Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 16 Vorlesungsstunde: 04.05.2021-2

Zusammenfassung: Teil 15a, 04.05.2021/1

• Bohr-van Leeuwen Theorem:

magnetische Eigenschaften können nicht klassisch erklärt werden → Magnetismus = Quantenphänomen

• Gegenüberstellung von magnetischen und elektrischen Größen:

Magnetisierung M = $\frac{m}{V}$ $M_i(\mathbf{r}',t') = \sum \int \chi_{ij}(\mathbf{r},t,\mathbf{r}',t') H_{\text{ext},j}(\mathbf{r},t) \, \mathrm{d}^3 r \, \mathrm{d}t$ $M_i(\mathbf{q},\omega) = \sum_{i=1}^{j} \chi_{ij}(\mathbf{q},\omega) H_{\text{ext},j}(\mathbf{q},\omega)$ magnetisches Moment: $\mathbf{m} = \sum_{i} \boldsymbol{\mu}_{i} = \sum_{i} \frac{q_{i} \hbar}{2m} \frac{\mathbf{r}_{i} \times \mathbf{p}_{i}}{\hbar} = \sum_{i} g_{i} \boldsymbol{\mu}_{B} \frac{\mathbf{L}_{i}}{\hbar}$ magnetische Flussdichte: **Bohrsches Magneton** $\mu_{\rm B} = \frac{1}{2m}$ $\mathbf{B}(\mathbf{r},t) = \mu_0 \mathbf{H}_{\text{ext}}(\mathbf{r},t) + \mu_0 \mathbf{M}(\mathbf{r},t)$ $B_i(\mathbf{q},\omega) = \mu_0 \sum_{i} \mu_{ij}(\mathbf{q},\omega) H_{\text{ext},j}(\mathbf{q},\omega)$ magnetische Permeabilität: $\mu_{ii}(\mathbf{q},\omega) = 1 + \chi_{ii}(\mathbf{q},\omega)$

Polarisation P = $\frac{p_{el}}{V}$ $P_i(\mathbf{r}',t') = \underbrace{\epsilon_0} \int \chi_{ij}(\mathbf{r},t,\mathbf{r}',t') E_{\text{ext},j}(\mathbf{r},t) \, \mathrm{d}^3 r \, \mathrm{d}t$ $P_{i}(\mathbf{q},\omega) = \underbrace{\epsilon_{0}}_{j} \chi_{ij}(\mathbf{q},\omega) E_{\text{ext},j}(\mathbf{q},\omega) P = \frac{\mathbf{p}_{\text{el}}}{\mathbf{N}}$ elektrisches Moment: $\mathbf{p}_{el} = \sum_{i} \mathbf{p}_{el,i} = \sum_{i} q_i \mathbf{r}_i$ elektrische Flussdichte: $\mathbf{D}(\mathbf{r},t) = \epsilon_0 \mathbf{E}(\mathbf{r},t) + \mathbf{P}(\mathbf{r},t)$ $D_i(\mathbf{q},\omega) = \epsilon_0 \sum_{i} \epsilon_{ij}(\mathbf{q},\omega) E_j(\mathbf{q},\omega)$ dielektrische Funktion: $\epsilon_{ii}(\mathbf{q},\omega) = 1 + \chi_{ii}(\mathbf{q},\omega)$

Zusammenfassung: Teil 15b, 04.05.2021/1

• magnetisches Feld und magnetische Flussdichte:

H-Feld: $\nabla \times \mathbf{H} = \mathbf{J}_q$	$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$	∇·H
B-Feld: $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} = \mu_0 (\mathbf{J}_q + \mathbf{J}_M)$	$\mathbf{B} = \boldsymbol{\mu}_0 \; (\mathbf{H} + \mathbf{M})$	$\mathbf{\nabla}\cdot\mathbf{B}$

• lokales Magnetfeld:

keine magn. Momente

vorhanden: $\chi_{dia} < 0$

$$\mathbf{H}_{\text{lok}} = \mathbf{H}_{\text{mak}} + \mathbf{H}_{\text{L}} = \mathbf{H}_{\text{ext}} + \mathbf{H}_{N} + \mathbf{H}_{\text{L}} = \mathbf{H}_{\text{ext}} - N \mathbf{M} + \mathbf{M}/3$$

 $= -\nabla \cdot \mathbf{M} \neq \mathbf{0}$

= 0

Lorentz-Feld $H_L = M/3$ und Entmagnetisierungsfeld $H_N = -NM$ sind für dia- und paramagnetische Materialien vernachlässigbar klein, da $M = \gamma H_{ovt} \sim +(10^{-4} - 10^{-6})H_{ovt}$

• diamagnetische,

paramagnetische und nicht-ww magn. Momente vorhanden: $\chi_{para} > 0$

ferromagnetische Materialien

ww magnetische **Dipole vorhanden**

Kapitel 12

Magnetismus

12.3 Atomarer Dia- und Paramagnetismus

• Diskussion des Magnetismus von gebundenen Elektronen

12.3.1 Atome in homogenem Magnetfeld

- Frage: Wie ändert sich Energie der elektronischen Zustände in homogenem Magnetfeld?
 - Hamilton-Operator:

$$\mathcal{H} = \frac{1}{2m} [\mathbf{p} + e\mathbf{A}]^2 + V(\mathbf{r})$$

es wird Coulomb-Eichung verwendet:

 $oldsymbol{\phi}=0$ und $oldsymbol{
abla}\cdot oldsymbol{A}=0$

 \implies **E** = $-\partial \mathbf{A}/\partial t$ und **B** = $\nabla \times \mathbf{A}$

allgemein gilt: $\mathbf{B}(\mathbf{r},t) = \mathbf{\nabla} \times \mathbf{A}(\mathbf{r},t)$ $\mathbf{E}(\mathbf{r},t) = -\mathbf{\nabla}\phi - \partial_t \mathbf{A}(\mathbf{r},t)$

mögliche Wahl des Vektorpotenzials: $\mathbf{A} = -\frac{1}{2}\mathbf{r} \times \mathbf{B}_{ext}, \ \mathbf{B}_{ext} || \hat{\mathbf{z}}$

kinetische Energie aller Elektronen in FK:

$$\mathcal{T} = \frac{1}{2m} \sum_{i} [\mathbf{p}_{i} + e\mathbf{A}]^{2} = \frac{1}{2m} \sum_{i} \left[\mathbf{p}_{i} - \frac{e}{2} \mathbf{r}_{i} \times \mathbf{B}_{ext} \right]^{2}$$
$$\mathcal{T} = \frac{1}{2m} \sum_{i} \mathbf{p}_{i}^{2} + \frac{e}{2m} \sum_{i} (\mathbf{r}_{i} \times \mathbf{p}_{i})_{z} B_{z} + \frac{e^{2} B_{z}^{2}}{8m} \sum_{i} (x_{i}^{2} + y_{i}^{2})$$

wir benutzen: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$

- wir benutzen $L_z = \sum_i (\mathbf{r}_i \times \mathbf{p}_i)_z$, $\mu_z = -\frac{e}{2m} \sum_i (\mathbf{r}_i \times \mathbf{p}_i)_z = -\mu_B L_z / \hbar$ und $\mathcal{T}_0 = \frac{1}{2m} \sum_i \mathbf{p}_i^2$

$$\mathcal{T} = \mathcal{T}_0 + \mu_B \frac{L_z}{\hbar} B_z + \frac{e^2 B_z^2}{8m} \sum_i (x_i^2 + y_i^2) = \mathcal{T}_0 + \Delta \mathcal{H}_\ell$$

12.3.1 Atome in homogenem Magnetfeld

– Energieänderung durch Spin:

$$\Delta \mathcal{H}_s = -\mathbf{\mu}_s \cdot \mathbf{B}_{\text{ext}} = g_s \mu_B \sum_i \frac{\mathbf{s}_i}{\hbar} \cdot \mathbf{B}_{\text{ext}} = g_s \mu_B B_z \frac{S_z}{\hbar} \qquad \text{mit } S_z = \sum_i (\mathbf{s}_i)_z \,, \quad g_s = \text{g-Faktor}$$

gesamte Energieänderung durch Magnetfeld:

$$\Delta \mathcal{H} = \Delta \mathcal{H}_{\ell} + \Delta \mathcal{H}_{S} = \frac{\mu_{B}}{\hbar} (L_{z} + g_{S}S_{z}) B_{z} + \frac{e^{2}B_{z}^{2}}{8m} \sum_{i} (x_{i}^{2} + y_{i}^{2})$$

- Berechnung der Energieänderungen ΔE_n der atomaren Energien in Störungstheorie 2. Ordnung: (möglich, da Energieänderung durch Feld wesentlich kleiner als Energien der atomaren Niveaus $|n\rangle$)

$$\Delta E_n = \langle n | \Delta \mathcal{H} | n \rangle + \sum_{n \neq n'} \frac{|\langle n | \Delta \mathcal{H} | n' \rangle|^2}{E_n - E_{n'}}$$

12.3.1 Atome in homogenem Magnetfeld

Berechnung der Energieänderungen ΔE_n der atomaren Energien in Störungstheorie 2. Ordnung:

$$\Delta \mathcal{H} = \frac{\mu_{\rm B}}{\hbar} (L_z + g_s S_z) B_z + \frac{e^2 B_z^2}{8m} \sum_i (x_i^2 + y_i^2)$$

$$\Delta E_n = \frac{\mu_B B_Z}{\hbar} \langle n | L_z + g_s S_z | n \rangle$$
$$+ \frac{\mu_B^2 B_Z^2}{\hbar^2} \sum_{n \neq n'} \frac{|\langle n | L_z + g_s S_z | n' \rangle|^2}{E_n - E_{n'}}$$
$$+ \frac{e^2 B_Z^2}{8m} \langle n | \sum_i (x_i^2 + y_i^2) | n \rangle$$

 $\Delta E_n = \langle n | \Delta \mathcal{H} | n \rangle + \sum_{m \neq n'} \frac{|\langle n | \Delta \mathcal{H} | n' \rangle|^2}{E_n - E_{n'}}$

Langevin-Paramagnetismus

Van Vleck-Paramagnetismus

Larmor-Diamagnetismus

2. Ordnungsbeitrag von 2. Term vernachlässigt!

- Größenordnung für Grundzustand $|0\rangle$:

 - Van Vleck: $\langle n|L_z + g_s S_z|n' \rangle \simeq \hbar$ ii.

Langevin: $\langle n|L_z + g_s S_z |n \rangle \simeq \hbar$ $\Rightarrow \Delta E_n \simeq \mu_B B_z = \frac{e\hbar}{2m} B_z = \hbar \omega_c$ $\Rightarrow \simeq 10^{-4} \text{ eV}$ @ $B_z = 1\text{ T}$

$$\Rightarrow \Delta E_n \simeq \mu_B B_z \frac{\mu_B B_z}{E_n - E_{n'}} \sim (10^{-4} - 10^{-5}) \hbar \omega_c \qquad @ B_z = 11$$

iii. Larmor:
$$\langle n | \sum_{i} (x_{i}^{2} + y_{i}^{2}) | n \rangle \simeq a_{B}^{2} \rightarrow \Delta E_{n} \simeq \left(\frac{\hbar e B_{z}}{m}\right)^{2} / \left(\frac{\hbar^{2}}{2ma_{B}^{2}}\right) \sim \frac{(\hbar\omega_{c})^{2}}{E_{H}} \simeq 10^{-5} \hbar\omega_{c}$$
 @ $B_{z} = 1 \text{ T}$

Van Vleck-Paramagnetismus und Larmor-Diamagnetismus nur dann beobachtbar, wenn Langevin-Paramagnetimus verschwindet

12.3.2 Statistische Betrachtung

- Statistische Physik: Mit welcher Wahrscheinlichkeit werden Niveaus *E_n* besetzt?
 - Wahrscheinlichkeit p_n , mit der Zustand E_n besetzt ist

$$p_n = \frac{\exp\left(-\frac{E_n}{k_{\rm B}T}\right)}{\sum_n \exp\left(-\frac{E_n}{k_{\rm B}T}\right)} = \frac{\exp\left(-\frac{E_n}{k_{\rm B}T}\right)}{Z}$$

Z =Zustandssumme

- mittlere Energie $\langle E_n \rangle$ und freie Energie ${\mathcal F}$

$$\langle E_n \rangle = \frac{\sum_n E_n \exp\left(-\frac{E_n}{k_{\rm B}T}\right)}{\sum_n \exp\left(-\frac{E_n}{k_{\rm B}T}\right)} = \frac{\partial Z/\partial\beta}{Z}$$

 $\mathcal{F} = U - TS = N \langle E_n \rangle - N T \tilde{S} = -N k_{\rm B} T \ln Z$

 $\beta = 1/k_{\rm B}T$

 $ilde{S} = -k_{
m B}\,\sum_n p_n \ln p_n =$ mittlere Entropie pro Teilchen

– Magnetisierung und magnetische Suszeptibilität

$$M_{i} = -\frac{1}{V} \left(\frac{\partial \mathcal{F}}{\partial B_{\text{ext},i}} \right)_{V,T} \qquad \qquad \chi_{ij} = \mu_{0} \left(\frac{\partial M_{i}}{\partial B_{\text{ext},j}} \right)_{V,T} = -\frac{\mu_{0}}{V} \left(\frac{\partial^{2} \mathcal{F}}{\partial B_{\text{ext},i} \partial B_{\text{ext},j}} \right)_{V,T}$$

12.3.2 Faraday-Waage

- Welche Kraft wirkt auf einen magnetischen Festkörper in einem Feldgradient?
 - Kraft pro Volumen ist proportional zu Gradient der freien Energiedichte:

$$\mathbf{f} = \frac{\mathbf{F}}{V} = -\frac{1}{V} \, \boldsymbol{\nabla} \, \mathcal{F}$$

- Annahme: Feldgradient in *x*-Richtung:

$$d\mathcal{F} = \mathcal{F}[B(x+dx)] - \mathcal{F}[B(x)] = \frac{\partial \mathcal{F}}{\partial B} \frac{\partial B}{\partial x} dx = -VM \frac{\partial B}{\partial x} dx \qquad \text{da } M = -\frac{1}{V} \left(\frac{\partial \mathcal{F}}{\partial B}\right)_{V,T}$$

$$f = -\frac{1}{V}\frac{\partial \mathcal{F}}{\partial x} = M\frac{\partial B}{\partial x}$$

Messung der Kraft auf Probe in bekanntem Feldgradienten ergibt M

→ Faraday-Waage

Vorzeichen der Kraft entgegengesetzt für dia- und paramagnetische Stoffe

12.3.2 Faraday-Waage

 $B_{\text{innen}} = \mu_0 (H_{\text{ext}} + M) = (1 + \chi) \mu_0 H_{\text{ext}}$

(χ = magnetische Suszeptibilität)

Stoff wird leichter

Faraday-Waage

Stoff wird schwerer

12.3.2 Magnetische Levitation diamagnetischer Stoffe

Auftriebskraft = Schwerkraft

$$B \cdot \nabla_r B \left[\frac{\mathrm{T}^2}{\mathrm{m}} \right] \simeq 0.02 \cdot \frac{\rho \,[\mathrm{g/cm}^3]}{\chi}$$

organische Materialien:

 $ho \approx$ 1 g /cm³, $\chi \approx$ - 0,000 01

 $B \cdot \nabla_r B \approx 1\ 000\ [\mathrm{T}^2/\mathrm{m}]$

mit starken Magneten erreichbar: $B = 20 \text{ T}, \nabla_r B = 100 \text{ T/m}$

12.3.2 Magnetische Levitation diamagnetischer Stoffe

12.3.2 Atome in homogenem Magnetfeld

• organische Materialien: $\rho \approx 1 \, g/cm^3$, $\chi \approx -0,000 \, 01$

 $\blacksquare B \cdot \nabla_r B \approx 1\ 000\ [T^2/m]$

• Supraleiter:

$$ho pprox$$
 einige g /cm³, $~~\chi~pprox~-1$

$$\implies B \cdot \nabla_r B \approx 0.01 \, [\mathrm{T}^2/\mathrm{m}]$$

Permanentmagnet

Supraleiter: ideale Materialien für die magnetische Levitation

12.3.3 Larmor-Diamagnetismus

- Diamagnetismus von Atomen und Ionen mit ganz gefüllten Schalen
- $\Delta E_n = \frac{\mu_{\rm B} B_z}{\hbar} \langle n | L_z + g_s S_z | n \rangle$ Langevin-Paramagnetismus $+\frac{\mu_{\rm B}^2 B_z^2}{\hbar^2} \sum_{n \neq n'} \frac{|\langle n|L_z + g_s S_z |n'\rangle|^2}{E_n - E_{n'}}$ Van Vleck-Paramagnetismus $+\frac{e^2 B_z^2}{8m} \langle n | \sum_i (x_i^2 + y_i^2) | n \rangle$ Larmor-Diamagnetismus Larmor-Diamagnetismus um mehr als 4 Größenordnungen schwächer als Langevin-Paramagnetismus nur beobachtbar, wenn Langevin-Paramagnetismus verschwindet: $\langle n|L_z + g_s S_z|n \rangle = 0$ Momenten → vollkommen gefüllte Schalen (Edelgaskonfiguration)

12.3.3 Larmor-Diamagnetismus

• Diamagnetismus von Atomen und Ionen mit gefüllten Schalen: L = S = J = 0

$$\Delta E_n = \frac{e^2 B_z^2}{8m} \langle n | \sum_i (x_i^2 + y_i^2) | n \rangle$$

- > gefüllte Schalen sind kugelsymmetrisch: $\langle 0 | x_i^2 | 0 \rangle = \langle 0 | y_i^2 | 0 \rangle = \frac{1}{3} \langle 0 | r_i^2 | 0 \rangle$
- Suszeptibilität:

$$\chi_{\rm dia} = -\frac{\mu_0}{V} \left(\frac{\partial^2 \mathcal{F}}{\partial B_z^2} \right)_{V,T} \qquad \Longrightarrow \qquad \chi_{\rm dia} = -\mu_0 \frac{e^2}{6m} \frac{N}{V} \langle 0 | \sum_i r_i^2 | 0 \rangle$$

– Beitrag der äußersten Schale dominiert wegen größtem *r*:

$$\langle 0 | \sum_i r_i^2 | 0 \rangle \simeq Z_a r_a^2$$
 $Z_a = Zahl der Elektronen in äußerster Schale mit Radius $r_A$$

$$\Rightarrow \chi_{\rm dia} \simeq -\mu_0 \frac{e^2}{6m} \frac{N}{V} Z_a r_a^2$$

Größenordnung: $\chi_{
m dia}\simeq -(10^{-4}-10^{-6})$

molare Suszeptibilität und Massensuszeptibilität

$$\chi_{\rm dia}^{\rm mol} = \frac{M_{\rm mol}}{\rho} \chi_{\rm dia} \simeq -\mu_0 \frac{N_A e^2}{6m} Z_a r_a^2 \left[\frac{{\rm m}^3}{{\rm mol}}\right]$$

$$\chi_{\rm dia}^{\rm mass} = \frac{\chi_{\rm dia}}{\rho} \simeq -\mu_0 \frac{e^2}{6m} \frac{1}{M_A} Z_a r_a^2 \left[\frac{{\rm m}^3}{{\rm kg}}\right]$$

12.3.3 Larmor-Diamagnetismus

Molare magnetische Suszeptibilität von einigen Atomen und Ionen mit Edelgaskonfiguration

12.3.4 Magnetisch Momente

- Wie groß sind die magnetischen Momente von Atomen mit nicht ganz vollen Schalen?
 - Zahl der Zustände pro Schale: $2(2\ell + 1)$, $\ell = 0, 1, 2, 3, ...$ (*s*, *p*, *d*, *f*, ... Schale)
 - Russel-Saunders-Kopplung:

$$\mathbf{L} = \sum_{i} \ell_{i}, \quad \mathbf{S} = \sum_{i} \mathbf{s}_{i}, \quad \mathbf{J} = \mathbf{L} + \mathbf{S}$$

Hundsche Regeln

magnetisches Moment:

$$\begin{split} \mathbf{\mu}_{J} &= -g_{J}\mu_{B}\frac{J}{\hbar}, \qquad \mathbf{J}^{2} = J(J+1)\hbar^{2} \\ \mu_{J} &= -g_{J}\mu_{B}\sqrt{J(J+1)} \\ \mu_{z} &= -g_{J}\mu_{B}m_{J}, \qquad -J \leq m_{J} \leq +J \\ g_{J} &= 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \qquad \text{(Landéscher g-Faktor)} \end{split}$$

 $p = g_{\rm I} \sqrt{J(J+1)} \quad \Rightarrow \quad \mu_I = p \, \mu_{\rm B}$

– effektive Magnetonenzahl:

• Wie koppeln Bahndrehimpulse und Spins der einzelnen Elektronen zu Gesamtbahndrehimpuls, Gesamtspin und Gesamtdrehimpuls eines Atoms ?

I. Maximierung von S:

Minimierung der Coulomb-Abstoßung: folgt aus Pauli-Prinzip, Elektronen mit gleichem Spin können nicht an gleichem Ort sein

II. Maximierung von L

Reduktion der Coulomb-Energie durch gleichmäßige Verteilung der Elektronen, bei halber Füllung liegt L = 0 vor (wegen I.)

III. Kopplung von L und S zu J:

Minimierung der Spin-Bahn-WW:

$$J = \begin{cases} |L-S| & f \ddot{u}r & n < (2\ell+1), & \lambda > 0\\ L+S & f \ddot{u}r & n > (2\ell+1), & \lambda < 0 \end{cases}$$

spektroskopische Notation:

 $^{2S+1}L_J$

 $L = S, P, D, F, \dots$

Carl Friedrich von Weizsäcker und Friedrich Hund

Friedrich Hund

geboren am 4. Februar 1896 in Karlsruhe, gestorben am 31. März 1997 in Göttingen

• Seltene Erden: [Xe]-Grundkonfiguration und teilweise gefüllte 4*f*-Schale

lon	Konfiguration	Schema m _e = +3, +2, +1, 0, -1, -2, -3	S	$L = \Sigma m_{\ell} $	J	Term	p (berechnet)	p (Experiment)
La ³⁺	[Xe]4f ⁰		0	0	0	¹ S ₀	0	0
Ce ³⁺	[Xe]4f ¹	1	1/2	3	5/2	² F _{5/2}	2.54	2.4
Pr ³⁺	[Xe]4f ²	↑ ↑	1	5	4	³ H ₄	3.58	3.5
Nd ³⁺	[Xe]4f ²	↑ ↑ ↑	3/2	6	9/2	4I _{9/2}	3.62	3.5
Pm ³⁺	[Xe]4f ⁴	$\uparrow \uparrow \uparrow \uparrow$	2	6	4	⁵ I ₄	2.68	
Sm ³⁺	[Xe]4f ⁵	$\uparrow \uparrow \uparrow \uparrow \uparrow$	5/2	5	5/2	⁶ H _{5/2}	0.84	1.5
Eu ³⁺	[Xe]4f ⁶	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	3	3	0	⁷ F ₀	0	3.4
Gd ³⁺	[Xe]4f ⁷	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	7/2	0	7/2	⁸ S _{7/2}	7.94	8.0
Tb ³⁺	[Xe]4f ⁸	$\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	3	3	6	⁷ F ₆	9.72	9.5
Dy ³⁺	[Xe]4f ⁹	$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	5/2	5	15/2	⁶ H _{15/2}	10.63	10.6
Ho ³⁺	[Xe]4f ¹⁰	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	2	6	8	⁵ ₈	10.60	10.4
Er ³⁺	[Xe]4f ¹¹	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow$	3/2	6	15/2	⁴ I _{15/2}	9.59	9.5
Tm ³⁺	[Xe]4f ¹²	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow$	1	5	6	³ H ₆	7.57	7.3
Yb ³⁺	[Xe]4f ¹³	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow$	1/2	3	7/2	² F _{7/2}	4.54	4.5
Lu ³⁺	[Xe]4f ¹⁴	$\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$	0	0	0	¹ S ₀	0	0

gemessenes magnetisches Moment stimmt sehr gut mit dem nach den Hundschen Regeln berechneten Moment überein

• 3*d*-Übergangsmetalle: teilweise gefüllte 3*d*-Schale

lon	Konfiguration	Schema m _e = +2, +1, 0, -1, -2,	S	$L = \Sigma m_{\ell} $	J	Term	p = g ₁ [J(J+1)] ^{1/2}	p = g _s [S(S+1)] ^{1/2}	p (Exp.)
Ti ³⁺ V ⁴⁺	[Ar]3d ¹	1	1/2	2	3/2	² D _{3/2}	1.55	1.73	1.8
V ³⁺	[Ar]3d ²	↑ ↑	1	3	2	³ F ₂	1.63	2.83	2.8
Cr ³⁺ V ²⁺ Mn ⁴⁺	[Ar]3d³	↑ ↑ ↑	3/2	3	3/2	⁴ F _{3/2}	0.77	3.87	3.8
Mn ³⁺ Cr ²⁺	[Ar]3d⁴	1 1 1 1	2	2	0	⁵ D ₀	0	4.90	4.9
Fe ³⁺ Mn ²⁺	[Ar]3d⁵	1 1 1 1 1 1	5/2	0	5/2	⁶ S _{5/2}	5.92	5.92	5.9
Fe ²⁺	[Ar]3d ⁶	↑↓↑ ↑ ↑ ↑	2	2	4	⁵ D ₄	6.70	4.90	5.4
Co ²⁺	[Ar]3d ⁷	↑↓↑↓↑ ↑ ↑	3/2	3	9/2	⁴ F _{9/2}	6.63	3.87	4.8
Ni ²⁺	[Ar]3d ⁸	↑↓↑↓↑↓↑ ↑	1	3	4	${}^{3}F_{4}$	5.59	2.83	3.2
Cu ²⁺	[Ar]3d ⁹	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	1/2	2	5/2	² D _{5/2}	3.55	1.73	1.9
Zn ²⁺	[Ar]3d ¹⁰	↑↓ ↑↓ ↑↓ ↑↓	0	0	0	¹ S ₀	0	0	0

magnetische Moment folgt <u>nicht</u> aus Hundschen Regeln

- starke elektrische Felder der Nachbaratome sind wirksam (im Gegensatz zu 4f-Elektronen)
 - → Kristallfeldaufspaltung ≫ Spin-Bahn-Kopplung
- Entkopplung von L und S,
 J verliert Bedeutung, z-Komponente keine Konstante der Bewegung, Mittelwert verschwindet
 Quenchen des Bahndrehimpulses
 magnetische Moment durch S bestimmt

12.3.5 Langevin-Paramagnetismus

• Paramagnetismus in Isolatoren mit Atomen und Ionen mit nicht ganz gefüllten Schalen

Langevin-Paramagnetismus

Van Vleck-Paramagnetismus

Langevin-Paramagnetismus dominiert

um typischerweise mehr als 4 Größenordnungen stärker als Van Vleck Paramagnetismus und Larmor-Diamagnetismus

12.3.5 Langevin-Paramagnetismus

- Wie groß ist mittlere Ausrichtung von vorhandenen magnetischen Dipolen durch B_{ext}? (Diskussion vollkommen analog zu Diskussion von Orientierungspolarisation in Abschnitt 11.5)
 - Relevante Energien:

> potentielle Energie von magnetischem Dipol in $\mathbf{B}_{ext} = \mu_0 \mathbf{H}_{ext}$: $E_{pot} = -\mathbf{\mu}_J \cdot \mathbf{B}_{ext} = -\mu_J B_{ext} \cos \theta$

- thermische Energie:
- I. Klassische Behandlung
 - Annahmen:
 - $\succ \mu_J B_{\text{ext}} \ll k_B T$
 - klassische Behandlung

→ geringe Ausrichtung von Dipolen → $H_{lok} \simeq H_{ext}$, $\mathbf{H}_{ext} || \hat{\mathbf{z}}$ → $J \rightarrow \infty$, → klassische Dipole, können jede beliebige Orientierung einnehmen

 $E_{\rm th} = k_{\rm B}T$

- Ergebnis aus Abschnitt 11.5:

Langevin-Funktion

$$\frac{\langle \mu_{J,z} \rangle}{\mu_J} = \coth y - \frac{1}{y} = \mathcal{L}(y) = \coth \left(\frac{\mu_J B_{\text{ext}}}{k_B T}\right) - \frac{k_B T}{\mu_J B_{\text{ext}}} \qquad y = \mu_J B_{\text{ext}} / k_B T$$

▶ Näherung für
$$\mu_J B_{\text{ext}} \ll k_B T$$
: coth $y \simeq \frac{1}{y} + \frac{y}{3}$:

$$\frac{\langle \mu_{J,z} \rangle}{\mu_J} \simeq \frac{y}{3} = \frac{\mu_J B_{\text{ext}}}{3k_{\text{B}}T}$$

12.3.5 Langevin-Paramagnetismus

– Magnetisierung:

$$M = rac{N}{V} \langle \mu_{J,z}
angle = n_V \langle \mu_{J,z}
angle$$

Sättigungsmagnetisierung: $M_s = \frac{N}{V} \mu_J = n_V \mu_J$

$$\frac{\left< \mu_{J,z} \right>}{\mu_J} \simeq \frac{y}{3} = \frac{\mu_J B_{\rm ext}}{3k_{\rm B}T}$$

$$\implies \frac{M}{M_s} \simeq \frac{y}{3} = \frac{\mu_J B_{\text{ext}}}{3k_{\text{B}}T} \quad \text{bzw.} \quad I$$

$$M \simeq \frac{n_V \mu_J^2 B_{\text{ext}}}{3k_{\text{B}}T}$$

– Suszeptibilität:

$$\chi = \mu_0 \left(\frac{\partial M}{\partial B_{\text{ext}}}\right)_{V,T} = \frac{n_V \mu_0 \mu_J^2}{3k_{\text{B}}T} = \frac{C}{T}$$

 $C = \frac{n_V \mu_0 \mu_J^2}{3k_B} \quad Curie-Konstante$

zum Vergleich: Orientierungspolarisation

$$\chi_{\rm dip} = \frac{C}{T}$$
 $C = \frac{n_V p_{\rm dip}^2}{3\epsilon_0 k_{\rm B}}$

Zusammenfassung: Teil 16a, 04.05.2021/2

• Atome im homogenen Magnetfeld:

$$\Delta \mathcal{H} = \Delta \mathcal{H}_{\ell} + \Delta \mathcal{H}_{s} = \frac{\mu_{B}}{\hbar} (L_{z} + g_{s} S_{z}) B_{z} + \frac{e^{2} B_{z}^{2}}{8m} \sum_{i} (x_{i}^{2} + y_{i}^{2})$$

Energieänderung im Magnetfeld

 $\Delta E_n = \langle n | \Delta \mathcal{H} | n \rangle + \sum_{n'} \frac{|\langle n | \Delta \mathcal{H} | n' \rangle|^2}{E_n - E_{n'}}$

Berechnung der Änderung der Gesamtenergie in Magnetfeld in Störungstheorie 2. Ordnung

• atomarer Dia- und Paramagnetismus: Atome im homogenen Magnetfeld

 $\Delta E_n = \frac{\mu_{\rm B} B_z}{\hbar} \langle n | L_z + g_s S_z | n \rangle$ Langevin-Paramagnetismus $+\frac{\mu_{\rm B}^2 B_z^2}{\hbar^2} \sum_{l} \frac{|\langle n|L_z + g_s S_z |n'\rangle|^2}{E_n - E_{n'}} \quad Van \ Vleck-Paramagnetismus$ + $\frac{e^2 B_z^2}{g_m} \langle n | \sum_i (x_i^2 + y_i^2) | n \rangle$ Larmor-Diamagnetismus (i) $\Delta E_n \simeq \hbar \omega_c \sim 10^{-4} \text{eV} \otimes 1 \text{ T}$

Änderung der Energieniveaus durch WW mit externem Magnetfeld

Größenordnung:

(ii) $\Delta E_n \simeq \hbar \omega_c \cdot \frac{\hbar \omega_c}{E_n - E_{n'}} \ll \hbar \omega_c$, da $E_n - E_{n'} \simeq \text{einige 1 eV}$ (iii) $\Delta E_n \simeq \hbar \omega_c \cdot \frac{\hbar \omega_c}{E_H} \ll \hbar \omega_c$, da $E_H = 13,6 \text{ eV}$

→ Langevin-Paramagnetismus dominiert, Van Vleck-Paramagnetismus oder Larmor-Diamagnetismus nur beobachtbar, wenn Langevin-Paramagnetismus verschwindet (L = S = I = 0: Edelgaskonfiguration)

Zusammenfassung: Teil 16b, 04.05.2021/2

• Statistische Physik: Besetzungswahrscheinlichkeit der Niveaus

mittlere Energie: $\langle E_n \rangle = \frac{\partial Z/\partial \beta}{Z}$ mittlere Entropie: $\tilde{S} = -k_B \sum_n p_n \ln p_n$ $\beta = 1/k_B T$

freie Energie: $\mathcal{F} = U - TS = N \langle E_n \rangle - N T \tilde{S} = -N k_{\rm B} T \ln Z$

$$M_{i} = -\frac{1}{V} \left(\frac{\partial \mathcal{F}}{\partial B_{\text{ext},i}} \right)_{V,T} \qquad \chi_{ij} = \mu_{0} \left(\frac{\partial M_{i}}{\partial B_{\text{ext},j}} \right)_{V,T} = -\frac{\mu_{0}}{V} \left(\frac{\partial^{2} \mathcal{F}}{\partial B_{\text{ext},i} \partial B_{\text{ext},j}} \right)_{V,T}$$

• Kraft auf magnetisierte Probe in Feldgradient

$$d\mathcal{F} = \mathcal{F}[B(x + dx)] - \mathcal{F}[B(x)] = \frac{\partial \mathcal{F}}{\partial B} \frac{\partial B}{\partial x} dx = -VM \frac{\partial B}{\partial x} dx \Rightarrow \quad f = -\frac{1}{V} \frac{\partial \mathcal{F}}{\partial x} = M \frac{\partial B}{\partial x}$$

→ Messung der Kraft auf Probe in bekanntem Feldgradienten ergibt *M* → *Faraday-Waage*

2I(I+1)

- Larmor-Diamagnetismus (J = 0)
- Atome mit gefüllten Schalen, kugelsymmetrisch: L=S=0- Größenordnung: $\chi_{
 m dia}\simeq 10^{-4}-10^{-6}$
- Atomare magnetische Momente ($J \neq 0$)
 - Russel-Saunders-Kopplung:

 $\mathbf{L} = \sum_i \ell_i$, $\mathbf{S} = \sum_i \mathbf{s}_i$, $\mathbf{J} = \mathbf{L} + \mathbf{S}$

Hundsche Regeln

$$\mu_{J} = -g_{J}\mu_{B}\sqrt{J(J+1)}$$

$$\mu_{J} = -g_{J}\mu_{B}\sqrt{J(J+1)} = \mu_{B} p \qquad \mu_{z} = -g_{J}\mu_{B}m_{J}, -J \le m_{J} \le +$$
effektive Magnetonenzahl
$$Landéscher g-Faktor \qquad p = g_{J}\sqrt{J(J+1)}$$

 $\chi_{\rm dia} = -\mu_0 \frac{e^2}{6m} \frac{N}{V} \langle 0 | \sum_i r_i^2 | 0 \rangle$

Zusammenfassung: Teil 16c, 04.05.2021/2

• Langevin-Paramagnetismus in Isolatoren

(i) *klassische Betrachtung* \rightarrow magnetisches Moment μ_J in äußerem Feld: $E = -\mu_J \cdot B_{ext} = -\mu_J B_{ext} \cos \theta$ \rightarrow beliebige Winkel θ sind möglich

- Statistik: mittleres magnetisches Moment in z-Richtung

$$\frac{\langle \mu_{J,z} \rangle}{\mu_J} = \mathcal{L}(y) = \operatorname{coth}\left(\frac{\mu_J B_{\text{ext}}}{k_B T}\right) - \frac{k_B T}{\mu_J B_{\text{ext}}}$$

$$y \ll 1$$

 $n_V \mu_J^2 B_{\text{ext}}$