Physik der Kondensierten Materie 1

Rudolf Gross WS 2020/2021 Teil 16

Vorlesungsstunde: 07.01.2021

Zusammenfassung: Teil 15, 22.12.2020/1

- freies Elektronengas: freie Elektronen in Potenzialtopf mit unendlich hohen Rändern
 - (i) keine WW mit Atomrümpfen \rightarrow freie Elektronen (U=0)
 - (ii) keine WW untereinander → keine Korrelationen

$$-\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r}, \boldsymbol{\sigma}) = E \Psi(\mathbf{r}, \boldsymbol{\sigma})$$
Spin
$$E(k) = \frac{\hbar^2 k^2}{2m}$$

$$E(k) = \frac{\hbar^2 k^2}{2m}$$

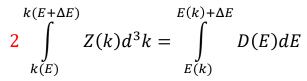
- erlaubte Wellenvektoren (aufgrund von Randbedingungen):

$$k_x = \frac{2\pi}{L_x} n_x$$
, $k_y = \frac{2\pi}{L_y} n_y$, $k_z = \frac{2\pi}{L_z} n_z$ mit n_x , n_y , $n_z = 0$, ± 1 , ± 2 , ± 3 , ...

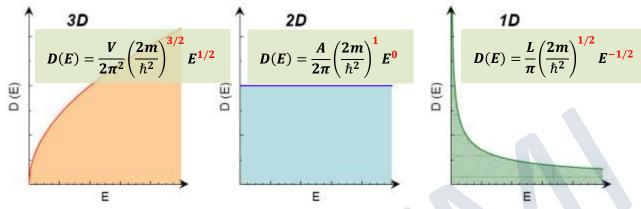
• das freie Elektronengas bei T=0freie Elektronen in Potenzialtopf mit unendlich hohen Rändern

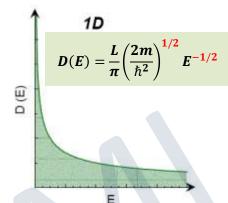
Zustandsdichte im k-Raum:

$$Z^{(3D)}(k) = \frac{V}{(2\pi)^3}$$
 (Spin)



 \rightarrow Zustandsdichte D(E) im E-Raum





Fermi-Wellenvektor, -Energie, -Temperatur, - Geschwindigkeit, -Wellenlänge \rightarrow bestimmt durch Teilchendichte n = N/V!!

$$k_{\rm F}^{\rm (3D)} = \left(3\pi^2 n^{\rm (3D)}\right)^{1/3} \quad E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m} = \frac{\hbar^2}{2m} \left(3\pi^2 n^{\rm (3D)}\right)^{2/3} \quad T_{\rm F} = \frac{E_{\rm F}}{k_{\rm B}} \quad v_{\rm F} = \frac{\hbar k_{\rm F}}{m} \quad \lambda_{\rm F} = \frac{2\pi}{k_{\rm F}}$$

$$\simeq 10^{10} \; {\rm m}^{-1} \qquad \simeq 4 \; {\rm eV} \qquad \simeq 50 \; 000 \; {\rm K} \qquad \simeq 10^6 \; {\rm m/s} \qquad \simeq 1 \; {\rm \AA} \qquad \right] \qquad @ \; n^{\rm (3D)} = 5 \times 10^{28} \; {\rm m}^{-3}$$

• Zustandsdichte bei der Fermi-Energie $E_{\rm F}$ (3D):

mit
$$D(E_{\rm F}) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E_{\rm F}^{1/2}$$
 und $E_{\rm F} = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$

Zusammenfassung: Teil 15, 22.12.2020/2

• Gesamtenergie aller Elektronen bei $T=\mathbf{0}$

$$E_{\text{ges}} = 2 \sum_{k \le k_F} \frac{\hbar^2 k^2}{2m} \qquad \Longrightarrow \qquad \frac{E_{\text{ges}}}{N} = \frac{3}{5} E_{\text{F}}$$

$$\frac{E_{\rm ges}}{N} = \frac{3}{5}E_{\rm F}$$

• Druck, der von Elektronen ausgeübt wird: $p = -\left(\frac{\partial E_{\rm ges}}{\partial V}\right)_{N=const} = -N \frac{3}{5} \frac{\hbar^2}{2m} (3\pi^2 N)^{2/3} \frac{\partial}{\partial V} \left(\frac{1}{V}\right)^{2/3} \implies p = \frac{2}{3} \frac{E_{\rm ges}}{V} = \frac{2}{5} E_{\rm F} n$

• freies Elektronengas bei T > 0:

Quantenstatistik für Fermionen

$$f(E) = \frac{1}{\exp\left(\frac{E - \mu}{k_{\rm B}T}\right) + 1}$$

chemisches Potenzial, mittlere Energie pro zusätzlichem Teilchen

 $E - \mu$: Teilchenenergie bezogen auf das chemische Potenzial $f(E = \mu) = 1/2$

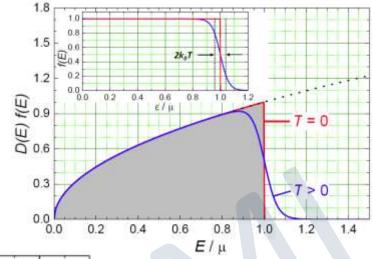
$$T=0: \qquad \mu(T=0)=E_{\rm F}$$

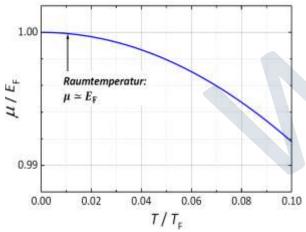
$$T > 0$$
: $N = \int_0^\infty D(E) f(E, \mu, T) dE$

Sommerfeld-Entwicklung:

$$\rightarrow \mu(T>0) < E_{\rm F}$$

$$\mu(T) = E_{\rm F} \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_{\rm F}} \right)^2 \right]$$





 $T/T_{\rm F} \simeq 10^{-2}$ für Metalle bei $T=300~\mathrm{K}$

7.2 Spezifische Wärmekapazität

- Diskussion der Wärmekapazität des freien Elektronengases
 - → in welcher Temperaturerhöhung resultiert eine dem Elektronengas zugeführte Wärmemenge?
- analoges Vorgehen wie bei Diskussion der Wärmekapazität des Kristallgitter
 - \rightarrow Berechnung der inneren Energie U(T) des Elektronengases
 - → Ableitung der inneren Energie nach der Temperatur bei konstantem Volumen bzw. konstantem Druck

$$C_V = \frac{\partial U}{\partial T}\Big|_V \qquad \qquad C_p = \frac{\partial U}{\partial T}\Big|_V$$

- Berechnung der inneren Energie U(T) des freien Elektronengases
 - klassische Berechnung:
 - Elektronengas als klassisches Teilchengas (Drude-Modell, kein Pauli-Verbot)
 - \rightarrow Gleichverteilungssatz \rightarrow Beitrag $\frac{1}{2}k_{\rm B}T$ pro kinetischem Freiheitsgrad zu innerer Energie

$$U = 2 \cdot 3 \cdot N \cdot \frac{1}{2} k_{\rm B} T \qquad \qquad N = {\rm Elektronenzahl}$$
 Spin Zahl der kinetischen Freiheitsgrade

$$C_V^{\text{klassisch}} = \frac{\partial U}{\partial T}\Big|_V = 3Nk_{\text{B}}$$
 Wärmekapazität

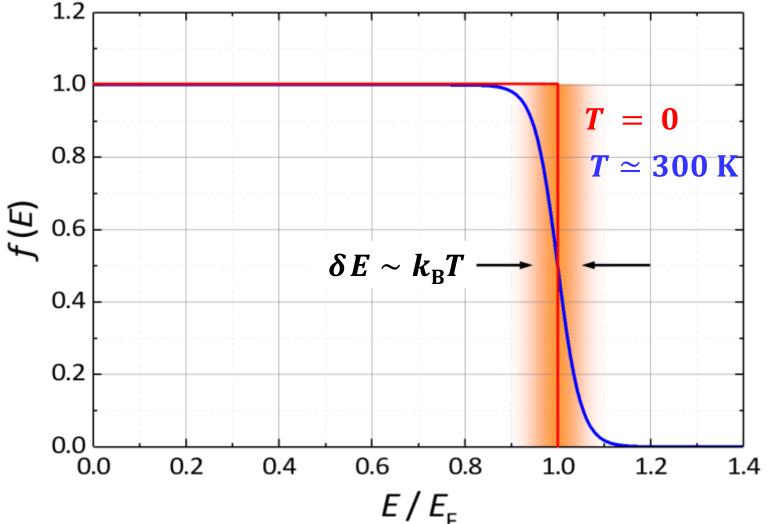
$$c_V^{\text{klassisch}} = \frac{C_V^{\text{klassisch}}}{V} = 3nk_{\text{B}}$$

spezifische Wärmekapazität

- → weicht um Faktor 100 von gemessenem Wert ab!! Drude-Modell macht völlig falsche Vorhersage für Wärmekapazität
- → Ursache: klassische Betrachtung enthält kein Pauli-Verbot: alle Teilchen eines klassischen Teilchengases besitzen mittlere Energie der Größenordnung $k_{
 m B}T$

Auswirkung des Pauli-Verbots:

Elektronen weit unterhalb von $E_{\rm F}$ können bei T-Erhöhung keine Energie der Größenordnung $k_{\rm B}T$ aufnehmen, da alle erreichbaren Zustände mit Wahrscheinlichkeit f(E)=1 besetzt sind



nur kleiner Anteil $\sim \frac{k_{\rm B}T}{E_{\rm F}} \simeq 0.01$ aller Elektronen kann bei Raumtemperatur zu Änderung der inneren Eneregie beitragen

typische Metalle:

$$\mu \simeq E_{\mathrm{F}} \sim 5$$
 eV bzw. $T_{\mathrm{F}} \sim 60\,000$ K

$$ightharpoonup rac{E_{\mathrm{F}}}{k_{\mathrm{B}}T} \simeq 200$$
 @ 300 K

- Berechnung der inneren Energie U(T) des Elektronengases
 - quantenmechanische Berechnung:
 - > Elektronengas als fermionisches Quantengas (Fermionen müssen Pauli-Verbot gehorchen)

$$U = \sum_{\mathbf{k}, \boldsymbol{\sigma}} E_{\mathbf{k}} f(E_{\mathbf{k}})$$
Spin

$$E_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m}$$

$$E_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} \qquad f(E_{\mathbf{k}}) = \frac{1}{\exp\left(\frac{E_{\mathbf{k}} - \mu}{k_{\mathrm{B}}T}\right) + 1}$$

wir führen Summation in Integration über:

$$U = \int_{0}^{\infty} dE \ E \ D(E) f(E) = \frac{V}{2\pi^{2}} \left(\frac{2m}{\hbar^{2}}\right) \int_{0}^{\infty} dE \ \frac{E^{3/2}}{\exp\left(\frac{E - \mu}{k_{B}T}\right) + 1}$$

$$D^{(3D)}(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{1/2}$$

(für beide Spinrichtungen)

- die Auswertung des Integrals ist leider etwas schwierig
 - → Sommerfeld-Entwicklung (siehe R. Gross, A. Marx, Festkörperphysik, 3. Aufl., Anhang C)

$$U(T) = U(T = 0) + \frac{\pi^2}{6}D(E_{\rm F})(k_{\rm B}T)^2 + \cdots$$

Plausibilitätsbetrachtung:

- ➤ T-Erhöhung: → Umbesetzung der Zustände
- Pauli-Prinzip: nur Elektronen in Energieintervall $k_{\rm B}T$ um $E_{\rm F}$ können teilnehmen $\rightarrow N_{\rm th} \simeq D(E_{\rm F})k_{\rm B}T$
- \triangleright jedes Elektron trägt etwa $k_{\rm B}T$ zu U bei

$$\rightarrow U \simeq N_{\rm th} k_{\rm B} T = D(E_{\rm F})(k_{\rm B} T)^2$$

Wärmekapazität und spezifische Wärmekapazität

$$C_V^{\rm qm} = \frac{\partial U}{\partial T}\Big|_V = \frac{\pi^2}{3}D(E_{\rm F})k_{\rm B}^2T$$

– mit Zustandsdichte $D^{(3D)}(E_{\rm F}) = \frac{3}{2}V\frac{n}{E_{\rm F}} = \frac{3}{2}\frac{N}{E_{\rm F}}$ erhalten wir:

$$c_V^{\text{qm}} = \frac{C_V^{\text{qm}}}{V} = \frac{\pi^2}{3} \frac{D(E_{\text{F}})}{V} k_{\text{B}}^2 T = \frac{\pi^2}{2} \frac{n k_{\text{B}}^2}{E_{\text{F}}} T = \gamma T$$

$$n = \frac{N}{V} = \text{Elektronendichte}$$

Sommerfeld-Koeffizient

$$\gamma = \frac{\pi^2}{2} \frac{nk_{\rm B}^2}{E_{\rm F}} = \frac{\pi^2}{3} \frac{D(E_{\rm F})}{V} k_{\rm B}^2$$

Messung der spezifischen Wärmekapazität $c_V^{\rm qm}(T)$ erlaubt Bestimmung der Zustandsdichte $D(E_{\rm F})$ und damit der Dichte und Masse der Elektronen

Vergleich mit klassischem Ergebnis

$$c_V^{\text{qm}} = \frac{\pi^2}{2} \frac{nk_{\text{B}}^2}{E_{\text{F}}} T = \frac{\pi^2}{2} \frac{nk_{\text{B}}^2}{k_{\text{B}}T_{\text{F}}} T = \frac{\pi^2}{2 \cdot 3} 3nk_{\text{B}} \frac{T}{T_{\text{F}}} \simeq c_V^{\text{klassisch}} \cdot \frac{T}{T_{\text{F}}}$$

Faktor $\frac{T}{T_E}$ gibt den Anteil der Elektronen an, die nicht Pauli-geblockt sind und zu spez. Wärmekapazität beitragen können

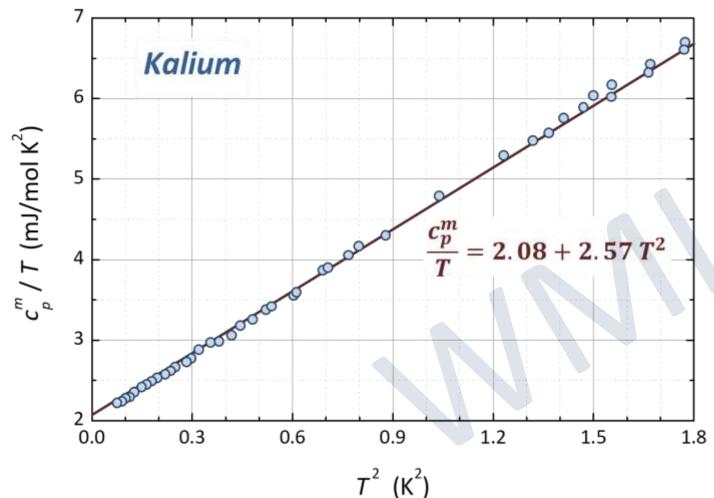
7.2.1 Spezifische Wärmekapazität: Experiment

- Messung der Wärmekapazität eines Metalls
 - > wir messen immer die Wärmekapazität des Gitters und des Elektronengases zusammen
 - ≽ wie können wir beide Beiträge trennen ? 👈 unterschiedliche T-Abhängigkeit bei tiefen Temperaturen ausnutzen

$$C_V(T) = \mathbf{\gamma} \cdot \mathbf{T} + \mathbf{A} \cdot \mathbf{T}^3$$

Kristallgitter Elektronengas

- Auftragen von C_V/T gegen T^2 :
 - y-Achsenabschnitt liefert γ
 - Steigung liefert A



7.2.1 Spezifische Wärmekapazität: Experiment

Vergleich des theoretisch erwarteten und des experimentell gemessenen Sommerfeld-Koeffizienten

Metall	$y_{\rm exp} \ (10^{-3} {\rm J/mol} {\rm K}^2)$	$\gamma_{\rm theor}$ (10 ⁻³ J/mol K ²)	yexp/ytheor
Li	1.63	0.749	2.18
Na	1.38	1.094	1.26
K	2.08	1.668	1.25
Rb	2.41	1.911	1.26
Cs	3.20	2.238	1.43
Fe	4.98	0.498	10
Co	4.98	0.483	10.3
Ni	7.02	0.458	15.3
Cu	0.695	0.505	1.38
Ag	0.646	0.645	1.00
Au	0.729	0.642	1.14
Sn	1.78	1.41	1.26
Pb	2.98	1.509	1.97

große Abweichungen bei Übergangsmetallen

- \gt 3d-Elektronen tragen stark zu $D(E_{\rm F})$ bei, sind aber relativ stark *lokalisiert*
- > 3d-Elektronen können nur schlecht als freie Elektronen beschrieben werden
 - → Berücksichtigung durch "effektive" Masse m^*

Ursachen für effektive Masse

- Wechselwirkung der Elektronen mit Kristallgitter → effektive Bandmasse
- Wechselwirkung mit den Phononen → polaronische Masse
- Wechselwirkung der Elektronen untereinander

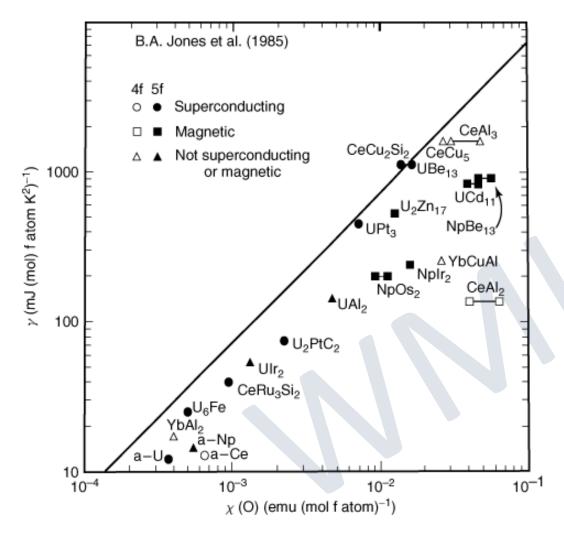
7.2.1 Spezifische Wärmekapazität: Experiment

- Vertiefungsthema: Schwere Fermionenmetalle
 - ightharpoonup sehr hohe effektive Massen $m^\star/m \simeq 100 \, 1000$ in Elementen mit 4f und 5f -Elektronen
 - ightharpoonup in Zustandsdichte $D(E_{
 m F})=rac{3}{2}Vrac{n}{E_{
 m F}} \propto m$ geht über $E_{
 m F}=rac{\hbar^2}{2m}ig(3\pi^2n^{(3{
 m D})}ig)^{2/3} {
 m die\ Masse\ der\ Elektronen\ ein}$
 - $\triangleright \gamma \propto D(E_F) \propto m^*$ wächst also proportional zu m^* an
- Wilson-Verhältnis für freies Elektronengas

$$R_{\rm W} = \frac{\gamma}{\chi_{\rm P}} = \frac{\frac{\pi^2}{3} k_{\rm B}^2 \frac{D(E_{\rm F})}{V}}{\mu_0 \mu_{\rm B}^2 \frac{D(E_{\rm F})}{V}} = \frac{\pi^2}{3\mu_0} \frac{k_{\rm B}^2}{\mu_{\rm B}^2} = const.$$

 $\chi_{\mathrm{P}}=$ Paulische Spinsuszeptibilität $\mu_{\mathrm{B}}=$ Bohrsches Magneton

ightharpoonup da γ , $\chi_{\rm P} \propto D(E_F)$, nehmen beide mit steigender effektiver Masse zu, $R_{\rm W} = \frac{\gamma}{\chi_{\rm P}}$ bleibt aber etwa gleich



7.3 Transporteigenschaften

- Elektronen in Metallen transportieren Ladung, Wärme und Spin (Drehimpuls)
 - **→** Elektrische Stromdichte J_a
 - → Wärmestromdichte J_h
 - \rightarrow Spinstromdichte J_s
- wir diskutieren hier nur Ladungs- und Wärmetransport
 - \rightarrow elektrische Leitfähigkeit σ
 - \rightarrow Wärmeleitfähigkeit κ
- Physik von Spinströmen wurde erst in jüngerer Vergangenheit systematisch untersucht

- Definition der elektrischen Leitfähigkeit
 - > Proportionalitätskonstante zwischen Gradient des elektr. Potenzials (Störung) und der elektrischen Stromdichte (lineare Antwort)

$$\mathbf{J}_{\mathbf{q}} = -\sigma \, \mathbf{\nabla} \phi_{\mathbf{el}} = \sigma \, \mathbf{E}$$

analog zu Definition der Wärmeleitfähigkeit: $\mathbf{J}_{h} = -\kappa \nabla T$

(im Allgemeinen ist σ ein Tensor 2. Stufe)

- **Transporttheorie: Drude-Modell (um 1900)**
 - **Elektronen = klassisches Teilchengas** mit mittlerer thermischer Geschwindigkeit $v_{\rm th} = \sqrt{3k_{\rm B}T/m}$
 - Beschleunigung durch **E**-Feld, Reibung durch Stöße nach mittlerer Streuzeit au

Bewegungsgleichung
$$m \frac{d\mathbf{v}}{dt} + m \frac{\mathbf{v}}{\tau} = -e\mathbf{E}$$

 τ^{-1} = Impulsrelaxationsrate

stationärer Zustand: $d\mathbf{v}/dt = 0$ \rightarrow mittlere Driftgeschwindigkeit $\langle \mathbf{v} \rangle = \mathbf{v}_D$ parallel zum **E**-Feld

$$\mathbf{v}_{\mathrm{D}} = -\frac{e\tau}{m} \; \mathbf{E} = -\mu \; \mathbf{E}$$

 $\mu \equiv \frac{|\mathbf{v}_{\mathrm{D}}|}{|\mathbf{E}|} = \frac{e\tau}{m} = \text{Beweglichkeit}$

→ Driftgeschwindigkeit/E-Feld

→ Elektronen bewegen sich entgegengesetzt zu E

elektrische Stromdichte

$$\mathbf{J}_{\mathbf{q}} = -e \, n \, \mathbf{v}_{\mathbf{D}} = \frac{ne^2 \tau}{m} \mathbf{E} = \sigma \, \mathbf{E}$$

elektrische Leitfähigkeit

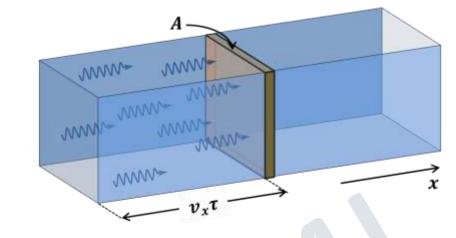
$$\sigma = \frac{ne^2\tau}{m} = ne\mu$$

Ohmsches Gesetz

elektrische Leitfähigkeit

- falsche Schlüsse aus Drude-Modell
 - aus gemessener Leitfähigkeit σ folgt mit bekannter Elektronendichte n die typische Streuzeit $aupprox 10^{-14}$ s
 - mit $v_{\rm th} pprox 10^5$ m/s folgt die mittlere freie Weglänge $\ell=v_{\rm th} au pprox 1$ nm (entspricht etwa Atomabstand in Metall)
 - → Drude nahm deshalb fälschlicherweise an, dass Elektronen an den Gitteratomen gestreut werden !!

- Transporttheorie: Sommerfeld-Modell
 - **Elektronen = fermionisches Quantengas** mit mittlerer Geschwindigkeit $v_{
 m F}\gg v_{
 m th}$
 - Beschleunigung der Elektronen durch ${f E}$ -Feld, Reibung durch Stöße nach mittlerer Streuzeit au
- analoge Diskussion von Wärme- und Ladungstransport (1D-Modell)
 - ightharpoonup Wärmemenge: $Q = \left(\frac{U}{V}\right) A v_{\chi} \tau$
 - **Wärmestromdichte**: $J_{h,x} = \frac{Q}{A\tau} = \left[\left(\frac{U}{V} \right) A v_x \tau \right] \frac{1}{A\tau} = \left(\frac{U}{V} \right) v_x$



- ightharpoonup Ladungsmenge: $Q = \left(\frac{N(-e)}{V}\right) A v_{\chi} \tau$
- > Ladungsstromdichte: $J_{q,x} = \frac{Q}{A\tau} = \left[\left(\frac{N(-e)}{V} \right) A v_x \tau \right] \frac{1}{A\tau} = \left(\frac{N(-e)}{V} \right) v_x = -ne \ v_x$

$$v_{x} \to \langle v_{x} \rangle : \qquad J_{q,x} = \left(\frac{N(-e)}{V}\right) \langle v_{x} \rangle = -en\langle v_{x} \rangle = -en\frac{\hbar}{m} \langle k_{x} \rangle = -en\frac{\hbar}{m} \frac{1}{N} \sum_{k_{x},\sigma} k_{x} f_{k_{x}} = -\frac{e}{V} \frac{\hbar}{m} \sum_{k_{x},\sigma} k_{x} f_{k_{x}}$$

 $J_{q,\chi}$ verschwindet im thermischen Gleichgewicht, da Besetzungszahlen für k_χ und $-k_\chi$ gleich sind und $v_\chi({f k})=-v_\chi(-{f k})$

→ endliche Ladungsstromdichte nur in Nichtgleichgewichtssituation

Nichtgleichgewicht durch elektrisches Feld

endliche Ladungsstromdichte für
$$\sum_{k_x,\sigma} k_x f_{k_x} = \sum_{k_x,\sigma} k_x f_{k_x}^0 + \sum_{k_x,\sigma} k_x f_{k_x} - \sum_{k_x,\sigma} k_x f_{k_x}^0$$

 $f_{k_x}^0 = \text{Besetzungszahl im}$ thermischen Gleichgewicht

liefert keinen Beitrag zu $J_{q,x}$ liefert Beitrag zu $J_{q,x}$

Ladungsstromdichte:

$$J_{q,x} = -\frac{1}{V} \frac{e\hbar}{m} \left[\sum_{k_x,\sigma} k_x f_{k_x} - \sum_{k_x,\sigma} k_x f_{k_x}^0 \right] = -\frac{1}{V} \frac{e\hbar}{m} N[\langle k_x \rangle - \langle k_x \rangle^0] = -n \frac{e\hbar}{m} \left[\langle k_x \rangle - \langle k_x \rangle^0 \right] = -n \frac{e\hbar}{m} \delta k_x$$

- Frage:
 - \triangleright Wie kann sich mittlere Wellenzahl $\langle k_x \rangle$ in bestimmtem Raumgebiet ändern?
 - durch Kraftwirkung des elektrischen Felds auf Ladungsträgern
 - durch durch Streuprozesse der Ladungsträger

$$\frac{d\langle k_x \rangle}{dt} = \frac{\partial \langle k_x \rangle}{\partial t} \Big|_{\text{Kraft}} + \frac{\partial \langle k_x \rangle}{\partial t} \Big|_{\text{Streuung}}$$

Spezialfall der Boltzmann-Transportgleichung

wir werden im Folgenden nur **stationäre Prozesse** betrachten, für die $d\langle k_x \rangle/dt = 0$ gilt

Beschreibung der Änderung von $\langle \mathbf{k}_{\mathbf{x}} \rangle$ durch Streuung mit Relaxationszeitansatz

$$\frac{\partial \langle k_{\chi} \rangle}{\partial t} \Big|_{\text{Streuung}} = -\frac{\langle k_{\chi} \rangle - \langle k_{\chi} \rangle^{0}}{\tau} = -\frac{\delta k_{\chi}}{\tau}$$

$$\Rightarrow \text{Beschreibungs der Änderung von } \langle k_{\chi} \rangle \text{ durch eine einzige (energieunabhängige)}$$

$$\Rightarrow \text{Anderungs rate ist proportional zur Abweichung vom Gleichgewicht}$$

- \triangleright Beschreibungs der Änderung von $\langle k_x \rangle$ durch eine einzige
- Beschreibung der Änderung von $\langle \mathbf{k}_{\mathbf{x}} \rangle$ durch Kraftwirkung des elektrischen Felds

$$\operatorname{mit} F_{\chi} = -eE_{\chi} = m \frac{\partial \langle v_{\chi} \rangle}{\partial t} = \hbar \frac{\partial \langle k_{\chi} \rangle}{\partial t} \text{ erhalten wir } \frac{\partial \langle k_{\chi} \rangle}{\partial t} \Big|_{\operatorname{Kraft}} = -\frac{e}{\hbar} E_{\chi}$$

$$\frac{\partial \langle k_{x} \rangle}{\partial t} \Big|_{\text{Kraft}} = -\frac{e}{\hbar} E_{x}$$

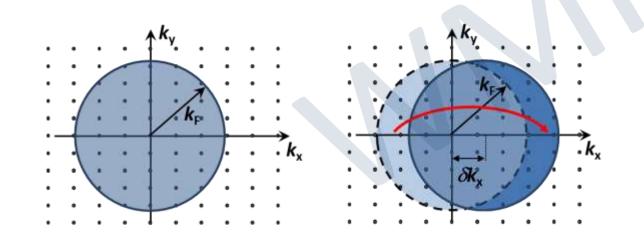
• stationärer Fall:
$$\frac{d(R_X)}{dt}$$
 =

stationärer Fall:
$$\frac{d\langle k_{\chi}\rangle}{dt} = 0 \Rightarrow \frac{\partial \langle k_{\chi}\rangle}{\partial t}\Big|_{\text{Kraft}} = -\frac{\partial \langle k_{\chi}\rangle}{\partial t}\Big|_{\text{Streuung}} \Rightarrow -\frac{e}{\hbar} E_{\chi} = \frac{\langle k_{\chi}\rangle - \langle k_{\chi}\rangle^{0}}{\tau}$$

$$\langle k_x \rangle - \langle k_x \rangle^0 = \delta k_x = -\frac{e\tau}{\hbar} E_x$$

entspricht einer mittleren Verschiebung der gesamten Fermi-Kugel um

$$\delta k_{x} = -\frac{e\tau}{\hbar} E_{x}$$



- Wie groß ist $\delta k_x = \langle k_x \rangle \langle k_x \rangle^0$ im Vergleich zu $k_{\rm F}$?
 - typische elektrische Feldstärke in Metall: E=10~V/m (Spannungsabfall von 10 V auf 1 m langem Kabel)
 - typische Streuzeit $\tau \approx 10^{-14}$ s

$$\delta k_{\chi} = \langle k_{\chi} \rangle - \langle k_{\chi} \rangle^{0} = -\frac{e\tau}{\hbar} E_{\chi} \approx 10^{2} \text{ m}^{-1} \ll k_{\text{F}} \simeq 10^{10} \text{ m}^{-1}$$

- igoplus Verschiebung δk_χ der Fermi-Kugel ist sehr viel kleiner als Radius $k_{
 m F}$ der Fermi-Kugel
- Wie groß ist die mittlere Driftgeschwindigkeit $v_{\it D}$ im Vergleich zur Fermi-Geschwindigkeit $v_{\it F}$?

- es gilt
$$v_{\rm D} = \frac{\hbar}{m} \delta k_x = \frac{\hbar}{m} \; \frac{\hbar k_{\rm F}/m}{\hbar k_{\rm F}/m} \; \delta k_x = v_{\rm F} \frac{\delta k_x}{k_{\rm F}} \ll v_{\rm F}$$

-~ für obiges Zahlenbeispiel erhalten wir $v_{\rm D} \approx 10^{-8}~v_{\rm F} \approx 10^{-2}~{\rm m/s}$

elektrische Stromdichte im stationären Fall

$$J_{q,x} = -ne\frac{\hbar}{m} \frac{\delta k_x}{\delta k_x}$$

$$\delta k_x = -\frac{e\tau}{\hbar} E_x$$

$$J_{q,x} = \frac{ne^2\tau}{m} E_x = ne\mu E_x = -ne v_D$$

Ohmsches Gesetz

$$\sigma = \frac{ne^2\tau}{m} = ne\mu = \frac{ne^2\ell}{mv_{\rm F}}$$

elektrische Leitfähigkeit

Interpretation:

 $\sigma \propto ne$ (transportierte Ladungsmenge)

 $\sigma \propto e/m$ (Beschleunigung in E-Feld)

$$\sigma \propto \frac{\ell}{v_{\rm F}} = \tau$$
 (proportional zu 1/Reibung)

erstaunlich:

- gleiches Ergebnis für elektrische Leitfähigkeit wie für Drude-Modell
- \succ wie im Drude-Modell führt das elektrische Feld zu einer mittleren Driftgeschwindigkeit ${f v}_{
 m D}=-\mu{f E}$
- > entscheidender Unterschied zu Drude-Modell:
 - \succ Elektronen bewegen sich nicht mit $v_{
 m th}$ sondern mit $v_{
 m F}\gg v_{
 m th}$
 - \succ mittlere freie Weglänge ist $\ell=v_{\rm F} au\gg v_{
 m th} au\gg$ Atomabstand (typischerweise 10 100 nm in Metall @ 300 K)
 - Elektronen streuen nicht an Gitteratomen (genaue Diskussion der Streuprozesse folgt später)

Drudes falsche Schlussfolgerungen (1)

Elektronen sind klassische Teilchen mit $v_{\rm th} \simeq \sqrt{\frac{3k_{\rm B}T}{m}} \sim 10^5 \,$ m/s @ 300 K

mittlere freie Weglänge $~\ell=v_{\rm th}\cdot~\tau\simeq 10^5 {\rm m\over s}\cdot 10^{-14} {\rm s}\simeq 10^{-9}~{\rm m}\sim {\rm Atomabstand}$

→ Elektronen streuen an Gitteratomen!

(richtig: Elektronen streuen überhaupt nicht an perfektem Gitter)

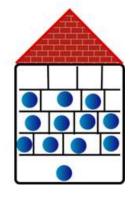
Drudes falsche Schlussfolgerungen (2)

Wärmekapazität
$$C_V = \frac{\partial U}{\partial T} = \frac{\partial}{\partial T} \left(\mathbf{2} \cdot \mathbf{3} \cdot N \cdot \frac{1}{2} k_{\mathrm{B}} T \right) = 3N k_{\mathrm{B}}$$

Spin kin. Freiheitsgrade

Experiment:
$$C_V \simeq 3Nk_{\rm B}\frac{T}{T_{\rm F}}$$

Ursache: nur kleiner Anteil $\frac{k_{\rm B}T}{E_{\rm F}}=\frac{T}{T_{\rm F}}$ der Elektronen kann Energie $\sim k_{\rm B}~T$ aufnehmen



Temperaturabhängigkeit der elektrischen Leitfähigkeit

$$\sigma = \frac{ne^2\tau}{m} = ne\mu = \frac{ne^2\ell}{mv_{\rm F}}$$

 \rightarrow Temperaturabhängigkeit resultiert aus T-Abhängigkeit der Streurate

- in Metallen dominieren folgende Streuprozesse (genaue Diskussion der Streuprozesse folgt später)
 - Streuung an Phononen
 - Streuung an Gitterdefekten und Verunreinigungen
 - Streuung an Probenoberfläche
 - •
- Matthiessen-Regel

$$\frac{1}{\tau} = \frac{1}{\tau_1} + \frac{1}{\tau_2} + \frac{1}{\tau_3} + \cdots$$

→ die Streuraten addieren sich, falls Streuprozesse voneinander unabhängig sind

Elektron-Phonon-Streuung

- hohe Temperaturen $T \gg \Theta_D$:

wegen
$$au_{
m ph}^{-1} \propto \left< n_{
m ph} \right> \propto T/\Theta_{
m D}$$
 erhalten wir

$$\frac{1}{\sigma_{\rm ph}} = \rho_{\rm ph} \propto T$$

- tiefe Temperaturen $T \ll \Theta_{\rm D}$:

wegen
$$\tau_{\rm ph}^{-1} \propto \langle n_{\rm ph} \rangle \propto T^3$$
 erwarten wir $\frac{1}{\sigma_{\rm ph}} = \rho_{\rm ph} \propto T^3$ (im Experiment wird aber $\frac{1}{\sigma_{\rm ph}} = \rho_{\rm ph} \propto T^5$ beobachtet)

zusätzlich zu berücksichtigen:

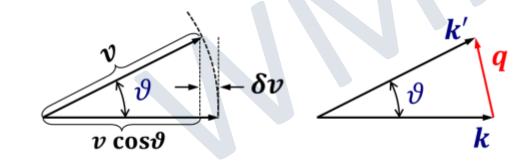
- ightharpoonup wir müssen zusätzlichen Gewichtsfaktor $(1-\cos\theta)$ einführen, um die Streuprozesse, die geringe Richtungsänderung θ bewirken, weniger zu gewichten
- \triangleright bei tiefen T sind nur Phononen mit kleinem q besetzt:

$$\frac{\delta v}{v} = 1 - \cos \vartheta \simeq \frac{1}{2} \vartheta^2 \propto q^2 = \omega_q^2 / v_s^2$$

mit $\omega_a \simeq k_{\rm B}T/\hbar$ folgt

$$1-\cos\vartheta\propto\omega_q^2\propto T^2$$

$$\frac{1}{\sigma_{\rm ph}} = \rho_{\rm ph} \propto T^5$$



- Elektron-Defekt/Verunreinigungsstreuung
 - Streuprozesse sind temperaturunabhängig, da sich Dichte und Streuquerschnitt der Defekte nicht mit T ändern

$$\frac{1}{\sigma_{\rm def}} = \rho_{\rm def} \propto n_{\rm def} \, S_{\rm def} = const$$

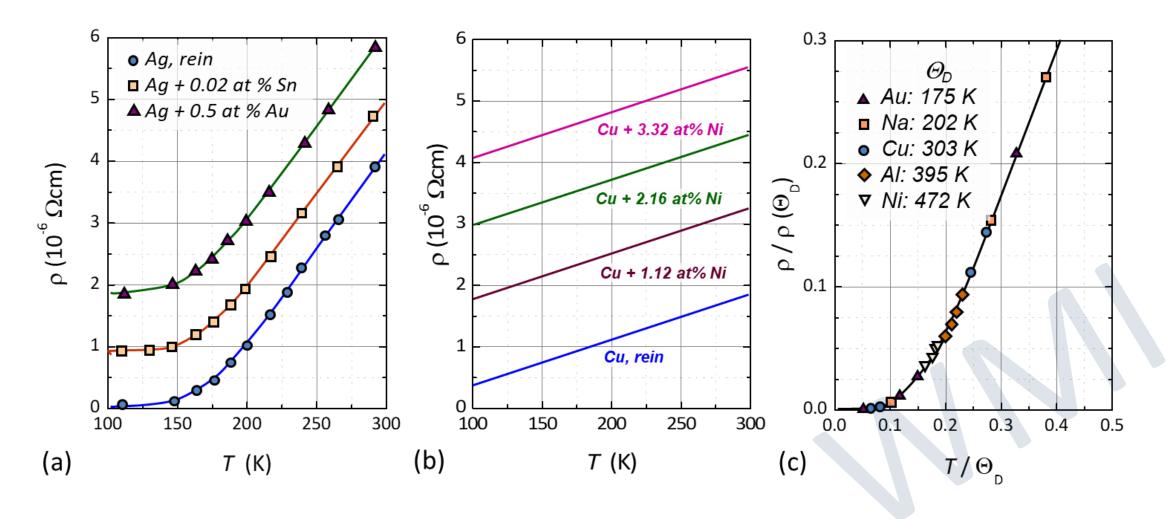
- da Streuung an Phononen stark mit T abnimmt, bleibt bei tiefen T Widerstand durch Defektstreuung übrig
 - → Restwiderstand
- Verwendung des Restwiderstandsverhältnisses zur Klassifizierung der Reinheit von Metallen

$$RRR = \frac{\rho(300 \, K)}{\rho_{\text{def}}}$$

Residual Resistance Ratio

(kann in hochreinen Metallen bis zu 10^6 betragen)

Temperaturabhängigkeit der elektrischen Leitfähigkeit



Zusammenfassung: Teil 16, 07.01.2021/1

- freies Elektronengas, spezifische Wärme:
 - *klassisch*: Gleichverteilungssatz, N Elektronen \rightarrow pro kinetischem Freiheitsgrad Beitrag $\frac{1}{2}$ $k_{\rm B}T$

$$C_V^{\text{klassisch}} = \frac{\partial \langle U \rangle}{\partial T} \bigg|_V = \frac{2 \cdot 3 \cdot N \cdot \frac{1}{2} k_{\text{B}} = 3N k_{\text{B}}}{\text{Spin}} \qquad c_V^{\text{klassisch}} = \frac{C_V^{\text{klassisch}}}{V} = 3n k_{\text{B}}$$

$$c_V^{\text{klassisch}} = \frac{C_V^{\text{klassisch}}}{V} = 3nk_{\text{B}}$$

um Faktor $T/T_{\rm F} \simeq 100$ zu groß !!

- quantenmechanisch:
$$U = \sum_{\mathbf{k},\sigma} E(\mathbf{k}) f(E_{\mathbf{k}}) = \int_{0}^{\infty} dE \ E \ D(E) f(E)$$

- T-Erhöhung -> Umbesetzung der Zustände
- T-Erhöhung ightharpoonup Umbesetzung der Zustände wegen Pauli-Prinzip kann nur Anteil der Elektronen in Energieintervall $k_{\rm B}T$ um $E_{\rm F}$ teilnehmen $ightharpoonup N_{\rm th} \simeq D(E_{\rm F})k_{\rm B}T$ iedes Elektron träat etwa $k_{\rm B}T$ zu U bei - wegen Pauli-Prinzip kann nur Anteil der Elektronen in
- jedes Elektron trägt etwa $k_{\rm B}T$ zu U bei

- genaue Rechnung (Sommerfeld-Entwicklung)

$$c_V^{\rm qm} = \frac{\pi^2}{3} k_{\rm B}^2 \frac{D(E_{\rm F})}{V} T = \frac{\pi^2}{2} n k_{\rm B} \frac{T}{T_{\rm F}} = \gamma \cdot T \simeq c_V^{\rm klassisch} \frac{T}{T_{\rm F}}$$

$$\gamma = \frac{\pi^2}{3} k_{\rm B}^2 \frac{D(E_{\rm F})}{V} = \frac{\pi^2}{2} \frac{n k_{\rm B}^2}{E_{\rm F}}$$
 Sommerfeld-Koeffizient

$$\gamma = \frac{\pi^2}{3} k_{\rm B}^2 \frac{D(E_{\rm F})}{V} = \frac{\pi^2}{2} \frac{n k_{\rm B}^2}{E_{\rm F}}$$

 $D(E_{\rm F}) = \frac{3}{2} \frac{N}{E_{\rm F}} = \frac{3}{2} \frac{nV}{E_{\rm F}}$

• freies Elektronengas, elektrische Leitfähigkeit:

$$\mathbf{J}_q = \sigma \mathbf{E} = -\sigma \, \nabla \phi_{\mathrm{el}}$$

Drude-Modell:

$$m\frac{d\mathbf{v}}{dt} + \frac{m}{\tau}\mathbf{v} = -e\mathbf{F}$$

$$m\frac{d\mathbf{v}}{dt} + \frac{m}{\tau}\mathbf{v} = -e\mathbf{E}$$
 $\tau = \text{Impulsrelaxationszeit}$

(klassisches Teilchengas)

):
$$\mathbf{v}_{\mathrm{D}} = -\frac{e\tau}{m} \mathbf{E} = -\mu \mathbf{I}$$

stationärer Zustand $\left(\frac{d\mathbf{v}}{dt} = 0\right)$: $\mathbf{v}_{\mathrm{D}} = -\frac{e\tau}{m} \mathbf{E} = -\mu \mathbf{E}$ $\mathbf{v}_{\mathrm{D}} = \langle \mathbf{v} \rangle = \text{mittlere Drift-Geschwindigkeit aller Elektronen}$

$$\mu = |\mathbf{v}_{\mathrm{D}}|/|\mathbf{E}|$$
 (Beweglichkeit)

elektrische Stromdichte:

$$\mathbf{J_q} = -en\mathbf{v_D} = \frac{ne^2\tau}{m}\mathbf{E} = ne\mu\,\mathbf{E}$$
 $\sigma = ne^2\tau/m$ (elektrische Leitfähigkeit)

$$\sigma = ne^2 \tau / m$$

Zusammenfassung: Teil 16, 07.01.2021/2

Sommerfeld-Modell:

(fermionsches Quantengas)

$$\mathbf{J}_{q} = \left(\frac{N(-e)}{V}\right)\langle\mathbf{v}\rangle = -en\langle\mathbf{v}\rangle = -en\frac{\hbar}{m}\langle\mathbf{k}\rangle = -en\frac{\hbar}{m}\frac{1}{N}\sum_{\mathbf{k},\sigma}f_{\mathbf{k}}\mathbf{k} = -en\frac{\hbar}{m}\delta\mathbf{k}$$

thermisches Gleichgewicht: $\sum_{{f k},\sigma} f_{f k} {f k} = {f 0}$

$$\rightarrow$$
 $J_a \neq 0$ nur für $\sum_{k,\sigma} f_k k \neq 0$

$$\mathbf{J}_q = -enrac{\hbar}{m}\delta\mathbf{k}$$

 $\delta {f k}=$ Abweichung vom therm. Gleichgewicht

 $\mathbf{J}_q = -en\frac{n}{m}\delta\mathbf{k}$

 $\mathbf{J}_q = \frac{ne^2\tau}{m}\mathbf{E} = ne\mu\,\mathbf{E}$

Berechnung der Änderung von $\delta \mathbf{k}$ durch äußere Kräfte (**E**-Feld) und Relaxationsprozesse (Streuung)

$$\frac{d\langle \mathbf{k} \rangle}{dt} = \frac{\partial \langle \mathbf{k} \rangle}{\partial t} \Big|_{\text{Kraft}} + \frac{\partial \langle \mathbf{k} \rangle}{\partial t} \Big|_{\text{Streuung}} = 0 \qquad \text{(stationärer Zustand)}$$

$$\frac{\partial \langle \mathbf{k} \rangle}{\partial t} \Big|_{\text{Kraft}} = -\frac{e}{\hbar} \mathbf{E} \qquad \frac{\partial \langle \mathbf{k} \rangle}{\partial t} \Big|_{\text{Streuung}} = -\frac{\delta \mathbf{k}}{\tau} \quad \text{Relaxationszeitansatz}$$

(stationärer Zustand)

$$\sigma = \frac{1}{m} = \frac{1}{mv_F}$$
 Leitfähigkeit Beweglichkeit: $\mu = \frac{|\mathbf{v}_{\mathrm{D}}|}{|\mathbf{E}|} = \frac{e\tau}{m}$ mittlere freie Weglänge: $\ell = v_F \tau$

Leitfähigkeit

Ohmsches

elektrische

typische Feldstärke in Kupferkabel: $E \sim 10 \text{ V/m}$ typische Streuzeit: $au \sim 10^{-14}~{\rm s}$

$$\Rightarrow |\delta \mathbf{k}| = \frac{eE\tau}{\hbar} \sim 10^2 \,\mathrm{m}^{-1} \sim 10^{-9} k_{\mathrm{F}}$$

• freies Elektronengas, T-Abhängigkeit der elektrischen Leitfähigkeit:

- Streuung an Phononen
- Streuung an Verunreinigungen
- Streuung an Probenoberfläche
- **Matthiessen-Regel:** $\tau^{-1} = \tau_1^{-1} + \tau_2^{-1} + \tau_3^{-1} + \cdots$ (Addition der Streuraten)
- hohe T, $T\gg\Theta_D$: $oldsymbol{
 ho}\propto oldsymbol{n_{\mathrm{ph}}}\propto oldsymbol{T}$
- tiefe T, $T \ll \Theta_D$: $\rho \propto T^5$
- (Streuung an Phononen)

(Streuung an Phononen)

- $-T \rightarrow 0$: $\rho \rightarrow const.$
- (Streuung an Defekten, Probenoberfläche, ...