Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 27 Vorlesungsstunde: 01.06.2021-1

Zusammenfassung: Teil 26a, 31.05.2021/2

• Phänomenologische Modelle: A. London-Modell und London-Gleichungen

Zweiflüssigkeiten-Modell:
$$n = n_n + n_s$$
 für $T \to 0$: $n_s \to n$, für $T \to T_c$: $n_s \to 0$
 $m \frac{d\mathbf{v}}{dt} + \frac{\mathbf{v}}{\tau} = q \mathbf{E}$ mit $\tau \to \infty$ und $J_s = n_s q_s v_s$ \Longrightarrow $\frac{\partial}{\partial t} \Lambda \mathbf{J}_s = \mathbf{E}$ **1. London-Gleichung**
 $\Lambda = \frac{m_s}{n_s q_s^2}$ London-Parameter

Einsetzen von 1. London-Gl. in $\nabla \times \mathbf{E} = -\partial \mathbf{b}/\partial t \implies \frac{\partial}{\partial t} [\nabla \times (\Lambda \mathbf{J}_s) + \mathbf{b}] = 0$

Experiment: Klammerausdruck [...] selbst muss verschwinden, nicht nur $\frac{\partial}{\partial t}$ [...]

 $\implies \nabla \times (\Lambda \mathbf{J}_s) + \mathbf{b} = \mathbf{0}$ 2. London-Gleichung

mit $\nabla \times \mathbf{b} = \mu_0 \mathbf{J}_s \Rightarrow \nabla \times \nabla \times \mathbf{b} = \nabla \times (\mu_0 \mathbf{J}_s) = \frac{\mu_0}{\Lambda} \mathbf{b}$ und $\nabla \times \nabla \times \mathbf{b} = \nabla (\nabla \cdot \mathbf{b}) - \nabla^2 \mathbf{b} = -\nabla^2 \mathbf{b}$ folgt

$$\nabla^2 \mathbf{b} - \frac{\mu_0}{\Lambda} \mathbf{b} = \nabla^2 \mathbf{b} - \frac{1}{\lambda_{\rm L}^2} \mathbf{b} = 0$$

 \implies exponentielles Abklingen von B_{ext} in SL:

 $\lambda_{\rm L} = \left| \frac{\Lambda}{u_0} = \right| \frac{m_s}{u_0 n_s a_s^2}$ Londonsche Eindringtiefe

(typische Werte: 0.01 – 1 μ m, klein wegen hoher LT-Dichte n_s)

Zusammenfassung: Teil 26b, 31.05.2021/2

- Phänomenologische Modelle: B. Supraleitung als makroskopisches Quantenphänomen
 - Beschreibung von SL mit makroskopischer Wellenfunktion $\psi(\mathbf{r}, t) = \psi_0(\mathbf{r}, t) e^{i\theta(\mathbf{r}, t)}$

→ beschreibt *Gesamtheit aller supraleitenden Elektronen*

- Normierung:

$$\psi_s^{\star}(\mathbf{r},t)\psi_s(\mathbf{r},t) \, \mathrm{d}V = N_s$$

$$|\psi_{s}(\mathbf{r},t)| = \psi_{s}^{\star}(\mathbf{r},t)\psi_{s}(\mathbf{r},t) = n_{s}$$

Strom-Phasen-Beziehung

Energie-Phasen-Beziehung

- Schrödinger-Gleichung für geladenes Teilchen in em-Feld

$$\frac{1}{2m} \left(\frac{\hbar}{i} \nabla - q \mathbf{A}(\mathbf{r}, t)\right)^2 \Psi(\mathbf{r}, t) + \left[q \phi_{\rm el}(\mathbf{r}, t) + \mu(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t) = i\hbar \frac{\partial \Psi(\mathbf{r}, t)}{\partial t}$$

- − Einsetzen von makroskopischer Wellenfunktion in Schrödinger-GI. → Madelung-Transformation
- Aufspalten in Real- und Imaginärteil ergibt

$$\mathbf{J}_{s}(\mathbf{r},t) = q_{s}n_{s}(\mathbf{r},t) \left\{ \frac{\hbar}{m_{s}} \nabla \theta(\mathbf{r},t) - \frac{q_{s}}{m_{s}} \mathbf{A}(\mathbf{r},t) \right\}$$

Geschwindigkeit \mathbf{v}_{s}

$$\hbar \frac{\partial \theta(\mathbf{r},t)}{\partial t} = -\left\{ \frac{1}{2n_s} \Lambda J_s^2(\mathbf{r},t) + q_s \phi_{\rm el}(\mathbf{r},t) + \mu(\mathbf{r},t) \right\}$$

eichinvarianter Phasengradient $\nabla \theta' - \frac{q_s}{\hbar} \mathbf{A}' = \nabla \theta - \frac{q_s}{\hbar} \mathbf{A}$

$$\theta' \equiv \theta + \frac{q_s}{\hbar} \chi$$
$$\mathbf{A}' \equiv \mathbf{A} + \nabla \chi$$

 $\hbar\theta = S = Wirkung \rightarrow \partial S / \partial t = -H$: Äquivalenz zur *Hamilton-Jacobi-Gleichung* der klassischen Physik

- Anwendung auf geladenen und ungeladenen Quantenflüssigkeiten: $q_s = k \cdot q$, $m_s = k \cdot m$, $n_s = n/k$

→ Supraleiter: q = -e, k = 2, ³He: q = 0, k = 2

Zusammenfassung: Teil 26c, 31.05.2021/2

- Folgerungen aus Strom-Phasen- und Energie-Phasen-Beziehung
 - 1. Herleitung der London-Gleichungen durch Bildung der Rotation und partiellen Zeitableitung von

$$\Lambda \mathbf{J}_{s}(\mathbf{r},t) = -\left\{\mathbf{A}(\mathbf{r},t) - \frac{\hbar}{q_{s}}\nabla\theta(\mathbf{r},t)\right\}$$

Bildung von Rotation:

- 2. London-Gleichung
- > Bildung von partieller Zeitableitung: **1. London-Gleichung**

$$\mathbf{g} \quad \frac{\partial}{\partial t} \Lambda \mathbf{J}_{s}(\mathbf{r}, t) = -\left\{ \frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t} - \frac{1}{q_{s}} \nabla \left(\frac{\hbar \partial \theta(\mathbf{r}, t)}{\partial t} \right) \right\}$$

 $\nabla \times \Lambda \mathbf{J}_{s}(\mathbf{r},t) + \mathbf{b}(\mathbf{r},t) = 0$

 $\implies \frac{\partial}{\partial t} \Lambda \mathbf{J}_{s}(\mathbf{r},t) = \mathbf{E} - \frac{1}{n_{s}q_{s}} \nabla \left(\frac{1}{2} \Lambda J_{s}^{2}\right)$

wichtig:

- > direkte Ableitung der London-Gleichungen aus makroskopischem Quantenmodell
- > London-Gl. beschreiben zusammen mit den Maxwell-Gleichungen das Verhalten von SL in elektrischen und magnetischen Feldern
- 2. Herleitung der Fluxoid-Quantisierung

$$\Lambda \mathbf{J}_{s}(\mathbf{r},t) = -\left\{\mathbf{A}(\mathbf{r},t) - \frac{\hbar}{q_{s}} \nabla \theta(\mathbf{r},t)\right\} \xrightarrow{\text{Ringintegral}} \oint_{C} \Lambda \mathbf{J}_{s} \cdot d\ell + \oint_{C} \mathbf{A} \cdot d\ell = \frac{\hbar}{q_{s}} \oint_{C} \nabla \theta(\mathbf{r},t) \cdot d\ell$$

$$\oint_{C} \Lambda \mathbf{J}_{s} \cdot d\ell + \int_{F} \mathbf{b} \cdot \hat{\mathbf{n}} \ dF = n \cdot \frac{h}{q_{s}} = n \cdot \Phi_{0}$$

$$\Phi_{0} = \frac{h}{2e} = 2.067\,833\,831(13) \times 10^{-15}\,\text{Vs} \quad Fluss-Quant$$

Fluss-Quantisierung: $\int_{F} \mathbf{b} \cdot \hat{\mathbf{n}} dF = \Phi = n \cdot \Phi_{0}$ (falls $J_{s} = 0$, z.B. entlang Integrationsweg tief in massivem SL)

Kapitel 13

Supraleitung

13.3 Phänomenologische Modelle

- Entwicklung der ersten mikroskopischen Theorie der Supraleitung dauerte mehr als 45 Jahre

 zuerst Beschreibung
 mit phänomenologischen Modellen
 - I. London-Modell (Zweiflüssigkeiten-Modell)
 - II. Supraleitung als makroskopisches Quantenphänomen
 - ➡ III. Ginzburg-Landau Theorie

Phänomenologische Beschreibung der Supraleitung im Rahmen der Landau-Theorie der Phasenübergänge

- Weiterentwicklung der Landau-Theorie der Phasenübergänge

Absolutquadrat des Ordnungsparameters $|\Psi(\mathbf{r})|^2 = n_s(\mathbf{r})$

- 1957: Abrikosov sagt mit Hilfe von Ginzburg-Landau Theorie das Flussliniengitter in der Shubnikov-Phase von Typ-II Supraleitern vorher
- 1959: Gor'kov zeigt, dass GL-Theorie einen rigoros ableitbaren Grenzfall der mikroskopischen BCS-Theorie darstellt

Ginzburg-Landau-Abrikosov-Gor´kov (GLAG) Theorie

– GLAG-Theorie beschreibt Phänomen Supraleitung, gibt aber keine mikroskopische Erklärung

Beschreibung von räumlich homogenem Supraleiter ohne Magnetfeld

- Beschreibung des Übergangs in den supraleitenden Zustand im Rahmen der Landau-Theorie der Phasenübergänge (vergleiche Teil 14, Ferroelektrizität)
- Entwicklung der freien Enthalpiedichte nach Potenzen des Ordnungsparameters Ψ mit $|\Psi(\mathbf{r})|^2 = |\Psi_0(\mathbf{r})|^2 = n_s(\mathbf{r}) = const.$

$$g_s = g_n + \alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \cdots$$
 mit $\alpha(T) = \overline{\alpha}\left(\frac{T}{T_c} - 1\right)$ und $\overline{\alpha} > 0$, $\beta(T) = const.$

- im thermodynamischen Gleichgewicht muss g_s minimal sein

$$\frac{\partial g_s}{\partial |\Psi|} = 0 \quad \Rightarrow |\Psi_0(T)|^2 = -\frac{\alpha(T)}{\beta} \quad \Longrightarrow \quad n_s(T) = |\Psi_0(T)|^2 = -\frac{\alpha(T)}{\beta} = \frac{\overline{\alpha}}{\beta} \left(1 - \frac{T}{T_c}\right)$$

– physikalische Bedeutung der Entwicklungskoeffizienten

$$\mathcal{G}_n - \mathcal{G}_s = \frac{B_{\text{cth}}^2(T)}{2\mu_0} = -\alpha(T)|\Psi_0(T)|^2 - \frac{1}{2}\beta|\Psi_0(T)|^4 - \dots = -\frac{1}{2}\frac{\alpha^2(T)}{\beta} = -\frac{\bar{\alpha}^2}{2\beta}\left(1 - \frac{T}{T_c}\right)^2 = n_s(0)\bar{\alpha}\left(1 - \frac{T}{T_c}\right)^2$$

Kondensationsenergie

→ $\bar{\alpha} = \left[\frac{B_{cth}^2(0)}{2\mu_0}\right] / n_s(0)$ entspricht der Kondensationsenergie pro supraleitendem Ladungsträger

Beschreibung von räumlich homogenem Supraleiter ohne Magnetfeld

Beschreibung von räumlich inhomogenem Supraleiter im externen Magnetfeld

- Entwicklung der freien Enthalpiedichte nach Potenzen des Ordnungsparameters Ψ mit $|\Psi(\mathbf{r})|^2 = n_s(\mathbf{r}) \neq const.$

$$\mathcal{G}_{s} = \mathcal{G}_{n} + \alpha |\Psi|^{2} + \frac{1}{2}\beta |\Psi|^{4} + \frac{1}{2\mu_{0}}(\mathbf{B}_{ext} - \mathbf{b})^{2} + \frac{1}{2m_{s}}\left[\left(\frac{\hbar}{i}\nabla - q_{s}\mathbf{A}\right)\Psi\right]^{2} + \cdots$$

$$\frac{1}{2m_{s}}\left[\hbar^{2}(\nabla|\Psi|)^{2} + \left(\frac{\hbar\nabla\theta - q_{s}A}{m_{s}v_{s}}\right)^{2}|\Psi|^{2}\right] \quad \text{für } \Psi = |\Psi|e^{i\theta}$$
Differenz zwischen innerer Flussdichte **b** und von
außen erzeugter Flussdichte **B**_{ext}
Amplitudengradient
$$\frac{1}{m_{s}v_{s}^{2} \cdot n_{s}}$$

- → für Meißner-Phase: $\mathbf{b} = 0$, Beitrag ergibt Feldverdrängungsarbeit $B_{ext}^2/2\mu_0$
- → für Shubnikov-Phase: $\mathbf{b} > 0$, Beitrag ist kleiner als $B_{\text{ext}}^2/2\mu_0$

Beitrag verhindert, dass starke räumliche Variationen der Amplitude oder Phase des OP auf kurzen Längenskalen auftreten können

- → räumliche Variationen des OP kosten Energie
- → Steifigkeit des Ordnungsparameters

Herleitung der Ginzburg-Landau Gleichungen durch Minimierung der freien Enthalpie

- Integration der freien Enthalpiedichte g_s über gesamtes Volumen von Supraleiter

$$\mathcal{G}_s = \int_V \mathcal{G}_s \, dV = \int_V \mathcal{G}_n + \alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{1}{2\mu_0} (\mathbf{B}_{\text{ext}} - \mathbf{b})^2 + \frac{1}{2m_s} \left| \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A} \right) \Psi \right|^2 + \cdots \, dV$$

- Minimierung von G_s bezüglich Änderungen von Ψ und **A** unter Berücksichtigung von Randbedingungen (z.B. keine Ströme durch Oberfläche)
- Rechnung (siehe z.B. Gross & Marx, Festkörperphysik, 3. Auflage, S. 818 ff) führt auf Ginzburg-Landau Gleichungen

$$0 = \frac{1}{2m_s} \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A} \right)^2 \Psi + \alpha \Psi + \beta |\Psi|^2 \Psi$$

1. Ginzburg-Landau Gleichung

$$\mathbf{J}_{s} = \frac{q_{s}\hbar}{2m_{s}} \frac{1}{i} (\Psi^{\star} \nabla \Psi - \Psi \nabla \Psi^{\star}) - \frac{q_{s}^{2}}{m_{s}} |\Psi|^{2} \mathbf{A}$$

2. Ginzburg-Landau Gleichung

- GL-Gleichungen sind invariant unter Eichtransformationen $\mathbf{A}' \to \mathbf{A} + \nabla \chi$, $\phi' \to \phi \frac{\partial \chi}{\partial t}$, $\theta' \to \theta + \frac{q_s}{\hbar} \chi$
- GL-Gleichungen sind nichtlinear → reichhaltiges Lösungsspektrum

Vergleich der Ergebnisse von Ginzburg-Landau Theorie und makroskopischem Quantenmodell

makroskopisches Quantenmodell

i. Strom-Phasen-Beziehung

$$\mathbf{J}_{s}(\mathbf{r},t) = q_{s}n_{s}(\mathbf{r},t) \left\{ \frac{\hbar}{m_{s}} \nabla \theta(\mathbf{r},t) - \frac{q_{s}}{m_{s}} \mathbf{A}(\mathbf{r},t) \right\}$$

bei Herleitung wird $|\Psi(r,t)|^2 = n_{\scriptscriptstyle S}(r,t)$ als räumlich konstant angenommen

ii. Energie-Phasen-Beziehung

$$\hbar \frac{\partial \theta(\mathbf{r},t)}{\partial t} = -\left\{\frac{1}{2n_s}\Lambda J_s^2(\mathbf{r},t) + q_s\phi_{\rm el}(\mathbf{r},t) + \mu(\mathbf{r},t)\right\}$$

iii.

keine entsprechende Gleichung, da $\Psi(r,t)$ als räumlich constant angenommen wurde

GL Theorie kann Situationen mit räumlich variierendem OP beschreiben, aber keine zeitabhängigen Phänomene (Gleichungen enthalten keine Zeitableitung)

makroskopisches Quantenmodell kann Situationen mit ortsabhängiger Dichte der supraleitenden Elektronen nicht beschreiben, dafür aber zeitabhängige Phänomene (z.B. Josephson Effekt)

Charakteristische Längenskalen

2. Ginzburg-Landau Gleichung

$$\mathbf{J}_{s} = \frac{q_{s}\hbar}{2m_{s}} \frac{1}{i} (\Psi^{*} \nabla \Psi - \Psi \nabla \Psi^{*}) - \frac{q_{s}^{2}}{m_{s}} |\Psi|^{2} \mathbf{A}$$

1. Ginzburg-Landau Gleichung

$$0 = \frac{1}{2m_s} \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A} \right)^2 \Psi + \alpha \Psi + \beta |\Psi|^2 \Psi$$

$$\lambda_{\rm GL} = \sqrt{-\frac{m_s\beta}{\mu_0\alpha q_s^2}} = \sqrt{\frac{m_s}{\mu_0 n_s q_s^2}} \quad \begin{array}{l} \textbf{Ginzburg-Landau Eindringtiefe} \\ \text{mit} - \alpha(T) = \bar{\alpha} \left(1 - \frac{T}{T_c}\right) \text{und} n_s(T) = -\alpha(T)/\beta \end{array}$$

Normalisierung ($\psi=\Psi/\Psi_0$) und benutzen von $n_s=|\Psi_0|^2=-lpha/eta$ liefert

$$0 = \frac{1}{2m_s} \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A}\right)^2 \psi + \alpha \psi + \alpha |\psi|^2 \psi \implies 0 = \frac{\hbar^2}{2m_s \alpha} \left(\frac{1}{i} \nabla - \frac{q_s}{\hbar} \mathbf{A}\right)^2 \psi + \psi + |\psi|^2 \psi$$

$$\xi_{GL} = \sqrt{-\frac{\hbar^2}{2m_s \alpha}} \qquad \textbf{Ginzburg-Landau Kohärenzlänge}$$

$$\text{mit} -\alpha(T) = \bar{\alpha} \left(1 - \frac{T}{T_c}\right)$$

- physikalische Interpretation der charakteristischen Längenskalen:

- $\blacktriangleright GL-Eindringtiefe \ \lambda_{GL}: Abschirmung von r

 aumlichen Variationen der lokalen Flussdichte auf Skala < \lambda_L kostet Energie, welche die Kondensationsenergiedichte B^2_{cth}/2\mu_0

 übersteigt$
- > *GL-Kohärenzlänge* ξ_{GL} : räumlichen Variation der Amplitude oder Phase des OPs auf Skala $< \xi_{GL}$ kostet Energie, welche die Kondensationsenergiedichte $B_{cth}^2/2\mu_0$ übersteigt

Charakteristische Längenskalen

Supraleiter	$\xi_{GL}(0)$ (nm)	$\lambda_L(0)$ (nm)	κ
Al	1600	50	0.03
Cd	760	110	0.14
In	1100	65	0.06
Nb	106	85	0.8
NbTi	4	300	75
Nb ₃ Sn	2.6	65	25
NbN	5	200	40
Pb	100	40	0.4
Sn	500	50	0.1

typische Werte der charakteristischen Längenskalen liegen im Bereich zwischen wenigen Nanometern und $1 \, \mu$ m

Ginzburg-Landau-Parameter

– Verhältnis der charakteristischen Längenskalen:

$$\kappa \equiv \frac{\lambda_{\rm GL}}{\xi_{\rm GL}} = \sqrt{\frac{2m_s^2\beta}{\mu_0\hbar^2 q_s^2}} = \sqrt{\frac{\beta}{2\mu_0}} \frac{1}{\mu_{\rm B}}$$
$$\mu_{\rm B} = q_s\hbar/2m_s$$

Ginzburg-Landau-Parameter κ

– wir benutzen:

$$\mathcal{G}_n - \mathcal{G}_s = \frac{B_{\rm cth}^2(T)}{2\mu_0} = \frac{\bar{\alpha}^2}{2\beta} \left(1 - \frac{T}{T_c}\right)^2 \quad \Rightarrow B_{\rm cth}^2(T) = \frac{\mu_o \bar{\alpha}^2}{\beta} \left(1 - \frac{T}{T_c}\right)^2$$

– Auflösen nach B_{cth} ergibt:

$$B_{\rm cth}(T) = \frac{\Phi_0}{2\pi\sqrt{2} \ \xi_{\rm GL}(0) \ \lambda_{\rm GL}(0)} \left(1 - \frac{T}{T_c}\right)$$

Veranschaulichung der Bedeutung von $\xi_{\rm GL}$ anhand von Supraleiter-Normalleiter-Grenzfläche

– Annahmen: Supraleiter erstreckt sich in Halbraum x > 0, $\psi(x = 0) = 0$, kein Magnetfeld: $\mathbf{A} = 0$

$$0 = \frac{\hbar^2}{2m_s\alpha} \left(\frac{1}{i} \nabla - \frac{q_s}{\hbar} \mathbf{A}\right)^2 \psi + \psi + |\psi|^2 \psi \quad \Longrightarrow \quad 0 = \frac{1}{\xi_{\rm GL}^2} \frac{\partial^2 \psi}{\partial x^2} + \psi - |\psi|^2 \psi$$

- mit Randbedingungen $\psi(x = 0) = 0$ und $\psi(x = \infty) = 1$ erhalten wir die Lösung (Beweis durch Einsetzen in DGL)

$$\psi(x) = \tanh\left(\frac{x}{\sqrt{2}\,\xi_{\rm GL}}\right)$$

$$\frac{n_s(x)}{n_s(\infty)} = |\psi(x)|^2 = \tanh^2\left(\frac{x}{\sqrt{2}\,\xi_{\rm GL}}\right)$$

- Wichtig:

 $|\psi(x)|^2$ steigt auf charakteristischer Längenskala $\xi_{\rm GL}$ von Null auf eins an, $B_{\rm ext,z}$ klingt in SL exponentiell auf charakteristischer Längenskala $\lambda_{\rm GL}$ ab

17

13.4.1 Mischzustand und kritische Felder

- Typ-I Supraleiter zeigen perfekte Feldverdrängung (Meißner-Phase) für $B_{\text{ext}} \leq B_{\text{cth}}$
- Typ-II Supraleiter zeigen perfekte Feldverdrängung (Meißner-Phase) nur für $B_{ext} \le B_{c1}$ und partielle Feldverdrängung in Feldbereich $B_{c1} < B_{ext} < B_{c2}$ (Mischzustand), wobei $B_{c1} < B_{c2}$

18

13.4.2 Grenzflächenenergie von Supraleiter-Normalleiter-Grenzfläche

- in der Shubnikov-Phase (Mischzustand) koexistieren supraleitende und normalleitende Bereiche
 - → Wie sieht die räumliche Aufteilung aus? Welche Energie ist mit Grenzflächen verbunden?
 - möglichst große Grenzfläche, falls Grenzflächenenergie < 0 (Analogie: Alkohol/Wasser)</p>
 - möglichst kleine Grenzfläche, falls Grenzflächenenergie > 0 (Analogie: Öl/Wasser)

Abschätzung der Grenzflächenenergie

(wir nehmen zur Vereinfachung den gestrichelten Verlauf von $|\psi(x)|^2$ und $B_z(x)$ an)

Ersparnis an Feldverdrängungsarbeit (pro Flächeneinheit)

$$\Delta E_B \simeq -\frac{B_{\text{ext}}^2 V}{2\mu_0 F} = -\frac{B_{\text{ext}}^2}{2\mu_0} \lambda_{\text{GL}} = -\frac{B_{\text{cth}}^2}{2\mu_0} \left(\frac{B_{\text{ext}}}{B_{\text{cth}}}\right)^2 \lambda_{\text{GL}}$$

Verlust an Kondensationsenergie (pro Flächeneinheit)

$$\Delta E_C \simeq [g_n - g_s] \frac{V}{F} = \frac{B_{\rm cth}^2}{2\mu_0} \xi_{\rm GL}$$

> Grenzflächenenergie

$$\Delta E_{\rm Grenz} = \Delta E_C + \Delta E_B \simeq \frac{B_{\rm cth}^2}{2\mu_0} \left[\xi_{\rm GL} - \left(\frac{B_{\rm ext}}{B_{\rm cth}} \right)^2 \lambda_{\rm GL} \right]$$

13.4.2 Normalisierte Grenzflächenenergie pro Längeneinheit (\equiv Energiedichte)

13.4.2 Diskussion der Grenzflächenenergie von Supraleiter-Normalleiter-Grenzfläche

$$\Delta E_{\rm Grenz} = \Delta E_C + \Delta E_B \simeq \frac{B_{\rm cth}^2}{2\mu_0} \left[\xi_{\rm GL} - \left(\frac{B_{\rm ext}}{B_{\rm cth}} \right)^2 \lambda_{\rm GL} \right]$$

. Typ-I Supraleiter: $\xi_{\mathrm{GL}} \geq \lambda_{\mathrm{GL}}$

- ➢ Grenzflächenenergie ist immer positiv für $B_{\text{ext}} ≤ B_{\text{cth}}$
 - → Vermeidung von Grenzflächen, perfekte Feldverdrängung (Meißner-Zustand) über gesamten Feldbereich bis zu $B_{\text{ext}} = B_{\text{cth}}$

I. Typ-II Supraleiter: $\xi_{GL} < \lambda_{GL}$

- ➢ Grenzflächenenergie ist immer positiv für $B_{ext} ≤ B_{c1} < B_{cth}$
 - → Vermeidung von Grenzflächen, perfekte Feldverdrängung (Meißner-Zustand) über Feldbereich bis zu $B_{ext} = B_{c1}$
- ➢ Grenzflächenenergie ist negativ für $B_{ext} > B_{c1}$
 - → Bildung von Mischzustand, da durch Bildung von N/S-Grenzflächen Energie abgesenkt werden kann
 - ➔ Aufteilung des magnetischen Flusses in möglichst kleine Portionen (Maximierung der Grenzfläche, untere Schranke wird durch Flussquant gesetzt)
 - → Typ-II SL kann bis zu Feld $B_{c2} > B_{cth}$ in supraleitendem Zustand bleiben, da Feldverdrängungsarbeit reduziert ist
- genaue Rechnung liefert

$$\begin{split} \kappa &= \lambda_{\rm GL} / \xi_{\rm GL} \leq 1/\sqrt{2} \quad {\rm Typ-I} \ {\rm Supraleiter} \\ \kappa &= \lambda_{\rm GL} / \xi_{\rm GL} \geq 1/\sqrt{2} \quad {\rm Typ-II} \ {\rm Supraleiter} \end{split}$$

Zusammenfassung: Teil 27a, 01.06.2021/1

- Phänomenologische Modelle: C. Ginzburg-Landau-Theorie
 - London-Theorie gut geeignet zur Beschreibung von räumlich homogenem SL: $n_s(r) = const.$
 - → Problem bei **Oberflächen** und **Grenzflächen**, **Typ-II SL**,
 - GL-Theorie: Weiterentwicklung der Landau-Theorie der Phasenübergänge:
 - \blacktriangleright Ginzburg & Landau führen einen *komplexen, räumlich variierenden Ordnungsparameter* $\Psi(r)$ ein
 - → Absolutquadrat des Ordnungsparameters: $|\Psi(r)|^2 = n_s(r)$

homogener SL im Nullfeld (analog zur Diskussion von Ferroelektrizität und Ferromagnetismus)

ightarrow Entwicklung der freien Enthalpiedichte \mathcal{G}_s nach Potenzen des

komplexen, räumlich variierenden Ordnungsparameters Y

 $\mathcal{G}_{s} = \mathcal{G}_{n} + \alpha |\Psi|^{2} + \frac{1}{2}\beta |\Psi|^{4} + \cdots \quad \text{mit } \alpha(T) = \bar{\alpha}\left(\frac{T}{T_{c}} - 1\right) \text{ und } \bar{\alpha} = \left[\frac{B_{\text{cth}}^{2}(0)}{2\mu_{0}}\right] / n_{s}(0) \quad \text{(Kondensationsenergie pro supraleitendem LT)}$

inhomogener SL im Magnetfeld:

$$g_s = g_n + \alpha |\Psi|^2 + \frac{1}{2}\beta |\Psi|^4 + \frac{1}{2\mu_0}(\mathbf{B}_{\text{ext}} - \mathbf{b})^2 + \frac{1}{2m_s} \left| \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A} \right) \Psi \right|^2 + \cdots$$

Feldverdrängungsarbeit $(\mu_0 \mathbf{M})^2$

räumliche Variation von Ψ

 $\propto (B_{ext}-b)^2$: Differenz zwischen der von außen erzeugten Flussdichte B_{ext} und der inneren Flussdichte b(r)

- Meißner-Zustand: $\mathbf{b} = 0$

→ Feldverdrängungsarbeit $B_{\rm ext}^2/2\mu_0$

entspricht Beitrag in niedrigster Ordnung von $\nabla\Psi,$ der sowohl reell als auch eichinvariant ist

mit $\Psi = |\Psi(\mathbf{r})|e^{i\theta(\mathbf{r})}$ kann Term umgeschrieben werden

in:
$$\frac{1}{2m_s} \left[\hbar^2 (\nabla |\Psi|)^2 + (\hbar \nabla \theta - q_s A)^2 |\Psi|^2\right]$$

→ räumliche Variation von Amplitude oder Phase des OP erhöht Energie → endliche "Steifigkeit" des OPs

Zusammenfassung: Teil 27b, 01.06.2021/1

• Ginzburg-Landau (GL) Gleichungen

- Minimierung der freien Enthalpie durch Variation von A und Ψ führt auf *GL-Gleichungen*:

1. *GL-Gleichung*
$$0 = \frac{1}{2m_s} \left(\frac{\hbar}{i} \nabla - q_s \mathbf{A}\right)^2 \Psi + \alpha \Psi + \beta |\Psi|^2 \Psi \implies GL-Kohärenzlänge \xi_{GL}$$

- 2. GL-Gleichung $\mathbf{J}_{s} = \frac{q_{s}\hbar}{2m_{s}}\frac{1}{i}(\Psi^{*}\nabla\Psi \Psi\nabla\Psi^{*}) \frac{q_{s}^{2}}{m_{s}}|\Psi|^{2}\mathbf{A} \implies Magnetfeld-Eindringtiefe \lambda_{GL}$
 - > 2. GL-Gleichung entspricht für $|\Psi(\mathbf{r})|^2 = n_s(\mathbf{r}) = const.$ der Strom-Phasen-Beziehung

$$\mathbf{J}_{s}(\mathbf{r},t) = q_{s}n_{s}\left\{\frac{\hbar}{m_{s}}\boldsymbol{\nabla}\theta(\mathbf{r},t) - \frac{q_{s}}{m_{s}}\mathbf{A}(\mathbf{r},t)\right\}$$

- wichtig:

GL Theorie kann Situationen mit räumlich variierendem OP beschreiben, aber keine zeitabhängigen Phänomene (GL-Gleichungen enthalten keine Zeitableitung)

makroskopisches Quantenmodell kann Situationen mit ortsabhängiger Dichte der supraleitenden Elektronen nicht beschreiben, dafür aber zeitabhängige Phänomene (Energie-Phasen-Beziehung \rightarrow z.B. Josephson Effekt)

• charakteristische Längenskalen

(i) London-Eindringtiefe: Variation der Flussdichte $\lambda_{\rm GL}(T) = \sqrt{-\frac{m_s\beta}{\mu_0\alpha(T)q_s^2}} = \sqrt{-\frac{m_s\beta}{\mu_0\bar{\alpha}q_s^2}} \frac{1}{\sqrt{1-T/T_c}}$ (ii) Kohärenzlänge:Variation desOrdnungsparameters

 $\xi_{\rm GL}(T) = \sqrt{-\frac{\hbar^2}{2m_s \alpha(T)}} = \sqrt{\frac{\hbar^2}{2m_s \bar{\alpha}} \frac{1}{\sqrt{1 - T/T_c}}}$

- physikalische Interpretation der charakteristischen Längenskalen:
 - λ_{GL} : räuml. Variation der lokalen Flussdichte b(r) auf Skala $\Delta x < \lambda_{GL}$ kostet $\Delta E > B_{cth}^2/2\mu_0$
 - \succ ξ_{GL} : räuml. Variation der Amplitude oder Phase des OPs $\Psi(r)$ auf Skala $\Delta x < \xi_{GL}$ kostet $\Delta E > B_{cth}^2/2\mu_0$
 - typische Werte von $\lambda_{
 m GL}(0)$ und $\xi_{
 m GL}(0)$: 10 nm bis 1 μ m

Zusammenfassung: Teil 27c, 01.06.2021/1

• Ginzburg-Landau Parameter

$$\kappa \equiv rac{\lambda_{
m GL}}{\xi_{
m GL}} = \sqrt{rac{2m_s^2\beta}{\mu_0\hbar^2q_s^2}} = \sqrt{rac{\beta}{2\mu_0}} rac{1}{\mu_{
m B}}$$

Supraleiter/Normalleiter-Grenzfläche

$$|\psi(x)|^{2} = \frac{n_{s}(x)}{n_{s}(\infty)} = \tanh^{2}\left(\frac{x}{\sqrt{2}\xi_{GL}}\right)$$
$$\frac{b(x)}{B_{ext}} = \exp\left(-\frac{x}{\lambda_{L}}\right)$$

Grenzflächenenergie

$$\Delta E_{\rm Grenz} = \Delta E_C + \Delta E_B \simeq \frac{B_{\rm cth}^2}{2\mu_0} \left[\xi_{\rm GL} - \left(\frac{B_{\rm ext}}{B_{\rm cth}} \right)^2 \lambda_{\rm GL} \right]$$

$$\begin{aligned} \xi_{\text{GL}} > \lambda_{\text{GL}}: & \Delta E_{\text{grenz}} > 0 \text{ für } 0 \leq B_{\text{ext}} \leq B_{\text{cth}} \\ & \rightarrow \text{ Grenzflächen ungünstig } \rightarrow \text{ Meißner-Zustand für } 0 \leq B_{\text{ext}} \leq B_{\text{cth}} \rightarrow \textbf{Typ-I-Supraleiter} \end{aligned}$$

 $\xi_{GL} < \lambda_{GL}: \Delta E_{grenz} < 0 \text{ für } B_{c1} \le B_{ext} \le B_{c2}$ $\Rightarrow \text{ Grenzflächen günstig } \Rightarrow \text{ Mischzustand für } B_{c1} \le B_{ext} \le B_{c2} \Rightarrow \text{ Typ-II-Supraleiter}$

• Typ-I und Typ-II Supraleiter

$$\begin{aligned} \mathbf{Typ-I:} & B_i = 0 \text{ und } -\mu_0 M = B_{\text{ext}} \text{ für } B_{\text{ext}} \leq B_{\text{cth}} \\ B_i = B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{\text{cth}} \\ \mathbf{Typ-II:} & B_i = 0 \text{ und } -\mu_0 M = B_{\text{ext}} \text{ für } B_{\text{ext}} \leq B_{c1} \\ 0 < B_i < B_{\text{ext}} \text{ und } -\mu_0 M < B_{\text{ext}} \text{ für } B_{\text{ct}} < B_{\text{ext}} < B_{c2} \end{aligned}$$

$$\begin{aligned} B_i &= B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{c2} \end{aligned}$$

$$\begin{aligned} B_i &= B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{c2} \end{aligned}$$

$$\begin{aligned} B_i &= B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{c2} \end{aligned}$$

$$\begin{aligned} B_i &= B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{c2} \end{aligned}$$

$$\begin{aligned} B_i &= B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{c2} \end{aligned}$$

$$\begin{aligned} B_i &= B_{\text{ext}} \text{ und } -\mu_0 M &\simeq 0 \text{ für } B_{\text{ext}} > B_{c2} \end{aligned}$$