Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 17 Vorlesungsstunde: 11.05.2021-1

Zusammenfassung: Teil 16a, 04.05.2021/2

• Atome im homogenen Magnetfeld:

$$\Delta \mathcal{H} = \Delta \mathcal{H}_{\ell} + \Delta \mathcal{H}_{s} = \frac{\mu_{B}}{\hbar} (L_{z} + g_{s} S_{z}) B_{z} + \frac{e^{2} B_{z}^{2}}{8m} \sum_{i} (x_{i}^{2} + y_{i}^{2})$$

Energieänderung im Magnetfeld

 $\Delta E_n = \langle n | \Delta \mathcal{H} | n \rangle + \sum_{n'} \frac{|\langle n | \Delta \mathcal{H} | n' \rangle|^2}{E_n - E_{n'}}$

Berechnung der Änderung der Gesamtenergie in Magnetfeld in Störungstheorie 2. Ordnung

• atomarer Dia- und Paramagnetismus: Atome im homogenen Magnetfeld

 $\Delta E_n = \frac{\mu_{\rm B} B_z}{\hbar} \langle n | L_z + g_s S_z | n \rangle$ Langevin-Paramagnetismus $+\frac{\mu_{\rm B}^2 B_z^2}{\hbar^2} \sum_{l} \frac{|\langle n|L_z + g_s S_z |n'\rangle|^2}{E_n - E_{n'}} \quad Van \ Vleck-Paramagnetismus$ + $\frac{e^2 B_z^2}{g_m} \langle n | \sum_i (x_i^2 + y_i^2) | n \rangle$ Larmor-Diamagnetismus (i) $\Delta E_n \simeq \hbar \omega_c \sim 10^{-4} \text{eV} \otimes 1 \text{ T}$

Änderung der Energieniveaus durch WW mit externem Magnetfeld

Größenordnung:

(ii) $\Delta E_n \simeq \hbar \omega_c \cdot \frac{\hbar \omega_c}{E_n - E_{n'}} \ll \hbar \omega_c$, da $E_n - E_{n'} \simeq \text{einige 1 eV}$ (iii) $\Delta E_n \simeq \hbar \omega_c \cdot \frac{\hbar \omega_c}{E_H} \ll \hbar \omega_c$, da $E_H = 13,6 \text{ eV}$

→ Langevin-Paramagnetismus dominiert, Van Vleck-Paramagnetismus oder Larmor-Diamagnetismus nur beobachtbar, wenn Langevin-Paramagnetismus verschwindet (L = S = I = 0: Edelgaskonfiguration)

Zusammenfassung: Teil 16b, 04.05.2021/2

• Statistische Physik: Besetzungswahrscheinlichkeit der Niveaus

mittlere Energie: $\langle E_n \rangle = \frac{\partial Z/\partial \beta}{Z}$ mittlere Entropie: $\tilde{S} = -k_B \sum_n p_n \ln p_n$ $\beta = 1/k_B T$

freie Energie: $\mathcal{F} = U - TS = N \langle E_n \rangle - N T \tilde{S} = -N k_{\rm B} T \ln Z$

$$M_{i} = -\frac{1}{V} \left(\frac{\partial \mathcal{F}}{\partial B_{\text{ext},i}} \right)_{V,T} \qquad \chi_{ij} = \mu_{0} \left(\frac{\partial M_{i}}{\partial B_{\text{ext},j}} \right)_{V,T} = -\frac{\mu_{0}}{V} \left(\frac{\partial^{2} \mathcal{F}}{\partial B_{\text{ext},i} \partial B_{\text{ext},j}} \right)_{V,T}$$

• Kraft auf magnetisierte Probe in Feldgradient

$$d\mathcal{F} = \mathcal{F}[B(x + dx)] - \mathcal{F}[B(x)] = \frac{\partial \mathcal{F}}{\partial B} \frac{\partial B}{\partial x} dx = -VM \frac{\partial B}{\partial x} dx \Rightarrow \quad f = -\frac{1}{V} \frac{\partial \mathcal{F}}{\partial x} = M \frac{\partial B}{\partial x}$$

→ Messung der Kraft auf Probe in bekanntem Feldgradienten ergibt *M* → *Faraday-Waage*

- Larmor-Diamagnetismus (J = 0)
- Atome mit gefüllten Schalen, kugelsymmetrisch: L=S=0- Größenordnung: $\chi_{
 m dia}\simeq 10^{-4}-10^{-6}$
- Atomare magnetische Momente ($J \neq 0$)
 - Russel-Saunders-Kopplung:

 $\mathbf{L} = \sum_i \ell_i$, $\mathbf{S} = \sum_i \mathbf{s}_i$, $\mathbf{J} = \mathbf{L} + \mathbf{S}$

Hundsche Regeln

0)

$$\mu_{J} = -g_{J}\mu_{B}\sqrt{J(J+1)}$$

$$\mu_{J} = -g_{J}\mu_{B}\sqrt{J(J+1)} = \mu_{B} p \qquad \mu_{z} = -g_{J}\mu_{B}m_{J}, -J \le m_{J} \le +$$
effektive Magnetonenzahl

$$g_{J} = 1 + \frac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)} \qquad p = g_{J}\sqrt{J(J+1)}$$

 $\chi_{\rm dia} = -\mu_0 \frac{e^2}{6m} \frac{N}{V} \langle 0 | \sum_i r_i^2 | 0 \rangle$

Zusammenfassung: Teil 16c, 04.05.2021/2

• Langevin-Paramagnetismus in Isolatoren

(i) *klassische Betrachtung* \rightarrow magnetisches Moment μ_J in äußerem Feld: $E = -\mu_J \cdot B_{ext} = -\mu_J B_{ext} \cos \theta$ \rightarrow beliebige Winkel θ sind möglich

- Statistik: mittleres magnetisches Moment in z-Richtung

$$\frac{\langle \mu_{J,z} \rangle}{\mu_J} = \mathcal{L}(y) = \operatorname{coth}\left(\frac{\mu_J B_{\text{ext}}}{k_B T}\right) - \frac{k_B T}{\mu_J B_{\text{ext}}}$$

$$y \ll 1$$

 $n_V \mu_J^2 B_{\text{ext}}$

Kapitel 12

Magnetismus

12.3 Atomarer Dia- und Paramagnetismus

• Diskussion des Magnetismus von gebundenen Elektronen

II. Quantenmechanische Behandlung

- Annahmen:
 - > Quantenmechanisches (2J + 1)-Niveausystem:
 - → (2J + 1) Einstellmöglichkeiten des magn. Moments bez. Quantisierungsachse: $-J \le m_J \le +J$

$$\succ E = -\mathbf{\mu}_J \cdot \mathbf{B}_{\text{ext}} = +g_J \mu_{\text{B}} \frac{\mathbf{J}}{\hbar} \cdot \mathbf{B}_{\text{ext}} = +g_J \mu_{\text{B}} B_{\text{ext}} m_J = \pm \frac{1}{2} g_J \mu_{\text{B}} B_{\text{ext}} = \pm \mu_{\text{eff}} m_J$$
Vorzeichen wechselt, da **J** antiparallel zu $\mathbf{\mu}_J$

- *a.* Quantenmechanisches Zweiniveausystem: zuerst Diskussion für J = 1/2
 - mittlerer Wert für die *magnetische Quantenzahl*:

$$\langle m_{J} \rangle = \frac{\sum_{m_{J}=-\frac{1}{2}}^{m_{J}=+\frac{1}{2}} m_{J} \exp(-m_{J}g_{J}\mu_{B}B_{\text{ext}}/k_{B}T)}{\sum_{m_{J}=-\frac{1}{2}}^{m_{J}=+\frac{1}{2}} \exp(-m_{J}g_{J}\mu_{B}B_{\text{ext}}/k_{B}T)}$$

- **Magnetisierung**:
$$M = \frac{N}{V} \langle \mu_J \rangle = -n_V g_J \mu_B \langle m_J \rangle = n_V \mu_{eff} \frac{\exp\left(+\frac{\mu_{eff}B_{ext}}{k_BT}\right) - \exp\left(-\frac{\mu_{eff}B_{ext}}{k_BT}\right)}{\exp\left(+\frac{\mu_{eff}B_{ext}}{k_BT}\right) + \exp\left(-\frac{\mu_{eff}B_{ext}}{k_BT}\right)} = n_V \mu_{eff} \tanh\left(\frac{\mu_{eff}B_{ext}}{k_BT}\right)$$
$$\tanh x = (e^x - e^{-x}) / (e^x + e^{-x})$$

- Magnetisierung und Suszeptibilität:

$$M = M_s \tanh\left(\frac{\mu_{\rm eff}B_{\rm ext}}{k_{\rm B}T}\right) \qquad \qquad \chi = \mu_0 \left(\frac{\partial M}{\partial B_{\rm ext}}\right)_{V,T}$$

mit Sättigungsmagnetisierung $M_s = n_V \mu_{eff}$

Naherung für
$$x = \mu_{eff}B_{ext}/k_BT \ll 1$$
: $\tanh x \simeq x$ Wichtig: $x \simeq 0,002$ @ $B_{ext} = 1$ T, $T = 300$ K, $\mu_{eff} = \mu_B$

$$M = M_s \frac{\mu_{eff}B_{ext}}{k_BT} = \frac{n_V \mu_{eff}^2 B_{ext}}{k_BT} \qquad \chi = \mu_0 \left(\frac{\partial M}{\partial B_{ext}}\right)_{V,T} = \frac{n_V \mu_0 \mu_{eff}^2}{k_BT} = \frac{C}{T} \qquad C = \frac{n_V \mu_0 \mu_{eff}^2}{k_B} \qquad Curie-Konstante$$

Faktor 1/3 Unterschied zu klassischem Ergebnis

b. Quantenmechanisches (2J + 1)-Niveausystem: Brillouin-Funktionen $B_I(y)$

$$\frac{M}{M_s} = B_J(y) = \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}y\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{1}{2J}y\right) \qquad \text{mit } y = x \cdot J = \frac{\mu_{\text{eff}}B_{\text{ext}}}{k_{\text{B}}T} J = \frac{g_J \mu_{\text{B}}B_{\text{ext}}}{k_{\text{B}}T} J$$

> Näherung für $y = g_J \mu_B B_{\text{ext}} J / k_B T \ll 1$: $\operatorname{coth} y \simeq \frac{1}{y} + \frac{y}{3} - \cdots \Rightarrow B_J(y) \simeq \frac{J+1}{3J} y = \frac{J+1}{3} x$

$$M = \frac{n_V J (J+1) g_J^2 \mu_B^2 B_{\text{ext}}}{3k_B T} = \chi = \frac{n_V \mu_0 J (J+1) g_J^2 \mu_B^2}{3k_B T} = \frac{C}{T} \qquad C = \frac{n_V \mu_0 J (J+1) g_J^2 \mu_B^2}{3k_B} = \frac{n_V \mu_0 p^2 \mu_B^2}{3k_B}$$

effektive Magnetonenzahl: $p = g_J \sqrt{J(J+1)}$

• Langevin-Funktion $\mathcal{L}(y)$ und Brillouin-Funktionen $B_I(y)$

Wichtig:

 $x \simeq 0,002 @ J = \frac{1}{2}, B_{\text{ext}} = 1 \text{ T}, T = 300 \text{ K}$

- ➔ bei RT befindet man sich immer im linearen Bereich der Brillouin-Funktionen
- volle Aufnahme der Brillouin-Funktionen erfordert hohe Magnetfelder und niedrige Temperaturen
- → Curie-Gesetz gilt nur im linearen Bereich

• Brillouin-Funktionen

Bestimmung von J bzw. S durch Messung der Brillouin-Funktion

$$\boldsymbol{B}_{J}(\boldsymbol{y}) = \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}\boldsymbol{y}\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{1}{2J}\boldsymbol{y}\right)$$
$$\boldsymbol{y} = \frac{g_{J}\mu_{\mathrm{B}}B_{\mathrm{ext}}}{k_{\mathrm{B}}T}\boldsymbol{J}$$

Sättigungsmagnetisierung: $M_s = n g_I \mu_B J$

12.3.7 Adiabatische Entmagnetisierung

- Anwendung von paramagnetischen Materialien für Kühlverfahren
 - vorgeschlagen von Peter Debye und William Giauque (1926/27)
 - Prinzip: Ausnutzen der Entropieänderung eines paramagnetischen Stoffes als Funktion von $B_{\rm ext}$
 - erreichbare Endtemperatur
 - mit Entmagnetisierung paramagnetischer Stoffe: etwa 1 mK
 - mit Kernentmagnetisierung:

Peter Debye 24.03.1884 – 02.11.1966

William Francis Giauque 12.05.1895 – 28.03.1982

etwa 1 $\mu{\rm K}$

12.3.7 Adiabatische Entmagnetisierung

- Physikalische Grundlagen: wir betrachten System aus *N* Spins mit jeweils 2*J* + 1 Einstellmöglichkeiten
 - i. Schritt 1: Anschalten von B_{ext} bei T = const. (isotherme Magnetisierung, Ankopplung an Wärmesenke)

ii. Schritt 2: Abschalten von B_{ext} bei S = const. (adiabatische Entmagnetisierung, Abkoppeln von Wärmesenke)

- > Niveauaufspaltung wird kleiner: da S/Zahl der zugänglichen Zustände gleich bleiben muss, muss T abnehmen
- \Rightarrow da S eine Funktion von $\mu B_{\text{ext}}/k_{\text{B}}T$ ist, muss für S = const. auch B_{ext}/T konstant sein $\Rightarrow \frac{B_{\text{Anfang}}}{T_{\text{H}}} = \frac{B_{\text{Ende}}}{T_{\text{T}}}$

12.3.7 Adiabatische Entmagnetisierung

• Technische Umsetzung: wir betrachten wiederum System aus N Spins mit jeweils 2J + 1 Einstellmöglichkeiten

Entropy GmbH Gmunder Str. 37a D-81379 München

http://www.entropy-cryogenics.com/products/adr/

12.4 Para- und Diamagnetismus von Metallen

• Diskussion des Magnetismus von freien Leitungselektronen

- Welche Beiträge müssen wir in Metallen berücksichtigen?
 - i. Magnetismus der gebundenen Elektronen der Ionenrümpfe
 - Ionenrümpfe haben häufig vollkommen gefüllte Schalen, z.B. Cu 3d¹⁰ 4s¹, Au 4f¹⁴5d¹⁰ 6s¹
 → nur sehr kleiner diamagnetischer Beitrag der gebundenen Elektronen
 - ii. Magnetismus der freien Leitungselektronen
 - Landau-Diamagnetismus: Änderung der Energie durch Umbesetzung der Elektronen auf Landau-Zylinder
 - **Pauli-Paramagnetimus**: Änderung der Energie durch Spin-Aufspaltung in B_{ext}

$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega_c + \frac{\hbar^2}{2m} k_z^2 \pm \mu_B B_{ext}$$

Bahnbewegung Spin
$$\mu_s = -g_s \mu_B m_s \simeq \mp \mu_B$$
mit $g_s \simeq 2, m_s = \pm 1/2$

wir benutzen:

$$\mathcal{F} = U - TS \simeq U$$

$$M = -\frac{1}{V} \left(\frac{\partial \mathcal{F}}{\partial B_{\text{ext}}} \right)_{V,T}$$

$$\chi = \mu_0 \left(\frac{\partial M}{\partial B_{\text{ext}}} \right)_{V,T} = -\frac{\mu_0}{V} \left(\frac{\partial^2 \mathcal{F}}{\partial B_{\text{ext}}^2} \right)_{V,T}$$

Wolfgang Pauli (1900 - 1958)

Nobelpreis für Physik 1945 ``für die Entdeckung des als Pauli-Prinzip bezeichneten Ausschlussprinzips''

- Welche Magnetisierung resultiert aus magnetischen Momenten der freien Leitungselektronen?
 - magnetisches Spin-Moment der Leitungselektronen:
 - resultierende Magnetisierung:
 - naïve Herangehensweise:

 $\mu_s = -g_s \mu_{\rm B} m_s \simeq \mp \mu_{\rm B}$

 $M = (n_+ - n_-) \,\mu_{\rm B}$

M = C/T mit Curie-Konstante von Spin- $\frac{1}{2}$ System

\rightarrow im Experimente wird nicht $M \propto 1/T$ sondern $M \simeq const$. gemessen!

➔ Ursache ist Pauli-Prinzip

- → Spins von Elektronen weit unterhalb von $E_{\rm F}$ können nicht geflippt werden, da keine freien Zustände vorhanden sind
- → Spins sind Pauli-geblockt und können nicht zur Magnetisierung beitragen)

- Wie groß ist $n_+ n_-$ und damit *M*?
- a) Getrennte Spin- \uparrow und Spin- \downarrow Systeme: Energieverschiebung um $\pm \mu_B B_{ext}$
- **b)** Spin- \uparrow und Spin- \downarrow System im thermishen Gleichgewicht (bei T = 0):
 - $\mu=E_{\rm F}$ muss für beide Subsysteme gleich sein
 - → Umverlagerung von Spin-↑ in Spin-↓ Zustände

$$n_{+} = \frac{1}{2V} \int_{0}^{\infty} D(E + \mu_{\rm B}B_{\rm ext})f(E) dE$$
$$n_{-} = \frac{1}{2V} \int_{0}^{\infty} D(E - \mu_{\rm B}B_{\rm ext})f(E) dE$$

Faktor $\frac{1}{2}$ berücksichtigt Tatsache, dass wir nur eine Spin-Sorte betrachten

• Berechnung der Magnetisierung M

$$M = (n_{+} - n_{-})\mu_{\rm B} = \mu_{\rm B} \frac{1}{2V} \int_{0}^{\infty} \frac{\partial D}{\partial E} 2\mu_{\rm B} B_{\rm ext} f(E) dE$$

$$M = \frac{\mu_{\rm B}^2 B_{\rm ext}}{V} \int_0^\infty \frac{\partial D}{\partial E} f(E) dE$$

$$M = \frac{\mu_{\rm B}^2 B_{\rm ext}}{V} \left[D(E)f(E) \Big|_0^\infty - \int_0^\infty \frac{\partial D}{\partial E} \frac{\partial f}{\partial E} \, dE \right]$$

$$M = \frac{\mu_{\rm B}^2 B_{\rm ext}}{V} \int_{0}^{\infty} \frac{\partial D}{\partial E} \frac{\partial f}{\partial E} dE$$

 $M = \frac{\mu_{\rm B}^2 B_{\rm ext}}{V} \ D(E_{\rm F})$

$$n_{+} = \frac{1}{2V} \int_{0}^{\infty} D(E + \mu_{\rm B}B_{\rm ext}) f(E) dE$$
$$n_{-} = \frac{1}{2V} \int_{0}^{\infty} D(E - \mu_{\rm B}B_{\rm ext}) f(E) dE$$

$$D(E = 0) = 0, \qquad f(E = \infty) = 0$$

für kleine *T* gilt:
$$\frac{\partial f}{\partial E} \simeq \delta(E - E_F)$$

- Magnetisierung *M* von freiem Elektronengas
 - für freie Elektronen gilt: $D(E_{\rm F}) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E_{\rm F}} = \frac{3}{2} \frac{nV}{k_{\rm B}T_{\rm F}}$

$$\implies M = \frac{\mu_{\rm B}^2 B_{\rm ext}}{V} \ D(E_{\rm F}) = \frac{3n\mu_{\rm B}^2 B_{\rm ext}}{2k_{\rm B}T_{\rm F}}$$

$$\implies \chi_{\rm P} = \mu_0 \left(\frac{\partial M}{\partial B_{\rm ext}}\right)_{V,T} = \frac{3n\mu_0\mu_{\rm B}^2}{2k_{\rm B}T_{\rm F}} = \frac{C}{T} \frac{T}{T_{\rm F}}$$

Paulische Spin-Suszeptibilität

– Interpretation:

- Curie-Konstante ist fast gleich wie diejenige eines Spin- $\frac{1}{2}$ Systems gebundener Elektronen: $C = \frac{n\mu_0\mu_B^2}{3k_B}$
- Paulische Spin-Suszeptibilität ist um Faktor T/T_F kleiner als diejenige von System gebundener Elektronen
 - \rightarrow nur der kleine Anteil T/T_F aller Elektronen in der Nähe der Fermi-Energie kann Spin-Richtung ändern
 - \rightarrow durch zusätzlichen Faktor T/T_F wird χ_P temperaturunabhängig

12.4.2 Landau-Diamagnetismus

- Welche Magnetisierung resultiert aus der Umbesetzung der Bandelektronen auf Landau-Zylinder?
 - innere Energie $U(B_{ext})$ bereits diskutiert
 - *V*(B_{ext}) ist oszillierende Funktion
 → Quantenoszillationen
 - > Oszillationen sind nur bei tiefen T, hohen B_{ext} und sehr sauberen Proben beobachtbar
 - ➢ Oszillationen meist nicht sichtbar, trotzdem mittlere Zunahme von U(B_{ext}) mit zunehmendem B_{ext} → positive Krümmung der U(B_{ext}) Kurve

 $\chi_{\rm L} = -\frac{\mu_0}{V} \left(\frac{\partial^2 \mathcal{F}}{\partial B_{\rm ext}^2} \right)_{V,T} < 0$

Landau Diamagnetimus

- für freies Elektronengas (ohne Beweis)

$$\chi_{\rm L} = -\frac{1}{3} \chi_{\rm P}, \qquad \chi = \chi_L + \chi_P = \frac{n\mu_0\mu_{\rm B}^2}{k_{\rm B}T_{\rm F}}$$

→ Metalle können sowohl diamagnetisch (z.B. Cu, Ag, Au) als auch paramagnetisch (z.B. Li, Na, K, Rb) sein

12.4.2 Landau-Diamagnetismus

Material	$\chi_{\rm m}$ [cm ³ /g]	χ _v unitless	μ unitless	Type of magnetism
Bi	-1.34×10^{-6}	-13.13×10^{-6}	0.99983	
Be	-1.0×10^{-6}	-1.85×10^{-6}	0.99998	
Ag	-0.192×10^{-6}	-2.016×10^{-6}	0.99997	diamagnetisch
Au	-0.142×10^{-6}	-2.74×10^{-6}	0.99996	-
Ge	-0.106×10^{-6}	-0.564×10^{-6}	0.99999	
Cu	-0.086×10^{-6}	-0.77×10^{-6}	0.99999	
Snβ	$+0.026 \times 10^{-6}$	$+0.19 \times 10^{-6}$	1	
w	$+0.32 \times 10^{-6}$	$+6.18 \times 10^{-6}$	1.00008	
Al	$+0.61 \times 10^{-6}$	$+1.65 \times 10^{-6}$	1.00002	paramagnetisch
Pt	$+0.983 \times 10^{-6}$	$+21.04 \times 10^{-6}$	1.00026	
Mn	$+8.9 \times 10^{-6}$	$+66.13 \times 10^{-6}$	1.00083	

gesamte Suszeptibilität: Beitrag der freien und gebundenen Elektronen

Zusammenfassung: Teil 17a, 10.05.2021/1

• Langevin-Paramagnetismus in Isolatoren

(ii) quantenmechanische Betrachtung, J = 1/2 - System $\rightarrow E = -\mu \cdot \mathbf{B}_{ext} = +g_J \mu_B \frac{J}{\hbar} \cdot \mathbf{B}_{ext} = \pm \frac{1}{2} g_J \mu_B B_{ext}$ $\rightarrow m_J = \pm 1/2$ $\mu_{eff} = \frac{1}{2} g_J \mu_B$

- Statistik: mittleres magnetisches Moment in z-Richtung

(iii) quantenmechanische Betrachtung, J > 1/2 - System $\rightarrow E = -\mu \cdot \mathbf{B}_{ext} = +g_J \mu_B \frac{J}{\hbar} \cdot \mathbf{B}_{ext}$ $\rightarrow m_J = -J, \dots, +J$

- Statistik: mittleres magnetisches Moment in z-Richtung

$$\langle m_J \rangle = \frac{\sum_{m_J=-J}^{m_J=+J} m_J \exp(-m_J g_J \mu_B B_{\text{ext}}/k_B T)}{\sum_{m_J=-J}^{m_J=+J} \exp(-m_J g_J \mu_B B_{\text{ext}}/k_B T)} = -\frac{1}{Z} \frac{\partial Z}{\partial x}$$

mit Zustandssumme $Z = \sum_{m_J} \exp(-m_J x)$, $x = \frac{g_J \mu_B B_{\text{ext}}}{k_B T}$

Prillouin-Funktion $B_I(y)$

$$\frac{M}{M_s} = B_J(y) = \frac{2J+1}{2J} \operatorname{coth}\left(\frac{2J+1}{2J}y\right) - \frac{1}{2J} \operatorname{coth}\left(\frac{1}{2J}y\right) \quad \text{mit } y = xJ = \frac{g_J \mu_B B_{\text{ext}}}{k_B T} J$$

Zusammenfassung: Teil 17b, 10.05.2021/1

• Anwendung von paramagnetischen Salzen: Kühlung durch adiabatische Entmagnetisierung

• Para- und Diamagnetismus in Metallen

- Landau-Diamagnetismus: Änderung der Energie durch Umbesetzung der Elektronen auf Landau-Zylinder
- **Pauli-Paramagnetimus**: Änderung der Energie durch Spin-Aufspaltung in B_{ext}

$$E = \left(n + \frac{1}{2}\right) \hbar \omega_c + \frac{\hbar^2}{2m} k_z^2 \pm \mu_B B_{ext}$$

Bahnbewegung Spin
$$\mu_s = -g_s \mu_B m_s \simeq \mp \mu_B$$
mit $g_s \simeq 2, m_s = \pm 1/2$

aus
$$\mathcal{F} = U - TS \simeq U$$
 folgt:
 $M = -\frac{1}{V} \left(\frac{\partial \mathcal{F}}{\partial B_{\text{ext}}}\right)_{V,T}$
 $\chi = \mu_0 \left(\frac{\partial M_i}{\partial B_{\text{ext}}}\right)_{V,T} = -\frac{\mu_0}{V} \left(\frac{\partial^2 \mathcal{F}}{\partial B_{\text{ext}}^2}\right)_{V,T}$

Zusammenfassung: Teil 17c, 10.05.2021/1

• Pauli-Paramagnetismus in Metallen

$$M = (n_{+} - n_{-})\mu_{\rm B} \implies M = \frac{\mu_{\rm B}^2 B_{\rm ext}}{V} D(E_{\rm F})$$

für freie Elektronen: $D(E_{\rm F}) = \frac{3}{2} \frac{nV}{k_{\rm B}T_{\rm F}}$

$$\chi_{\rm P} = \mu_0 \left(\frac{\partial M}{\partial B_{\rm ext}}\right)_{T,V} = \mu_0 \mu_{\rm B}^2 \frac{D(E_{\rm F})}{V} = n \frac{3\mu_0 \mu_{\rm B}^2}{2k_{\rm B}T_{\rm F}} = \frac{C}{T} \cdot \frac{T}{T_{\rm F}} = const.$$

- zum Vergleich: Langevin-Paramagnetismus von Spin-½-System: $\chi = n \frac{\mu_0 \mu_B^2}{k_P T} \Rightarrow \chi_P \simeq \chi \frac{T}{T_P}$

 $\rightarrow \chi_{\rm P}$ um Faktor $T/T_{\rm F}$ gegenüber χ von gebundenen Elektronen reduziert: Pauli-Blocking

• Landau-Diamagnetismus in Metallen

- freies Elektronengas
$$\chi_{\rm L} = -\frac{1}{3} \chi_{\rm F}$$

 $\frac{1}{3}\chi_{\rm P} \implies \chi = \chi_{\rm L} + \chi_{\rm P} = n \frac{\mu_0 \mu_{\rm B}^2}{k_{\rm P} T_{\rm F}}$

gesamte Suszeptibilität der itineranten Elektronen

hierzu kommt aber noch der Diamagnetismus der gebundenen Elektronen der Ionenrümpfe (Edelgaskonfiguration) hinzu

→ Metalle können sowohl diamagnetisch (z.B. Cu, Ag, Au) als auch paramagnetisch (z.B. Li, Na, K, Rb) sein