Physik der Kondensierten Materie 2

Rudolf Gross SS 2021

Teil 11

Vorlesungsstunde: 27.04.2021-1

Zusammenfassung: Teil 10a, 26.04.2021/2

mikroskopische Theorie

- Analyse der WW zwischen FK und em-Feld auf mikroskopischer Ebene:
- → di-, para- und ferro-/antiferroelektrische Festkörper
- → elektronische, ionische und Orientierungspolarisation

elektronische Polarisation von Isolatoren: Lorentzsches Oszillatormodell

- Definition der *Polarisierbarkeit*:
- Definition der *diel. Suszeptibilität*: $\mathbf{P} = \chi \epsilon_0 \mathbf{E}_{\mathrm{ext}}$

$$\begin{cases} \chi = n_V \alpha \\ \epsilon = 1 + n_V \alpha \end{cases}$$

$$\mathbf{p}_{\mathrm{el}} = \alpha \, \epsilon_0 \mathbf{E}_{\mathrm{lok}} \, \text{ oder } \mathbf{P} = n_V \alpha \, \epsilon_0 \mathbf{E}_{\mathrm{ext}} \\ \mathbf{P} = \chi \, \epsilon_0 \mathbf{E}_{\mathrm{ext}}$$
 falls $E_{\mathrm{lok}} = E_{\mathrm{ext}} \, (\text{z.B. für einzelnes Atom})$

$$\Rightarrow \alpha(\omega) = \frac{(-e)}{\epsilon_0 E_0} x = \frac{e^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega}$$

$$\Rightarrow \quad \epsilon(\omega) = 1 + \chi(\omega) = 1 + \frac{n_V e^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega}$$

- in realem FK:

viele Frequenzen ω_{ik} , die Übergängen $|i\rangle \rightarrow |k\rangle$ zwischen elektronischen Zuständen entsprechen

→ Aufsummieren und Wichtung mit Oszillatorstärke:

$$\epsilon (\omega) = 1 + \frac{n_V e^2}{\epsilon_0 m^*} \sum_{k} \frac{f_{ik}}{\omega_{ik}^2 - \omega^2 - i \Gamma_{ik} \omega}$$

• Polarisierbarkeit α von Atomen

-
$$\mathbf{p}_{\mathrm{el}} = \epsilon_0 \alpha \mathbf{E}_{\mathrm{lok}}$$
, $\alpha \simeq a^3 \simeq 10^{24} \mathrm{cm}^3$
mit $a = \mathrm{Atomradius} \simeq 1 \mathrm{\AA}$

Atom/Ion	F-	CI-	He	Ne	Ar	Kr	Xe	Na ⁺	K ⁺	Rb ⁺	Cs ⁺
$\alpha (10^{-24} \text{cm}^3)$	1.2	3	0.205	0.396	1.64	2.48	4.04	0.147	0.81	1.35	2.34

Zusammenfassung: Teil 10b, 26.04.2021/2

Clausius-Mossotti Beziehung

es gilt einerseits: $P = \epsilon_0 \chi E_{mak}$

es gilt andererseits: $P = n_V \epsilon_0 \alpha E_{lok}$

$$P = \epsilon_0 n_V \alpha \left(E_{\text{mak}} + \frac{P}{3\epsilon_0} \right)$$
$$= \epsilon_0 n_V \alpha E_{\text{mak}} + \frac{\epsilon_0 n_V \alpha}{3\epsilon_0} P$$

$$\chi = \frac{n_V \alpha}{1 - \frac{1}{3} n_V \alpha}$$

$$- P = \epsilon_0 \frac{n_V \alpha}{1 - \frac{1}{3} n_V \alpha} E_{\text{mak}}$$

Clausius-Mossotti-Beziehung

$$\frac{1}{3}n_V\alpha = \frac{\epsilon - 1}{\epsilon + 2}$$

 $\frac{1}{3}n_V\alpha = \frac{\epsilon - 1}{\epsilon + 2}$ \rightarrow aus gemessenem ϵ kann Aussage über Polarisierharkeit α der Gitte über Polarisierbarkeit α der Gitteratome gemacht werden

Ionische Polarisation

$$M_1 \frac{\partial^2 \mathbf{u}_1}{\partial t^2} + M_1 \Gamma \frac{\partial \mathbf{u}_1}{\partial t} + 2f(\mathbf{u}_2 - \mathbf{u}_1) - q \mathbf{E}_{lok} = 0$$

$$M_2 \frac{\partial^2 \mathbf{u}_2}{\partial t^2} + M_2 \Gamma \frac{\partial \mathbf{u}_2}{\partial t} + 2f(\mathbf{u}_1 - \mathbf{u}_2) + q \mathbf{E}_{lok} = 0$$

zusätzliche Rückstellkraft

reduzierte Masse
$$\mu=rac{M_1M_2}{M_1+M_2}$$
 und relative Auslenkung ${f u}={f u}_1-{f u}_2$

$$\omega_0 = \sqrt{2f\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$

DGL von gedämpftem, getriebenen harmonischen Oszillator → Lösung wie für Lorentzsches Oszillator-Modell

$$u(t) = \frac{q}{\mu} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega} E_0 e^{-i\omega t}$$

$$\mathbf{P} = \mathbf{P}_{el} + \mathbf{P}_{ion} = n_V \alpha_{el} \epsilon_0 \mathbf{E}_{lok} + n_V q \mathbf{u}$$
elektronisch

Zusammenfassung: Teil 10c, 26.04.2021/2

ullet Eigenschwingungen von Ionenkristallen (${ m E}_{ m ext}={ m 0}$)

(a) Longitudinale Schwingung (N = 1):

 $\mathbf{E}_{\mathrm{lok}} = \mathbf{E}_{N} + \mathbf{E}_{L} = -2\mathbf{P}/3\epsilon_{0}$, Rückstellkraft und damit ω_{L} wird höher

(b) Transversale Schwingung (N = 0):

$$\mathbf{E}_{\mathrm{lok}} = \mathbf{E}_{N} + \mathbf{E}_{L} = +\mathbf{P}/3\epsilon_{0}$$
 ,
Rückstellkraft und damit ω_{T} wird niedriger

 $\mathbf{P} = \epsilon_0 n_V \alpha_{\rm el} \mathbf{E}_{\rm lok} + n_V \mathbf{q} \mathbf{u}$

Dielektrizitätskonstante für $\omega \to 0$

$$\omega_{L} = \omega_{0} \sqrt{1 + \frac{\frac{2}{3}n_{V}\alpha_{\text{ion}}(0)}{1 + \frac{2}{3}n_{V}\alpha_{\text{el}}(0)}}$$

$$\omega_T = \omega_0 \sqrt{1 - \frac{\frac{1}{3} n_V \alpha_{\text{ion}}(0)}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)}}$$

$$\epsilon(0) = 1 + \frac{n_V[\alpha_{\rm el}(0) + \alpha_{\rm ion}(0)]}{1 - \frac{1}{3}n_V[\alpha_{\rm el}(0) + \alpha_{\rm ion}(0)]}$$

$$\epsilon_{\text{stat}} = 1 + \frac{n_V \alpha_{\text{el}}(0)}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)}$$

statische elektronische Dielektrizitätskonstante $(\omega \gg \omega_{\rm ion} \ {\rm aber} \ \omega \ll \omega_{\rm el})$

→ elektronisches System verhält sich quasi "statisch"

4

Kapitel 11

Dielektrische Eigenschaften

- bisher: Eigenschwingungen von Ionenkristallen (Isolatoren)
 - $ightharpoonup \mathbf{E}_{\mathrm{ext}} = 0$, freie Schwingung
 - ightharpoonup modifizierte Schwingungsfrequenzen ω_L und ω_T der optischen Phononen in Ionenkristallen durch lokale elektrische Felder
- jetzt: Erzwungene Schwingungen in Ionenkristallen (Isolatoren) durch äußeren Antrieb
 - $ightharpoonup \mathbf{E}_{\mathrm{ext}} = \mathbf{E}_{0}e^{-i\omega t}$, erzwungene Schwingung
 - > optisches Verhalten von Ionenkristallen

Allgemeine Eigenschaften von longitudinalen und transversalen Polarisationswellen

longitudinale Polarisationswelle

$$P_L = P_{x0}e^{i(qx-\omega t)}$$

$$\nabla \times \mathbf{P}_L = 0$$
 und $\nabla \cdot \mathbf{P}_L \neq 0$

transversale Polarisationswelle

$$P_T = P_{v0}e^{i(qx-\omega t)}$$

 $\nabla \times \mathbf{P}_L \neq 0$ und $\nabla \cdot \mathbf{P}_L = 0$

Ausbreitung der Welle in x-Richtung

- für neutrales Medium gilt $\rho = 0$

- Folgerungen für longitudinale Schwingungen in Ionenkristallen:
 - für eine longitudinale Polarisationswelle muss $\epsilon(\omega_L)=0$ sein, da ${f \nabla}\cdot{f P}_L
 eq 0$
 - eine longitudinale Schwingungsmode kann nur für eine Eigenfrequenz ω_L existieren, für die $\epsilon(\omega_L)=0$
 - für eine longitudinale Schwingungsmode ist \mathbf{E}_{lok} antiparallel zu \mathbf{P}
 - → keine Anregung mit transversalen elektromagnetischen Wellen möglich
 - → Anregung z.B. durch Beschuss von FK mit hochenergetischen Elektronen

- Anregung und Kopplung von transversalen optischen Gitterschwingungen an transversale em-Wellen
 - Ausgangspunkt ist Wellengleichung

$$\nabla^2 \mathbf{E} - \mu_0 \epsilon_0 \epsilon(\omega) \frac{\partial^2 \mathbf{E}}{\partial t^2} = \nabla^2 \mathbf{E} - \frac{\epsilon(\omega)}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} 0 \qquad \text{(unmagnetisches Medium: } \mu = 1)$$

Polarisation ist proportional zum lokalen elektrischen Feld, wir erwarten deshalb als Lösung ebene Wellen:

$$\mathbf{P}(\mathbf{r},t) = \mathbf{P}_0 e^{i(\mathbf{q} \cdot \mathbf{r} - \omega t)}$$

mit der Dispersionsrelation

$$\omega^2 = \frac{c^2}{\epsilon(\omega)} \ q^2 = \tilde{c}^2 \ q^2$$

- Kopplung von em-Wellen und optischen Phononen erfordert, dass Frequenz und Wellenzahlen etwa gleich sind
 - ightharpoonup für typische Phononenfrequenzen $\omega \simeq 10^{13} s^{-1}$ ist $k_{\mathrm{Photon}} = \frac{\omega}{\tilde{c}} \simeq 10^{3} \mathrm{cm}^{-1} \ll \frac{\pi}{c} \simeq 10^{8} \mathrm{~cm}^{-1}$
 - \triangleright Beschränkung auf $q \simeq 0$ möglich

ullet optisches Verhalten von Ionenkristallen für q=0 (gleiche Vorgehensweise wie bei Diskussion von transversalen Eigenschwingungen)

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_{N} + \mathbf{E}_{L} = \mathbf{E}_{\text{ext}} + \frac{1}{3\epsilon_{0}}\mathbf{P} \longleftarrow \mathbf{P} = \epsilon_{0}n_{V}\alpha_{el}\mathbf{E}_{\text{lok}} + n_{V}q\mathbf{u}$$

 $\mathbf{E}_{\text{ext}} \neq \mathbf{0}$ (erzwungene Schwingung)

 $\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \mathbf{E}_{lok}$

- wir führen ionische Polarisierbarkeit α_{ion} ein: $\mathbf{p}_{ion} = \epsilon_0 \alpha_{ion} \mathbf{E}_{lok}$

$$\Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{el} \mathbf{E}_{lok} + n_V \epsilon_0 \alpha_{ion} \mathbf{E}_{lok}$$

- aus DGL folgt für statischen Grenzfall $\frac{\partial u}{\partial t} \rightarrow 0$:

$$\mathbf{u} = \frac{q\mathbf{E}_{\text{lok}}}{\mu\omega_0^2} \Rightarrow \mathbf{E}_{\text{lok}} = \frac{\mu_0\omega_0^2}{q} \mathbf{u} \qquad \Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{\text{el}} \mathbf{E}_{\text{lok}} + \frac{\mu\omega_0^2}{q} \epsilon_0 n_V \alpha_{\text{ion}}(0) \mathbf{u}$$

- Einsetzen in
$$\mathbf{E}_{\mathrm{lok}} = \mathbf{E}_{\mathrm{ext}} + \frac{1}{3\epsilon_0}\mathbf{P}$$
 und auflösen nach $\mathbf{E}_{\mathrm{lok}}$ ergibt: $\mathbf{E}_{\mathrm{lok}} = \frac{1}{1 - \frac{1}{3}n_V\alpha_{\mathrm{el}}}\mathbf{E}_{\mathrm{ext}} + \frac{1}{q}\mu\omega_0^2 \frac{\frac{1}{3}n_V\alpha_{\mathrm{ion}}(0)}{1 - \frac{1}{3}n_V\alpha_{\mathrm{el}}}\mathbf{u}$

- Einsetzen von \mathbf{E}_{lok} in DGL ergibt:

$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \, \mathbf{E}_{\text{lok}} = \frac{q}{1 - \frac{1}{3} n_V \alpha_{\text{el}}} \, \mathbf{E}_{\text{ext}} + \mu \omega_0^2 \frac{\frac{1}{3} n_V \alpha_{\text{ion}}(0)}{1 + \frac{1}{3} n_V \alpha_{\text{el}}} \, \mathbf{u}$$

$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \left[\omega_0^2 \left(1 - \frac{\frac{1}{3} n_V \alpha_{ion}(0)}{1 - \frac{1}{3} n_V \alpha_{el}} \right) \right] \mathbf{u} = \frac{q}{1 - \frac{1}{3} n_V \alpha_{el}(0)} \mathbf{E}_{ext}$$

erzwungene Schwingung: $\mathbf{E}_{\mathrm{ext}} = \mathbf{E}_{0}e^{-i\omega t}$

C

- DGL hat Lösung:
$$\mathbf{u}(t) = \frac{q}{m} \frac{1}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)} \frac{1}{\omega_T^2 - \omega^2 - i\Gamma\omega} \mathbf{E}_{\text{ext}}$$

- mit $\mathbf{P}_{\mathrm{ion}} = n_V q \mathbf{u}$ und dem allgemeinen Zusammenhang $\mathbf{P}_{\mathrm{ion}} = \epsilon_0 \chi_{\mathrm{ion}} \mathbf{E}_{\mathrm{ext}}$ folgt:

$$\chi_{\text{ion}} = \frac{n_V q}{\epsilon_0} \frac{|\mathbf{u}|}{|\mathbf{E}_{\text{ext}}|} = \frac{n_V q^2}{\epsilon_0 \mu} \frac{1}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)} \frac{1}{\omega_T^2 - \omega^2 - i\Gamma \omega}$$

wir benutzen den statischen Wert

$$\chi_{\text{ion}}(0) = \frac{n_V q^2}{\epsilon_0 \mu} \frac{1}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)} \frac{1}{\omega_T^2} \qquad \Longrightarrow \qquad \chi_{\text{ion}}(\omega) = \chi_{\text{ion}}(0) \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

- gesamte dielektrische Funktion:
$$\epsilon(\omega) = 1 + \chi_{\rm el}(\omega) + \chi_{\rm ion}(\omega) = 1 + \chi_{\rm el}(\omega) + \chi_{\rm ion}(0) \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

- mit $\epsilon(0) = 1 + \chi_{el}(0) + \chi_{ion}(0) = \epsilon_{stat} + \chi_{ion}(0)$ folgt $\chi_{ion}(0) = \epsilon(0) - \epsilon_{stat}$ erhalten wir

$$\epsilon(\omega) = 1 + \chi_{\rm el}(\omega) + \chi_{\rm ion}(\omega) \simeq \epsilon_{\rm stat} + \chi_{\rm ion}(0) \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega} \simeq \epsilon_{\rm stat} + [\epsilon(0) - \epsilon_{\rm stat}] \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

LST:
$$\frac{\omega_L^2}{\omega_T^2} = \frac{\epsilon(0)}{\epsilon_{\text{stat}}} \Rightarrow \epsilon(0) = \epsilon_{\text{stat}} \frac{\omega_L^2}{\omega_T^2}$$

• dielektrische Funktion von Ionenkristall für q=0

• optisches Verhalten von Ionenkristall für q=0

Es gilt:

$$\tilde{n} = n + i\kappa = \sqrt{\tilde{\epsilon}}$$
 $n^2 - \kappa^2 = \epsilon_r$, $2n\kappa = \epsilon_i$

Annahme:

$$\tilde{\epsilon} = \epsilon_r + i\epsilon_i \simeq \epsilon_r$$

$\epsilon_r < 0$ für $\omega_T < \omega < \omega_L$

$$\rightarrow n = 0$$

$$\rightarrow \kappa = \sqrt{|\epsilon_r|}$$

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 1$$

Totalreflexion

$$\mathbf{E} = \mathbf{E}_0 e^{-i\omega t} e^{-\sqrt{|\epsilon_r|} \frac{\omega}{c} t}$$

Welle kann sich in FK nicht ausbreiten!

Material	$\epsilon(0)$	$\epsilon_{ m stat}$	$\omega_{\rm T} (10^{13} {\rm Hz})$	$\omega_{\rm L} (10^{13} {\rm Hz})$
LiF	8.9	1.9	5.8	12
NaF	5.1	1.7	4.5	7.8
KF	5.5	1.5	3.6	6.1
LiCl	12.0	2.7	3.6	7.5
NaCl	5.9	2.25	3.1	5.0
KCl	4.85	2.1	2.7	4.0
LiBr	13.2	3.2	3.0	6.1
NaBr	6.4	2.6	2.5	3.9
KI	5.1	2.7	1.9	2.6
MgO	9.8	2.95	7.5	14
GaAs	12.9	10.9	5.1	5.5
InAs	14.9	12.3	4.1	4.5
GaP	10.7	8.5	6.9	7.6
InP	12.4	9.6	5.7	6.5
С	5.5	5.5	25.1	25.1
Si	11.7	11.7	9.9	9.9
Ge	15.8	15.8	5.7	5.7

Experimentelle Bestimmung:

 $\epsilon(0)$: Plattenkondensator

 ω_T : Absorptionsspektren

 ϵ_{stat} : Messung des Brechungsindex

 ω_L : berechnet mit LST-Relation

(oder Messung mit inel. Neutronenstreuung)

- optisches Verhalten von Ionenkristall für q>0: Polaritonen
 - tranversale elektromagnetische Wellen können transversale optische Phononen anregen, falls q und ω passen
 - Bisher: Beschränkung auf q = 0, da Impuls der Photonen sehr klein ist
 - Diskussion von q > 0, aber Beschränkung auf sehr kleine $q \ll \pi/a$ Jetzt:
 - Verwendung von allgemeiner Dispersionsrelation für elektromagnetische Wellen

$$q^2 = \frac{1}{\overline{c}^2} \ \omega^2 = \frac{\epsilon(\omega)}{c^2} \ \omega^2$$

$$\text{und } \epsilon(\omega, q = 0)$$

$$\epsilon(\omega) \simeq \epsilon_{\text{stat}} \ \frac{\omega_L^2 - \omega^2}{\omega_T^2 - \omega^2}$$

Dispersions relation von em-Wellen in Ionenkristallen

$$\Rightarrow q^2 = \frac{\epsilon_{\text{stat}}}{c^2} \frac{\omega_L^2}{\omega_T^2} \omega^2$$

$$\longrightarrow$$
 $\omega = \frac{c}{\sqrt{\epsilon_{\text{stat}}}} q$

photonen-artige Bereiche (
$$\omega \propto q$$
) für

i. $\omega \ll \omega_T$: $\Rightarrow q^2 = \frac{\epsilon_{\rm stat}}{c^2} \frac{\omega_L^2}{\omega_T^2} \omega^2$

ii. $\omega \gg \omega_L$: $\Rightarrow \omega = \frac{c}{\sqrt{\epsilon_{\rm stat}}} q$

LST-Relation

$$\boldsymbol{\omega} = \frac{c}{\sqrt{\epsilon(\mathbf{0})}} \; \boldsymbol{q}$$

→ Dispersionsrelationen für Photonen mit unterschiedlichen Ausbreitungsgeschwindigkeiten

• optisches Verhalten von Ionenkristall für q>0: Polaritonen

- im Bereich, in dem Wellenvektor und Frequenz von Photonen und Phononen übereinstimmen entsteht starke Kopplung von Photon und Phonon (Hybridisierung)
- neue quantisierte Anregung:

Polariton

Hinweis:

die Dispersion ist nur für sehr kleine Wellenvektoren im Zentrum der Brillouin-Zone gezeigt. Dort verläuft die Dispersion der Phononen quasi horizontal.

15

11.5 Orientierungspolarisation

- Dielektrische Eigenschaften von Kristallen mit bereits vorhandenen elektrischen Dipolen
 - Ausrichtung der Dipole in angelegtem elektrischem Feld $\mathbf{E}_{\mathrm{ext}} \rightarrow \mathbf{Orientierungspolarisation}$
 - thermische Energie wirkt Ausrichtung entgegen: Wie groß ist Ausrichtung im statistischen Mittel?
 - Analogon zum Paramagnetismus (Ausrichtung von bereits vorhandenen magnetischen Dipolen durch $H_{\rm ext}$)

 $\mathbf{E}_{\text{ext}} = \mathbf{0}$

11.5.1 Statische Orientierungspolarisation

• Statistische Physik: Wie groß ist mittlere Ausrichtung der elektrischen Dipole durch $E_{\rm ext}$?

– Relevante Energien:

 \succ potentielle Energie von elektrischem Dipol in $\mathbf{E}_{\mathrm{ext}}$:

 $E_{\rm pot} = -\mathbf{p}_{\rm dip} \cdot \mathbf{E}_{\rm ext} = -p_{\rm dip} E_{\rm ext} \cos \theta$

> thermische Energie:

$$E_{\rm th} = k_{\rm B}T$$

– Annahmen:

 $ightharpoonup p_{\rm dip}E_{\rm ext} \ll k_BT$

 \rightarrow geringe Ausrichtung von Dipolen \rightarrow $E_{\rm lok} \simeq E_{\rm ext}$

klassische Behandlung

→ klassische Dipole können jede beliebige Orientierung einnehmen

– Statistik:

- $\succ E_{\rm ext} \mid\mid \hat{\mathbf{z}}$
- ightharpoonup mittleres Dipolmoment in z-Richtung: $\langle p_{\rm dip,z} \rangle = \frac{1}{4\pi} \int p_{\rm dip} \cos \theta \ p_{\theta} \ d\Omega$

Wahrscheinlichkeit, das Dipolmoment im Winkelbereich zwischen θ und $\theta+d\theta$ zu finden

$$p_{\theta} = \frac{\exp(p_{\text{dip}}E_{\text{ext}}\cos\theta/k_{\text{B}}T)}{\frac{1}{4\pi}\int \exp(p_{\text{dip}}E_{\text{ext}}\cos\theta/k_{\text{B}}T) \ d\Omega}$$

11.5.1 Statische Orientierungspolarisation

• Berechnung von $\langle p_{\mathrm{dip},z}
angle$

$$\langle p_{\mathrm{dip},z} \rangle = \frac{1}{4\pi} \int p_{\mathrm{dip}} \cos \theta \, \frac{\exp(p_{\mathrm{dip}} E_{\mathrm{ext}} \cos \theta \, / k_{\mathrm{B}} T)}{\frac{1}{4\pi} \int \exp(p_{\mathrm{dip}} E_{\mathrm{ext}} \cos \theta \, / k_{\mathrm{B}} T) \, d\Omega} \, d\Omega$$

$$\Rightarrow \langle p_{\text{dip},z} \rangle = \frac{\int_0^{\pi} p_{\text{dip}} \cos \theta \ d\alpha_{\theta}}{\int_0^{\pi} d\alpha_{\theta}}$$

$$\langle p_{\text{dip},z} \rangle = p_{\text{dip}} \frac{\int_{-1}^{+1} x \, e^{xy} \, dx}{\int_{-1}^{+1} e^{xy} \, dx}$$

$$\frac{\langle p_{\text{dip},z} \rangle}{p_{\text{dip}}} = \coth y - \frac{1}{y} = \mathcal{L}(y) = \coth \left(\frac{p_{\text{dip}} E_{\text{ext}}}{k_{\text{B}} T} \right) - \frac{k_{\text{B}} T}{p_{\text{dip}} E_{\text{ext}}}$$

Langevin-Funktion

11.5.1 Statische Orientierungspolarisation

Dielektrische Suszeptibilität ($p_{
m dip}E_{
m ext} \ll k_{
m B}T$)

$$\frac{\langle p_{\rm dip,z} \rangle}{p_{\rm dip}} \simeq \frac{p_{\rm dip} E_{\rm ext}}{3k_{\rm B}T}$$

$$-$$
 es gilt: $P_{
m dip} = \epsilon_0 \chi_{
m dip} E_{
m ext} = n_V \left\langle p_{
m dip,z}
ight
angle$

$$\chi_{\rm dip} = \frac{n_V p_{\rm dip}^2}{3\epsilon_0 k_{\rm B} T} = \frac{C}{T}$$
 Curie-Gesetz

$$C = \frac{n_V p_{\rm dip}^2}{3\epsilon_0 k_{\rm B}}$$

Curie-Konstante

Hinweis 1: Ausdruck für $\chi_{
m dip}$ entspricht dem Curieschen Gesetz für die magnetische Suszeptibilität von paramagnetischen Substanzen

Hinweis 2: falls die elektrischen Dipole nur zwei Einstellmöglichkeiten hinsichtlich der durch $\mathbf{E}_{\mathrm{ext}}$ vorgegebenen Achse hätten (Beispiel: Spin-½ System in $\mathbf{H}_{\mathrm{ext}}$: Paramagnetismus), würden wir $C = n_V p_{\mathrm{dip}}^2 / \epsilon_0 k_{\mathrm{B}}$ erhalten, also ein nur um den Faktor 3 unterschiedliches Ergebnis

11.5.2 Frequenzabhängigkeit der Orientierungspolarisation

- Beschreibung der Frequenzabhängigkeit mit einfachem Relaxationsmodell
 - durch $\mathbf{E}_{\mathrm{ext}}(t) = \mathbf{E}_{\mathrm{ext}}(0)e^{-i\omega t}$ erzeugte mittlere Polarisationsamplitude $\mathbf{P}_{\mathrm{dip}}(\omega) = n_V \langle p_{\mathrm{dip},z}(\omega) \rangle \hat{\mathbf{E}}_{\mathrm{ext}}$ relaxiert mit charakteristischer Zeit au gegen Wert $\mathbf{P}_{\mathrm{dip}}(0)e^{-i\omega t}$, den wir für au=0 erhalten würden

$$\frac{d\mathbf{P}_{\text{dip}}}{dt} = -\frac{\mathbf{P}_{\text{dip}}(\omega) - \mathbf{P}_{\text{dip}}(0)e^{-i\omega t}}{\tau}$$

Beispiel: Einschalten von $\mathbf{E}_{\text{ext}}(0)$ bei t=0

$$\mathbf{P}_{\mathrm{dip}}(t) = \mathbf{P}_{\mathrm{dip}}(0) [1 - e^{-t/\tau}]$$

Ansatz:

$$\mathbf{P}_{\mathrm{dip}}(\omega) = \epsilon_0 \left[\chi_{\mathrm{dip}}^r(\omega) + i \chi_{\mathrm{dip}}^i(\omega) \right] \mathbf{E}_{\mathrm{ext}}(0) e^{-i\omega t}$$

$$\mathbf{P}_{\mathrm{dip}}(0) = \epsilon_0 \chi_{\mathrm{dip}}(0) \mathbf{E}_{\mathrm{ext}}(0)$$

Lösung:

$$-i\omega \left[\chi_{\rm dip}^r(\omega) + i\chi_{\rm dip}^i(\omega)\right] = \frac{\chi_{\rm dip}(0) - \left[\chi_{\rm dip}^r(\omega) + i\chi_{\rm dip}^i(\omega)\right]}{\tau}$$

Real- und Imaginärteil:

$$\chi_{\text{dip}}^{r}(\omega) = \frac{1}{1 + \omega^{2} \tau^{2}} \chi_{\text{dip}}(0)$$
$$\chi_{\text{dip}}^{i}(\omega) = \frac{\omega \tau}{1 + \omega^{2} \tau^{2}} \chi_{\text{dip}}(0)$$

$$\chi_{\rm dip}^i(\omega) = \frac{\omega \tau}{1 + \omega^2 \tau^2} \chi_{\rm dip}(0)$$

Debyesche Formeln

11.5.2 Frequenzabhängigkeit der Orientierungspolarisation

- Beschreibung der Frequenzabhängigkeit mit einfachem Relaxationsmodell
- niedrige Frequenzen: Dipole können $E_{\rm ext}(t)$ instantan folgen, $\chi_{\rm dip}^r(\omega) \to \chi_{\rm dip}(0) \text{ und } \chi_{\rm dip}^i(\omega) \to (0)$ (keine Verluste)
- höhere Frequenzen, $\omega \tau < 1$: $\chi^r_{
 m dip}(\omega)$ nimmt kontinuierlich ab und $\chi_{\mathrm{dip}}^{i}(\omega)$ (Verluste) zu, da Dipole nicht mehr vollständig ausgerichtet werden können
- Resonanzfrequenz, $\omega \tau = 1$ $\chi_{\mathrm{dip}}^{i}(\omega)=max.$, maximale Verluste
- hohe Frequenzen, $\omega \tau > 1$ $\chi^r_{
 m dip}(\omega)$ und $\chi^i_{
 m dip}(\omega)$ gehen gegen Null, da Dipole schnellen Feldänderungen nicht folgen können
- charakteristische Frequenz, $\omega = 1/\tau$: typischerweise zwischen 0.1 bis 10 GHz

11.5.2 Frequenzabhängigkeit der Gesamtpolarisation

• gesamte Polarisation eines Isolators: Summe aus elektronischer, ionischer und Orientierungspolarisation

Typische Frequenzbereiche:

- I. Orientierungspolarisation:10⁸ 10¹⁰ Hz
- II. ionische Polarisation: 10¹³ – 10¹⁴ Hz
- III. elektronische Polarisation: 10¹⁶ Hz

Zusammenfassung: Teil 11a, 27.04.2021/1

 $n=0, \ \kappa=\sqrt{|\epsilon_r|}$

• erzwungenen Schwingungen von Ionenkristallen, optisches Verhalten ($E_{ext} \neq 0$)

langwelliger Grenzfall: $\mathbf{q} \rightarrow 0$

$$\epsilon(\omega) \simeq \epsilon_{\rm stat} \frac{\omega_L^2 - \omega^2 - i\Gamma\omega}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

optische Eigenschaften: $\tilde{n}=n+i\kappa=\sqrt{\tilde{\epsilon}}$ $n^2-\kappa^2=\epsilon_r$, $2n\kappa=\epsilon_i$

$$\epsilon_r < 0$$
 für $\omega_T < \omega < \omega_L$

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 1$$

Polaritonen

transversale em-Wellen können transversale optische Phononen anregen, falls q und ω passen

→ Gekoppelte Ausbreitung von Photon und Phonon → Polariton

$$q^{2} = \frac{\epsilon(\omega, q = 0)}{c^{2}} \omega^{2} = \frac{\epsilon_{\text{stat}}}{c^{2}} \frac{\omega_{L}^{2} - \omega^{2}}{\omega_{T}^{2} - \omega^{2}} \omega^{2}$$

Zusammenfassung: Teil 11b, 27.04.2021/1

- Orientierungspolarisation
 - partielle Ausrichtung von vorhandenen Dipolen durch $\mathbf{E}_{\mathrm{ext}}$
 - $\operatorname{für} p_{\operatorname{dip}} E_{\operatorname{ext}} \ll k_{\operatorname{B}} T \operatorname{gilt} E_{\operatorname{lok}} \simeq E_{\operatorname{ext}}$
 - (i) statisch:

$$\chi_{\rm dip}(0) = \frac{C}{T}$$
 mit $C = \frac{n_v p_{\rm dip}^2}{3\epsilon_0 k_B}$

Curie-Gesetz $(p_{\rm dip}E_{\rm ext}\ll k_{\rm B}T)$

(ii) dynamisch:

$$\chi_{\text{dip}}^r(\omega) = \chi_{\text{dip}}(0) \frac{1}{1 + \omega^2 \tau^2}$$

$$\chi_{\rm dip}^r(\omega) = \chi_{\rm dip}(0) \frac{\omega \tau}{1 + \omega^2 \tau^2}$$

Debyesche Formeln

