Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 2 Vorlesungsstunde: 12.04.2021-2

Zusammenfassung: Teil 1a, 12.04.2021/1

• Quantisierung der Bahnen freier Ladungsträger (q=+e) im Magnetfeld

Wellen auf geschlossenen Bahnen müssen Bohr-Sommerfeld-Quantisierung erfüllen

- Schrödinger-Gleichung: $\frac{1}{2m} \left(\frac{\hbar}{i} \nabla - qA\right)^2 \Psi = \varepsilon \Psi$ Eichung: $A = (0, Bx, 0) \rightarrow B = \nabla \times A = (0, 0, B)$ Operator des kinematischen Impulses: $p = \hbar k + qA \rightarrow \hbar k = p - qA = \frac{\hbar}{i} \nabla - qA$ - Lösung ergibt Eigenenergien: Subbänder: Landau-Niveaus Kreisbewegung in Ebene senkrecht zu B freie Bewegung || B Zyklotron-Frequenz: $\omega_c = \frac{eB}{m} = 1.758\ 820\ 174\ (71) \times 10^{11}\ s^{-1} \times B$ [Tesla]

• Entartung der Landau-Niveaus (für eine Spin-Richtung)

Zusammenfassung: Teil 1b, 12.04.2021/1

• Bahnquantisierung für Kristallelektronen (q = +e)

- Quantisierungsbedingung wie für freie Ladungsträger:

träger: $\frac{1}{2\pi} \oint \mathbf{p} \cdot d\mathbf{r} = \hbar (n + \gamma), \qquad n = 0, 1, 2, 3, ...$

mit kanonischem Impuls $\mathbf{p} = \hbar \mathbf{k} + q\mathbf{A} = q\mathbf{r} \times \mathbf{B} + q\mathbf{A}$ erhalten wir:

$$\oint \mathbf{p} \cdot d\mathbf{r} = -q\Phi = -q BA = 2\pi \hbar (n + \gamma), \qquad n = 0, 1, 2, 3, ...$$

von Bahnen umschlossene Flächen und der von ihnen eingeschlossene magnetische Fluss sind quantisiert !

Korrekturfaktor γ

$$A_n = \frac{2\pi\hbar(n+\gamma)}{qB}, \qquad \Phi_n = BA_n = (n+\gamma)\frac{h}{q} = (n+\gamma)\,2\Phi_0 \qquad (\text{mit }\Phi_0 = h/2e)$$

aus
$$\hbar \mathbf{k} = e\mathbf{r} \times \mathbf{B}$$
 folgt $|dr| = \frac{\hbar}{eB} |dk|$ folgt:

- Fläche zwischen benachbarten Landau-Zylindern:

$$A_{n} = \left(\frac{\hbar}{qB}\right)^{2} S_{n} \qquad S_{n} = \frac{(n+\gamma)2\pi qB}{\hbar}$$
$$\Delta S = \frac{2\pi qB}{\hbar} = \frac{2\pi m_{c}}{\hbar} \hbar \omega_{c}$$

• Welches ΔB führt zu gleichen Flächen aufeinanderfolgender Landau-Zylinder?

aus
$$(n+\gamma+1)\frac{2\pi q B_{n+1}}{\hbar} = S_n = (n+\gamma)\frac{2\pi q B_n}{\hbar} = S$$
 folgt: $\Delta = \left(\frac{1}{B_{n+1}} - \frac{1}{B_n}\right) = \frac{2\pi q}{\hbar S}$

- → gleiche Zunahme in 1/B führt zu gleichen Bahnen im k-Raum
 → 1/B -Oszillationen von physikalischen Größen
- Voraussetzungen für experimentelle Beobachtung von 1/B Oszillationen
 - Abstand benachbarter Landau-Niveaus groß gegen $k_{\rm B}T$: $\hbar\omega_c > k_{\rm B}T \rightarrow \frac{B}{T} > \frac{m_c k_{\rm B}}{\hbar a} = 0.78 \text{ T/K}$
 - genügend lange Streuzeit τ : $\Delta \varepsilon \simeq \frac{\hbar}{\tau} < \hbar \omega_c \rightarrow \omega_c \tau = \frac{qB}{m_c} \tau > 1$

- \rightarrow hohe B/T
- → hohe B, tiefe T und reine Proben

9.11 Exp. Bestimmung der Fermi-Fläche

- Fermi-Fläche $\varepsilon = \varepsilon_{\rm F}$
 - trennt bei Metallen für T = 0 die besetzten von den unbesetzten Zuständen
 - ist eng mit den Transporteigenschaften und den optischen Eigenschaften verknüpft

→ großes Interesse an experimenteller Bestimmung

• zahlreiche physikalische Größen liefern Information über Fermi-Fläche

- Gemessen wird Oszillation der Magnetisierung eines Metalls als Funktion des angelegten Magnetfeldes
 - → Entdeckung durch **de Haas** und **van Alphen** im Jahr 1930 an Wismut
 - → Oszillation entsteht durch das Schieben der Landau-Zylinder über die Fläche $\varepsilon = \varepsilon_F$ bei Variation von *B*

W.J. de Haas (1878 – 1960)

P.M. van Alphen (1906 – 1967)

• Magnetisierung eines Festkörpers

(Ausrichtung von magnetischen Momenten durch *B*, wird erst später im Detail behandelt)

- Definition:
$$M = -\frac{1}{V} \left(\frac{\partial F}{\partial B}\right)_{T,V=const}$$

- bei genügend tiefen Temperaturen ist freie Energie $F = U - TS \simeq U$

$$M \simeq -\frac{1}{V} \left(\frac{\partial U}{\partial B}\right)_{T,V=const}$$

 \rightarrow wir müssen U(B) kennen, um M(B) zu berechnen

→ im Folgenden Berechnung für 2D freies Elektronengas

• 2D freies Elektronengas im Magnetfeld (Wiederholung)

Eigenenergien:
$$\varepsilon_n = \left(n + \frac{1}{2}\right) \hbar \omega_c = \frac{\hbar^2 k_{\perp,n}^2}{2m}$$

Kreisradius: $k_{\perp,n} = \sqrt{\frac{2m}{\hbar^2} \left(n + \frac{1}{2}\right) \hbar \omega_c} = \sqrt{\left(n + \frac{1}{2}\right) \frac{2eB}{\hbar}}$

Entartung der Landau-Niveaus (Zahl der Punkte auf Kreisen):

$$p = \frac{L_x L_y}{(2\pi)^2} \Delta S = \frac{L_x L_y}{(2\pi)^2} \frac{2\pi eB}{\hbar} = \rho B$$

B-Änderung führt zu Änderung der maximalen Zahl der Zustände pro Landau-Niveau

B-Änderung führt zu Änderung von $k_{\perp,n}$

• Was passiert mit den Landau-Niveaus und der Fermi-Energie von 2D-Elektronengas, wenn wir B variieren?

- a) B = 0, alle Zustände bis $\varepsilon = \mu$ besetzt (bei T = 0 ist chemisches Potenzial $\mu = \varepsilon_F$)
- b) $B = B_1$, Zustände werden auf Landau-Niveaus umverlagert, μ liegt im 4. Landau-Niveau
- c) $B = B_2$, da $B_2 > B_1$ ist Abstand der Landau-Niveaus angewachsen, μ liegt immer noch im 4. Landau-Niveau
- d) B = 0 (zum Vergleich)
- e) B = B₃, da B₃ > B₂ ist Abstand der Landau-Niveaus nochmals angewachsen, Entartung p ∝ B ist jetzt so groß, dass alle Zustände in die 3 untersten Niveaus passen → µ rutscht ins 3. Landau-Niveau nach unten

Frage: Wie ändert sich die Gesamtenergie des Elektronensystems?

• Beispiel: Besetzungszahl der Landau-Niveaus für Elektronengas mit N = 120 als Funktion von B bzw. 1/B

Entartung der Landau-Niveaus $p = \frac{L_x L_y}{(2\pi)^2} \cdot \frac{2\pi qB}{\hbar} = \rho B$

- Berechnung der Gesamtenergie aller N Elektronen im 2D Elektronengas als Funktion von B
 - es werden s Niveaus vollkommen gefüllt, das oberste Niveau s + 1 ist nur teilweise gefüllt
 - (1) vollkommen gefüllte Niveaus

$$\varepsilon_{\text{tot,1}} = \sum_{n=1}^{s} p \cdot \hbar \omega_c \left(n - \frac{1}{2} \right) = \sum_{n'=0}^{s-1} p \cdot \hbar \omega_c \left(n' + \frac{1}{2} \right) = p \cdot \hbar \omega_c \frac{s^2}{2}$$

(2) oberstes, teilweise gefülltes Niveau (besetzt mit (N - sp) Zuständen)

$$\varepsilon_{\text{tot},2} = \hbar\omega_c \left(s + \frac{1}{2}\right)(N - sp)$$

• Gesamtenergie

$$U = p \cdot \hbar \omega_c \frac{s^2}{2} + \hbar \omega_c \left(s + \frac{1}{2}\right)(N - sp)$$

$$U = \hbar\omega_c \left[N\left(s + \frac{1}{2}\right) - p\frac{s^2}{2} - p\frac{s}{2} \right] \quad \text{mit} \quad p = \frac{L_x L_y}{(2\pi)^2} \cdot \frac{2\pi qB}{\hbar}$$

• Gesamtenergie

$$= \hbar\omega_c \left[N\left(s + \frac{1}{2}\right) - p\frac{s^2}{2} - p\frac{s}{2} \right] \quad \text{mit} \quad p = \frac{L_x L_y}{(2\pi)^2} \cdot \frac{2\pi qB}{\hbar} = \rho B$$

U =

- U variiert periodisch auf 1/B Skala
- $M \simeq -\frac{1}{V} \left(\frac{\partial U}{\partial B}\right)_{T,V=const}$ variiert ebenfalls periodisch auf 1/B – Skala
 - Phänomen heißt de Haas van Alphen –
 Effekt
- bei hohen T ist oszillatorisches Verhalten durch großes $k_{\rm B}T$ vollkommen verschmiert und nicht beobachtbar, es bleibt aber kontinuierliche Zunahme von U zu kleinen 1/B bzw. großen B

$$\Rightarrow \chi = -\frac{\mu_0}{V} \left(\frac{\partial^2 U}{\partial B^2} \right)_{T,V=const} < 0$$

→ Landau-Diamagnatismus

10

• Welche Information erhalten wir durch Messung der Oszillationsperiode Δ auf 1/B – Skala?

- Oszillationsperiode:

$$\Delta = \left(\frac{1}{B_{n+1}} - \frac{1}{B_n}\right) = \frac{2\pi q}{\hbar S}$$

- Messung von Δ liefert S ohne Fitparameter (da q und \hbar Naturkonstanten)
- *S* ist Extremalfläche $\perp B$

• Warum spielen nur die extremalen Querschnittsflächen eine Rolle?

für 3D Fermi-Fläche gibt es unendlich viele Schnittflächen $S \perp B$ durch den Fermi-Körper

- \rightarrow unterschiedliche Perioden Δ
- → nur extremale Bahnen werden im Experiment beobachtet (Phasenfaktoren benachbarter Bahnen variieren hier nur wenig → ihre Beiträge interferieren sich deshalb nicht weg)

Voraussetzungen für die experimentelle Beobachtung des de Haas – van Alphen – Effekts (Wiederholung)

→ der energetische Abstand der Landau-Niveaus muss größer als die thermische Energie sein

$$\hbar\omega_c = \frac{\hbar qB}{m_c} > k_{\rm B}T$$
 $\frac{B}{T} > \frac{m_c k_{\rm B}}{q\hbar} = 0.78 \left[\frac{{\rm T}}{{\rm K}}\right]$ \rightarrow hohe B und niedrige T

→ die energetische Verbreiterung der Landau-Niveaus durch die endliche Streuzeit τ der Ladungsträger muss kleiner als $\hbar\omega_c$ sein

 $\Delta \varepsilon \simeq \frac{\hbar}{\tau} < \hbar \omega_c$

$$\omega_c \tau = \frac{qB}{m_c} \tau > 1$$

 \rightarrow hohe B und reine Proben

Beispiel: de Haas – van Alphen – Effekt in Gold

für *B* ||(111) werden auf *B*-Skala eine niederfrequente (kleine Halsbahn, $\Delta_{\text{Hals}} = \frac{2\pi q}{\hbar S_{\text{Hals}}}$) und eine hochfrequente (große Bauchbahn, $\Delta_{\text{Bauch}} = \frac{2\pi q}{\hbar S_{\text{Bauch}}}$) beobachtet

Beispiel: quasi-zweidimensionaler organischer Supraleiter

- quasi-2D-System, keine Dispersion in k_z -Richtung
- zylinderförmige Fermi-Fläche
- − Schnittfläche $S \propto 1/\cos \Theta$

- Oszillationsperiode
$$\Delta = \frac{2\pi q}{\hbar S} \propto \cos \Theta$$

M. Kartsovnik et al., Walther-Meißner-Institut

15

9.11.2 Shubnikov – de Haas – Effekt

- Oszillationen des elektrischen Widerstands als Funktion des angelegten Magnetfeldes
 - erste Messungen von *Shubnikov* und *de Haas* im Jahr 1930
 - qualitative Erklärung: Widerstand ist proportional zur Streuwahrscheinlichkeit und diese wiederum proportional zur Zustandsdichte bei $\varepsilon_{\rm F}$

$$D(\varepsilon_F) \propto \left(\frac{m_c B}{S_{\text{extr}}}\right) \frac{\partial M}{\partial B}$$

 S_{extr} : Fläche der Extremalbahn

Abnahme der Oszillationsamplitude durch thermische Verschmeirung

D. Andres, Doktorarbeit, WMI 2005

9.11.3 Zyklotron-Resonanz

 Messung der Frequenzabhängigkeit des Oberflächenwiderstandes, des Reflexionsvermögens oder der Absorption ergibt ω_c und damit m_c

→ Information über *S* (Fermi-Fläche) aus Beziehung $m_c = \frac{\hbar^2}{2\pi} \frac{\partial S(k_\perp)}{\partial \epsilon}$

- Zyklotronresonanz bei Metallen:
 - \succ Problem ist kleine Skintiefe: $\delta \sim 10$ nm bei 10 MHz
 - > Skintiefe ist klein gegen Zyklotronradius $R_c \sim 10 \ \mu m @ 1T$
 - > niedrigere Frequenzen/Felder nicht möglich, da $\omega_c \tau \gg 1$ gelten muss

Resonanzabsorption für $\omega = n \cdot \omega_c = n \cdot \frac{eB}{m_c}$, n = 1,2,3,...

Experiment: $\omega = const.$, Variation von *B*

$$\frac{1}{B} = n \cdot \frac{e}{\omega m_c}, \quad n = 1, 2, 3, \dots$$

Information über die senkrecht zu B verlaufenden Extremalbahnen

9.11.4 Magnetischer Durchbruch

 bei genügend hohen B können Elektronen Gebiete im k-Raum, welche unterschiedliche Bahnen trennen, durchtunneln
 magnetischer Durchbruch

- durch den magnetischen Durchbruch entstehen zusätzlich zu den blau eingezeichneten Orbits die gestrichelten "Durchbruchsorbits"
- in den Quantenoszillationen treten zusätzliche
 Frequenzen auf

– Ursache:

Lorentz-Kraft $\mathbf{F}_L = q\mathbf{v} \times \mathbf{B}$ kann durch Gleichsetzen mit $\mathbf{F}_E = q\mathbf{E}$ mit $|\mathbf{E}| \simeq q |\mathbf{v} \times \mathbf{B}| = vB$ assoziiert werden

 $\rightarrow E \perp v$ wächst mit *B* an und kann Tunneln verursachen

9.11.4 Magnetischer Durchbruch

Beispiel: Hochtemperatur-Supraleiter Nd_{2-x}Ce_xCuO_{4+x}

T. Helm, Doktorarbeit, WMI (2013) Phys. Rev. Lett. 103, 157002 (2009)

- rekonstruierte Fermi-Fläche von NCCO
- in den Subnikov de Haas Oszillationen wird eine niederfrequente (rot eingefärbte Taschen) und eine hochfrequente Komponente (gestrichelt gezeichnetes Durchbruchsorbit) gemessen
- die Lücken zwischen den roten und blauen
 Orbits können durchtunnelt werden

19

Kapitel 10

Halbleiter

10.1 Grundlegende Eigenschaften

• *"alte" Definition*:

- \succ Isolator mit kleiner Bandlücke E_g
- > elektrische Leitfähigkeit liegt zwischen Metall und Isolator

 $\sigma \sim 10^2 - 10^{-9} \frac{1}{\Omega m}$ \Rightarrow große technische Bedeutung

Wahrscheinlichkeit für thermische Anregung von LT von VB ins LB $\propto \exp\left(-\frac{E_g}{2k_{\rm B}T}\right) \sim 10^{-5}$ @ $E_{\rm g} = 0.5$ eV und T = 300 K $\sim 10^{-60}$ @ $E_{\rm g} = 3.0$ eV und T = 300 K

 \Rightarrow große Energielücke $E_g \Rightarrow$ kleine LT-Dichte \Rightarrow kleines σ

"neue" Definition:

- > Isolator, der dotiert werden kann (E_g ist nicht sehr relevant)
- Variation der LT-Dichte durch gezieltes Einbringen von Dotieratomen
 - → LT-Dichte und σ hängen weniger mit Größe von E_g sondern mehr mit der Dichte der Dotieratome zusammen

10.1 Grundlegende Eigenschaften

• zahlreiche großtechnische Herstellungsverfahren

z.B. Czochralski-Verfahren

10.1.1 Klassifizierung von Halbleitern

- unabhängig von chemischer Zusammensetzung
 - intrinsisch: keine Dotieratome, freie LT nur durch Anregung von VB ins LB
 - dotiert: endliche Dichte von Dotieratomen,
 freie LT hauptsächlich durch Ionisierung der Dortieratome
 - **kristallin:** streng periodische Anordnung der Atome
 - **amporph:** Atome besitzen nur Nahordnung, aber keine Fernordnung
 - direkt:
 Oberkante von VB bei gleichem k wie Unterkante von LB
 - indirekt:
 Oberkante von VB bei unterschiedlichem k wie Unterkante von LB

10.1.1 Klassifizierung von Halbleitern

• abhängig von chemischer Zusammensetzung

Element-Halbleiter	Verbindungshalbleiter		Organische Halbleiter
Ge, Si, α-Sn, C (Diamant, Fulleren), B, Se, Te <i>unter Druck:</i> Bi, Ca, Sr, Ba, Yb, P, S, I	III-V	GaAs, GaP, , InP, InSb, InAs, GaSb, GaN, AIN, InN, Al _x Ga _{1-x} As	Tetracen, Pentacen, Phthalocyanine, Polythiophene, PTCDA (C ₂₄ H ₈ O ₆), MePTCDI (C ₂₆ H ₁₄ N ₂ O ₄), Chinacridon, Acridon, Indanthron, Flavanthron, Perinon, Alq3 (C ₂₇ H ₁₈ AlN ₃ O ₃)
	II-VI	ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, Hg _{1-x} Cd _x Te, BeSe, BeTe,	
	III-VI	GaS, GaSe, GaTe, InS, InSe, InTe	
	IV-VI	PbS, PbTe, SnS	
	IV-IV	SiC, SiGe	
	I-VII	CuCl	
	I-III-VI	CulnSe ₂ , CulnGaSe ₂ , CulnS ₂ , CulnGaS ₂	

- Oxidische HL: ZnO, CuO
- Schicht-HL: Pbl₂, MoS₂, GaSe
- Magnetische HL: (Ga,Mn)As

•

Zusammenfassung: Teil 2a, 12.04.2021/2

• experimentelle Bestimmung der Fermi-Flächen mit Bahnquantisierungeffekten

(i) de Haas – van Alphen – Effekt: Oszillation von M(B)

$$M = -\frac{1}{V} \left(\frac{\partial F}{\partial B}\right)_{T,V} \simeq -\frac{1}{V} \left(\frac{\partial U}{\partial B}\right)_{T,V} \qquad F = U - TS \simeq U \text{ bei tiefen } T$$

$$U = \hbar \omega_c \left[N\left(s + \frac{1}{2}\right) - p\frac{s^2}{2} - p\frac{s}{2}\right] \qquad \text{mit Entartung } p = \frac{L_x L_y}{(2\pi)^2} \cdot \frac{2\pi qB}{\hbar}$$

$$\Delta = \left(\frac{1}{B_{n+1}} - \frac{1}{B_n}\right) = \frac{2\pi q}{\hbar S}$$

Oszillationsperiode Δ liefert Größe der Extremalfläche S \perp B

Extremalbahnen

Zusammenfassung: Teil 2b, 12.04.2021/2

(ii) Shubnikov - de Haas - Effekt:

Oszillation von R als Funktion von B

• Klassifizierung von Halbleitern

- \succ intrinsisch \leftrightarrow dotiert, kristallin \leftrightarrow amorph, direkt \leftrightarrow indirekt,
- > Element-HL, Verbindungs-HL (binär, ternär, ...), organische HL
- > oxidische HL, Schicht-HL, magnetische HL, ...