Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 10 Vorlesungsstunde: 26.04.2021-2

Zusammenfassung: Teil 9a, 26.04.2021/1

• Dielektrische Eigenschaften

- Beschreibung der Reaktion von Festkörper auf von außen wirkendes *E*-Feld (nur lineare Antwort)
 - (i) mikroskopisch: WW einzelner Photonen mit Festkörperanregungen, z.B. Absorption von Photon
 - (ii) makroskopisch: Maxwell-Gleichungen plus Materialparameter $\epsilon(\mathbf{q}, \omega)$ bzw. $\chi(\mathbf{q}, \omega)$, $\sigma(\mathbf{q}, \omega)$
 - Zusammenhang zwischen mikroskopischer und makroskopischer Beschreibung
- Photonen haben kleinen Wellenvektor \rightarrow oft nur Grenzfall $q \rightarrow 0$ relevant

• makroskopische E-Dynamik

- Reaktion von Isolator auf *E*-Feld ist *Polarisation*:

$$P_i(\mathbf{r}',t') = \epsilon_0 \sum_j \int \chi_{ij}(\mathbf{r},t,\mathbf{r}',t') E_j(\mathbf{r},t) \, \mathrm{d}^3 r \, \mathrm{d}t$$

- elektrisches Dipolmoment: $\mathbf{p}_{el} = \sum_i q_i \mathbf{r}_i$ SI-Einheit: $C \cdot \mathbf{m} = Ladung \cdot Verschiebung$ Polarisation $\mathbf{P} = \frac{p_{el}}{V}$ SI-Einheit:1 Debye = $3.3 \times 10^{-30} \text{ C} \cdot \mathbf{m} = 0.21 e \cdot \text{Å}$
- Darstellung im Frequenzraum (mit Faltungssatz):

$$P_{i}(\mathbf{q},\omega) = \epsilon_{0} \sum_{j} \chi_{ij}(\mathbf{q},\omega) E_{j}(\mathbf{q},\omega)$$

$$\mathbf{D} = \epsilon_{0} \mathbf{E} + \mathbf{P}$$

$$D_{i}(\mathbf{q},\omega) = \epsilon_{0} \sum_{j} \epsilon_{ij}(\mathbf{q},\omega) E_{j}(\mathbf{q},\omega) dielektrische Verschiebung$$

$$\epsilon_{ij}(\mathbf{q},\omega) = 1 + \chi_{ij}(\mathbf{q},\omega) Dielektristensor$$

- Metall: Beiträge von gebundenen und frei beweglichen Elektronen
 - → Berücksichtigung in verallgemeinerter dielektrischer Funktion bzw. verallgemeinerten Leitfähigkeit

 $\tilde{\epsilon}(\omega) = \epsilon(\omega) + i\sigma/\epsilon_0 \omega$ $\tilde{\sigma}(\omega) = \sigma(\omega) - i\omega\epsilon_0\epsilon(\omega)$

Zusammenfassung: Teil 9b, 26.04.2021/1

optische Größen:
$$\tilde{n}(\omega) = n(\omega) + i \kappa(\omega) = \sqrt{e}$$

Brechungsindex

Extinktionskoeffizient

$$n^2 - \kappa^2 = \epsilon_r$$
, $2n\kappa = \epsilon_i$

Absorptions-, Reflexions- und Transmissionskoeffizient:

$$K(\omega) = 2\kappa(\omega)\frac{\omega}{c} = \frac{4\pi\kappa(\omega)}{n\lambda} = \frac{2\kappa k}{n} = \frac{\epsilon_i(\omega)\omega}{n}$$

 K^{-1} : Länge, auf der die Intensität auf 1/e abnimmt

Bruchteil der bei senkrechter Inzidenz reflektierten Intensität

 $R = \left|\frac{\tilde{n} - 1}{\tilde{n} + 1}\right|^2 = \frac{(n - 1)^2 + \kappa^2}{(n + 1)^2 + \kappa^2}, \qquad T = 1 - R = \frac{4n}{(n + 1)^2 + \kappa^2}$

• lokales elektrisches Feld

$$E_{z,\text{lok}} = E_{z,\text{mak}} + \frac{1}{4\pi\epsilon_0} \sum_{i} p_{i,\text{el}} \frac{3z_i^2 - r_i^2}{r_i^5}$$
von außen wirkendes
makroskopisches Feld
Dipolfelder

- Mittelung der Dipolfelder innerhalb einer Kugel verschwindet im Zentrum der Kugel

$$\Rightarrow E_{lok} = E_{mak} + \frac{P}{3\epsilon_0} = E_{mak} + E_L$$

Lorentz-Beziehung, Lorentz-Feld $\mathbf{E}_{L} = \mathbf{P}/3\epsilon_{0}$

P

- Depolarisationsfeld: $\mathbf{E}_{\mathbf{N}} = -\frac{1}{\epsilon_0} N \mathbf{P}$

Depolarisationsfaktor N = 1 bzw. 0 für dünne Scheibe \perp bzw. || zu E_{ext}

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{mak}} + \mathbf{E}_{\text{L}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_{N} + \mathbf{E}_{\text{L}} = \mathbf{E}_{\text{ext}} - \frac{1}{\epsilon_{0}} N \mathbf{P} + \frac{1}{3\epsilon_{0}}$$

Kapitel 11

Dielektrische Eigenschaften

11.2 Mikroskopische Theorie

- Aufgabe: Herstellen des Zusammenhangs zwischen der *makroskopische Materialkonstante* $\epsilon(\omega, q)$ und den *mikroskopischen FK-Eigenschaften*
 - Analyse der WW zwischen FK und elektromagnetischen Felder auf mikroskopischer Ebene
 - Unterscheidung zwischen 3 Substanzklassen (analog zu Magnetismus)
 - (1) Dielektrische Festkörper:
 - Ursache der Polarisation: (i) Auslenkung der Elektronenwolke (gebundene Elektronen) gegenüber Atomkern

 \rightarrow elektronische Polarisation

(ii) gegenseitige Verschiebung von positiven und negativen Ionen

 \rightarrow ionische Polarisation

(iii) Auslenkung von freien Ladungsträgern (nur Metalle)

→ elektronische Polarisation von Metallen

M, M, M, M,

11.2 Mikroskopische Theorie

(2) Paraelektrische Festkörper:

Ursache der Polarisation: Ausrichtung von vorhandenen elektrischen Dipolen in E-Feld

 \rightarrow Orientierungspolarisation

(3) Ferroelektrische Festkörper:

Ursache der Polarisation: spontane Ausrichtung von vorhandenen elektrischen Dipolen ohne äußeres E-Feld

→ spontane Polarisation: Ferro-, Antiferro- und Ferrielektrizität

11.3 Elektronische Polarisation

- Frage: Wie lautet der Zusammenhang zwischen $\epsilon(\omega, q)$ und den elektronischen Eigenschaften des FK?
 - Anregung von Kristallelektronen (gebundene und freie) durch *E*-Feld
 - i. Interbandübergänge
 - ii. Intrabandübergänge (nicht bei Isolatoren, da volles Band)

- q-Abhängigkeit wird außer Acht gelassen: $\epsilon(\omega, q) \rightarrow \epsilon(\omega)$
 - → Wellenvektor von Licht ist klein: $q \ll \pi/a$
 - > bzw. Wellenlänge von Licht ist groß gegen Atomabstand: $\lambda = \frac{2\pi}{a} \gg a$
- Startpunkt:

Beschreibung von gebundenen Elektronen durch einfaches Oszillator-Modell: *Hendrik Anton Lorentz* (1907)

- Ladungswolke der gebundenen Elektronen wird durch *E*-Feld zu Schwingungen gegenüber Kernposition angeregt (wir betrachten zunächst nur einzelnes Atom)
 - gedämpfter, getriebener harmonischer Oszillator

$$m\frac{d^2x}{dt^2} + m\Gamma\frac{dx}{dt} + m\omega_0^2 x = (-e) E_0 \exp(-i\omega t)$$

- stationäre Lösung: $x(t) = \frac{-e}{m} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega} E_0 \exp(-i\omega t)$

- elektrisches Dipolmoment durch Verschiebung x des Ladungsschwerpunkts: $p_{el} = (-e)x$
- Einführung der *Polarisierbarkeit* α als Proportionalitätskonstante zwischen $p_{\rm el}$ und $E_{\rm lok}$

$$p_{\rm el} = (-e)x = \alpha \ \epsilon_0 E_{\rm lok}$$

für einzelnes Atom gilt
$$E_{\text{lok}} = E_{\text{ext}} \rightarrow \alpha(\omega) = \frac{(-e)}{\epsilon_0 E_0} x = \frac{e^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma \omega}$$

Polarisierbarkeit

- mit $P = n_V p_{el} = n_V \alpha \epsilon_0 E_{lok}$ und gleichzeitig $P = \chi \epsilon_0 E_{ext} = \chi \epsilon_0 E_{lok}$ folgt: $\chi = n_V \alpha$

$$\chi(\omega) = \frac{n_V e^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega}$$

dielektrische Suszeptibilität

_

• Dielektrische Funktion

$$\epsilon(\omega) = 1 + \chi(\omega) = 1 + \frac{n_V e^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega}$$

– Realteil:

$$\boldsymbol{\epsilon_r}(\boldsymbol{\omega}) = 1 + \frac{n_V e^2}{\epsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 - (\Gamma \omega)^2}$$

– Imaginärteil:

$$\boldsymbol{\epsilon_i}(\boldsymbol{\omega}) = \frac{n_V e^2}{\epsilon_0 m} \frac{\Gamma \omega}{(\omega_0^2 - \omega^2)^2 - (\Gamma \omega)^2}$$

Antwortfunktion eines gedämpften harmonischen Oszillators auf externen Antrieb

- In realem FK liegen immer mehrere Resonanzen ω_{ik} vor, die Übergängen $|i\rangle \rightarrow |k\rangle$ zwischen elektronischen Zuständen entsprechen
 - 8 Modellierung mit mehreren Oszillatoren _ der Oszillatorstärke (Gewicht) f_{ik} 6 $\epsilon(\omega) = 1 + \frac{n_V e^2}{\epsilon_0 m^*} \sum_{i} f_{ik} \frac{1}{\omega_{ik}^2 - \omega^2 - i\Gamma_{ik}\omega}$ $\varepsilon_i(\omega)$ 2Г₁ Realteil: $2\Gamma_2$ ω ω_2 $\boldsymbol{\epsilon_i}(\boldsymbol{\omega}) = \frac{n_V e^2}{\epsilon_0 m^*} \sum_{i} f_{ik} \frac{\Gamma_{ik} \boldsymbol{\omega}}{\left(\boldsymbol{\omega}_{ii}^2 - \boldsymbol{\omega}_{i}^2\right)^2 - (\Gamma_{ik} \boldsymbol{\omega})^2}$ -4 3 0 $/\omega_1$

- Abschätzung der elektronischen Polarisierbarkeit α und der charakteristischen Resonanzfrequenz ω_0
 - Modell von Mossotti:
 Atom = geladene Kugel mit Radius *a* und Leitfähigkeit σ = ∞ ⇒ E_{||} = 0
 - lokales Feld im Zentrum der Kugel durch Oberflächenladungen auf Kugeloberfläche entspricht Lorentz-Feld:

$$E_{\text{lok}} = -E_L = -\frac{P}{3\epsilon_0} = -\frac{p_{\text{el}}n_V}{3\epsilon_0} = -\frac{p_{\text{el}}}{3\epsilon_0}\frac{1}{\frac{4}{3}\pi a^3}$$
$$\implies |p_{\text{el}}| = \epsilon_0 \frac{4\pi a^3}{4\pi a^3} E_{\text{lok}} \qquad \qquad \text{Polarisierbarkeit } \alpha \simeq a^3 \simeq 10^{-24} \text{ cm}^3$$
$$\implies \text{mit } a \simeq 10^{-10} \text{m} = 1 \text{ Å}$$

× 10,5 eV

- aus
$$\alpha = \frac{e^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2}$$
 folgt:
$$\hbar \omega_0 = \sqrt{\frac{1}{\alpha [10^{24} \text{ cm}^3]}}$$

α

Frequenzen im UV-Bereich

Ottaviano Fabrizio Mossotti

- Clausius-Mossotti-Beziehung
 - bei der Ableitung von $\chi(\omega)$ und $\epsilon(\omega)$ mit dem Lorentzschen Oszillator-Modell wurde von einem einzelnen Atom ausgegangen
 - \succ in diesem Fall gilt $E_{lok} = E_{ext}$
 - > in FK gilt dies nicht mehr: $E_{lok} = E_{ext} + \frac{1}{\epsilon_0} P$

(wir nehmen an, das Depolarisationsfeld $E_N = 0$)

makroskopische Beziehung

mikroskopische Beziehung

$$p_{\rm el} = \alpha \,\epsilon_0 E_{\rm lok} \iff P = n_v p_{\rm el} = n_v \,\alpha \,\epsilon_0 E_{\rm lok}$$

$$P = n_v \,\alpha \,\epsilon_0 \left(E_{\rm ext} + \frac{1}{\epsilon_0} P \right)$$

$$P = \frac{n_v \,\alpha}{1 - \frac{1}{3} n_v \,\alpha} \,\epsilon_0 E_{\rm ext}$$

- Lorentzsches Oszillatormodell f
 ür einzelnes Atom:
 - $\chi = n_{v} \alpha$ $\epsilon = 1 + \chi = 1 + n_{v} \alpha$
- ➢ gleiches Ergebnis, falls ¹/₃ n_Vα ≪ 1 → verdünntes Gas und/oder kleine Polarisierbarkeit
 ➢ Polarisationskatastrophe, falls ¹/₃ n_Vα → 1

Clausius-Mossotti-Beziehung

$$\epsilon = 1 + \frac{n_v \alpha}{1 - \frac{1}{3}n_v \alpha}$$

Auflösen nach α ergibt:

$$\frac{1}{3}n_v \alpha = \frac{\epsilon - 1}{\epsilon + 2}$$

Clausius-Mossotti-Beziehung

 \Rightarrow durch Messung von ϵ kann bei bekanntem n_V die Polarisierbarkeit α der Atome bestimmt werden

Ottaviano Fabrizio Mossotti * 18. April 1791 in Novara † 20. März 1863 in Pisa)

11.3.2 Elektronische Polarisation: Quantenmechanische Beschreibung

- Quantenmechanischen Berechnung der Oszillatorstärken (Vertiefungsthema)
 - zeitabhängige Störungstheorie:

$$\mathcal{H} = \frac{1}{2m^{\star}} \begin{bmatrix} \frac{\hbar}{i} \nabla + e\mathbf{A} \end{bmatrix}^2 + V(\mathbf{r}) \xrightarrow{\phi = 0 \text{ und } \nabla \cdot A = 0} \mathcal{H} = \mathcal{H}_0 + \mathcal{H}_r = \mathcal{H}_0 + \frac{e}{m^{\star}} \mathbf{A} \cdot \mathbf{p}$$

linear Response $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_r = \mathcal{H}_0 + \frac{e}{m^{\star}} \mathbf{A} \cdot \mathbf{p}$

Störung, erzeugt Übergänge zwischen Zuständen

– Dipolnäherung:

 $\mathcal{H}_r = (-e) \mathbf{r} \cdot \mathbf{E}$

- Übergangsmatrixelemente des Operators $\mathbf{p}_{\mathrm{el}} = -e\mathbf{r}$:

$$-e r_{ik} = \int \Psi_i^* (-e \mathbf{r}) \Psi_k d^3 r$$

Oszillatorstärke f_{ik}:

$$f_{ik} = \frac{2m^*}{\hbar^2} \hbar \omega_{ik} |r_{ik}|^2$$

11.4 Ionische Polarisation

- Frage: Welchen Beitrag zur dielektrischen Funktion liefert die ionische Polarisation?
 - positive und negative Ionen schwingen gegeneinander \rightarrow *Polarisation*
 - mikroskopisches Bild: Stoß zwischen Photon und Phonon
 - nur Phononen mit $q \simeq 0$ sind relevant wegen kleinem Impuls von Photon
 - nur optische Phononen, da bei akustischen Phononen unterschiedliche Ionen in Phase schwingen und deshalb zu keiner Polarisation führen
 - optische Phononen (Wiederholung)

15

11.4 Ionische Polarisation

• Optische Phononen: Wiederholung

- optische Phononen bei q = 0

 $\omega_0 = \sqrt{2f\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$

bei Herleitung der Dispersionsrelation wurde vernachlässigt, dass die schwingende Atome geladen sein können !!

– typische Frequenzen: 10^{13} s⁻¹ < ω_0 < 10^{14} s⁻¹ (ferner IR-Bereich)

11.4 Ionische Polarisation

Bewegungsgleichung mit Berücksichtigung von zusätzlicher Rückstellkraft durch lokales elektrisches Feld

longitudinale optische Gitterschwingung in Ionenkristall für $q\simeq 0$

$$\frac{1}{u_1} + qE_{lok} = 0$$

$$M_1 = 0$$

$$M_1 = 0$$

$$M_1 = 0$$

$$K_{lok} = 0$$

$$M_1 = 0$$

$$K_{lok} = 0$$

$$K_{lok} = 0$$

$$K_{lok} = 0$$

$$M_1 = 0$$

mit relativer Auslenkung $m{u} = m{u}_1 - m{u}_2$ und reduzierte Masse: $\mu = rac{M_1 M_2}{M_1 + M_2}$

$$\omega_0 = \sqrt{2f\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$
 (optische Phononen für $q = 0$)

- zusätzliche Rückstellkraft durch lokales Feld:
 - $\mathbf{F} = q \mathbf{E}_{lok}$
- Bewegungsgleichungen:

$$M_{1} \frac{\partial^{2} \mathbf{u}_{1}}{\partial t^{2}} + M_{1} \Gamma \frac{\partial \mathbf{u}_{1}}{\partial t} - 2f(\mathbf{u}_{1} - \mathbf{u}_{2}) - q\mathbf{E}_{lok} = 0$$
$$M_{2} \frac{\partial^{2} \mathbf{u}_{2}}{\partial t^{2}} + M_{2} \Gamma \frac{\partial \mathbf{u}_{2}}{\partial t} - 2f(\mathbf{u}_{2} - \mathbf{u}_{1}) + q\mathbf{E}_{lok} = 0$$

– Dividieren durch M_1 bzw. M_2 und Subtrahieren

$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \mathbf{E}_{\text{lok}}$$

- stationäre Lösung von DGL für $\mathbf{E}_{lok}(t) = \mathbf{E}_0 \exp(-i\omega t)$

$$u(t) = \frac{q}{\mu} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega} E_0 \exp(-i\omega t)$$

11.4.1 Eigenschwingungen von Ionenkristallen

- Frage: Wie ändert sich die Schwingungsfrequenz von longitudinal- und transversal-optischen Phononen (freie Schwingungen: $E_{ext} = 0$) bei Berücksichtigung der zusätzlichen Rückstellkraft?
 - elektronische Polarisation: $\mathbf{P}_{el} = n_V (\alpha_{el}^+ + \alpha_{el}^-) \epsilon_0 \mathbf{E}_{lok} = n_V \alpha_{el} \epsilon_0 \mathbf{E}_{lok}$

(Beitrag der pos. und neg. lonen)

- Ionenpaare mit Dichte n_V liefern alle das Dipolmoment $\mathbf{p}_{ion} = q\mathbf{u_1} q\mathbf{u_2} = q\mathbf{u}$
 - → ionische Polarisation: $P_{ion} = n_V q \mathbf{u}$
- Gesamtpolarisation:

$$\mathbf{P} = \mathbf{P}_{el} + \mathbf{P}_{ion} = n_V \alpha_{el} \epsilon_0 \mathbf{E}_{lok} + n_V q \mathbf{u}$$

elektronisch ionisch

Frage: Wie groß ist das lokale elektrische Feld Elok?

11.4.1 Eigenschwingungen von Ionenkristallen

- Lokales elektrische Feld bei longitudinal- und transversal-optischen Gitterschwingungen in Ionenkristall
 - i. Longitudinale Gitterschwingung:
 - Polarisationswelle verläuft senkrecht zu Scheibe der Dicke der Wellenlänge λ
 - Situation entspricht in etwa der einer dünnen Scheibe mit $P \perp$ Scheibe \rightarrow Depolarisationsfaktor $N \simeq 1$

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_{N} + \mathbf{E}_{L} = 0 - \frac{1}{\epsilon_{0}} N \mathbf{P} + \frac{1}{3\epsilon_{0}} \mathbf{P} \simeq -\frac{2}{3\epsilon_{0}} \mathbf{P}$$

ii. Transversale Gitterschwingung:

- Polarisationswelle verläuft parallel zu Scheibe der Dicke der Wellenlänge λ
- Situation entspricht in etwa der einer dünnen Scheibe mit *P*|| Scheibe \rightarrow *Depolarisationsfaktor* $N \simeq 0$

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_{N} + \mathbf{E}_{L} = 0 - \frac{1}{\epsilon_{0}} N \mathbf{P} + \frac{1}{3\epsilon_{0}} \mathbf{P} \simeq + \frac{1}{3\epsilon_{0}} \mathbf{P}$$

Einsetzen von $\mathbf{P} = \mathbf{P}_{el} + \mathbf{P}_{ion} = n_V \alpha_{el} \epsilon_0 \mathbf{E}_{lok} + n_V q \mathbf{u}$ und Auflösen nach \mathbf{E}_{lok} ergibt lokales Feld

• Longitudinale Eigenschwingungen in Ionenkristallen

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_{N} + \mathbf{E}_{L} = -\frac{2}{3\epsilon_{0}}\mathbf{P} \quad \boldsymbol{\leftarrow} \quad \mathbf{P} = \epsilon_{0}n_{V}\alpha_{el}\mathbf{E}_{\text{lok}} + n_{V}q\mathbf{u}$$

 $\mathbf{E}_{\mathrm{ext}} = \mathbf{0}$ (freie Schwingung)

- wir führen ionische Polarisierbarkeit α_{ion} ein: $\mathbf{p}_{ion} = \epsilon_0 \alpha_{ion} \mathbf{E}_{lok} = q \mathbf{u}$

$$\Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{el} \mathbf{E}_{\text{lok}} + n_V \epsilon_0 \alpha_{\text{ion}} \mathbf{E}_{\text{lok}}$$

- aus DGL folgt für statischen Grenzfall $\frac{\partial u}{\partial t} \to 0$: $\mathbf{u} = \frac{q\mathbf{E}_{\text{lok}}}{\mu\omega_0^2} \Rightarrow \mathbf{E}_{\text{lok}} = \frac{\mu_0\omega_0^2}{q} \mathbf{u} \Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{\text{el}} \mathbf{E}_{\text{lok}} + \frac{\mu\omega_0^2}{q} \epsilon_0 n_V \alpha_{\text{ion}}(0) \mathbf{u}$

Einsetzen in
$$\mathbf{E}_{\text{lok}} = -\frac{2}{3\epsilon_0}\mathbf{P}$$
 und auflösen nach \mathbf{E}_{lok} ergibt: $\mathbf{E}_{\text{lok}} = -\frac{1}{q}\mu\omega_0^2 \frac{\frac{2}{3}n_V\alpha_{\text{ion}}(0)}{1+\frac{2}{3}n_V\alpha_{\text{el}}} \mathbf{u}$

Einsetzen von E_{lok} in DGL ergibt:

$$\mu \frac{\partial^{2} \mathbf{u}}{\partial t^{2}} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_{0}^{2} \mathbf{u} = q \mathbf{E}_{\text{lok}} = -\mu \omega_{0}^{2} \frac{\frac{2}{3} n_{V} \alpha_{\text{ion}}(0)}{1 + \frac{2}{3} n_{V} \alpha_{\text{el}}} \mathbf{u}$$

$$\mu \frac{\partial^{2} \mathbf{u}}{\partial t^{2}} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_{L}^{2} \mathbf{u} = 0$$

$$\omega_{L} = \omega_{0} \sqrt{1 + \frac{\frac{2}{3} n_{V} \alpha_{\text{ion}}(0)}{1 + \frac{2}{3} n_{V} \alpha_{\text{el}}}} \int_{1 + \frac{2}{3} n_{V} \alpha_{\text{el}}} \mathbf{u}$$

$$\omega_{L} = \omega_{0} \sqrt{1 + \frac{\frac{2}{3} n_{V} \alpha_{\text{ion}}(0)}{1 + \frac{2}{3} n_{V} \alpha_{\text{el}}}} \sum_{\substack{u = 0}^{\alpha_{el}(\omega) \approx \alpha_{el}(0), \text{ da } \omega_{0} \approx \alpha_{el}(0), \text{ da$$

 $\omega_L > \omega_0$ durch zusätzliche Rückstellkraft

• Transversale Eigenschwingungen in Ionenkristallen

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_N + \mathbf{E}_L = +\frac{1}{3\epsilon_0} \mathbf{P} \quad \boldsymbol{\leftarrow} \quad \mathbf{P} = \epsilon_0 n_V \alpha_{el} \mathbf{E}_{\text{lok}} + n_V q \mathbf{u}$$

 $\mathbf{E}_{\mathrm{ext}} = \mathbf{0}$ (freie Schwingung)

- wir führen ionische Polarisierbarkeit α_{ion} ein: $\mathbf{p}_{ion} = \epsilon_0 \alpha_{ion} \mathbf{E}_{lok} = q \mathbf{u}$

$$\Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{el} \mathbf{E}_{lok} + n_V \epsilon_0 \alpha_{ion} \mathbf{E}_{lok}$$

- $\text{ aus DGL folgt für statischen Grenzfall } \frac{\partial u}{\partial t} \to 0: \qquad \qquad \mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \mathbf{E}_{\text{lok}}$ $\mathbf{u} = \frac{q \mathbf{E}_{\text{lok}}}{\mu \omega_0^2} \Rightarrow \mathbf{E}_{\text{lok}} = \frac{\mu_0 \omega_0^2}{q} \mathbf{u} \qquad \Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{\text{el}} \mathbf{E}_{\text{lok}} + \frac{\mu \omega_0^2}{q} \epsilon_0 n_V \alpha_{\text{ion}}(0) \mathbf{u}$
- Einsetzen in $\mathbf{E}_{\text{lok}} = +\frac{1}{3\epsilon_0}\mathbf{P}$ und auflösen nach \mathbf{E}_{lok} ergibt: $\mathbf{E}_{\text{lok}} = +\frac{1}{q}\mu\omega_0^2 \frac{\frac{1}{3}n_V\alpha_{\text{ion}}(0)}{1-\frac{1}{3}n_V\alpha_{\text{el}}}\mathbf{u}$
- Einsetzen von E_{lok} in DGL ergibt:

$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \mathbf{E}_{\text{lok}} = +\mu \omega_0^2 \frac{\frac{1}{3} n_V \alpha_{\text{ion}}(0)}{1 + \frac{1}{3} n_V \alpha_{\text{el}}} \mathbf{u}$$

$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \left[\omega_0^2 \left(1 - \frac{\frac{1}{3} n_V \alpha_{\text{ion}}(0)}{1 - \frac{1}{3} n_V \alpha_{\text{el}}} \right) \right] \mathbf{u} = \mathbf{0}$$

$$\omega_T = \omega_0 \sqrt{1 - \frac{\frac{1}{3} n_V \alpha_{\text{ion}}(0)}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)}}$$

 $\omega_T < \omega_0$ durch reduzierte Rückstellkraft

11.4.1 Eigenschwingungen von Ionenkristallen

• Lyddane-Sachs-Teller-Relation: Verhältnis von ω_L und ω_T

statische elektronische Dielektrizitätskonstante ($\omega \gg \omega_{ion} \text{ aber } \omega \ll \omega_{el}$) \rightarrow ionische Polarisation $\simeq 0$, elektronische Polarisation \simeq "statisch"

Zusammenfassung: Teil 10a, 26.04.2021/2

- mikroskopische Theorie
 - Analyse der WW zwischen FK und em-Feld auf mikroskopischer Ebene:
 - → di-, para- und ferro-/antiferroelektrische Festkörper
 - + elektronische, ionische und Orientierungspolarisation

• elektronische Polarisation von Isolatoren: Lorentzsches Oszillatormodell

- Definition der **Polarisierbarkeit**: $\mathbf{p}_{el} = \alpha \epsilon_0 \mathbf{E}_{lok}$ oder $\mathbf{P} = n_V \alpha \epsilon_0 \mathbf{E}_{ext}$ $\begin{pmatrix} \chi = n_V \alpha \\ \epsilon = 1 + n_V \alpha \end{pmatrix}$

falls $E_{lok} = E_{ext}$ (z.B. für einzelnes Atom)

$$m\frac{d^{2}x}{dt^{2}} + m\Gamma\frac{dx}{dt} + m\omega_{0}^{2}x = (-e) E_{0}e^{-i\omega t} \implies x(t) = \frac{-e}{m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\Gamma\omega}E_{0}e^{-i\omega t} \implies p_{el} = -ex$$

$$\implies \alpha(\omega) = \frac{(-e)}{\epsilon_{0}E_{0}}x = \frac{e^{2}}{\epsilon_{0}m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\Gamma\omega}$$

$$\implies \epsilon(\omega) = 1 + \chi(\omega) = 1 + \frac{n_{V}e^{2}}{\epsilon_{0}m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\Gamma\omega}$$

 $\epsilon(\omega) = 1 + \frac{n_V e^2}{\epsilon_0 m^*} \sum_{i} \frac{f_{ik}}{\omega_{ik}^2 - \omega^2 - i\Gamma_{ik}\omega}$

- in realem FK:

viele Frequenzen ω_{ik} , die Übergängen $|i\rangle \rightarrow |k\rangle$ zwischen elektronischen Zuständen entsprechen → Aufsummieren und Wichtung mit Oszillatorstärke:

• Polarisierbarkeit α von Atomen

Zusammenfassung: Teil 10b, 26.04.2021/2

• Clausius-Mossotti Beziehung

$$u(t) = \frac{q}{\mu} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega} E_0 e^{-i\omega t}$$

$$\mathbf{P} = \mathbf{P}_{el} + \mathbf{P}_{ion} = \frac{n_V \alpha_{el} \epsilon_0 \mathbf{E}_{lok}}{\epsilon_0 \mathbf{E}_{lok} + n_V q \mathbf{u}}$$
elektronisch

Zusammenfassung: Teil 10c, 26.04.2021/2

- Eigenschwingungen von Ionenkristallen ($\mathrm{E}_{\mathrm{ext}}=0$)

 $\mathbf{P} = \epsilon_0 n_V \alpha_{\rm el} \mathbf{E}_{\rm lok} + n_V q \mathbf{u}$

(a) Longitudinale Schwingung (N = 1): $E_{lok} = E_N + E_L = -2P/3\epsilon_0,$ *Rückstellkraft und damit* ω_L wird höher

(b) Transversale Schwingung (N = 0): $\mathbf{E}_{lok} = \mathbf{E}_N + \mathbf{E}_L = +\mathbf{P}/3\epsilon_0$, *Rückstellkraft und damit* ω_T wird niedriger

Dielektrizitätskonstante für $\omega \rightarrow 0$

$$\omega_{L} = \omega_{0} \sqrt{1 + \frac{\frac{2}{3}n_{V}\alpha_{\rm ion}(0)}{1 + \frac{2}{3}n_{V}\alpha_{\rm el}(0)}}$$
$$\omega_{T} = \omega_{0} \sqrt{1 - \frac{\frac{1}{3}n_{V}\alpha_{\rm ion}(0)}{1 - \frac{1}{3}n_{V}\alpha_{\rm el}(0)}}$$

$$\epsilon(0) = 1 + \frac{n_V [\alpha_{el}(0) + \alpha_{ion}(0)]}{1 - \frac{1}{3}n_V [\alpha_{el}(0) + \alpha_{ion}(0)]}$$

$$\frac{\omega_L^2}{\omega_T^2} = \frac{\epsilon(0)}{\epsilon_{stat}}$$

$$\epsilon_{stat} = 1 + \frac{n_V \alpha_{el}(0)}{1 - \frac{1}{3}n_V \alpha_{el}(0)}$$

statische elektronische Dielektrizitätskonstante ($\omega \gg \omega_{ion}$ aber $\omega \ll \omega_{el}$)

→ elektronisches System verhält sich quasi "statisch"