducting Microwave Sources

in preparation