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Chapter 9

Superconducting Quantum Bits

In section [3.5| we already have discussed the quantum consequences of the small capacitance of Joseph-
son junctions leading to interesting secondary quantum macroscopic effects. The interest in macroscopic
quantum effects in small capacitance Josephson junctions goes back to the 1980ies. The initial interest
was to test whether or not the laws of quantum mechanics can be applied to macroscopic systems in a
Hilbert space spanned by macroscopically distinct states[] The phase difference of the superconducting
order parameter in a Josephson junction or the magnetic flux in a superconducting quantum interference
devices were the degrees of freedom used in these studies. Although quantum phenomena such as macro-
scopic quantum tunneling and resonant tunneling of the phase difference could be demonstratedE}EHﬂ it
was impossible to observe coherent quantum oscillations between two macroscopically different (e.g.
flux) states, i.e. macroscopic quantum coherenceE]

The field of macroscopic quantum coherence in superconducting systems received new attention in the
last years, when it became obvious that Josephson circuits are interesting candidates for the realiza-
tion of quantum bits (qubits). The vision that superconducting devices may serve as qubits in quantum
information processing and that quantum logic operations could be performed by controlling gate volt-
ages or magnetic fields stimulated an intensive research effort °{’[*1’} E’EMeanwhile there has been a
tremendous progress in quantum state engineering in superconducting and other solid state systems. In
particular, the quantum superposition of macroscopically distinct states, coherent oscillations and entan-
gled states of several qubits have been observed. Superconducting Josephson systems are very promising,

TALT. Leggett, in Chance and Matter, edited by J. Souletie, J. Vannimenus, and R. Stora, Elsevier, Amsterdam (1987), p.
395.

2R. F. Voss, R. A. Webb, Macroscopic quantum tunneling in a 1 um Nb Josephson junction, Phys. Rev. Lett. 47, 265
(1981).

3J. M. Martinis, M. H. Devoret, J. Clarke, Experimental tests of the quantum behavior of a macroscopic degree of freedom:
the phase difference across a Josephson junction, Phys. Rev. B 35, 4682 (1987).

4R. Rouse, S. Han, J. E. Lukens, Observation of resonant tunneling between macroscopically distinct quantum levels, Phys.
Rev. Lett. 75, 1614 (1995).

5C. D. Tesche, Can a noninvasive measurement of magnetic flux be performed with superconducting circuits?, Phys. Rev.
Lett. 64, 2358 (1990).

6V. Bouchiat, PhD Thesis, Université Paris VI (1997).

7A. Snirman, G. Schén, Z. Hernon, Quantum manipulations of small Josephson junctions, Phys. Rev. Lett. 79, 2371 (1997).

8D. Averin, Adiabatic quantum computation with Cooper pairs, Solid State Com. 105, 659 (1998).

9L.B. Toffe, V.B. Geshkenbein, M.V. Feigelman, A.L. Fauchére, G. Blatter, Quiet sds Josephson junctions for quantum
computing, Nature 398, 679 (1999).

10y, Makhlin, G. Schon, A. Shnirman, Josephson junction qubits with controlled couplings, Nature 386, 305 (1999).

HyE. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H van der Wal, S. Lloyd, Josephson persistent current qubit, Science 285,
1036 (1999).

12y, Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single Cooper pair box, Nature
398, 786 (1999).
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since they can be fabricated by established technologies and their control and measurement techniques
are far advanced. Furthermore, superconducting qubits exploit the coherence of the superconducting
state allowing the achievement of sufficiently long phase coherence times.

After giving a brief introduction to quantum information processing, in this chapter we discuss the real-
ization of quantum bits by using superconducting Josephson junction devices.
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9.1 Quantum Bits and Quantum Computers

9.1.1 Quantum Bits

Our today’s classical computers represent the culmi-
nation of years of technological advancements be-
ginning with the early ideas of Charles Babbage
(1791-1871) and the creation of the first computer
by the German engineer Konrad Zuse in 1941. Sur-
prisingly however, the high speed modern computer
is fundamentally not different from its gargantuan
30 ton ancestors, which were equipped with some
18 000 vacuum tubes and 500 miles of wiring. Al-
though computers have become more compact and
considerably faster in performing their task, the basic
task remains the same: to manipulate and interpret an
encoding of binary bits into a useful computational
result. A bit is a fundamental unit of information,
classically represented as a “0” or “1” in our digital
computers. Each classical bit is physically realized
through a macroscopic physical system, such as the
magnetization on a hard disk or the charge on a ca-
pacitor. A document, for example, comprised of n-
characters stored on the hard drive of a typical com-
puter is accordingly described by a string of 8n ze-
ros and ones. Herein lies a key difference between
our todays classical computer and a quantum com-
puter. Whereas a classical computer obeys the well
understood laws of classical physics, a quantum com-
puter is a device that uses physical phenomena unique
to quantum mechanics (especially quantum interfer-

ence) to realize a fundamentally new mode of infor- uace called “Plankalkiil”
mation processing suag '

Whereas classical computers operate with classical

(c-) bits usually represented by “0” and “1”, quantum computers operate with quantum (qu-) bits usually
denoted as qubits. Physically, a qubit can be represented by every two level quantum system. The basic
properties of such systems are discussed in detail in Appendix [} With the basis states of a two level
quantum system (e.g. a spin-1/2 system, see Appendix [G)

Figure 9.1: Konrad Zuse 1945: Konrad Zuse was
building the first binary digital computer Z1 in
1938. The first programmable electromechanical
computer Z3 was completed in 1941. Zuse also
developed the first algorithmic programming lan-

o) = [0) = |1) = <é> ©.1.1)
o) = m=1p=(7) e

we can define a single-qubit state in the following way:

I3T. Beth and G. Leuchs, Quantum Information Processing, Wiley-VCH, Berlin (2003).

“M.A. Nielsen, LL. Chuang, Quantum Information and Quantum Information, Cambridge University Press, Cambridge
(2000).

15D, Bouwmeester, A. Ekert, A. Zeilinger eds., The Physics of Quantum Information, Springer, Berlin (2000).
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A qubit |¥) is the superposition of two computational basis states

(1)) = a(®)]0)+b()|1) = (2’8 ) . (9.1.3)

Here, a(t) and b(t) are complex amplitudes. If we are measuring the quantum state of a qubit, we obtain
the result |0) with probability |a(¢)|* and the result | 1) with probability |5(¢)|*. Since the total probability
must be unity, we have to satisfy the normalization condition

(POMD) = la@)P+[p@)]* =1 . (9.1.4)

We see that the single-qubit exists in a continuum of states. It is a superposition of two basis states and
therefore can be represented as a unit vector in a two-dimensional Hilbert space .743. The key fact is that a
qubit can exist not only in a state corresponding to the logical state “0” or “1” as in a classical bit, but also
in states corresponding to a blend or superposition of these classical states. In other words, a qubit can
exist as a zero, a one, or simultaneously as both “0” and “1”, with a numerical coefficient representing the
probability for each state. This may seem counterintuitive because everyday phenomenon are governed
by classical physics, not quantum mechanics — which takes over at the atomic level.

Figure 9.2: Representation of a qubit state as a vector on the Bloch sphere.

A convenient way of representing of a qubit state is as a unit vector on the Bloch sphere as shown in
Fig. With the angles 6 and ¢ the general state can be expressed as (compare Appendix [E)

0 0
¥y = cosgef’q’/z\m+sin§e+“"/2\1>. 9.1.5)

Note that this state is equivalent to the general state of a spin-1/2-system (compare (G.I1.20) in Ap-
pendix [G). In a measurement process one has to get information on the angles 6 and ¢.

The foundations of single- and two-qubit states and their manipulation by unitary operators are discussed
in detail in Appendix [E] There, also an introduction to classical one- and two-bit gates and their quantum
counterparts is given.
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9.1.2 Quantum Computing

Over the last decades the performance of computers has increased tremendously. This could lead us to
suppose that there is no problem that is too complicated to be solved with a classical computer. How-
ever, this is not the case. Let us consider the very simple problem of about 150 spin 1/2 particles (e.g.
electrons). If we want to do a quantum mechanical description of the state of these electrons, we will
exceed the capacity of every conceivable classical computer. The reason for that is that the Hilbert space
of the collective spin state of these 150 electrons has the dimension 2! ~ 10*. The corresponding
density matrix would have 10°° elements. Since to our present knowledge the number of protons in our
universe is just about 10%, it is just impossible to build a classical computer with the required capacity.
In contrast, a quantum computer would require only a few hundred quantum bits for the simulation of the
150 electrons. This simple example shows, that for the simulation of the quantum mechanics of many
particle system quantum computers would be highly desirable.

I'WE INVENTED A QUANTUM ACCORDING TO CHAOS SHIFT HAPPENS.
COMPUTER, CAPABLE OF THEORY, YOUR TINY L ,_]
INTERACTING LITH MATTER CHAMGE TO ANOTHER \ L

FROM OTHER UMNIVERSES UNIVERSE WILL SHIFT FIRE

TO SOLVE COMPLER 1TS DESTINY, iTUP, \|
EQUATIONS. POSSIBLY KILLING

EVERY '=|
INHABITANT.

05:

In a classical computer, information is encoded in a series of classical bits, and these bits are manipulated
via Boolean logic gates arranged in succession to produce an end result. In a binary systems, the bits
can only have two values usually denoted as “0” and “1”. Similarly, a quantum computer manipulates
quantum bits by executing a series of quantum gates, each a unitary transformation acting on a single
qubit or pair of qubits (for details see Appendix [[T] and [[V). The quantum bits are realized by quantum
mechanical two level system with the basis state denoted as |0) and [1) or | ) and | |} (see Appendix [E]to
[G). A basic difference between classical bits and quantum bits is the fact that the superposition principle
allows superpositions of qubit values as entries into a register. An example for three qubits is given in
Fig. In general, for N qubits we can form 2V superposition states, that is, the number of superposition
states grows exponentially.

The second basic ingredient of a classical computer are Boolean logic gates. In a quantum com-
puter these classical gates are replaced by unitary operators. It is well known that for a classi-
cal computer there exist universal sets of gates, that are sufficient to form all other possible gates.
As discuss also in Appendix universal sets for classical gates are (NOT, AND) or the NAND
gate alone. In complete analogy there exist sets of unitary operations allowing for the realization
of all possible unitary operations. Usually, such set consists of the single bit rotation U (6, ¢) with
U(6,¢) = cosBe'?/2|0) + sin Oe™'?/2|0) (compare Appendix , and a two-qubit-operation. Here, a
common example is the controlled-NOT gate (compare in Appendix [[V)). With the single qubit
rotation and the CNOT gate we can form every arbitrary unitary operation on N qubits allowing for the
implementation of any algorithm. That is, in applying these gates in succession, a quantum computer can
perform a complicated unitary transformation to a set of qubits in some initial state. The qubits can then
be measured, with this measurement serving as the final computational result. A simple scheme how a
quantum computer works is shown in Fig.

Fig. [9.3] suggests that the operational principle of a classical and a quantum computer are quite similar:
the successive application of gates (quantum gates) to a set of bits (qubits). This similarity in calculation
between a classical and quantum computer affords that in theory, a classical computer can accurately
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e initialization |0> ® |0> ® .. ® |o> ®
* preparation of super- 0>+ 1> ® |0> + 1> ®...® [0> + [1>

position states
example: 3 bit system ' |\¥> = a|000> + b|001> + ¢|010> + d|100> +

e|011> + f|101> + g|110> + h|111>
e computational steps ﬂ

= unitary transformations quantum algorithm

- 1 bit gates eg.
- 2 bit gates « factorization (Shor)
* program * database search (Grover)

|
« parameter ;
|

e quantum error correction ﬂ e.g. Shor, Steane

e read out final state

Figure 9.3: Simplified operational scheme of a quantum computer.

simulate a quantum computer. In other words, a classical computer would be able to do anything a
quantum computer can. So why bother with quantum computers? Although a classical computer can
theoretically simulate a quantum computer, it is incredibly inefficient, so much that a classical computer
is effectively incapable of performing many tasks that a quantum computer could perform with ease.
The simulation of a quantum computer on a classical one is a so-called computationally hard problem,
since the correlations among quantum bits are qualitatively different from correlations among classical
bits. This was first pointed out by John Bell. Take for example a system of only 300 qubits. This
systems exists in a Hilbert space of dimension 2°% ~ 10% (quantum complexity, see Appendix [VI) that
in simulation would require a classical computer to work with exponentially large matrices (to perform
calculations on each individual state, which is also represented as a matrix), meaning it would take an
exponentially longer time than even a primitive quantum computer.

Richard Feynman was among the first to recognize the problem of handling the simulation of the
quantum mechanics of many particle systems by a classical computer (already in 1981). At the same
time he was pointing to the potential of quantum superposition for solving such problems much much
faster. As mentioned already above, a system of 300 qubits, which is impossible to simulate classically,
represents a quantum superposition of as many as 230 ~ 100 states. Each state would be classically
equivalent to a single list of 300 ones and zeros. Any quantum operation on that system — a particular
pulse of radio waves, for instance, whose action might be to execute a controlled-NOT operation on the
100" and 101*" qubits — would simultaneously operate on all 23% states. Hence, with one fell swoop,
one tick of the computer clock, a quantum operation could compute not just on one machine state, as
serial computers do, but on 23% machine states at once! Eventually, however, observing the system
would cause it to collapse into a single quantum state corresponding to a single answer, a single list of
300 ones and zeros, as dictated by the measurement axiom of quantum mechanics. The reason this is an
exciting result is because this answer, derived from the massive quantum parallelism achieved through
superposition, is the equivalent of performing the same operation on a classical super computer with
~ 10%0 separate processors, what is of course impossible. That is, by exploiting the massive parallelism
of the coherent evolution of superpositions of states, quantum computers can perform certain tasks that
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no classical computer could do in an acceptable time

Already between 1982 and 1985 David Deutsch
provided the theoretical basis of the quantum
computer by his work on quantum Turing ma-
chines. Although the early investigators in this
field were naturally excited by the potential of the
immense computing power, only very few peo-
ple took that serious. Only when Peter Shor, a
research and computer scientist at AT&T’s Bell
Laboratories in New Jersey, provided a specific
application of a quantum computer by devising
the first quantum computer algorithm, the field
was widely recognized and then a very active hunt
was on to find something interesting for a quan-
tum computer to do. Shor’s algorithm uses the
power of quantum superposition to rapidly factor-
ize very large numbers (on the order ~ 102 dig-
its and greater) in a matter of seconds. The pre-
mier application of a quantum computer capable Figure 9.4: Quantum Computing: What’s it good
of implementing this algorithm lies in the field of for?

encryption, where one common encryption code,

known as RSA, relies heavily on the difficulty of factoring very large composite numbers into their
primes. A computer which can do this easily is naturally of great interest to numerous government agen-
cies that use RSA — previously considered to be “uncrackable” — and anyone interested in electronic and
financial privacy.

BUT ZG&- IN A
QuEanNTyy WORLD
HOW CAN WE BE SURE!

OH ALiCE. YOURE
THE ONE FOR ME

Encryption, however, is only one application of a quantum computer. In addition, Shor has put together a
toolbox of mathematical operations that can only be performed on a quantum computer, many of which
he used in his factorization algorithm. Furthermore, Feynman asserted that a quantum computer could
function as a kind of simulator for quantum physics, potentially opening the doors to many discoveries in
the field. Currently the power and capability of a quantum computer is primarily theoretical speculation;
the advent of the first fully functional quantum computer will undoubtedly bring many new and exciting
applications.

A Brief History of Quantum Computing

The idea of a computational device based on quantum mechanics was first explored in the 1970’s and
early 1980’s by physicists and computer scientists such as Charles H. Bennett of the IBM Thomas J.
Watson Research Center, Paul A. Benioff of Argonne National Laboratory in Illinois, David Deutsch
of the University of Oxford, and the late Richard P. Feynman of the California Institute of Technology
(Caltech). The idea emerged, when scientists were pondering the fundamental limits of computation.
They understood that if technology continued to abide by Moore’s Law, then the continually shrinking
size of circuitry packed onto silicon chips would eventually reach a point, where individual elements
would be no larger than a few atoms. Here, a problem arose because at the atomic scale the physical
laws that govern the behavior and properties of the circuit are inherently quantum mechanical in nature,
not classical. This then raised the question of whether a new kind of computer could be devised based
on the principles of quantum physics.

16C Bennett, Quantum information and computation, Physics Today 48, 24 (1995).
17D, DiVincenzo, Quantum Computation, Science 270, 255 (1995).
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Feynmarm was among the first to attempt to provide an answer to this question by
producing an abstract model in 1982 that
showed how a quantum system could be
used to do computations. He also explained
how such a machine would be able to act
as a simulator for quantum physics. In
other words, a physicist would have the
ability to carry out experiments in quan-
tum physics inside a quantum mechanical
computer. Later, in 1985, Deutscl@ real-
ized that Feynman’s assertion could even-
tually lead to a general purpose quantum
computer and published a crucial theoret-
ical paper showing that any physical pro-
cess, in principle, could be modeled per-
fectly by a quantum computer. Thus, a
quantum computer would have capabilities
far beyond those of any traditional classi-
cal computer. After Deutsch published this
paper, the search began to find interesting
applications for such a machine.

Unfortunately, all that could be found were
a few rather contrived mathematical prob- =
lems, until Sho@ circulated in 1994 a Charles H. Bennett David Deutsch
preprint of a paper in which he set out a
method for using quantum computers to
crack an important problem in number the-
ory, namely factorization. He showed how an ensemble of mathematical operations, designed specifically
for a quantum computer, could be organized to enable such a machine to factor huge numbers extremely
rapidly, much faster than is possible on conventional computers. With this breakthrough, quantum com-
puting transformed from a mere academic curiosity directly into a national and world interest@

Figure 9.5: Some basic players in quantum computing.

9.1.3 Quantum Error Correction

Error correction is a well known process in classical information processing. For example, a parity bit is
added to each data packet in protocols used for data transmission, where parity O and 1 state that the data
packet has an even or odd number of “1”, respectively. In this way one can check whether or not a single
data bit or the parity bit has changed during transmission. If for example after transmission a single bit
has changed from “1” to “0” or vice versa, the parity of the data packet does no longer correspond to the
parity bit attached to the packet and one has to send the whole packet again. Obviously, such simple error
correction protocol only protects against the change of an odd number of bits, whereas the change of an
even number of bits remain undetected. More complicated protocols, for example the Hamming protocol
allow for a far more extensive protection@ In general, classical error correction operates by the judicious

I8R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

19D, Deutsch, Proc. Roy. Soc. London, Ser. A 400, 97 (1985).

20Shor, P. W., Algorithms for quantum computation: Discrete logarithms and factoring, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society Press (1994).

2lp, Deutsch, A. Ekert, Quantum Computation, Physics World, March (1998).

22 J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam (1977).
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use of redundancy, that is, sending the same information many times. In this sense it is akin to making
the system larger in order to make it more resistent to perturbations. However, the precise way in which
the redundancy is introduced is very important. The type of redundancy, or encoding, employed must be
carefully matched to the type of noise in the channel. Typically, one considers the case of random noise,
which affects different bits independently, but this is not the only possible case. The encoding enables
the most likely errors in the information to be identified and corrected. This corrective procedure is akin
to active stabilization, and brings the associated benefits of powerful noise suppression.

Since qubits are representing superposition states |¥) = a|0) + b|1), it is not obvious that there are error
correction protocols also for qubits. However, this is indeed the case. As has been shown by Calderbank,
Shor and Steane that there is even a direct relationship between classical and quantum error correction

protocols@@@@

To understand the application of the classical ideas to the quantum regime, it is best to start with a simple
example. Thus, suppose we have a collection of spin-half particles, each of which is subject indepen-
dently to random “flips” or amplitude errors |0) — |1), but which otherwise is stable (in particular, the
precession is free of phase error). Whenever such a flip occurs, the relevant two-state system may become
entangled with its environment. In order to stabilize a single qubit, in the general state a|O.) +b|1.), we
express it by means of three two-state systems, with the “encoding” |0.) = |000), |1.) = |111). Thus,
the total initial state of the three spins is a|000) + b|111). After a period of time, during which random
flips may occur, the three-spin system is measured twice. The first measurement is a projection onto the
two-state basis

{]000) +[111)+1]001) +|110), |010)+ |101)+|100)+|011) }
The second measurement is a projection onto the two-state basis
{]000) + |111) +|010) + [101), |001)+|110) +|100) + |O11) }

Each measurement has two possible results, which we will call 0 and 1. Depending on which results R
are obtained, an appropriate action is carried out: if R = 00, do nothing; if R = 01, flip the rightmost
spin; if R = 10, flip the middle spin; if R = 11, flip the leftmost spin. If, during the time interval when the
system was left to evolve freely, no more than one spin flipped, then this procedure will return the three-
spin state to a|000) +b|111). It is remarkable that this can be done without gaining information about the
values of a and b and thus disturbing the stored quantum information. During the correction procedure,
the entanglement between the system and its environment is transferred to an entanglement between the
measuring apparatus and the environment. The qubit is actively isolated from its environment by means
of this carefully controlled entanglement transfer. The above error correction technique is based on the
simplest classical error correcting code. More advanced techniques can be deduced from more advanced
known classical codes.

Before this discovery it seemed to be impossible to carry out a longer quantum algorithm in a reliable
way, since already tiny errors would spread in such way that the final result would no longer have any
meaning. It now has been discussed that quantum error correction could be even more powerful than
classical error correction. So called interlinked quantum error correction protocols have been shown to
allow for the implementation of arbitrary quantum algorithms, since in this case the probability for a
wrong result is independent of the actual length of the algorithm.

In order to achieve an error tolerant operation of a quantum computer, the error probability per gate or
measurement operation has to stay below a certain level. At present this threshold level is estimated to
be about 10~* per memory unit, gate or read out process.

23p. W. Shor, Phys. Rev. A 52, R2493 (1995).

24A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).

25 A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).
26 A. M. Steane, Proc. Roy. Soc. A 452, 2551 (1996).
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9.1.4 What are the Problems?

The field of quantum information processing has made numerous promising advancements since its con-
ception. However, a few potentially large obstacles still remain that prevent us from just building a
quantum computer that can rival today’s modern digital computer. Among these difficulties, error cor-
rection, decoherence, andhardware architecture are probably the most formidable. Error correction
is rather self explanatory, but what errors need correction? The answer is primarily those errors that
arise as a direct result of decoherence, or the tendency of a quantum computer to decay from a given
quantum state into an incoherent state as it interacts, or entangles, with the state of the environment.
These interactions between the environment and qubits are unavoidable, and induce the breakdown of
information stored in the quantum computer, and thus errors in computation. Before any quantum com-
puter will be capable of solving hard problems, research must devise a way to maintain decoherence and
other potential sources of error at an acceptable level. Thanks to the theory of quantum error correction,
first proposed in 1995 and continually developed since, small scale quantum computers have been built.
Probably the most important idea in this field is the application of error correction in phase coherence
as a means to extract information and reduce error in a quantum system without actually measuring that
system.

Today only a few of the benefits of quantum computation and quantum computers are readily obvious,
but before more possibilities are uncovered theory must be put to the test. In order to do this, devices
capable of quantum computation must be constructed. Unfortunately, quantum computing hardware is
still in its infancy, whereas the theoretical concepts of quantum computing, the software, are already
rather advanced. A solid state based hardware concept seems promising, since it allows scaling and the
used of well developed fabrication techniques. However, it may be that the future of quantum computer
hardware architecture is very different from what we know today. Nevertheless, the current research
helps to provide insight as to what obstacles the future will hold for these devices.
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9.2 Implementation of Quantum Bits

Quantum bits can be implemented with every two level quantum system as shown in Fig.[9.6] The proper-
ties of such systems are summarized in Appendix [F]and [G] In practice, quantum information processing
also requires the coherent manipulation of suitable quantum systems. The coherent manipulations of
the qubits can be performed, if we have sufficient control over the fields and interaction terms in the
associated Hamiltonian and if the decoherence in the considered quantum systems is small enough.

E

3>
2>

} other system states

1>

} two level system

|0>

Figure 9.6: A qubit can be realized by a quantum mechanical two level system with the qubit representing
the coherent superposition of the two discrete states: |¥) = a|0) +b|1). The only requirement is that all
other states of the system are well separated from the states |0) and |1) in order to have an effective two-level
system. Note that this requirement cannot be achieved for a harmonic potential, where all the states are
equidistant.

As has been stressed by DiVincenzo, ﬁ any physical system that is considered as a candidate for the
implementation of quantum bits should satisfy the following criteria (DiVincenzo checklist):

1. Qubits: The system has to provide a well defined two-level quantum system. This implies that
higher level states that are present in most real systems are not excited during qubit manipulations.

2. Preparation of initial state: It must be possible to prepare the initial state with sufficient accuracy.

3. Decoherence: The phase coherence time must be long enough to allow for a sufficiently large
number (typically 10*) of coherent manipulations. That is, the superposition states of the qubits
are allowed to dephase only on time scales much longer than the elementary gate time.

4. Quantum gates: There must be sufficient control over the qubit Hamiltonian to perform the nec-
essary unitary transformations, i.e. single- and two-qubit operations (see Appendix [[II). For this
purpose it should be possible to control the fields at the sites of the qubits separately and to couple
the qubits in a controlled way (e.g. by switching on and off the inter-qubit interactions). Then, the
single- and two-qubit operations allow for the generation of arbitrary superpositions and nontriv-
ially coupled states such as entangled states (see Appendix [[IT] and [[V).

5. Quantum measurement: For read out of the quantum information a quantum measurement is
needed. This can be either at the final stage or during the computation for the purpose of error
correction.

6. Scalability: There should be the possibility to increase to number of qubits (scalability).

21D, DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys. 48, 771 (2000).
28D DiVincenzo, inMesoscopic Electron Transport, edited by L. Kouwenhoven, G. Schan, and L. Sohn, NATO ASI Series
E: Applied Sciences No. 345, Kluwer Academic, Dordrecht (1997), p. 657.
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With respect to requirement 1 we can state that there is a large number of physical systems that have been
suggested as possible realizations of qubits and gatesEg] They are usually split up into non-solid state
systems (e.g. ions in electromagnetic traps nuclear magnetic resonance on ensembles of molecules
in liquids@@ cavity QED systemst] and neutral atoms in optical latticesFE}E}E]) and solid state sys-
tems. Solid state devices including the above mentioned Josephson systems have the advantage of being
more easily embedded into electronic circuits and scaled up to a larger number of qubits (requirement
6). Besides the Josephson systems, electronic states and spin states in quantum dots as well as impu-
rity spins in semiconductors are further candidates. They can be manipulated by tuning potentials and
barriersff}@ Finally, electrons floating on liquid helium are discussed.

Besides the advantages of solid state systems with respect to scalability and embedding into electronic
circuits, decoherence is a severe problem for solid state systems (requirement 3). Unavoidable for de-
vices that have to be controlled externally are interactions with the environment. Due to the coupling to
the environment the quantum state of the qubit gets entangled (see Appendix [[I)) with the environmental
degrees of freedom. As a consequence the phase coherence is destroyed after a time scale called the
dephasing time. Due to the large number of environmental degrees of freedom in solid state systems,
decoherence is an important issue. Maintaining coherence of a quantum device throughout the manip-
ulation processes is therefore the major challenge for practical quantum computing. We also note that
the time evolution of the quantum state may be perturbed also by other sources such as inaccuracies in
the preparation of the initial state, inaccuracies in the manipulations and uncontrolled couplings between
qubits.

Quantum state engineering requires the coherent manipulation of quantum systems. The manipulations
can be performed, if we have sufficient control over the fields and interaction terms in the Hamiltonian.
In order to discuss the requirements 4 and 5 we use a model Hamiltonian of a two-state quantum system
(e.g. a spin system). We will see later that under certain conditions other systems such as “charge in
a box” or “flux in a SQUID loop” effectively reduce to two-state systems. Since any single two-state
quantum systems can be represented as a spin-1/2 system, in the following we write down the model
Hamiltonian for this system. With the effective magnetic field B the Hamiltonian for the manipulation
can be written as (compare Appendix

Honlt) = 7B T ©2.1)

Here, & = (X,Y,Z) are the Pauli spin matrices in the space of states | 1) and | |) (compare (E.IIL.23) in
Appendix [[Tl)) and y the gyromagnetic ratio. These states form the basis states of a physical quantity (spin,
charge, flux, ...) that has to be manipulated. Full control of the quantum dynamics of the spin is achieved,

29S. Braunstein, H.-K. Lo eds., Experimental Proposals for Quantum Computing, Fortschr. Phys. 48, 765 (2000).

305 1. Cirac, P. Zoller, Quantum computation with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995).

31C. Monroe, D.M. Meekhof, B.E. King, W. M. Itano, D.J. Wineland, Demonstration of a fundamental quantum logic gate,
Phys. Rev. Lett. 75, 4714 (1995).

2p, Cory, A. Fahmy, T. Havel, Ensemble quantum computing by NMR spectroscopy, Proc. Natl. Acad. Sci. USA 94, 1634
(1997).

33N. Gershenfeld, I. Chuang, Bulk spin resonance quantum computation, Science 275, 350 (1997).

34Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, H.J. Kimble, Measurement of conditional phase shifts for quantum
logic, Phys. Rev. Lett. 75, 4710 (1995).

35T, Pellizari, S.A. Gardiner, J.1. Cirac, P. Zoller, Decoherence, continuous observation, and quantum computing: A cavity
QED model, Phys. Rev. Lett. 75, 3788-3791 (1995).

36p W.H. Pinske, P. Maunz, T. Fischer, G. Rempe, Trapping an atom with single photons, Nature 404, 365-368 (2000).

37C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. Parkin, H.J. Kimble, The atom-cavity microscope: Single atoms bound in orbit
by single photons, Science 287, 1477 (2000).

3B E. Kane, A silicon based nuclear spin quantum computer, Nature 393, 133 (1998).

39p. Loss, D.P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).
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if the field B(7) can be switched arbitrarily. Actually, as shown in Appendix [E} full control is already
achieved, if only two field components{ﬂ can be controlled, e.g. (compare (E.II1.24) in Appendix

Hnan(t) = —g}/BZZ—gyBxX. (9.2.2)

If we want to manipulate a many-qubit system in order to perform quantum computing, we have to
control the field at the sites of each spin separately. Furthermore, in addition to single-qubit operations
we need two-qubit unitary operations (see Appendix [[I]| and [V). The latter require the coupling of two
qubits. Including this coupling, the following model Hamiltonian seems to be suitable for a N-qubit
system:

N
Hnan(t) = _ZEyB'(t) G+ Y ) Ty (9.2.3)
i=1 i

Here, the summation over the spin indices o, B = x,y,z is implied. Note that in this model Hamiltonian
we have assumed a general form of the coupling between the qubits. In many cases simpler forms such
as the pure Ising (ZZ), the XY (see Appendix or the Heisenberg coupling are sufficient.

In the model Hamiltonian we so far have neglected the measurement system and the coupling with the
environment. This can be accounted for by the two extra terms #qeas and anyir, respectively, resulting
in the total Hamiltonian

%(t) = o (t) + Hneas (t) + Henvir > 9.2.4)

where we have assumed that the residual coupling to the environment is time independent. During the
manipulation of the qubits the measurement device should be in the off-state, i.e. Feas = 0. Further-
more, the interaction with the environment should be as small as possible, since it results in dephasing
and relaxation processes.

The preparation of the initial state (requirement 2) can be achieved by keeping the system at low tem-
peratures so that it relaxes to the ground state. For a spin system this can can achieved for example by
switching on a large field B; > kgT for a sufficiently long time, while B,(t) = B, (t) = 0. Then, due to
the residual interaction with the environment, each qubit relaxes into its ground state, e.g. | T) for a spin
system. If we then switch off B, we are left with the system in a well-defined pure ground state.

A typical experiment performed with qubits involves the preparation of the initial state, the switching of
the fields B(¢) and the coupling Jgﬁ (t) to achieve a specific unitary evolution of the qubit state, and the
measurement of the final state.

401f all three field components can be controlled, the topological or Berry phase of the systems can be manipulated as well.
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9.3 Why Superconducting Qubits

On the first sight, microscopic systems seem to be ideal candidates for qubits, since they can be easily
isolated from the environment thereby avoiding decoherence. However, the disadvantage of microscopic
systems (e.g. ions in an electromagnetic trap) is usually scalability and the lack of simple embedding
into other electronic circuits. That is, it is difficult to integrate many qubits into a more complex circuit
in order to approach the vision of a practical quantum computer. Therefore, macroscopic quantum sys-
tems such as superconductors are attractive, since they offer more flexibility in scaling using standard
integrated circuit technology. Until now several “macroscopic” qubits have been proposed that are based
on nanostructured solid state electronic circuits, which are based either of semiconductor quantum dots
or superconducting Josephson junctions.

As already mentioned above the large number of microscopic degrees of freedom in solid state devices
makes it more difficult to achieve sufficiently long dephasing times. This is in particular a problem for
charge based qubits, since the charge degree of freedom strongly couples to environmental degrees of
freedom. Therefore, the use of isolated spins on quantum dotsEr] or through the deliberate doping of
semiconductor@ seems more promising.

Quantum bits based on superconducting materials have particular advantages. First, the superconducting
ground state is separated by an energy gap A of the order of meV from the quasiparticle excitation spec-
trum (see Fig.[0.7). Second, the superconducting state represents a non-degenerate macroscopic ground
state and finally, superconducting metals have a large electron density resulting in a short screening
length for perturbing background charges.

E A E)\ E)\

continuum
of
excitations

A >> kBT |1>
E. |0>

normal metal superconductor

Figure 9.7: Advantage of superconductors for constructing solid state based quantum bits.

9.3.1 Superconducting Island with Leads

In order to get a feeling for the relevant energy scales for Josephson junction devices used for the realiza-
tion of superconducting quantum bits we consider a superconducting island coupled to a superconducting
lead via a Josephson junction that is characterized by an ideal Josephson element with Josephson induc-
tance L; = @¢/27l. (see (2.1.22)), normal resistance Ry and capacitance C as shown in Fig. We can
now consider the energy required to change the number N of Cooper pairs on the island by one and on
the other hand the energy required to change the phase ¢ of the superconducting wave function by 27.

4p. Loss, D.P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).
42B.E. Kane, A silicon based nuclear spin quantum computer, Nature 393, 133 (1998).
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The first is given by the charging energy

7
Ec = — 9.3.1
¢ 2C 9:3.1)
with ¢ = 2e. The latter is just the energy required to change the phase difference ¢ = @iglana — Preservoir
across the Josephson junction by 27 or, equivalently, to move a single flux quantum ®g across the
Josephson junction. This energy is given by the Josephson coupling energy E; = Ejo(1 — cos @) with the

maximum value for ¢ = 7 given by

A (®y/7)?
2E; 0 = = ) 3.2
70 p oL (9.3.2)

As already discussed in section[3.5] there is an uncertainty relation A¢ - A > 1 for the number N of Cooper
pairs and the phase ¢. Considering the two characteristic energy scales E¢ and Ejo we can conclude the
following:

hd EC >E Jo-
In this case large energy is required to change N. That is, the number N of Cooper pairs or the
charge state of the island is well defined, whereas according to A¢ - A > 1 the phase ¢ is completely
smeared out.

» Ec < Ejp:
In this case a large energy is required to change the phase ¢, whereas the energy for changing N is
small. Then, Cooper pairs easily can enter and leave the island resulting in large fluctuation of N
what, in turn, causes small fluctuations of ¢ and hence in a well defined phase.

Note that in this discussion we only considered the Cooper pairs and have completely neglected the
quasiparticle degrees of freedom.

We also have to consider the effect of thermal and quantum fluctuations. Thermal fluctuation do not play
any role as long as

Ejo.Ec > kT . 9.3.3)

This condition can easily satisfied with respect to Ejy. For example, a Josephson junction with a maxi-
mum Josephson current I, = 100 A (corresponding to a junction area of 10 x 10 um? at a typical current
density of J. = 100 A/cm?) has a coupling energy E;o ~ 3 x 10~ 3] corresponding to T ~ 2300 K. For the
charging energy this is more difficult. In order to have a charging energy corresponding a temperature
of only 1K, the capacitance has to be as small as only 1fF. With a specific capacitance of Josephson
tunnel junctions of typically 100 fF/um?, the junction area has to be as small as 0.1 x 0.1 um? requiring
advanced fabrication technology.

The effect of quantum fluctuations can be estimated from energy-time uncertainty relation AEAr > h.
For the charge and the phase channel the characteristic time scales are RyC and L; /Ry, respectively.
With the condition AE < E¢ and AE < E;y we obtain the conditions

Ry > h/q¢® for AE < Ec¢ 9.3.4)
Ry < h/¢ for AE < E; (9.3.5)

respectively, with ¢ = 2e. We see that the resistance Ry /4, where Rp = h/ e? is the quantum resistance,
separates the regimes, where quantum fluctuations of the charge and the phase are dominant.
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superconducting island
ApAN 2 1

/ superconducting lead
7

Figure 9.8: A superconducting island coupled to a superconducting lead (reservoir) via a Josephson junc-
tion characterized by an ideal Josephson element of Josephson inductance L;, normal resistance Ry and a
capacitance C.

A further characteristic energy scale of superconductors is the energy gap A. With the fact that the
characteristic energy el. Ry = eV, ~ A we obtain

hl, h Ry
Ejp ~ — = —F—el Ry ~ —A. 3.
10 2e 2€2RNe N 4RN (9 3 6)

We see that for junctions with Ry > Rp/4 we have Ejy < A. Then one can always find a regime for
which the two inequalities E;9 < Ec < A hold. The fact that A is the largest energy scale is often used
in theoretical treatments. It allows to restrict to states of the island containing only an even number of
electrons, which form Cooper pairs. The net charge Q on the island can then be written as gN = 2eN.
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