Physik der Kondensierten Materie 2

Rudolf Gross

SS 2021

Teil 29

Vorlesungsstunde: 07.06.2021-1

Zusammenfassung: Teil 28a, 01.06.2021/2

oberes und unteres kritisches Feld

einfache Abschätzung:

$$B_{c1} \simeq \frac{\Phi_0}{\pi \lambda_{\rm L}^2}$$
$$B_{c2} \simeq \frac{\Phi_0}{\pi \xi_{\rm GL}^2}$$

genaue Rechnung liefert:

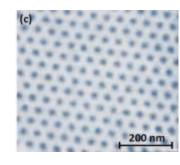
$$B_{c2} \simeq \frac{\Phi_0}{\pi \xi_{\rm GL}^2}$$

$$B_{c1} = \frac{\Phi_0}{4\pi\lambda_{\rm L}^2} (\ln \kappa + 0.08) = \frac{1}{\sqrt{2}\kappa} (\ln \kappa + 0.08) B_{\rm cth}$$

$$B_{c2} = \frac{\Phi_0}{4\pi\xi_{\rm GL}^2} = \sqrt{2} \,\kappa \,B_{\rm cth}$$

Flussliniengitter

- Fluss wird in möglichst viele kleine Portionen aufgeteilt, um Grenzfläche groß zu machen
- untere Schranke setzt Flussquant Φ_0
- Flusslinien stoßen sich ab → möglichst großer Abstand
 - \rightarrow hexagonales Flussliniengitter aus Flusslinien mit Flussinhalt Φ_0
 - → Abrikosov-Vortex-Gitter



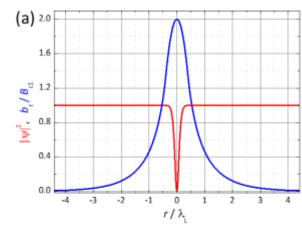
• Flusslinien in Typ-II Supraleitern

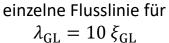
Radialer Verlauf von $n_s(r) = |\Psi(r)|^2$

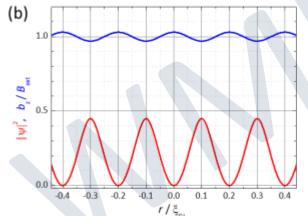
$$\Psi(r) = \Psi_{\infty} \tanh\left(c\frac{r}{\xi_{\rm GL}}\right)$$

Radialer Verlauf von b(r)

$$b(r) = \frac{\Phi_0}{2\pi\lambda_{\rm GL}^2} \mathcal{K}_0 \left(\frac{r}{\lambda_{\rm GL}}\right)$$







Flussliniengitter für $B_{\text{ext}} = 0.6 B_{c2}$ $\lambda_{\rm GL} = 10 \, \xi_{\rm GL}$

Zusammenfassung: Teil 28b, 01.06.2021/2

Mikroskopische Theorie

- Problem: (i) kinetische Energie der Leitungselektronen: ≈ einige eV (bzw. einige 10 000 K)
 - (ii) WW-Stärke: ≈ einige meV (bzw. einige Kelvin)
 - → finde WW, die trotz hoher kinetischer Energie zu Ordnung in Elektronensystem führt
- Cooper (1956): selbst schwache attraktive WW zwischen Leitungselektronen führt zu Instabilität des Fermi-Gases

→ Paarbildung → Cooper-Paare

- allgemeine Beschreibung von WW mit Feynman-Diagramm:
 - → welches *Austauschboson* führt in Festkörper zu attraktiver WW zwischen Leitungselektronen?
 - → Phonon, Magnon, Polariton, Plasmon, Polaron, Bipolaron, etc. ??

• *Isotopen-Effekt (1951/1952):*

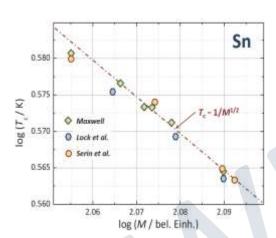
- Sprungtemperatur von Sn-Isotopen: $T_c \propto 1/\sqrt{M}$ da Phononenfrequenz $\omega_{\rm ph} \propto 1/\sqrt{M}$

 $\rightarrow T_c \propto \omega_{\rm nh}$

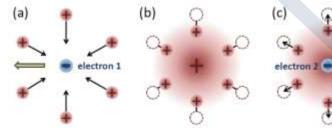
falls attraktive WW auf Austausch virtueller Phononen basiert

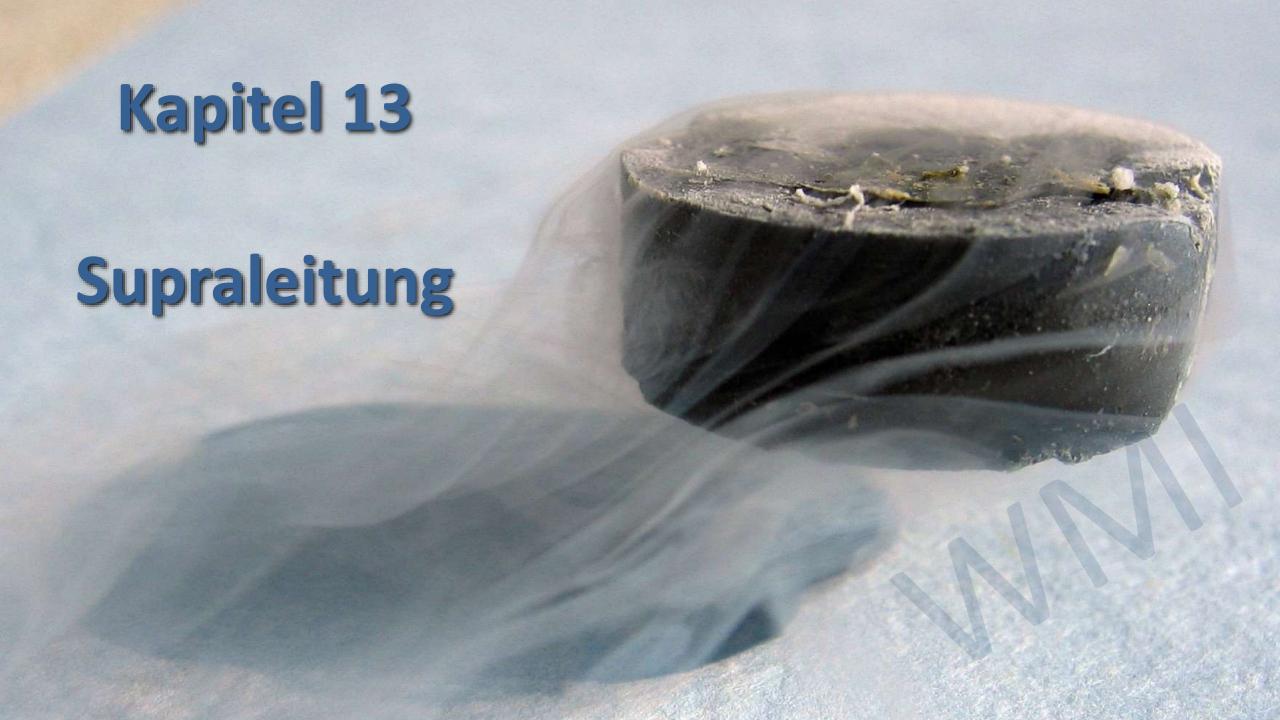
BCS-Theorie

- qualitative Diskussion der WW: träge Reaktion der Ionen → retardierte Wechselwirkung
- Reichweite der Wechselwirkung $\simeq v_{\rm F} \tau \simeq v_{\rm F}/\Omega_{\rm D}$ $v_{\rm F} \simeq 10^6 {\rm m/s}$, $\Omega_{\rm D} \simeq 10^{13} {\rm s}^{-1}$ \rightarrow Reichweite $\simeq 100 {\rm nm}$



 $k_1+q_1\sigma_1$





Grundlegendes

intuitive Annahme:

Supraleitung resultiert aus *Ordnungphänomen der Leitungselektronen*

Problem:

- Leitungselektronen haben *sehr große (Fermi) Geschwindigkeit* aufgrund von Pauli-Prinzip:
 - $\simeq 10^6$ m/s $\simeq 0.01$ c
- die entsprechende (Fermi) Temperatur liegt oberhalb von 10 000 K
- im Gegensatz dazu liegt die supraleitende Sprungtemperatur im Bereich von 1 − 10 K (≈ meV)

Aufgabe:

- finde *Wechselwirkungsmechanismus*, der in Ordnung der Leitungselektronen trotz ihrer hohen kinetischen Energie resultiert
- die ersten Versuche schlugen fehlt:
 - → Coulomb-Wechselwirkung (Heisenberg, 1947)
 - → magnetische Wechselwirkung (Welker, 1929)
 - **→**
- BCS-Theorie: Elektron-Elektron-Wechselwirkung durch Austausch virtueller Phononen

Zwischen welchen Elektronen wird die attraktive Wechselwirkung maximal?

– Gedankenexperiment:

- \triangleright wir addieren 2 zusätzliche Elektronen zu Fermi-Gas bei T=0
- Elektronen können durch Austausch von Phononen wechselwirken

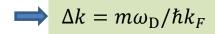
– Streuprozesse:

- ightharpoonup Elektron 1: $\mathbf{k}_1 \to \mathbf{k}_1' = \mathbf{k}_1 + \mathbf{q}$
- ightharpoonup Elektron 2: $\mathbf{k_2} \rightarrow \mathbf{k'_2} = \mathbf{k_2} \mathbf{q}$
- ightharpoonup Gesamtimpuls: $K = k_1 + k_2 = k'_1 + k'_2 = K'$

- Fermi-Gas bei T=0:

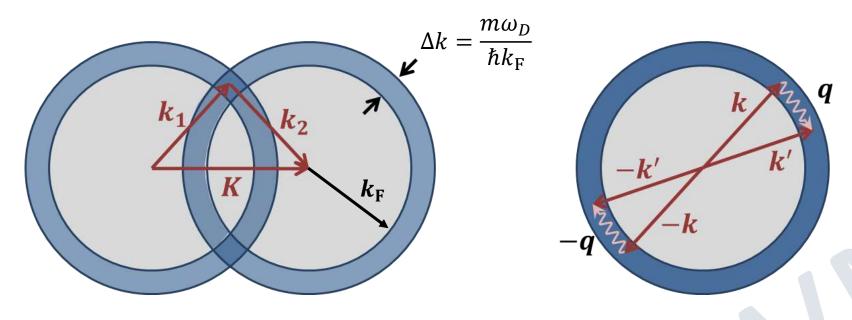
- \triangleright nur Zustände mit $E > E_{\rm F}$ sind zugänglich
- \succ da $\omega_{\rm ph} < \omega_{\rm D}$, spielt sich WW in Energieintervall $[E_{\rm F}, E_{\rm F} + \hbar\omega_{\rm D}]$ ab
- ➤ zugehöriger *k*-Raum-Bereich:

$$\frac{\hbar^2 k_{\rm F}^2}{2m} + \hbar \omega_{\rm D} = \frac{\hbar^2 (k_{\rm F} + \Delta k)^2}{2m} \simeq \frac{\hbar^2 (k_{\rm F}^2 + 2k_{\rm F} \Delta k)}{2m}$$



Zwischen welchen Elektronen wird die attraktive Wechselwirkung maximal?

- **Erhaltung des Gesamtimpulses**
 - ightharpoonup Wellenvektoren in Schnittfläche von zwei Kreisscheiben der Dicke Δk liegen
 - \rightarrow maximale Schnittfläche für K=0



$$K = k_1 + k_2 > 0$$

$$K = k_1 + k_2 = 0$$

WW über Austausch virtueller Phononen ist für Elektronenpaare mit entgegengesetztem Impuls optimal: Cooper-Paare (k, -k)

Abschätzung der Cooper-Paar-Wechselwirkung (1)

Ansatz für Paarwellenfunktion: Produkt von ebenen Wellen

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = a \exp(i\mathbf{k}_1 \cdot \mathbf{r}_1) \exp(i\mathbf{k}_2 \cdot \mathbf{r}_2) = a \exp(i\mathbf{k} \cdot \mathbf{r})$$
 mit $\mathbf{k}_1 = -\mathbf{k}_2$ oder $\mathbf{k}_1 = \mathbf{k}$, $\mathbf{k}_2 = -\mathbf{k}$ $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$

- wegen ständiger Streuung in neue Zustände aus Intervall $[k_{
m F},k_{
m F}+\Delta k]$: Überlagerung von Produktwellenfunktionen

$$\Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k=k_{\mathrm{F}}}^{k_{\mathrm{F}} + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \qquad |a_k|^2 = \text{Wahrscheinlichkeit für Realisierung von Elektronenpaar } (\mathbf{k}, -\mathbf{k})$$

- Annahme: Wechselwirkungspotenzial $V({f r})$ hängt nur von Relativkoordinate ab ightarrow Schrödinger-Gleichung

$$-\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2\right) \Psi(\mathbf{r}_1, \mathbf{r}_2) + V(\mathbf{r}) \Psi(\mathbf{r}_1, \mathbf{r}_2) = E \Psi(\mathbf{r}_1, \mathbf{r}_2)$$

- Einsetzen von Lösungsansatz, sowie Multiplikation mit $\exp[-i(\mathbf{k}' \cdot \mathbf{r})]$ und Integration über Volumen Ω

$$\int \frac{\hbar^2 k^2}{m} \sum_{k=k_F}^{k_F + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k}' \cdot \mathbf{r})] dV + \int V(\mathbf{r}) \sum_{k=k_F}^{k_F + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k}' \cdot \mathbf{r})] dV = \int E \sum_{k=k_F}^{k_F + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k}' \cdot \mathbf{r})] dV$$

Abschätzung der Cooper-Paar-Wechselwirkung (2)

- Integral über $\exp[i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}]$ verschwindet für $\mathbf{k} \neq \mathbf{k}'$ und ist gleich Ω für $\mathbf{k} = \mathbf{k}'$

$$\int \frac{\hbar^{2}k^{2}}{m} \sum_{k=k_{\mathrm{F}}}^{k_{\mathrm{F}}+\Delta k} a_{k} \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k}' \cdot \mathbf{r})] \, dV + \int V(\mathbf{r}) \sum_{k=k_{\mathrm{F}}}^{k_{\mathrm{F}}+\Delta k} a_{k} \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k}' \cdot \mathbf{r})] \, dV = \int E \sum_{k=k_{\mathrm{F}}}^{k_{\mathrm{F}}+\Delta k} a_{k} \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k}' \cdot \mathbf{r})] \, dV$$

$$\sum_{k'=k_{\mathrm{F}}}^{k_{\mathrm{F}}+\Delta k} a_{k'} \int V(\mathbf{r}) \exp[i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}] \, dV$$
Streuintegral

wir benutzen die Abkürzung

$$V_{\mathbf{k},\mathbf{k}'} = V_{\mathbf{k_1},\mathbf{k_2},\mathbf{q}} = V(\mathbf{k} - \mathbf{k}') = V(\mathbf{q}) = \frac{1}{\Omega} \int V(\mathbf{r}) \exp[i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}] \ dV = \frac{1}{\Omega} \int V(\mathbf{r}) \exp[i\mathbf{q} \cdot \mathbf{r}] \ dV \qquad \text{mit } \mathbf{k_1} = \mathbf{k}, \mathbf{k_2} = -\mathbf{k}, \mathbf{q} = \mathbf{k} - \mathbf{k}'$$

$$\left(E - \frac{\hbar^2 k^2}{m}\right) a_k = \sum_{k'=k_F}^{k_F + \Delta k} a_{k'} V_{\mathbf{k},\mathbf{k}'}$$

ightharpoonup zur Lösung müssen wir alle Matrixelemente $V_{\mathbf{k},\mathbf{k}'}$ kennen

9

Anziehende Wechselwirkung durch Austausch virtueller Phononen: Wie sieht Matrixelement $V_{\mathbf{k},\mathbf{k}'}=V_{\mathbf{k_1},\mathbf{k_2},\mathbf{q}}$ aus?

reine Coulomb-Wechselwirkung:

$$V(\mathbf{q}) = \frac{e^2}{\epsilon_0 q^2}$$

positives Matrixelement → rein repulsive Wechselwirkung

abgeschirmte Coulomb-Wechselwirkung:

$$V(\mathbf{q}, \boldsymbol{\omega}) = \frac{e^2}{\epsilon(\mathbf{q}, \boldsymbol{\omega})\epsilon_0 q^2}$$

negatives Matrixelement falls $\epsilon(\mathbf{q},\omega) < 0$ \Longrightarrow attraktive Wechselwirkung

abgeschirmte Coulomb-Wechselwirkung in Metallen:

$$V(\mathbf{q}, \boldsymbol{\omega}) = \frac{e^2}{\epsilon(\mathbf{q}, \omega)\epsilon_0 q^2} = \left(\frac{e^2}{k_s^2 + q^2}\right) \left(1 + \frac{\omega^2}{\omega^2 - \widetilde{\Omega}^2(\mathbf{q})}\right)$$

Thomas-Fermi-Wellenvektor *q*-abh. Plasmafrequenz der abgeschirmten Ionen in Metall)

$$\widetilde{\Omega}_p^2(\mathbf{q}) = \Omega_p^2(\mathbf{q}) \left[1 + \frac{k_s^2}{q^2} \right]$$

für kleine Energiedifferenz $(E_k-E_{k'})/\hbar=\omega<\widetilde{\Omega}_p({\bf q})$ der beteiligten Elektronen

→ Nenner wird negativ

→ attraktive Wechselwirkung

igoplus Abschneidefrequenz: $\omega = \widetilde{\Omega}_p \simeq \omega_{\mathrm{D}}$ (Debye-Frequenz)

10

Abschätzung der Cooper-Paar-Wechselwirkung (3)

vereinfachende Annahme

$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -V_0 & \text{für } k' > k_{\text{F}}, k < k_{\text{F}} + \Delta k \\ 0 & \text{sonst} \end{cases} \qquad \text{mit } \Delta k = \frac{m\omega_{\text{D}}}{\hbar k_{\text{F}}}$$

$$\left(E - \frac{\hbar^2 k^2}{m}\right) a_k = \sum_{k'=k_F}^{k_F + \Delta k} a_{k'} V_{\mathbf{k},\mathbf{k}'} \qquad \Longrightarrow \qquad a_k = \frac{-V_0}{\left(E - \frac{\hbar^2 k^2}{m}\right)} \sum_{k'=k_F}^{k_F + \Delta k} a_{k'}$$

Aufsummieren über alle k und ausnutzen, dass Ergebnis nicht von Benennung der Summationsindizes abhängt:

$$\sum_{k} a_{k} = \sum_{k'} a_{k'}$$

$$\sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} a_k = V_0 \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} \frac{1}{\left(\frac{\hbar^2 k^2}{m} - E\right)} \sum_{k'=k_{\rm F}}^{k_{\rm F}+\Delta k} a_{k'} \longrightarrow 1 = V_0 \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} \frac{1}{\left(\frac{\hbar^2 k^2}{m} - E\right)}$$

wir führen Paarzustandsdichte $\widetilde{D}(E) = \frac{D(E)}{2} \simeq D(E_{\rm F})/2$ ein und führen Summation in Integration über

$$1 = V_0 \frac{D(E_{\rm F})}{2} \int_{E}^{E_{\rm F} + \hbar \omega_{\rm D}} \frac{d\varepsilon}{(2\varepsilon - E)}$$
 mit $\varepsilon = \frac{\hbar^2 k^2}{2m}$

Abschätzung der Cooper-Paar-Wechselwirkung (4)

Integrieren und Auflösen nach E ergibt

$$1 = V_0 \frac{D(E_{\rm F})}{2} \int_{E_{\rm F}}^{E_{\rm F} + \hbar \omega_{\rm D}} \frac{d\varepsilon}{(2\varepsilon - E)} = V_0 \frac{D(E_{\rm F})}{2} \cdot \frac{1}{2} \ln|2\varepsilon - E| \Big|_{E_{\rm F}}^{E_{\rm F} + \hbar \omega_{\rm D}} \qquad \text{mit } \int \frac{dx}{ax + b} = \frac{1}{a} |ax + b|$$

$$\frac{4}{V_0 D(E_{\rm F})} = \ln|2E_{\rm F} + 2\hbar \omega_{\rm D} - E| - \ln|2E_{\rm F} - E| \qquad \Longrightarrow -\frac{4}{V_0 D(E_{\rm F})} = \ln \frac{|2E_{\rm F} - E|}{|2E_{\rm F} + 2\hbar \omega_{\rm D} - E|}$$

$$\exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right) = \frac{|2E_{\rm F} - E|}{|2E_{\rm F} + 2\hbar\omega_{\rm D} - E|}$$

$$\implies |2E_{\rm F} + 2\hbar\omega_{\rm D} - E| \exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right) = |2E_{\rm F} - E|$$

$$E = 2E_{\mathrm{F}} - 2\hbar\omega_{\mathrm{D}} \frac{\exp\left(-\frac{4}{V_0 D(E_{\mathrm{F}})}\right)}{1 - \exp\left(-\frac{4}{V_0 D(E_{\mathrm{F}})}\right)}$$

$$|2E_{\mathrm{F}} - E| \left[1 - \exp\left(-\frac{1}{V_0 D(E_{\mathrm{F}})}\right) \right] = 2\hbar\omega_{\mathrm{D}} \exp\left(-\frac{1}{V_0 D(E_{\mathrm{F}})}\right)$$

für schwache WW (
$$V_0D(E_{\rm F})\ll 1$$
): $E\simeq 2E_{\rm F}-2\hbar\omega_{\rm D}\exp\left(-\frac{4}{V_0D(E_{\rm F})}\right)$

- Paarbindungsenergie $\propto \hbar \omega_{\rm D}$
- \blacktriangleright da $\hbar\omega_{\rm D}\ll E_{\rm F}$ und $\exp\left(-\frac{4}{V_{\rm O}D(E_{\rm F})}\right)\ll 1$, ist Paarbindungsenergie sehr klein

Abschätzung der Cooper-Paar-Wechselwirkung (5)

Hinweis:

- \triangleright Elektronen mit $k < k_{\rm F}$ können nicht an Wechselwirkung teilnehmen, da alle Zustände für $E < E_{\rm F}$ besetzt sind (keine freien Streuzustände)
- \triangleright Supraleiter löst dieses Problem dadurch, indem er die Fermi-Verteilung selbst bei T=0 aufweicht
 - → Supraleiter muss zunächst kinetische Energie bezahlen, um energetisch höher liegende Zustände zu besetzen und damit Zustände unterhalb von E_{F} frei zu machen
 - → Energieaufwand wird durch gewonnene Paar-Wechselwirkungsenergie (potentielle Energie) überkompensiert
 - → Gesamtenergie wird insgesamt abgesenkt

Abschätzung der Reichweite der Wechselwirkung aus Unschärferelation

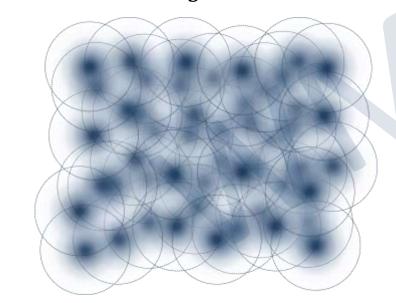
$$\Delta k = \frac{m\omega_{\rm D}}{\hbar k_{\rm F}} = \frac{\omega_{\rm D}}{v_{\rm F}} \quad \Rightarrow \quad \Delta x = \frac{1}{\Delta k} = \frac{v_{\rm F}}{\omega_{\rm D}}$$

- − mit $v_{\rm F} \sim 10^6$ m/s und $ω_{\rm D} \sim 10^{13}~{\rm s}^{-1}$ → Reichweite $R \sim 100$ nm
- die "Größe" eines Copper-Paares ist in etwa durch $\frac{4}{3}\pi R^3$ gegeben:

Wie viele weitere Cooper-Paare halten sich in diesem Volumen auf?

- \triangleright Elektronendichte in Metall: $\sim 10^{28} \, \mathrm{eV^{-1} m^{-3}}$
- \succ relevantes Energieintervall: $\hbar\omega_{\rm D}\sim 0.1~{\rm eV}$
- → starker räumlicher Überlapp der Cooper-Paare
- → Ausbildung von *kohärentem Vielteilchenzustand*

$$N = 10^{-28} \cdot 0.1 \cdot \frac{4}{3} \pi (10^{-7})^3 \sim 10^{8}$$



13.5.1 Symmetrie der Paarwellenfunktion

Welche Symmetrie besitzt die Paarwellenfunktion?

Wichtig: Paar besteht aus Fermionen → antisymmetrische Gesamtwellenfunktion

$$\Psi(\mathbf{r_1}, \mathbf{\sigma_1}, \mathbf{r_2}, \mathbf{\sigma_2}) = \frac{1}{\sqrt{V}} e^{i \, \mathbf{K_s \cdot R_s}} \, f(\mathbf{k}, \mathbf{r}) \, \chi(\mathbf{\sigma_1}, \mathbf{\sigma_2}) = -\Psi(\mathbf{r_2}, \mathbf{\sigma_2}, \mathbf{r_1}, \mathbf{\sigma_1})$$

$$\mathbf{r} = (\mathbf{r_1} - \mathbf{r_2})$$
Schwerpunktbewegung
$$\mathbf{K_s} = (\mathbf{k_1} + \mathbf{k_2})/2$$

$$\mathbf{K_s} = (\mathbf{k_1} + \mathbf{k_2})/2$$
Relativbewegung
$$\mathbf{k} = (\mathbf{k_1} - \mathbf{k_2})$$

mögliche **Spin-Funktionen** $\chi(\sigma_1, \sigma_2)$ für Elektronenpaare

$$S = \begin{cases} 0 & m_S = 0 \\ 1 & m_S = \end{cases} & \chi^a = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow) \\ 0 & \chi^s = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow) \\ +1 & \chi^s = \uparrow \uparrow \end{cases}$$
 Singulett-Paarung, antisymmetrische Spin-Funktion

Singulett-Paarung, antisymmetrische Spin-Funktion

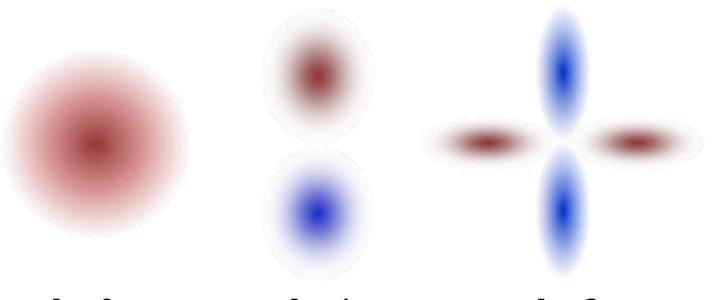
13.5.1 Symmetrie der Paarwellenfunktion

Welche Symmetrie besitzt die Paarwellenfunktion?

- mögliche Kombinationen mit orbitalen Wellenfunktionen $f(\mathbf{k}, \mathbf{r})$

Singulett-Paarung	S = 0	L = 0, 2, 4,
Triplett-Paarung	S = 1	L = 1, 3, 5,

symmetrische orbitale Wellenjunktion antisymmetrische orbitale Wellenfunktion



L=0 s-Wellen-Supraleiter

L=1 p-Wellen-Supraleiter

L=2: d-Wellen-Supraleiter Metallische Supraleiter:

$$S=0$$
, $L=0$

> Hochtemperatur-Supraleiter:

$$S = 0, L = 2$$

➤ Suprafluides ³He:

$$S=1, L=1$$

Zusammenfassung: Teil 29a, 07.06.2021/1

Attraktive Elektron-Elektron-Wechselwirkung

- attraktive WW über Gitterschwingungen (Austausch virtueller Phononen: Fröhlich, Bardeen)
- Streumatrixelement:
- (i) reine Coulomb-WW:

$$V(\mathbf{q}) = \frac{e^2}{\epsilon_0 q^2}$$
 (immer positiv \rightarrow rein repulsive WW)

(ii) abgeschirmte Coulomb-WW:
$$V(\mathbf{q}, \boldsymbol{\omega}) = \frac{e^2}{\epsilon(\mathbf{q}, \omega)\epsilon_0 q^2} = \left(\frac{e^2}{k_s^2 + q^2}\right) \left(1 + \frac{\omega^2}{\omega^2 - \widetilde{\Omega}^2(\mathbf{q})}\right)$$
Thomas-Fermi-

q-abh. Plasmafrequenz der abgeschirmten Ionen in Metall

für kleine Energiedifferenz $E_k-E_{k'}=\hbar\omega<\hbar\widetilde{\Omega}_p({\bf q})$ der beteiligten Elektronen:

→ Nenner wird negativ → negatives Matrixelement → attraktive WW

 \rightarrow Abschneidefrequenz: $\omega = \widetilde{\Omega}_n \simeq \omega_D$ (Debye-Frequenz)

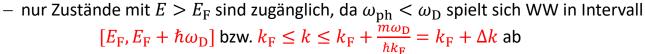
Wellenvektor

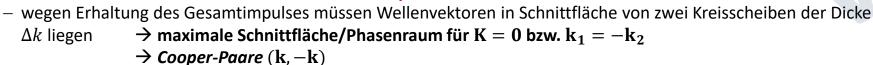
Cooper-Paare

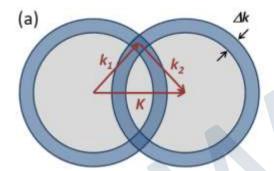
- Gedankenexperiment:

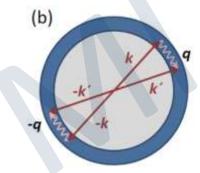
wir addieren 2 zusätzliche Elektronen zu Fermi-Gas bei T=0

- Elektronen können durch Austausch von Phononen mit Wellenzahl q wechselwirken
- Streuung: Elektron 1: $\mathbf{k_1} \rightarrow \mathbf{k_1'} = \mathbf{k_1} + \mathbf{q}$ Elektron 2: $\mathbf{k}_2 \rightarrow \mathbf{k}_2' = \mathbf{k}_2 - \mathbf{q}$ Gesamtimpuls $K = k_1 + k_2 = k'_1 + k'_2 = K'$









Zusammenfassung: Teil 29b, 07.06.2021/1

Cooper-Paar-Wechselwirkung

- Ansatz: Paarwellenfunktion = Überlagerung aus Produktfunktionen $\Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k=k_{\mathrm{F}}}^{k_{\mathrm{F}}+2k} a_k \exp(i\mathbf{k} \cdot \mathbf{r})$ $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$

- Schrödinger-Gleichung:
$$-\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) \Psi(\mathbf{r}_1, \mathbf{r}_2) + V(\mathbf{r}) \Psi(\mathbf{r}_1, \mathbf{r}_2) = E \Psi(\mathbf{r}_1, \mathbf{r}_2)$$

$$- \ \, \text{Vereinfachung:} \qquad \qquad V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -V_0 & \text{für } k' > k_F, k < k_F + \Delta k \\ 0 & \text{sonst} \end{cases} \qquad \text{mit } \Delta k = \frac{m\omega_{\mathrm{D}}}{\hbar k_{\mathrm{F}}}$$

– Gesamtenergie:
$$E\simeq 2E_{\rm F}-2\hbar\omega_{\rm D}\exp\left(-\frac{4}{V_0D(E_{\rm F})}\right)$$
 für schwache WW ($V_0D(E_{\rm F})\ll 1$)

Energieabsenkung proportional zu Phononenenergie $\hbar\omega_{\mathrm{D}}$

− Unschärfe-Relation:
$$\Delta k$$
 $\Delta x \ge 1$ → $\Delta x \le \frac{1}{\Delta k} = \frac{v_F}{\omega_D} \simeq 100$ nm

• Symmetrie der Paar-Wellenfunktion

Fermionen → Gesamtwellenfunktion muss antisymmetrisch sein

				$0 m_{\scriptscriptstyle S} = 0$	$\chi^a = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow)$	Singulett-Paarung
Singulett-Paarung	S = 0	L = 0, 2, 4,	C —		$-1 \chi^s = \downarrow \downarrow$	
Triplett-Paarung	S=1	L = 1, 3, 5,	3 = 4	$1 m_s = $	$0 \qquad \chi^s = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow)$	Triplett-Paarung
					$-1 \chi^s = \uparrow \uparrow$	

- **Beispiele**: metallische SL: S=0, L=0, Hochtemperatur-SL: S=0, L=2, suprafluides ³He: S=1, L=1