Physik der Kondensierten Materie 1

Rudolf Gross WS 2020/2021 Teil 2 Vorlesungsstunde: 05.11.2020

Zusammenfassung: Teil 1, 03.11.2020/1

• Kristall: - unendliche Wiederholung von identischen Strukturelementen

Kristall = Gitter + Basis (Basis kann sehr komplex sein)

• *Kristallgitter:* - besteht aus allen Punkten $(a_1, a_2, a_3 = elementare Gittervektoren)$

 $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3, \quad n_1, n_2, n_3$ ganzzahlig

- ist invariant gegenüber diskreten Translationen

 $T = n_1 a_1 + n_2 a_2 + n_3 a_3$, n_1, n_2, n_3 ganzzahlig

- *Gitterzellen:* primitive Gitterzelle: $V_{\text{prim}} = (\mathbf{a}_1 \times \mathbf{a}_2) \cdot \mathbf{a}_3$, enthält genau einen Gitterpunkt
 - **konventionelle Zelle**: $V_{\text{konv}} > V_{\text{prim}}$, enthält **mehrere Gitterpunkte**
 - Wigner-Seitz-Zelle: primitive Zelle mit voller Gittersymmetrie
- Klassifizierung von Kristallgittern durch ihre Symmetrieeigenschaften:

benutzen von Symmetrieoperationen

- (i) Translationsgruppe (kein ortsfester Punkt)
- (ii) Punktgruppe (mindestens ein ortsfester Punkt)
 - \rightarrow z.B. Drehung, Inversion, Spiegelung, Drehinversion, Drehspiegelung

Punktgruppe + Translationsgruppe: Raumgruppe

- die Kristallsymmetrie ist meist mit mehreren Symmetrieoperationen kompatibel
- Gruppentheorie: Menge aller möglichen Symmetrieoperationen bildet Gruppe

Zusammenfassung: Teil 1, 03.11.2020/2

• Ergebnis der gruppentheoretischen Analyse:

3D	Bravais-Gitter (kugelsymmetrische Basis)	Kristallstrukturen (Basis mit beliebiger Symmetrie)
Punktgruppen	7 Kristallsysteme	32 Kristallklassen
Raumgruppen	14 Bravais-Gitter	230 Raumgruppen
	Droveia Cittor	
2D	Bravais-Gitter (kugelsymmetrische Basis)	Kristallstrukturen (Basis mit beliebiger Symmetrie)
2D Punktgruppen	Bravais-Gitter (kugelsymmetrische Basis) 4 Kristallsysteme	Kristallstrukturen (Basis mit beliebiger Symmetrie) 10 Kristallklassen

dreidimensionaler Raum, kugelsymmetrische Basis

7 Kristallsysteme:

 \rightarrow kubisch, tetragonal, rhombisch, hexagonal, trigonal, monoklin, triklin

+ 7 zentrierte Gitter → 14 Bravais-Gitter

• Richtungen und Ebenen

Millersche Indizes $(hk\ell)$

- (a) Bestimme die Schnittpunkte der Ebene mit den Kristallachsen in Einheiten der Gitterkonstanten *a*, *b* und *c*.
- (b) Bilde den Kehrwert dieser Zahlen und reduziere diese Brüche zu drei ganzen Zahlen (und zwar den kleinstmöglichen) mit dem gleichen Verhältnis.

Richtungen [u v w]

$\mathbf{R} = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}$

Richtungsangabe durch kleinstmögliches Zahlentripel [uvw] mit gleichem Verhältnis wie n_1, n_2, n_3

1.1.4 Quasikristalle

- Kristallgitter kann keine 5-zählige Drehachse besitzen (wichtig: für Basis gilt diese Einschränkung nicht)
- wir können mit Fünfecken eine Ebene nicht vollständig ausfüllen
- versuchen wir, eine Ebene mit Strukturelementen zu bedecken, die eine 5-zählige Symmetrie aufweisen, so erhalten wir eine *quasiperiodische Anordnung*
- wichtiges Beispiel: *Penrose-Pflasterung*
 → quasiperiodische Anordnung von zwei verschiedenen Strukturelementen

experimentelle Entdeckung von Quasikristallen

Daniel Shechtman (1984)

Kristallstrukturanalyse von schnell abgekühlter Al-Mn-Legierung → scharfe Bragg-Reflexe + Symmetrie eines Ikosaeders

Ikosaeder: regelmäßiges Polyeder (Vielflach) mit

- 20 kongruenten gleichseitigen Dreiecken als Seitenflächen
- 30 gleich langen Kanten und
- 12 Ecken, in denen jeweils fünf Seitenflächen zusammentreffen

Dan Shechtman geboren 1941 in Tel Aviv, Israel Nobelpreis für Chemie 2011

"for the discovery of quasicrystals"

Ho-Mg-Zn-Quasikristalls

http://cmp.ameslab.gov/personnel/canfield/photos.html

1.1.4 Quasikristalle

- Unterschied Kristall Quasikristall
 - periodische vs. quasiperiodische, global vs. lokal geordnete Struktur
 - Quasikristalle weisen 5-, 8-, 10- oder 12-zählige Symmetrie auf
 - Kristalle weisen dagegen nur 1-, 2-, 3-, 4- oder 6-zählige Symmetrie
- Konstruktion von Quasikristall (2D)

Projektion von periodischem Muster aus einem höherdimensionalen Raum in einen niedrigdimensionaleren Unterraum

Steigung
$$g^{-1}$$
 mit $g = \frac{1+\sqrt{5}}{2}$

1.2 Einfache Kristallstrukturen

- einfache Strukturen mit einatomiger Basis:
 - sc (simple cubic)
 - fcc (face-centered cubis)
 - bcc (body-centered cubis)

Ì	IJ			bcc			fcc					3	III	IV	V	VI	VII	VIII
Li	Be			hen	Γ		dha	_ [Dia			в	С	N	0	F	Ne
Na	Mg	ļ		пср		54 54	anc	Ρ		Dial	nant	1	AI	Si	Ρ	s	Cl	Ar
к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	N	li C	u Z	n (Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	R	I P	d A	g C	d	In	Sn	Sb	Те	Ī	Xe
Cs	Ba	La- Lu	Hf	Та	w	Re	09	s Ir	P	t A	u H	lg	тΙ	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac-	//															
	na	Lr		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- weitere einfache Strukturen mit zweiatomiger Basis:
 - hexagonal dichteste Kugelpackung (hcp), Natriumchloridstruktur, Cäsiumchloridstruktur, Diamantstruktur Zinkblendestruktur

1.2.1 Die sc-Struktur (simple cubic)

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: Pm $\overline{3}m$
- Beispiel: *α* Polonium

- > Abstand der Atome, **Gitterkonstante** = a,
- die Packungsdichte = 52,360%
- Koordinationszahl = 6

(Koordinationszahl gibt die Zahl der NN eines Atoms an, die alle den gleichen Abstand haben)

1.2.2 Die fcc-Struktur (face-centered cubic)

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: F $m\overline{3}m$
- Beispiele: Au, Ag, Cu, Ni, Al, ...

- > Abstand der Atome = $a/\sqrt{2}$
- Packungsdichte = 74,048%
- Koordinationszahl = 12
- Atome in Ebenen senkrecht zu den Würfeldiagonalen sind in Form eines Dreiecksgitters dicht gepackt, Stapelfolge ABCABC...,
- Atom der nächsten Ebene liegt jeweils über dem Zentrum eines Dreiecks von Atomen und bildet mit diesem ein reguläres Tetraeder
- > primitive Gitterzelle ist rhomboedrisch,

Kantenlänge = $a/\sqrt{2}$, Winkel an den spitzen Ecken = 60°

(d)

Rhomboeder: Polyeder, das von sechs Rauten begrenzt ist

(Parallelepiped mit gleich langen Kanten)

1.2.3 Die bcc-Struktur (body-centered cubic)

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: I $m\overline{3}m$
- Beispiele: V, Cr, Fe, Nb, Mo, Ta, W, ...

- > Abstand der Atome = $a\sqrt{3}/2$
- > Packungsdichte = 68,017%
- > Koordinationszahl = 8
- > primitive Zelle = Rhomboeder Kantenlänge = $a\sqrt{3}/2$ Winkel = 109°20'.

1.2.4 Die hcp-Struktur

- Punktgruppe: 6/m 2/m 2/m, Kurzsymbol: P6/mmm
- Beispiele: Be, Mg, Zr, Cd, Ti, Co, ...
 - besteht aus dicht-gepackten hexagonalen
 Kugelschichten, Stapelfolge ABABAB.....
 - hexagonales Gitter mit zweiatomiger Basis aus gleichen Atomen:
 2 Atome in Basis bei (0,0,0) und (2/3, 1/3, 1/2)
 - → hcp-Struktur ist kein Bravais-Gitter
 - bei einer Anordnung von Kugeln ist der unausgefüllte Zwischenraum minimal
 - Stapelfolge:

hcp: **ABABAB**. . ., Stapelebenen senkrecht zur *c*-Achse

B

fcc: Schichtfolge ABCABC. . ., Stapelebenen senkrecht zur Raumdiagonalen

- \succ c/a-Verhältnis: c/a = $\sqrt{8/3}$ = 1.633
- Packungsdichte = 74,048%
- > Koordinationszahl = 12
- Packungsdichte und Koordinationszahl identisch zu fcc-Struktur

hexagonales Gitter

• Werte für das c/a-Verhältnis von Materialien mit der hcp-Struktur

Element	c/a	Element	c/a	Element	c/a
He	1.633	Zn	1.861	Zr	1.594
Be	1.581	Cd	1.886	Gd	1.592
Mg	1.623	Со	1.622	Lu	1.596
Ti	1.586	Y	1.570	Tl	1.60

idealer Wert:
$$\frac{c}{a} = \sqrt{\frac{8}{3}} = 1.633$$

1.2.5 Die dhcp-Struktur

- dopppelt hexagonal dichte Kugelpackung: dhcp
 - Stapelfolge **ABACABAC**...
 - > gegenüber der hcp-Struktur ist die Elementarzelle in *c*-Richtung verdoppelt und enthält hier vier Atome

> Polytype:

Kristalle, die eine Stapelfolge mit längerer Wiederholungseinheit besitzen (z.B. SiC).

1.2.6 Die NaCl-Struktur

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: Fm $\overline{3}n$
- gehört zu AB-Strukturen
- Gittertyp: fcc-Gitter
- > Basis = NaCl, Abstand gleicher Atome = $a\sqrt{2}/2$
- > Na-Positionen: $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$
- $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(0, 0, \frac{1}{2}\right), \left(0, \frac{1}{2}, 0\right), \left(\frac{1}{2}, 0, 0\right)$ > Cl-Positionen:
 - $(000), \left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(\frac{1}{2}, 0, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}, 0\right)$
- Sowohl Na als auch Cl-Atome liegen auf fcc-Gitter, die um $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$ gegeneinander verschoben sind
- ➢ jedes Atom hat 6 NN der anderen Atomsorte
 → Nachbaratome bilden Oktaeder
- Sesamtzahl der NN der beiden Atomsorten ist 6 + 12 = 18
- konventionelle Zelle enthält 4 Na und 4 Cl Atome

1.2.7 Die CsCl-Struktur

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: Pm $\overline{3}m$
 - gehört zu AB-Strukturen
 - Gittertyp: sc-Gitter
 - > Basis = CsCl, Abstand der Atome = $a\sqrt{3}/2$
 - **Cs-Positionen**: (0,0,0)
 - > Cl-Positionen: $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
 - ➤ Koordinationszahl = 8
 - > Gesamtzahl der NN der beiden Atomsorten ist 8 + 6 = 14
 - konventionelle Zelle enthält 1 Cs und 1 Cl Atom
 - im Gegensatz zu NaCl ist nun Cs-Atom etwa gleich groß wie Cl-Atom
 - wenn Kation (Cs⁺) kleiner wird, stoßen Anionen (Cl⁻) aneinander und Gitterkonstante kann nicht mehr abnehmen
 - → irgendwann wird dann NaCl-Struktur (fcc) günstiger

1.2.8 Die Diamant-Struktur

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: Fm $\overline{3}m$
- fcc-Gitter mit zweiatomiger Basis: C, C
- > **C-Positionen**: (000), $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$
- anschaulich: Kombination zweier ineinander gestellter fcc Gitter mit jeweils einatomiger Basis, wobei eines davon um 1/4 der Raumdiagonale verschoben wurde
- Diamantstruktur ist das Ergebnis der gerichteten kovalenten Bindung:
 sp³-Hybridisierung
- Packungsdichte = 34% (sehr gering)
- Koordinationszahl = 4
- konventionelle Zelle enthält 8 C Atome

1.2.9 Die Zinkblende-Struktur

- Punktgruppe: $4/m \overline{3} 2/m$, Kurzsymbol: Fm $\overline{3}m$
- fcc-Gitter mit zweiatomiger Basis: Zn, S
- **Zn-Position**: (000)
- > S-Position: $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$
- anschaulich: Kombination zweier ineinander gestellter fcc Gitter mit jeweils einatomiger Basis, wobei eines davon um 1/4 der Raumdiagonale verschoben wurde
- Packungsdichte = 34% (sehr gering)
- Koordinationszahl = 4
- konventionelle Zelle enthält 4 Zn- und 4
 S-Atome, also insgesamt 8 Atome

1.2.9 Zinkblende- vs. Wurtzit-Struktur

- Stapelung der Schichten einer Atomsorte entlang der [111]-Richtung
 - Zinkblende-Struktur: ABCABC.... Stapelfolge
 - Wurtzit-Struktur: ABABAB . . . Stapelfolge

Beispiele: Zinkoxid (ZnO), Cadmiumsulfid (CdS), Cadmiumselenid (CdSe), Galliumnitrid (GaN) und Silberiodid (AgI)

Stapelfolge AaBbAaBbAaBb... entlang [001]

zum Vergleich: fcc-Struktur mit Stapelung ABCABC. . . entlang [111]

Stapelfolge *AaBbCcAaBbCc*... entlang [111]

1.2.9 Zinkblende- vs. Wurtzit-Struktur

1.2.10 Die Graphit-Struktur

- Punktgruppe: 6/m 2/m 2/m, Kurzsymbol: P6/mmm
 - parallel verlaufende, ebene C-Schichten: Basalebenen
 - eine Schicht besteht aus kovalent verknüpften Sechsecken, deren Kohlenstoff-Atome sp^2 -hybridisiert sind

starke Bindung innerhalb von Basalebenen schwache Bindung senkrecht zu Basalebenen

1.2.10 Graphen

• Graphen = zweidimensionale Kohlenstoffschicht

Andre Geim

Konstantin Novoselov

geboren: 1. Oktober 1958, Sotschi, Rußland

geboren: 23. August 1974, Nizhny Tagil, Rußland

Nobelpreis für Physik 2010

"for groundbreaking experiments regarding the two-dimensional material graphene"

1.3 Festkörperoberflächen

• andere Anordnung und Abstand der Atome an Oberfläche

→ Zahl der Bindungspartner geringer

- Abstand der obersten Atomlage
 - ightarrow geringerer, da keine Kompensation der nach Innen gerichteten Bindungskräfte
- bei Metallen aber auch Vergrößerung des Netzebenenabstands möglich
 - → Oberflächenrelaxation
- Oberflächenrekonstruktion
 - → ungesättigte Bindungen (kovalent)
 - \rightarrow Minimierung der Bindungsenergie
- Betrachtung von FK-Oberflächen als 2D-Kristallsysteme
 - → 5 Bravais-Gitter, 10 Kristallklassen, 17 Raumgruppen (3D: 14/32/230)

1.3 Festkörperoberflächen

- Klassifizierung von Oberflächengitter
 - $-a_1, a_2$ sind Gittervektoren des 3D-Gitter
 - $-c_1, c_2$ sind Gittervektoren des 2D-Oberflächengitters
 - → Klassifizierung des Oberflächengitters (nach E. A. Wood)

$$\left(\frac{c_1}{a_1}\times\frac{c_2}{a_2}\right)\,R\alpha$$

- *Rα*: gibt Drehung des
 Oberflächengitters an (rotated)
- *p*, *c*: vorangestellter Buchstabe steht für primitiv, zentriert
- präzisere Angabe enthält Millersche Indizes der Kristalloberfläche

Beispiel: Si (100) $(\sqrt{2} \times \sqrt{2}) R45^{\circ} - Ag$

1.3 Festkörperoberflächen

Si(111) (7×7) Oberfläche

Zusammenfassung: Teil 2, 05.11.2020/1

• Quasikristalle

- Kristallgitter kann keine 5-zählige Symmetrie besitzen
 - Ausfüllen von Raum mit Elementen, die 5-zählige Symmetrie aufweisen, ergibt quasiperiodische Struktur
 → Quasikristall = global quasiperiodisch
 - → Beispiel: Penrose-Pflasterung
 - Quasikristalle weisen 5-, 8-, 10-, oder 12-zählige Symmetrie auf
 - experimentelle Entdeckung: Daniel Shechtman (1984), Nobelpreis für Chemie 2011

• Einfache Kristallstrukturen

- einatomige Basis, z.B. elementare Metalle

	Atomabstand	Packungsdichte	Koordinationszahl	Stapelfolge
sc-Struktur	а	52,360 %	6	
fcc-Struktur	$\frac{1}{2}\sqrt{2}a$	74,048 %	12	ABCABC entlang (111)
bcc-Struktur	$\frac{1}{2}\sqrt{3}a$	68,017 %	8	
hcp-Struktur		74,048 %	12	ABABAB entlang (0001)

- **AB-Strukturen:** NaCl- und CsCl-Struktur, Zinkblende (ZnS)- und Wurtzit-Struktur
- außerdem: Diamant- und Graphitstruktur

Zusammenfassung: Teil 2, 05.11.2020/2

• Festkörperoberflächen

- weniger Bindungspartner, ungesättigte Bindungen (kovalent)
- Minimierung der Bindungsenergie
- Anordnung der Oberflächenatome

→ Oberflächengitter $\left(\frac{c_1}{a_1} \times \frac{c_2}{a_2}\right) R \alpha$

→ Oberflächenrekonstruktion