Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 11 Vorlesungsstunde: 27.04.2021-1

Zusammenfassung: Teil 10a, 26.04.2021/2

- mikroskopische Theorie
 - Analyse der WW zwischen FK und em-Feld auf mikroskopischer Ebene:
 - → dí-, para- und ferro-/antiferroelektrische Festkörper
 - + elektronische, ionische und Orientierungspolarisation

• elektronische Polarisation von Isolatoren: Lorentzsches Oszillatormodell

- Definition der **Polarisierbarkeit**: $\mathbf{p}_{el} = \alpha \epsilon_0 \mathbf{E}_{lok}$ oder $\mathbf{P} = n_V \alpha \epsilon_0 \mathbf{E}_{ext}$ $\begin{pmatrix} \chi = n_V \alpha \\ \epsilon = 1 + n_V \alpha \end{pmatrix}$

falls $E_{lok} = E_{ext}$ (z.B. für einzelnes Atom)

 $\epsilon(\omega) = 1 + \frac{n_V e^2}{\epsilon_0 m^*} \sum_{i} \frac{f_{ik}}{\omega_{ik}^2 - \omega^2 - \omega^2}$

$$m\frac{d^{2}x}{dt^{2}} + m\Gamma\frac{dx}{dt} + m\omega_{0}^{2}x = (-e) E_{0}e^{-i\omega t} \implies x(t) = \frac{-e}{m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\Gamma\omega}E_{0}e^{-i\omega t} \implies p_{el} = -ex$$

$$\implies \alpha(\omega) = \frac{(-e)}{\epsilon_{0}E_{0}}x = \frac{e^{2}}{\epsilon_{0}m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\Gamma\omega}$$

$$\implies \epsilon(\omega) = 1 + \chi(\omega) = 1 + \frac{n_{V}e^{2}}{\epsilon_{0}m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\Gamma\omega}$$

- in realem FK:

viele Frequenzen ω_{ik} , die Übergängen $|i\rangle \rightarrow |k\rangle$ zwischen elektronischen Zuständen entsprechen → Aufsummieren und Wichtung mit Oszillatorstärke:

• Polarisierbarkeit α von Atomen

Zusammenfassung: Teil 10b, 26.04.2021/2

• Clausius-Mossotti Beziehung

$$u(t) = \frac{q}{\mu} \frac{1}{\omega_0^2 - \omega^2 - i\Gamma\omega} E_0 e^{-i\omega t}$$

$$\mathbf{P} = \mathbf{P}_{el} + \mathbf{P}_{ion} = \frac{n_V \alpha_{el} \epsilon_0 \mathbf{E}_{lok}}{e_{lok} + n_V q \mathbf{u}}$$

Zusammenfassung: Teil 10c, 26.04.2021/2

- Eigenschwingungen von Ionenkristallen ($\mathrm{E}_{\mathrm{ext}}=0$)

 $\mathbf{P} = \epsilon_0 n_V \alpha_{\rm el} \mathbf{E}_{\rm lok} + n_V q \mathbf{u}$

(a) Longitudinale Schwingung (N = 1): $\mathbf{E}_{lok} = \mathbf{E}_N + \mathbf{E}_L = -2\mathbf{P}/3\epsilon_0$, *Rückstellkraft und damit* ω_L wird höher

(b) Transversale Schwingung (N = 0): $\mathbf{E}_{lok} = \mathbf{E}_N + \mathbf{E}_L = +\mathbf{P}/3\epsilon_0$, *Rückstellkraft und damit* ω_T wird niedriger

Dielektrizitätskonstante für $\omega \rightarrow 0$

$$\omega_{L} = \omega_{0} \sqrt{1 + \frac{\frac{2}{3}n_{V}\alpha_{\rm ion}(0)}{1 + \frac{2}{3}n_{V}\alpha_{\rm el}(0)}}$$
$$\omega_{T} = \omega_{0} \sqrt{1 - \frac{\frac{1}{3}n_{V}\alpha_{\rm ion}(0)}{1 - \frac{1}{3}n_{V}\alpha_{\rm el}(0)}}$$

$$\epsilon(0) = 1 + \frac{n_V [\alpha_{el}(0) + \alpha_{ion}(0)]}{1 - \frac{1}{3} n_V [\alpha_{el}(0) + \alpha_{ion}(0)]}$$

$$\frac{\omega_L^2}{\omega_T^2} = \frac{\epsilon(0)}{\epsilon_{stat}}$$

$$\epsilon_{stat} = 1 + \frac{n_V \alpha_{el}(0)}{1 - \frac{1}{3} n_V \alpha_{el}(0)}$$

statische elektronische Dielektrizitätskonstante ($\omega \gg \omega_{ion}$ aber $\omega \ll \omega_{el}$)

ightarrow elektronisches System verhält sich quasi "statisch"

Kapitel 11

Dielektrische Eigenschaften

- bisher: *Eigenschwingungen* von Ionenkristallen (Isolatoren) —
 - \succ **E**_{ext} = 0, freie Schwingung
 - \succ modifizierte Schwingungsfrequenzen ω_L und ω_T der optischen Phononen in Ionenkristallen durch lokale elektrische Felder
- jetzt: *Erzwungene Schwingungen* in Ionenkristallen (Isolatoren) durch äußeren Antrieb —
 - \succ **E**_{ext} = **E**₀ $e^{-i\omega t}$, erzwungene Schwingung
 - optisches Verhalten von Ionenkristallen

• Allgemeine Eigenschaften von longitudinalen und transversalen Polarisationswellen

longitudinale Polarisationswelle

 $\nabla \times \mathbf{P}_L = 0$ und $\nabla \cdot \mathbf{P}_L \neq 0$

transversale Polarisationswelle

 $\nabla \times \mathbf{P}_L \neq 0$ und $\nabla \cdot \mathbf{P}_L = 0$

 $P_L = P_{x0} e^{i(qx-\omega t)} \qquad P_T = P_{y0} e^{i(qx-\omega t)}$

Ausbreitung der Welle in *x*-Richtung

- für neutrales Medium gilt $\rho = 0$

$$\Rightarrow \nabla \cdot \mathbf{D} = \rho = \epsilon(\omega)\epsilon_0 \nabla \cdot \mathbf{E} = \epsilon(\omega) \frac{\nabla \cdot \mathbf{P}}{\epsilon(\omega) - 1} = 0$$

- Folgerungen für longitudinale Schwingungen in Ionenkristallen:
 - für eine longitudinale Polarisationswelle muss $\epsilon(\omega_L) = 0$ sein, da $\nabla \cdot \mathbf{P}_L \neq 0$
 - eine longitudinale Schwingungsmode kann nur für eine Eigenfrequenz ω_L existieren, für die $\epsilon(\omega_L) = 0$
 - für eine longitudinale Schwingungsmode ist $E_{\rm lok}$ antiparallel zu P
 - → keine Anregung mit transversalen elektromagnetischen Wellen möglich
 - → Anregung z.B. durch Beschuss von FK mit hochenergetischen Elektronen

- Anregung und Kopplung von transversalen optischen Gitterschwingungen an transversale em-Wellen
 - Ausgangspunkt ist Wellengleichung

$$\nabla^{2}\mathbf{E} - \mu_{0}\epsilon_{0}\epsilon(\omega) \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = \nabla^{2}\mathbf{E} - \frac{\epsilon(\omega)}{c^{2}}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}}\mathbf{0}$$

(unmagnetisches Medium: $\mu = 1$)

– Polarisation ist proportional zum lokalen elektrischen Feld, wir erwarten deshalb als Lösung ebene Wellen:

$$\mathbf{P}(\mathbf{r},t) = \mathbf{P}_0 e^{i(\mathbf{q}\cdot\mathbf{r}-\omega t)}$$

mit der Dispersionsrelation

$$\omega^2 = \frac{c^2}{\epsilon(\omega)} q^2 = \tilde{c}^2 q^2$$

- Kopplung von em-Wellen und optischen Phononen erfordert, dass Frequenz und Wellenzahlen etwa gleich sind
 - > für typische Phononenfrequenzen $\omega \simeq 10^{13} s^{-1}$ ist $k_{\text{Photon}} = \frac{\omega}{\tilde{c}} \simeq 10^3 \text{cm}^{-1} \ll \frac{\pi}{a} \simeq 10^8 \text{ cm}^{-1}$
 - \succ Beschränkung auf $q \simeq 0$ möglich

• optisches Verhalten von Ionenkristallen für q = 0 (gleiche Vorgehensweise wie bei Diskussion von transversalen Eigenschwingungen)

$$\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \mathbf{E}_{N} + \mathbf{E}_{L} = \mathbf{E}_{\text{ext}} + \frac{1}{3\epsilon_{0}}\mathbf{P} \longleftarrow \mathbf{P} = \epsilon_{0}n_{V}\alpha_{el}\mathbf{E}_{\text{lok}} + n_{V}q\mathbf{u}$$

 $E_{ext} \neq 0$ (erzwungene Schwingung)

- wir führen ionische Polarisierbarkeit α_{ion} ein: $\mathbf{p}_{ion} = \epsilon_0 \alpha_{ion} \mathbf{E}_{lok}$

 $\Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{el} \mathbf{E}_{\text{lok}} + n_V \epsilon_0 \alpha_{\text{ion}} \mathbf{E}_{\text{lok}}$

- $\text{ aus DGL folgt für statischen Grenzfall } \frac{\partial u}{\partial t} \to 0: \qquad \qquad \mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \mathbf{E}_{\text{lok}}$ $\mathbf{u} = \frac{q \mathbf{E}_{\text{lok}}}{\mu \omega_0^2} \Rightarrow \mathbf{E}_{\text{lok}} = \frac{\mu_0 \omega_0^2}{q} \mathbf{u} \qquad \Rightarrow \mathbf{P} = \epsilon_0 n_V \alpha_{\text{el}} \mathbf{E}_{\text{lok}} + \frac{\mu \omega_0^2}{q} \epsilon_0 n_V \alpha_{\text{ion}}(0) \mathbf{u}$
- Einsetzen in $\mathbf{E}_{\text{lok}} = \mathbf{E}_{\text{ext}} + \frac{1}{3\epsilon_0}\mathbf{P}$ und auflösen nach \mathbf{E}_{lok} ergibt: $\mathbf{E}_{\text{lok}} = \frac{1}{1 \frac{1}{3}n_V\alpha_{\text{el}}}\mathbf{E}_{\text{ext}} + \frac{1}{q}\mu\omega_0^2 \frac{\frac{1}{3}n_V\alpha_{\text{ion}}(0)}{1 \frac{1}{3}n_V\alpha_{\text{el}}}\mathbf{u}$
- Einsetzen von Elok in DGL ergibt:

$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \omega_0^2 \mathbf{u} = q \mathbf{E}_{\text{lok}} = \frac{q}{1 - \frac{1}{3}n_V \alpha_{\text{el}}} \mathbf{E}_{\text{ext}} + \mu \omega_0^2 \frac{\frac{1}{3}n_V \alpha_{\text{ion}}(0)}{1 + \frac{1}{3}n_V \alpha_{\text{el}}} \mathbf{u}$$
$$\mu \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mu \Gamma \frac{\partial \mathbf{u}}{\partial t} + \mu \left[\omega_0^2 \left(1 - \frac{\frac{1}{3}n_V \alpha_{\text{ion}}(0)}{1 - \frac{1}{3}n_V \alpha_{el}} \right) \right] \mathbf{u} = \frac{q}{1 - \frac{1}{3}n_V \alpha_{\text{el}}(0)} \mathbf{E}_{\text{ext}}$$
$$\omega_T^2$$

erzwungene Schwingung: $\mathbf{E}_{\text{ext}} = \mathbf{E}_0 e^{-i\omega t}$

- DGL hat Lösung:
$$\mathbf{u}(t) = \frac{q}{m} \frac{1}{1 - \frac{1}{3}n_V \alpha_{\rm el}(0)} \frac{1}{\omega_T^2 - \omega^2 - i\Gamma\omega} \mathbf{E}_{\rm ext}$$

- mit $\mathbf{P}_{ion} = n_V q \mathbf{u}$ und dem allgemeinen Zusammenhang $\mathbf{P}_{ion} = \epsilon_0 \chi_{ion} \mathbf{E}_{ext}$ folgt:

$$\chi_{\text{ion}} = \frac{n_V q}{\epsilon_0} \frac{|\mathbf{u}|}{|\mathbf{E}_{\text{ext}}|} = \frac{n_V q^2}{\epsilon_0 \mu} \frac{1}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)} \frac{1}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

wir benutzen den statischen Wert

$$\chi_{\text{ion}}(0) = \frac{n_V q^2}{\epsilon_0 \mu} \frac{1}{1 - \frac{1}{3} n_V \alpha_{\text{el}}(0)} \frac{1}{\omega_T^2} \implies \chi_{\text{ion}}(\omega) = \chi_{\text{ion}}(0) \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

- gesamte dielektrische Funktion: $\epsilon(\omega) = 1 + \chi_{el}(\omega) + \chi_{ion}(\omega) = 1 + \chi_{el}(\omega) + \chi_{ion}(0) \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}$

- mit
$$\epsilon(0) = 1 + \chi_{el}(0) + \chi_{ion}(0) = \epsilon_{stat} + \chi_{ion}(0)$$
 folgt $\chi_{ion}(0) = \epsilon(0) - \epsilon_{stat}$ erhalten wir

$$\epsilon(\omega) = 1 + \chi_{el}(\omega) + \chi_{ion}(\omega) \simeq \epsilon_{stat} + \chi_{ion}(0) \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega} \simeq \epsilon_{stat} + [\epsilon(0) - \epsilon_{stat}] \frac{\omega_T^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

$$\Rightarrow \epsilon(\omega) \simeq \epsilon_{\text{stat}} \frac{\omega_L^2 - \omega^2 - i\Gamma\omega}{\omega_T^2 - \omega^2 - i\Gamma\omega} \qquad \text{LST:} \quad \frac{\omega_L^2}{\omega_T^2} = \frac{\epsilon(0)}{\epsilon_{\text{stat}}} \Rightarrow \epsilon(0) = \epsilon_{\text{stat}} \frac{\omega_L^2}{\omega_T^2}$$

• dielektrische Funktion von Ionenkristall für $m{q}=m{0}$

• optisches Verhalten von Ionenkristall für $oldsymbol{q}=oldsymbol{0}$

Welle kann sich in FK nicht ausbreiten!

Material	$\epsilon(0)$	estat	$\omega_{\rm T} \ (10^{13} {\rm ~Hz})$	$\omega_{\rm L} \ (10^{13} {\rm Hz})$
LiF	8.9	1.9	5.8	12
NaF	5.1	1.7	4.5	7.8
KF	5.5	1.5	3.6	6.1
LiCl	12.0	2.7	3.6	7.5
NaCl	5.9	2.25	3.1	5.0
KCl	4.85	2.1	2.7	4.0
LiBr	13.2	3.2	3.0	6.1
NaBr	6.4	2.6	2.5	3.9
KI	5.1	2.7	1.9	2.6
MgO	9.8	2.95	7.5	14
GaAs	12.9	10.9	5.1	5.5
InAs	14.9	12.3	4.1	4.5
GaP	10.7	8.5	6.9	7.6
InP	12.4	9.6	5.7	6.5
С	5.5	5.5	25.1	25.1
Si	11.7	11.7	9.9	9.9
Ge	15.8	15.8	5.7	5.7

Experimentelle Bestimmung:

- $\epsilon(0)$: Plattenkondensator
- ω_T : Absorptionsspektren
- ϵ_{stat} : Messung des Brechungsindex
- *ω*_L: berechnet mit LST-Relation (oder Messung mit inel. Neutronenstreuung)

Anwendung:

Bandpassfilter im Infraroten

breitbandig

Absorber $\omega_T < \omega < \omega_L$

- optisches Verhalten von Ionenkristall für q > 0: Polaritonen
 - tranversale elektromagnetische Wellen können transversale optische Phononen anregen, falls q und ω passen —
 - Beschränkung auf q = 0, da Impuls der Photonen sehr klein ist Bisher: —
 - Diskussion von q > 0, aber Beschränkung auf sehr kleine $q \ll \pi/a$ Jetzt:
 - Verwendung von allgemeiner Dispersionsrelation für elektromagnetische Wellen

$$q^{2} = \frac{1}{\overline{c}^{2}} \omega^{2} = \frac{\epsilon(\omega)}{c^{2}} \omega^{2}$$

$$und \epsilon(\omega, q = 0)$$

$$\epsilon(\omega) \simeq \epsilon_{stat} \frac{\omega_{L}^{2} - \omega^{2}}{\omega_{T}^{2} - \omega^{2}}$$

$$q^{2} = \frac{\epsilon_{stat}}{c^{2}} \frac{\omega_{L}^{2} - \omega^{2}}{\omega_{T}^{2} - \omega^{2}} \omega^{2}$$

2

Dispersionsrelation von em-Wellen in Ionenkristallen

photonen-artige Bereiche ($\omega \propto q$) für

i.
$$\omega \ll \omega_T$$
: $\implies q^2 = \frac{\epsilon_{\text{stat}}}{c^2} \frac{\omega_L^2}{\omega_T^2} \omega$
ii. $\omega \gg \omega_T$: $\implies \omega = \frac{c}{c} q$

$$\omega_T^2 = \frac{\epsilon(0)}{\epsilon_{\text{stat}}}$$

$$\omega = \frac{1}{\sqrt{\epsilon}}$$

 $\sqrt{\epsilon_{\rm stat}}$

 $\frac{1}{q}$

Dispersionsrelationen für Photonen mit unterschiedlichen Ausbreitungsgeschwindigkeiten

 ω^2

 $\epsilon(0)$

• optisches Verhalten von Ionenkristall für q > 0: Polaritonen

- im Bereich, in dem Wellenvektor und Frequenz von Photonen und Phononen übereinstimmen entsteht starke Kopplung von Photon und Phonon (Hybridisierung)
- neue quantisierte Anregung:

Polariton

Hinweis:

die Dispersion ist nur für sehr kleine Wellenvektoren im Zentrum der Brillouin-Zone gezeigt. Dort verläuft die Dispersion der Phononen quasi horizontal.

15

11.5 Orientierungspolarisation

- Dielektrische Eigenschaften von Kristallen mit bereits vorhandenen elektrischen Dipolen
 - Ausrichtung der Dipole in angelegtem elektrischem Feld $E_{ext} \rightarrow Orientierungspolarisation$
 - thermische Energie wirkt Ausrichtung entgegen: *Wie groß ist Ausrichtung im statistischen Mittel*?
 - Analogon zum Paramagnetismus (Ausrichtung von bereits vorhandenen magnetischen Dipolen durch $\mathbf{H}_{\mathrm{ext}}$)

11.5.1 Statische Orientierungspolarisation

- Statistische Physik: Wie groß ist mittlere Ausrichtung der elektrischen Dipole durch E_{ext} ?
 - Relevante Energien:
 - \succ potentielle Energie von elektrischem Dipol in \mathbf{E}_{ext} :
 - thermische Energie:

$$E_{\text{pot}} = -\mathbf{p}_{\text{dip}} \cdot \mathbf{E}_{\text{ext}} = -p_{\text{dip}} E_{\text{ext}} \cos \theta$$
$$E_{\text{th}} = k_{\text{B}} T$$

- Annahmen:
 - $\succ p_{dip}E_{ext} \ll k_BT$
 - klassische Behandlung

- → geringe Ausrichtung von Dipolen → $E_{lok} \simeq E_{ext}$
- → klassische Dipole können jede beliebige Orientierung einnehmen

11.5.1 Statische Orientierungspolarisation

• Berechnung von $\langle p_{{
m dip},z}
angle$

$$\langle p_{\mathrm{dip},z} \rangle = \frac{1}{4\pi} \int p_{\mathrm{dip}} \cos \theta \frac{\exp(p_{\mathrm{dip}} E_{\mathrm{ext}} \cos \theta / k_{\mathrm{B}} T)}{\frac{1}{4\pi} \int \exp(p_{\mathrm{dip}} E_{\mathrm{ext}} \cos \theta / k_{\mathrm{B}} T) \ d\Omega} \ d\Omega$$

- wir benutzen Abkürzung: $d\alpha_{\theta} = \frac{1}{4\pi} 2\pi \sin\theta \, d\theta \exp(p_{dip}E_{ext}\cos\theta / k_{B}T)$ $d\alpha_{\theta} = \frac{1}{2}\sin\theta \exp(p_{dip}E_{ext}\cos\theta / k_{B}T) \, d\theta$

$$\implies \langle p_{\mathrm{dip},z} \rangle = \frac{\int_0^{\pi} p_{\mathrm{dip}} \cos \theta \ d\alpha_{\theta}}{\int_0^{\pi} d\alpha_{\theta}}$$

- wir benutzen die Substitutionen: $y = p_{dip}E_{ext}/k_BT$ und $x = \cos\theta$, $dx = -\sin\theta \ d\theta$

$$\Rightarrow \langle p_{\mathrm{dip},z} \rangle = p_{\mathrm{dip}} \frac{\int_{-1}^{+1} x \, e^{xy} \, dx}{\int_{-1}^{+1} e^{xy} \, dx}$$
$$\frac{\langle p_{\mathrm{dip},z} \rangle}{p_{\mathrm{dip}}} = \coth y - \frac{1}{y} = \mathcal{L}(y) = \coth \left(\frac{p_{\mathrm{dip}} E_{\mathrm{ext}}}{k_{\mathrm{B}} T}\right) - \frac{k_{\mathrm{B}} T}{p_{\mathrm{dip}} E_{\mathrm{ext}}}$$

Langevin-Funktion

- Näherung für
$$p_{dip}E_{ext} \ll k_BT$$
: $\coth y \simeq \frac{1}{y} + \frac{y}{3}$: $\frac{\langle p_{dip,z} \rangle}{p_{dip}} \simeq$

11.5.1 Statische Orientierungspolarisation

• Dielektrische Suszeptibilität ($p_{\rm dip}E_{\rm ext}\ll k_{\rm B}T$)

$$\frac{\langle p_{\rm dip,z} \rangle}{p_{\rm dip}} \simeq \frac{p_{\rm dip} E_{\rm ext}}{3k_{\rm B}T}$$

$$- \text{ es gilt: } P_{\rm dip} = \epsilon_0 \chi_{\rm dip} E_{\rm ext} = n_V \langle p_{\rm dip,z} \rangle$$

$$\implies \chi_{\rm dip} = \frac{n_V \langle p_{\rm dip,z} \rangle}{\epsilon_0 E_{\rm ext}}$$

$$\chi_{\rm dip} = \frac{n_V p_{\rm dip}^2}{3\epsilon_0 k_{\rm B}T} = \frac{C}{T} \quad Curie-Gesetz$$

$$C = \frac{n_V p_{\rm dip}^2}{3\epsilon_0 k_{\rm B}} \quad Curie-Konstante$$

Hinweis 1: Ausdruck für χ_{dip} entspricht dem Curieschen Gesetz für die magnetische Suszeptibilität von paramagnetischen Substanzen

Hinweis 2: falls die elektrischen Dipole nur zwei Einstellmöglichkeiten hinsichtlich der durch \mathbf{E}_{ext} vorgegebenen Achse hätten (Beispiel: Spin-½ System in \mathbf{H}_{ext} : Paramagnetismus), würden wir $C = n_V p_{dip}^2 / \epsilon_0 k_B$ erhalten, also ein nur um den Faktor 3 unterschiedliches Ergebnis

11.5.2 Frequenzabhängigkeit der Orientierungspolarisation

- Beschreibung der Frequenzabhängigkeit mit einfachem Relaxationsmodell
 - durch $\mathbf{E}_{\text{ext}}(t) = \mathbf{E}_{\text{ext}}(0)e^{-i\omega t}$ erzeugte mittlere Polarisationsamplitude $\mathbf{P}_{\text{dip}}(\omega) = n_V \langle p_{\text{dip},z}(\omega) \rangle \hat{\mathbf{E}}_{\text{ext}}$ relaxiert mit charakteristischer Zeit τ gegen Wert $\mathbf{P}_{\text{dip}}(0)e^{-i\omega t}$, den wir für $\tau = 0$ erhalten würden

$$\frac{d\mathbf{P}_{\rm dip}}{dt} = -\frac{\mathbf{P}_{\rm dip}(\omega) - \mathbf{P}_{\rm dip}(0)e^{-i\omega t}}{\tau}$$

Beispiel: Einschalten von $\mathbf{E}_{\text{ext}}(0)$ bei t = 0 $\mathbf{P}_{\text{dip}}(t) = \mathbf{P}_{\text{dip}}(0) [1 - e^{-t/\tau}]$

 $\mathbf{P}_{\rm dip}(\omega) = \epsilon_0 \Big[\chi^r_{\rm dip}(\omega) + i \chi^i_{\rm dip}(\omega) \Big] \mathbf{E}_{\rm ext}(0) e^{-i\omega t}$

 $\mathbf{P}_{\rm dip}(0) = \epsilon_0 \chi_{\rm dip}(0) \mathbf{E}_{\rm ext}(0)$

– Lösung:

$$-i\omega \Big[\chi^r_{\rm dip}(\omega) + i\chi^i_{\rm dip}(\omega) \Big] = \frac{\chi_{\rm dip}(0) - \Big[\chi^r_{\rm dip}(\omega) + i\chi^i_{\rm dip}(\omega) - \frac{\chi^r_{\rm dip}(\omega) - \chi^r_{\rm dip}(\omega)}{\tau} \Big]$$

- Real- und Imaginärteil:

$$\chi^{r}_{\rm dip}(\omega) = \frac{1}{1 + \omega^{2}\tau^{2}}\chi_{\rm dip}(0)$$
$$\chi^{i}_{\rm dip}(\omega) = \frac{\omega\tau}{1 + \omega^{2}\tau^{2}}\chi_{\rm dip}(0)$$

Debyesche Formeln

11.5.2 Frequenzabhängigkeit der Orientierungspolarisation

Beschreibung der Frequenzabhängigkeit mit einfachem Relaxationsmodell

- **niedrige Frequenzen**: Dipole können $E_{\text{ext}}(t)$ instantan folgen, $\chi^r_{\text{dip}}(\omega) \rightarrow \chi_{\text{dip}}(0)$ und $\chi^i_{\text{dip}}(\omega) \rightarrow (0)$ (keine Verluste)
- **höhere Frequenzen**, $\omega \tau < 1$: $\chi^{r}_{dip}(\omega)$ nimmt kontinuierlich ab und $\chi^{i}_{dip}(\omega)$ (Verluste) zu, da Dipole nicht mehr vollständig ausgerichtet werden können
- **Resonanzfrequenz**, $\omega \tau = 1$ $\chi^{i}_{dip}(\omega) = max$., maximale Verluste
- hohe Frequenzen, $\omega \tau > 1$ $\chi^{r}_{dip}(\omega)$ und $\chi^{i}_{dip}(\omega)$ gehen gegen Null, da Dipole schnellen Feldänderungen nicht folgen können
 - charakteristische Frequenz, $\omega = 1/\tau$: typischerweise zwischen 0.1 bis 10 GHz

11.5.2 Frequenzabhängigkeit der Gesamtpolarisation

gesamte Polarisation eines Isolators: Summe aus elektronischer, ionischer und Orientierungspolarisation

Zusammenfassung: Teil 11a, 27.04.2021/1

• erzwungenen Schwingungen von Ionenkristallen, optisches Verhalten ($E_{ext} \neq 0$)

langwelliger Grenzfall: $\mathbf{q} \rightarrow 0$

$$\epsilon(\omega) \simeq \epsilon_{\text{stat}} \frac{\omega_L^2 - \omega^2 - i\Gamma\omega}{\omega_T^2 - \omega^2 - i\Gamma\omega}$$

optische Eigenschaften: $\tilde{n} = n + i\kappa = \sqrt{\tilde{\epsilon}}$ $n^2 - \kappa^2 = \epsilon_r$, $2n\kappa = \epsilon_i$

 $\epsilon_r < 0$ für $\omega_T < \omega < \omega_L$

$$\implies R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} = 1$$

• Polaritonen

transversale em-Wellen können transversale optische Phononen anregen, falls q und ω passen

→ Gekoppelte Ausbreitung von Photon und Phonon
→ Polariton

$$q^{2} = \frac{\epsilon(\omega, q = 0)}{c^{2}} \omega^{2} = \frac{\epsilon_{\text{stat}}}{c^{2}} \frac{\omega_{L}^{2} - \omega^{2}}{\omega_{T}^{2} - \omega^{2}} \omega^{2}$$

Zusammenfassung: Teil 11b, 27.04.2021/1

Orientierungspolarisation

- partielle Ausrichtung von vorhandenen Dipolen durch $\mathbf{E}_{\mathrm{ext}}$
- $\quad {\rm für} \, p_{\rm dip} E_{\rm ext} \ll k_{\rm B} T \, {\rm gilt} \, E_{\rm lok} \simeq E_{\rm ext}$

(i) statisch:

$$\chi_{\rm dip}(0) = \frac{C}{T} \quad {\rm mit} \ C = \frac{n_v p_{\rm dip}^2}{3\epsilon_0 k_B}$$

$$C = \frac{h_v p_{dip}}{3\epsilon_0 k_B} \quad Curie-Gesetz \quad (p_{dip} E_{ext} \ll k_B T)$$

(ii) dynamisch:

• gesamte dielektrische Funktion von Isolator

