Physik der Kondensierten Materie 1

Rudolf Gross WS 2020/2021 Teil 10 Vorlesungsstunde: 03.12.2020

۲

Zusammenfassung: Teil 9, 01.12.2020/1

• epitaxiale Verspannung in Dünnschichtheterostrukturen

• technische Größen: (i) Elastizitätsmodul oder Young-Modul E: $\sigma = E \frac{\Delta \ell}{\ell}$ (iii) Kompressionsmodul B: $p = -\sigma = -B \frac{\Delta V}{V}$

(ii) Poissonzahl ν oder Querzahl μ : $\nu = \frac{1}{\mu} = \frac{-\Delta d/d}{\Delta \ell/\ell}$ (iv) Schub-, Scher- oder Gleitmodul G $\sigma = G \tan \alpha \simeq G \alpha$

- Wichtig: nur zwei der 4 Größen sind unabhängig voneinander $\rightarrow \frac{1}{B} = \frac{3}{E} (1 - 2\nu)$ $G = \frac{E}{2(1 + \nu)}$

- kubisches Kristallsystem: $E = \frac{(C_{11} - C_{12})(C_{11} + 2C_{12})}{C_{11} + C_{12}}, \quad \mu = \frac{C_{12}}{C_{11} + C_{12}}, \quad G = C_{44}, \quad B = \frac{1}{3}(C_{11} + 2C_{12})$

elastische Wellen (1D):

Zusammenfassung: Teil 9, 01.12.2020/2

• elastische Wellen in kubischen Kristallen:

$$\frac{\partial^2 s_i}{\partial t^2} = \frac{1}{\rho} \sum_{j} \frac{\partial \sigma_{ij}}{\partial j} = \frac{1}{\rho} \sum_{j,k,l} C_{ijkl} \frac{\partial^2 s_l}{\partial j \partial k} \qquad i,j,k,l = x,$$

$$y, z$$
 $s_x = u, s_y = v, s_z = w$

in Voigt-Notation
$$\widehat{C} = \begin{pmatrix} C_{11} \ C_{12} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{11} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{11} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{11} \ C_{12} \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ C_{51} \ c_{xx} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{xy} \\ = C_{51} \ c_{xx} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{xy} \\ = C_{51} \ c_{xx} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{xy} \\ = C_{51} \ c_{xx} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{xy} \\ = C_{51} \ c_{xx} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{xy} \\ = C_{51} \ c_{xy} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{xy} \\ = C_{51} \ c_{xy} + C_{52} \ c_{yy} + C_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{xz} + C_{56} \ c_{yy} \\ = C_{51} \ c_{yy} \ c_{53} \ c_{zz} + C_{54} \ c_{yz} + C_{55} \ c_{yz} + C_{56} \ c_{yy} \\ = C_{51} \ c_{yy} \ c_{53} \ c_{yy} \ c_{53} \ c_{yz} \ c_{55} \ c_{yz} \ c_{56} \ c_{yy} \ c_{56} \ c_{yy}$$

Beschreibung mit nur 3 Elastizitätsmoduln: C_{11}, C_{12}, C_{44}

(i) in [100] Richtung, longitudinal: Ansatz:
$$u(x,t) = u_0 \exp(i(kx - \omega t))$$
 $\omega^2 \rho = C_{11}k^2$ \Longrightarrow $v_{\text{long}} = \frac{\omega}{k} = \frac{\omega}{2\pi}\lambda = \sqrt{\frac{C_{11}}{\rho}}$

in **[100] Richtung**, *transversal*: Ansatz:
$$v(x, t) = v_0 \exp(i(kx - \omega t))$$

$$\omega^2
ho = C_{44} k^2$$

$$v_{\rm trans} = \frac{\omega}{k} = \frac{\omega}{2\pi} \lambda = \sqrt{\frac{C_{44}}{\rho}}$$

	Richtung		[100]	[110]	[111]
richtungsabhängige effektive	longitudinal (Kompressionswelle)	L	C ₁₁	$\frac{1}{2}(C_{11}+C_{12}+2C_{44})$	$\frac{1}{3}(C_{11}+2C_{12}+4C_{44})$
,Elastizitätsmoduln $\mathcal{C}_{ ext{eff}}$ "	transversal (Torsionswelle)	$T_1 \\ T_2$	C_{44} C_{44}	C_{44} $\frac{1}{2}(C_{11} - C_{12})$	$\frac{\frac{1}{3}(C_{11} - C_{12} + C_{44})}{\frac{1}{3}(C_{11} - C_{12} + C_{44})}$

Anwendung: Ultraschallanalyse von Materialien, z.B. Rissbildung

(ii)

۲

5 Dynamik des Kristallgitters

- **Bisher**: Betrachtung von Festkörper als elastisches Kontinuum, beschrieben durch elastische Konstanten
- Jetzt: Berücksichtigung der diskreten atomaren Struktur des Kristallgitters
- Beispiel: akustische Oberflächenwelle

5 Dynamik des Kristallgitters

- Frage: Wie werden Atome durch äußere Kraft aus ihrer Ruhelage ausgelenkt?
- Beantwortung ist im Allgemeinen ein schwieriges Problem:

quantenmechanische Beschreibung von Vielteilchenproblem → Verwendung von Näherungen

- i. adiabatische Näherung
 - Entkopplung der Dynamik von Kernen und Elektronen Elektronen können Kernbewegung beliebig schnell folgen, Born und Oppenheimer (1927)
- ii. harmonische Näherung
 - \rightarrow Wechselwirkungspotenzial U(R) wird durch Parabel angenähert

• dynamische Eigenschaften des Kristallgitters beschreiben:

- i. spezifische Wärme
- ii. *T*-Abhängigkeit des spezifischen elektrischen Widerstands und der Wärmeleitfähigkeit
- iii. Supraleitung in Metallen
- iv. dielektrische Eigenschaften von Ionenkristallen
- v. inelastische Lichtstreuung

5 Dynamik des Kristallgitters

Max Born (1882 - 1970)

Nobelpreis für Physik 1954: "for his fundamental research in quantum mechanics, especially for his statistical interpretation of the wavefunction"

5.1.1 Die adiabatische Näherung

• Quintessenz: Die sehr leichten Elektronen können der Bewegung der viel schwereren Kerne instantan folgen

 \rightarrow wir können die statische Potenzialkurve U(R) für die unterschiedlichen Kernabstände verwenden

Hamilton-Operator ist bekannt

Schwierigkeit: Summen laufen über eine sehr hohe Zahl von Teilchen

5.1.1 Die adiabatische Näherung

• Übergang zu normierten, dimensionslosen Größen:

$$\tilde{\mathbf{r}} = \frac{\mathbf{r}}{a_{\rm B}}, \tilde{\mathbf{R}} = \frac{\mathbf{R}}{a_{\rm B}}$$
 mit Bohrschem Radius $a_{\rm B} = 4\pi\epsilon_0\hbar^2/me^2 = 0.529$ Å
 $\tilde{\mathcal{H}} = \frac{\mathcal{H}}{2E_{\rm H}}$ mit Rydberg-Energie $2E_{\rm H} = me^4/(4\pi\epsilon_0)^2\hbar^2 = 27.2$ eV

normierter Hamilton-Operator:

$$\begin{aligned} \widetilde{\mathcal{H}} &= \frac{1}{2} \sum_{k} \frac{m}{M} \nabla_{k}^{2} + \frac{1}{2} \sum_{i} \nabla_{k}^{2} + \sum_{i < j} \frac{1}{|\widetilde{\mathbf{r}}_{i} - \widetilde{\mathbf{r}}_{j}|} + \sum_{k < l} \frac{Z^{2}}{|\widetilde{\mathbf{R}}_{k} - \widetilde{\mathbf{R}}_{l}|} - \sum_{i,k} \frac{Z}{|\widetilde{\mathbf{r}}_{i} - \widetilde{\mathbf{R}}_{k}|} = \mathcal{T} + \mathcal{H}_{a} \\ \mathcal{H}_{a} \end{aligned}$$
kinetische Energie der Kerne adiabatischer Hamilton-Operator

entscheidend: Massenverhältnis m/M ist sehr klein (typischerweise zwischen 1/1836 und 1/500 000)

→ wir können den Term $\frac{1}{2}\sum_{k}\frac{m}{M}\nabla_{k}^{2}$ als Störung betrachten

Annahme: die schnellen Elektronen können sich der langsamen Bewegung der Kerne zu jedem Zeitpunkt adiabatisch anpassen, so dass sie immer in dem mit \mathcal{H}_a bestimmten Gleichgewichtszustand bleiben

5.1.1 Die adiabatische Näherung

- Konsequenzen der adiabatischen Näherung:
 - i. die Bewegungen der Elektronen und Kerne werden entkoppelt
 - ii. Gesamtenergie

 $\boldsymbol{E}_{\text{tot}} = \boldsymbol{U}_{\text{el}} + \boldsymbol{T}_{\text{ion}}$

iii. potentielle Energie der Elektronen kann für jede Konfiguration der Ionen im Verlauf der Ionenbewegung berechnet werden, sie entspricht der jeweils statischen potentiellen Energie $U_{\rm el}(R)$

• gesamte potentielle Energie des Elektronensystems: Aufsummieren über alle Paar-Wechselwirkungen

$$U_{\rm el} = \frac{1}{2} \sum_{\substack{n,m,\alpha,\beta\\n\alpha \neq m\beta}} \phi_{\rm el} (\mathbf{r}_{n\alpha} - \mathbf{r}_{m\beta}) \qquad \phi_{\rm el}: \text{Paarwechselwirkungenergie}$$
$$U_{\rm el} = \frac{1}{2} \sum_{\substack{n,m,\alpha,\beta\\n\alpha \neq m\beta}} \phi_{\rm el} (\mathbf{R}_n - \mathbf{R}_m + \mathbf{r}_\alpha - \mathbf{r}_\beta + \mathbf{u}_{n\alpha} - \mathbf{u}_{m\beta})$$

1

- R_n : Position des *n*-ten Punkts in Bravais-Gitter
- r_{α} : Gleichgewichtsposition des α -ten Atoms in der Gitterzelle
- $r_{n\alpha}$: Position des α -ten Atoms in *n*-ter Gitterzelle
- $u_{n\alpha}$: Auslenkung des α -ten Atoms in n-ter Gitterzelle aus seiner Gleichgewichtsposition

• Harmonische Näherung:

Annäherung des oft komplizierten Verlaufs des Paarwechselwirkungspotenzials $\phi_{el}(R)$ durch ein harmonisches Potenzial um Ruhelage $R = R_0$

 $\phi_{\rm el}(R) \propto (R-R_0)^2$

- Näherung ist nur für kleine Abweichungen $\Delta R = R - R_0$

- Abweichungen von harmonischer N\u00e4herung:
 - → anharmonische Effekte
 - → haben große Bedeutung, führen z.B. zur thermischen Ausdehnung von FK

• Taylor-Entwicklung von $\phi_{el}(R)$ um $R = R_0$: $f(\mathbf{r} + \mathbf{a}) = f(\mathbf{r}) + \mathbf{a}\nabla f(\mathbf{r}) + \frac{1}{2}(\nabla \cdot \mathbf{a})^2 f(\mathbf{r}) + \dots$

$$U_{\rm el} = \frac{1}{2} \sum_{\substack{n,m,\alpha,\beta\\n\alpha \neq m\beta}} \phi_{\rm el} (\mathbf{r}_{n\alpha} - \mathbf{r}_{m\beta})$$

n-te Einheitszelle

$$(0,0,0) = \frac{r_{n\alpha}}{R_{n}} = n_{1}a_{1} + n_{2}a_{2} + n_{3}a_{3}$$

$$J_{\text{el}} = \frac{1}{2} \sum_{\substack{n,m,\alpha,\beta \\ n\alpha \neq m\beta}} \phi_{\text{el}} \left(\mathbf{r}_{n\alpha}^{\mathbf{0}} - \mathbf{r}_{m\beta}^{\mathbf{0}} \right) + \frac{1}{2} \sum_{\substack{n,m,\alpha,\beta \\ n\alpha \neq m\beta}} \left(\mathbf{u}_{n\alpha} - \mathbf{u}_{m\beta} \right) \nabla \phi_{\text{el}} \left(\mathbf{r}_{n\alpha}^{\mathbf{0}} - \mathbf{r}_{m\beta}^{\mathbf{0}} \right) + \frac{1}{4} \sum_{\substack{n,m,\alpha,\beta \\ n\alpha \neq m\beta}} \left[\left(\mathbf{u}_{n\alpha} - \mathbf{u}_{m\beta} \right) \nabla \right]^2 \phi_{\text{el}} \left(\mathbf{r}_{n\alpha}^{\mathbf{0}} - \mathbf{r}_{m\beta}^{\mathbf{0}} \right) \right]$$

$$= 0, \text{ da Summe aller Kräfte auf ein Atom}$$
in Gleichgewichtszustand verschwinden

muss

potentielle Energie in harmonischer Näherung

 $(U_0 \text{ kann als konstanter Term weggelassen warden})$

• verallgemeinerte Federkonstanten als 2. Ableitungen der potentiellen Energie an den Gleichgewichtspositionen

$$C_{n\alpha i}^{m\beta j} = \frac{\partial^2 \phi_{el} \left(\mathbf{r}_{n\alpha}^{\mathbf{0}} - \mathbf{r}_{m\beta}^{\mathbf{0}} \right)}{\partial r_{n\alpha i} \partial r_{m\beta j}} \qquad i, j = x, y, z$$

 $F_{n\alpha i} = -C_{n\alpha i}^{m\beta j} u_{m\beta j}$

Kraft auf Atom α in Gitterzelle n in Richtung idurch Auslenkung von Atom β in Zelle m in Richtung j

• aus Translationsinvarianz des Kristallgitters folgt:

 $C_{n\alpha i}^{m\beta j} = C_{\alpha i}^{(m-n)\beta j}$

Kopplungskonstante zwischen Atomen, die gleichen Abstand haben, ist gleich

Kräfte auf Atome

A Kopplungskonstante hängt nicht von absoluten Werten von n und m, sondern nur von ihrer Differenz (m - n) ab

Kopplungskonstanten

5.2 Klassische Theorie

• Diskussion der Schwingungen des Gitters mit den Gesetzen der klassischen Mechanik

quantenmechanische Diskussion: siehe R. Gross, A. Marx: Festkörperphysik (3. Auflage, Anhang A)

• Ziel:

Ableiten des Zusammenhangs zwischen Schwingungsfrequenz ω und Wellenvektor ${f q}$

Dispersionsrelation

klassische und quantenmechanische Diskussion liefern gleiches Ergebnis für Dispersionsrelation

• Erwartung:

Dispersions relation $\omega(q)$ für $q \to 0$ (langwelliger Grenzfall) sollte mit dem Ergebnis der Kontinuums beschreibung übereinstimmen

5.2.1 Bewegungsgleichungen

• Newtonsche Mechanik: Summe der Kopplungskräfte = Summe der Trägheitskräfte

$$M_{\alpha} \frac{\partial^2 u_{n\alpha i}}{\partial t^2} + \sum_{m,\beta,j} C_{n\alpha i}^{m\beta j} u_{m\beta j} = 0$$

Auslenkung $u_{n\alpha i}$ eines Atoms α in Gitterzelle n in Richtung i ergibt sich aus Gleichgewicht zwischen Kopplungskräften und Trägheitskräften

Problem: wir haben Festkörper mit N Einheitszellen und r' Atomen pro Einheitszelle

• System aus r = 3N' = 3r'N gekoppelten Differentialgleichungen

Lösung: wir nutzen periodische Struktur des Festkörpers aus

- → geeigneter Ansatz, der zu *Entkopplung der Differentialgleichungen* führt
- Ansatz: wir schreiben Auslenkungen $u_{n\alpha i}$ als ebene Wellen hinsichtlich der Zellkoordinaten

$$u_{n\alpha i} = \frac{1}{\sqrt{M_{\alpha}}} A_{\alpha i}(\mathbf{q}) e^{i(\mathbf{q} \cdot \mathbf{R}_n - \omega t)}$$

Welle, die nur an den Gitterpunkten \mathbf{R}_n definiert ist

5.2.1 Bewegungsgleichungen

• Einsetzen des Lösungsansatzes $u_{n\alpha i} = \frac{1}{\sqrt{M_{\alpha}}} A_{\alpha i}(\mathbf{q}) e^{i(\mathbf{q} \cdot \mathbf{R}_n - \omega t)}$ in DGL $M_{\alpha} \frac{\partial^2 u_{n\alpha i}}{\partial t^2} + \sum_{m,\beta,j} C_{n\alpha i}^{m\beta j} u_{m\beta j} = 0$ liefert

$$-\omega^2 \sqrt{M_{\alpha}} A_{\alpha i}(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{R}_n} + \sum_{\beta,j} \sum_m \frac{1}{\sqrt{M_{\beta}}} C_{n\alpha i}^{m\beta j} A_{\beta j}(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{R}_m} = 0$$

$$-\omega^{2}A_{\alpha i}(\mathbf{q}) + \sum_{\beta,j} \sum_{m} \frac{1}{\sqrt{M_{\alpha}M_{\beta}}} C_{n\alpha i}^{m\beta j} e^{i\mathbf{q}\cdot(\mathbf{R}_{m}-\mathbf{R}_{n})} A_{\beta j}(\mathbf{q}) = 0$$

dynamische Matrix $D_{\alpha i}^{\beta j}(\mathbf{q}) \rightarrow$ nur abhängig von n - m, da $C_{n\alpha i}^{m\beta j} = C_{\alpha i}^{(m-n)\beta j}$

 $-\omega^2 A_{\alpha i}(\mathbf{q}) + \sum_{\beta,j} D_{\alpha i}^{\beta j}(\mathbf{q}) A_{\beta j}(\mathbf{q}) = 0$

Reduktion auf homogenes Gleichungssystem der Ordnung 3r'

- Beispiel: einatomige Basis, $r' = 1 \rightarrow$ System aus nur 3r' = 3 gekoppelten Differentialgleichungen
 - → Vereinfachung durch Translationsinvarianz des Gitters ist riesig !!
- Mathematik: (ein homogenes, lineares Gleichungssystem besitzt nur dann nicht-triviale Lösungen, wenn die Koeffizientendeterminante verschwindet)

 $\det \left\{ D_{\alpha i}^{\beta j}(\mathbf{q}) - \omega^2 \mathbf{1} \right\} = 0$ $- \text{ wir erhalten } r = 3r' \text{ Lösungen } \omega(\mathbf{q}) \text{ für jeden Wellenvektor } \mathbf{q}$ $- \omega(\mathbf{q}) \text{ nennen wir Dispersionsrelation}$ $- \text{ die } r = 3r' \text{ Lösungen bezeichnen wir als } \mathbf{Zweige \ der \ Dispersionsrelation}$

- Longitudinale Gitterschwingungen:
 - Netzebenen des Kristalls schwingen in Richtung ihrer Normalen parallel zu Wellenvektor q
 - \succ Auslenkung der Netzebene *n* ist u_n
 - vertikalen Kraftkomponenten kompensieren sich:
 1D- Problem
 - − Kraft auf ein Atom der Netzebene n durch Netzebene m = n + pist in harmonischer N\"aherung \approx $(u_{n+p} - u_n)$
 - Gesamtkraft auf ein Atom der Netzebene n

$$F_n = \sum_p C_p (u_{n+p} - u_n)$$

i, *j*: fallen weg wegen 1D-Problem α , $\beta = 1$: ein Atom pro Zelle

allgemein gilt:

n

2

 $F_{n\alpha i}$

n+1 n+2 n+3

Kopplungskonstante C_n^m zwischen Netzebenen n und m wird durch C_p mit p = m - n ersetzt \rightarrow möglich, da Kopplung nur vom Abstand der Netzebenen abhängt

- Differentialgleichung
 - Gleichsetzen von Kopplungskräften und Trägheitskräften:

$$M\frac{\partial^2 u_n}{\partial t^2} - \sum_p C_p \left(u_{n+p} - u_n \right) = 0$$

$$M_{\alpha} \frac{\partial^2 u_{n\alpha i}}{\partial t^2} + \sum_{m,\beta,j} C_{n\alpha i}^{m\beta j} u_{m\beta j} = 0$$

Lösungsansatz:

 $u_n = A e^{i(q \ pa - \omega t)}$ $R_p = pa$ mit a = Netzebeneabstand

– Einsetzen ergibt:

$$-\omega^2 M A e^{-i\omega t} - \sum_p C_p \left(A e^{iqpa} e^{-i\omega t} - A e^{-i\omega t} \right) = 0$$
$$-\omega^2 M - \sum_p C_p \left(e^{iqpa} - 1 \right) = 0$$

- aus Symmetriegründen ist $C_p = C_{-p}$:

$$-\omega^2 M = \sum_{p=1}^{\infty} C_p (e^{iqpa} + e^{-iqpa} - 2) = 2 \sum_{p=1}^{\infty} C_p [\cos(qpa) - 1]$$

- Dispersionsrelation
 - Umschreiben von $-\omega^2 M = 2\sum_{p=1}^{\infty} C_p[\cos(qpa) 1]$ ergibt:

 $\omega^2 = \frac{2}{M} \sum_{p=1}^{\infty} C_p [1 - \cos(qpa)]$

- Dispersionsrelation für longitudinale Wellen
- oft kann in guter N\u00e4herung nur die NN Kopplung C₁ ber\u00fccksichtigt werden

$$\omega^{2} = \frac{2C_{1}}{M} [1 - \cos(qa)] = \frac{4C_{1}}{M} \sin^{2}\left(\frac{qa}{2}\right)$$
$$\sin^{2} x = \frac{1}{2}(1 - \cos 2x)$$

 Dispersionsrelation ist periodisch: ω(q) = ω (q + n ⋅ 2π/a)

 Periode entspricht der Länge des reziproken Gittervektors G_{min} = 2π/a

 es gilt: ω(q) = ω(-q)

- Eigenschaften der Dispersionsrelation $\omega^2 = \frac{2C_1}{M} [1 \cos(qa)] = \frac{4C_1}{M} \sin^2\left(\frac{qa}{2}\right)$
 - Gruppengeschwindigkeit:

Ausbreitungsgeschwindigkeit des Wellenpakets

$$\mathbf{v}_g = \mathbf{\nabla}_q \ \omega(\mathbf{q})$$
$$v_g = \sqrt{\frac{C_1 a^2}{M}} \cos\left(\frac{1}{2} q a\right)$$

- Grenzfälle:
 - i. $q = \pi/a$: Rand der 1. Brillouin-Zone
 - $v_g
 ightarrow 0$ ightarrow stehende Wellen
 - maximale Schwingungsfrequenz $\omega_{
 m max} = \sqrt{4C_1/M}$
 - ii. $q \ll \pi/a$: Zentrum der 1. Brillouin-Zone
 - langwelliger Grenzfall: $\lambda = 2\pi/q \gg a$
 - $-v_g \simeq \sqrt{C_1 a^2/M} \simeq const.$
 - Kontinuumsbeschreibung: $v_g = \sqrt{C_{11}/\rho} \simeq const.$
- Abschätzung:

aus $v_g \simeq \omega_{\max} a$ ergibt sich mit der typischen Schallgeschwindigkeit $v_g \sim 4000$ m/s und $a \simeq 0.2$ nm $\omega_{\max} \simeq 2 \times 10^{13}$ 1/s

- Bedeutung der 1. Brillouin-Zone
 - Fragen: Woher kommt Periodizität von $\omega(\mathbf{q})$? Welcher Bereich der Wellenvektoren \mathbf{q} ist physikalisch sinnvoll?
 - **Tatsache**: $\omega(q)$ ist periodisch in q mit Periode $2\pi/a$
 - → Periodenlänge im reziproken Raum entspricht minimaler Länge $2\pi/a$ eines reziproken Gittervektors $G_{\min} = 2\pi/a$
 - dynamische Matrix:

$$D_{\alpha i}^{\beta j}(\mathbf{q}) = \sum_{m} \frac{1}{\sqrt{M_{\alpha} M_{\beta}}} C_{n\alpha i}^{m\beta j} \underline{e^{i\mathbf{q} \cdot (\mathbf{R}_{m} - \mathbf{R}_{n})}}$$

Summe über Phasenfaktoren

da \mathbf{R}_n und \mathbf{R}_m Vektoren des Bravais-Gitters sind, ändert sich nichts, wenn wir \mathbf{q} durch $\mathbf{q} + \mathbf{G}$ ersetzen, da $\exp(i \mathbf{G} \cdot \mathbf{R}) = 1$

 $\implies D_{\alpha i}^{\beta j}(\mathbf{q}) = D_{\alpha i}^{\beta j}(\mathbf{q} + \mathbf{G}) \qquad \text{und} \qquad \omega(\mathbf{q}) = \omega(\mathbf{q} + \mathbf{G})$

Zeitumkehrinvarianz

(da vor- und zurücklaufende Wellen durch Zeitumkehr miteinander verbunden sind, müssen Frequenzen gleich sein)

- Folgerung

es ist völlig ausreichend, den Bereich der 1. Brillouin-Zone zu betrachten

 $\implies -\frac{\pi}{a} \le q \le +\frac{\pi}{a} \qquad 2q < G_{\min} = \frac{2\pi}{a}$

ww.wmi.badw.de

• anschauliche Erklärung dafür, dass es ausreicht, die 1. Brillouin-Zone zu betrachten

Welle mit größerem q, d.h. kleinerer Wellenlänge $\lambda = 2\pi/q$ gibt keine zusätzliche Information, da nur die Auslenkung der Gitteratome, nicht aber der Wellenverlauf zwischen den Atome interessiert

$$\lambda_{\min} = \frac{2\pi}{q_{\max}} = 2a$$

 $\Rightarrow q_{\max} = \frac{2\pi}{\lambda_{\min}} = \frac{\pi}{a}$

ii. Transversale Gitterschwingungen:

- Netzebenen des Kristalls schwingen senkrecht zu Wellenvektor q
- \blacktriangleright Auslenkung der Netzebene *n* ist u_n
- horizontale Kraftkomponenten kompensieren sich:
 1D- Problem

äquivalentes Ergebnis für Dispersionsrelation zu longitudinalen Wellen mit anderen Kopplungskonstanten C_p

- rein transversale oder longitudinale Wellen sind nur bei Ausbreitung entlang von Symmetrieachsen möglich, z.B. [100], [110] und [111] bei kubischem Kristall
- im Allgemeinen erhält man gemischte Wellen

Zusammenfassung: Teil 10, 03.12.2020/1

Dynamik des Kristallgitters:

Beschreibung der Bewegung von einzelnen Atomen in Kristallgitter \rightarrow komplex, da jedes Atom mit jedem über "Federnetzwerk" wechselwirkt

- (i) *adiabatische Näherung* (Elektronen können Bewegungen der Kerne instantan folgen)
- (ii) *harmonische Näherung* (parabelförmiges Paar-WW-Potenzial, Rückstellkraft \propto Auslenkung)

die r = 3r' Lösungen bezeichnen wir als **Zweige der Dispersionsrelation** ₂₄

Zusammenfassung: Teil 10, 03.11.2020/2

• *longitudinale Schwingungen*: einfachster Fall: <u>1D-System</u>, <u>einatomige Basis</u> $\rightarrow 1 \cdot r' = 1$, $\alpha = \beta = 1$, m - n = p

$$F_{n\alpha i} = -C_{n\alpha i}^{m\beta j} u_{m\beta j} \implies F_n = \sum_p C_p (u_{n+p} - u_n)$$
$$M \frac{\partial^2 u_n}{\partial t^2} - \sum_p C_p (u_{n+p} - u_n) = 0$$

Ansatz:
$$u_n = A e^{i(q \ pa - \omega t)}$$
 $R_p = pa$

Lösung: $\omega^2 = \frac{2}{M} \sum_{p=1}^{\infty} C_p [1 - \cos(qpa)]$

Dispersionsrelation

nur NN-WW:

$$\boldsymbol{m} - \boldsymbol{n} = \boldsymbol{p} = \boldsymbol{1}$$
 $\omega^2 = \frac{2C_1}{M} [1 - \cos(qa)] = \frac{4C_1}{M} \sin^2\left(\frac{qa}{2}\right)$

Gruppengeschwindigkeit:
$$v_q = \frac{\partial \omega(q)}{\partial q} = \sqrt{\frac{C_1 a^2}{M}} \cos \frac{qa}{2}$$

Grenzfälle:
$$q \ll 1/a$$
: $\omega = \sqrt{\frac{C_1 a^2}{M}} q = v_s q$
 $q = \pi/a$: $\omega = \sqrt{\frac{4C_1}{M}}$, $v_q = 0$ (stehende Welle)

- **1.** Brillouin-Zone: $\omega(\mathbf{q}) = \omega(\mathbf{q} + \mathbf{G})$ $\omega(\mathbf{q}) = \omega(-\mathbf{q})$ es ist ausreichend, nur den Bereich der 1. BZ zu betrachten: $-\pi/a \le q \le +\pi/a$
 - transversale Schwingungen:

äquivalentes Ergebnis zu longitudinalen Wellen:
$$\omega^2 = \frac{4C_1}{M} \sin^2\left(\frac{qa}{2}\right)$$
 mit anderem C_2

٠