Physik der Kondensierten Materie 2

Rudolf Gross
SS 2021
Teil 3

Vorlesungsstunde: 13.04.2021-1

Zusammenfassung: Teil 2a, 12.04.2021/2

- experimentelle Bestimmung der Fermi-Flächen mit Bahnquantisierungeffekten
- (i) de Haas van Alphen Effekt: Oszillation von M(B)

$$M = -rac{1}{V} \left(rac{\partial F}{\partial B}
ight)_{T,V} \simeq -rac{1}{V} \left(rac{\partial U}{\partial B}
ight)_{T,V} \qquad \qquad F = U - TS \simeq U ext{ bei tiefen } T$$

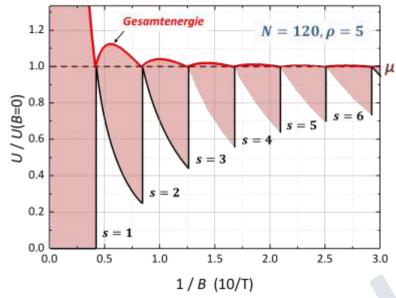
$$F = U - TS \simeq U$$
 bei tiefen T

$$\mathbf{U} = \hbar\omega_c \left[N\left(s + \frac{1}{2}\right) - p\frac{s^2}{2} - p\frac{s}{2} \right]$$
 mit Entartung $p = \frac{L_\chi L_y}{(2\pi)^2} \cdot \frac{2\pi qB}{\hbar}$

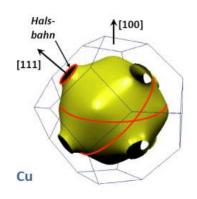
mit Entartung
$$p = \frac{L_x L_y}{(2\pi)^2} \cdot \frac{2\pi q B}{\hbar}$$

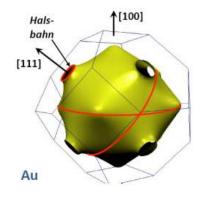
$$\Delta = \left(\frac{1}{B_{n+1}} - \frac{1}{B_n}\right) = \frac{2\pi q}{\hbar S}$$

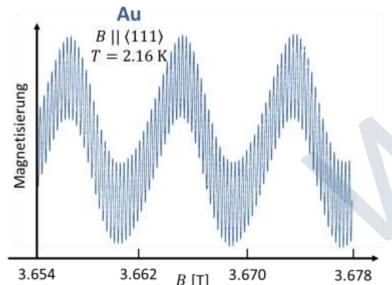
 $\Delta = \left(\frac{1}{B_{n+1}} - \frac{1}{B_n}\right) = \frac{2\pi q}{\hbar S}$ Oszillationsperiode Δ liefert Größe der Extremalfläche $S \perp B$



Extremalbahnen







Zusammenfassung: Teil 2b, 12.04.2021/2

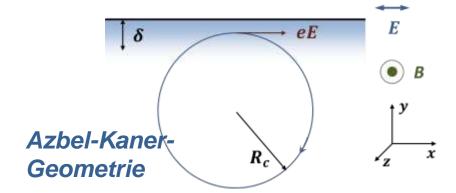
(ii) **Shubnikov - de Haas - Effekt**: Oszillation von *R* als Funktion von *B*

(iii) **Zyklotronresonanz**:

resonante Mikrowellenabsorption bei

$$\omega = n \cdot \omega_c = n \cdot \frac{eB}{m_c}, \qquad n = 1,2,3,...$$

ightharpoonup Zyklotronmasse $m_c = \frac{\hbar^2}{2\pi} \frac{\partial S(k_\perp)}{\partial \epsilon}$



• Klassifizierung von Halbleitern

- intrinsisch

 dotiert, kristallin

 amorph, direkt

 indirekt,

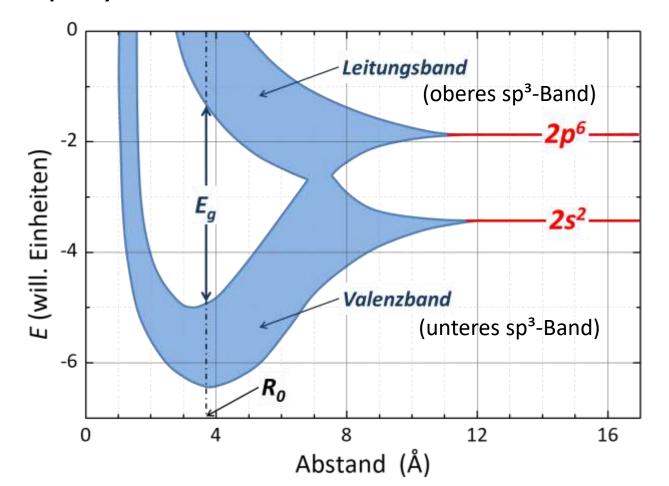
 indirekt
- Element-HL, Verbindungs-HL (binär, ternär, ...), organische HL
- > oxidische HL, Schicht-HL, magnetische HL, ...

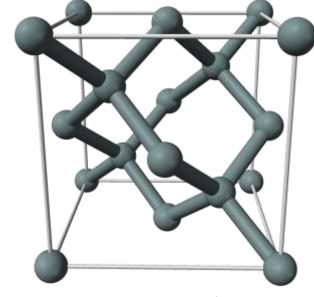
Kapitel 10

Halbleiter

Bandstruktur von Halbleitern – direkte und indirekte Halbleiter

- viele HL besitzen Diamantstruktur (Si, Ge) oder Zinkblendestruktur (GaAs)
- die vier s- und p-Elektronen (z.B. Si: $3s^23p^2$) der äußeren Schalen bilden sp^3 Hybridorbitale \rightarrow tertraedrische Koordination





Diamantstruktur

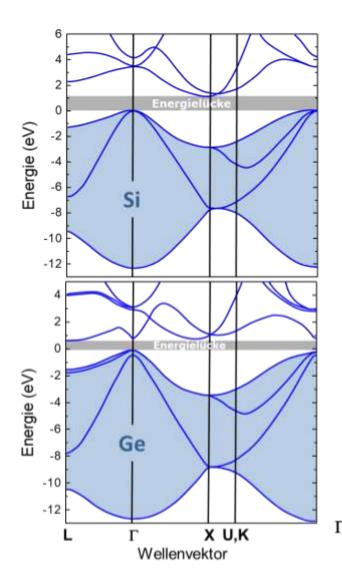
- im Gleichgewichtsabstand sind das untere und obere ${\rm sp^3} ext{-Band}$ durch die Energielücke E_g getrennt
- bei T=0: unteres Band vollkommen gefüllt, oberes Band vollkommen leer

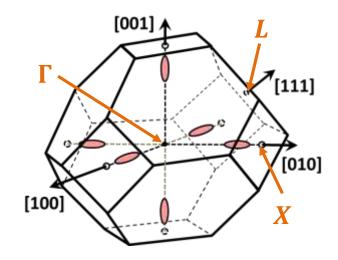
5

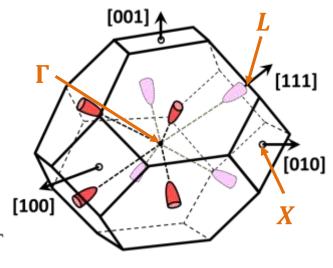
Bandstruktur von Germanium und Silizium

fcc-Struktur → reziprokes Gitter hat bcc-Struktur

→ 1. BZ ist abgestumpfter Oktaeder







Silizium:

- Maximum von VB: Γ-Punkt
 Minimum von LB bei 0.8-fachen Abstand zum X-Punkt
 - → indirekter Halbleiter
- kleinste Lücke $E_q = 1.17$ eV
- insgesamt 6 entartete Minima des LB

Germanium:

- Maximum von VB: Γ-Punkt
 Minimum von LB: L-Punkt
 - → indirekter Halbleiter
- kleinste Lücke $E_g = 0.75$ eV
- insgesamt 8 entartete Minima des LB (zählen nur halb, da nur die Hälfte der Rotationsellipsoiden in 1. BZ liegt)

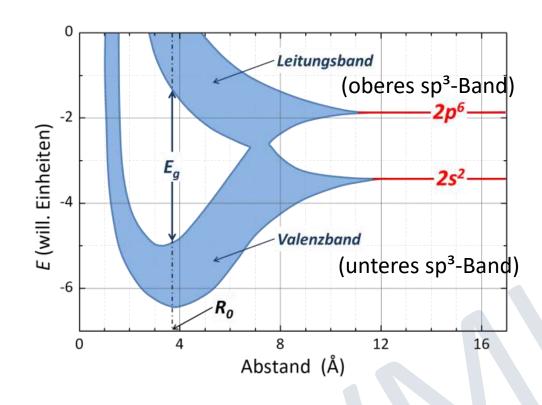
Temperaturabhängigkeit der Energielücke

Ursachen:

- thermische Ausdehnung:
 - → Gitterkonstante wird größer mit steigendem T
 - $\rightarrow E_g$ nimmt ab mit steigendem T
- Phononenverteilung ändert sich:
 - $\rightarrow E_q$ nimmt ab mit steigendem T

Phänomenologische Beschreibung mit Varshni-Formal:

$$E_g(T) = E_g(0) - \frac{aT^2}{T+b}$$



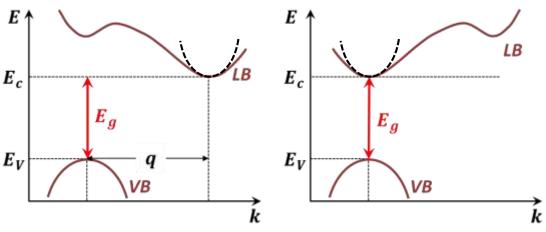
Halbleiter	$E_g(0)$ [eV]	$E_g(300~ m K)$ [eV]	a [eV/K]	<i>b</i> [K]
Si	1.17	1.12	4.73×10^{-4}	636
Ge	0.742	0.661	$\textbf{4.774} \times \textbf{10}^{-\textbf{4}}$	235
GaAs	1.519	1.424	5.405×10^{-4}	204

7

Bandlücken einiger wichtigen Halbleiter

Halbleiter	Тур	$E_{\rm g}$ (0 K)	$E_{\rm g}$ (300 K)	Halbleiter	Тур	E _g (0 K)	$E_{\rm g}$ (300 K)
Si	indir.	1.17	1.12	GaP	indir.	2.32	2.26
Ge	indir.	0.742	0.661	InP	direkt	1.421	1.344
GaAs	direkt	1.519	1.424	ZnO	direkt	3.44	3.2
InSb	direkt	0.24	0.17	ZnS	_	3.91	3.6
InAs	direkt	0.415	0.354	CdS	direkt	2.58	2.42
AlSb	indir.	1.65	1.58	CdTe	direkt	1.61	1.45
GaN (Wur- zit)	indir.	3.47	3.39	GaN (ZnS)	direkt	3.28	3.20

Parabolische Bandnäherung und effektive Bandmasse



Leitungsbandminimum:

$E(k) = E_C + \frac{\hbar^2}{2} \sum_{ij} k_i \left(\frac{1}{m^*}\right)_{ij} k_j$

Valenzbandmaximum:

$$E(k) = E_V + \frac{\hbar^2}{2} \sum_{ij} k_i \left(\frac{1}{m^*}\right)_{ij} k_j$$

in diagonaler

Form

Parabolische Bandnäherung:

- Bandverlauf an Oberkante von VB (E_V) und
 Unterkante von LB (E_C) kann gut durch
 Parabel angenähert werden
- Bandkrümmung wird durch Tensor der effektiven Bandmasse beschrieben:

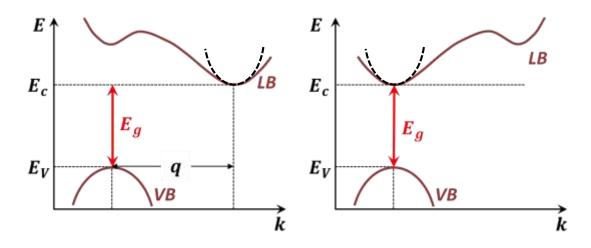
$$E(k) \simeq \frac{\hbar^2}{2} \sum_{ij} k_i \left(\frac{1}{m^*}\right)_{ij} k_j$$

$$E(k) = E_C + \frac{\hbar^2}{2} \left(\frac{k_1^2}{2m_{1,LB}} + \frac{k_2^2}{2m_{2,LB}} + \frac{k_3^2}{2m_{3,LB}} \right)$$

$$E(k) = E_V + \frac{\hbar^2}{2} \left(\frac{k_1^2}{2m_{1,\text{VB}}} + \frac{k_2^2}{2m_{2,\text{VB}}} + \frac{k_3^2}{2m_{3,\text{VB}}} \right)$$

- Flächen konstanter Energie sind Ellipsoide
- bestimmt durch Angabe von drei Hauptachsen, drei effektiven Massen, Position in k-Raum

Parabolische Bandnäherung und effektive Bandmasse



Leitungsbandminimum:

$$E(k) = E_C + \frac{\hbar^2}{2} \left(\frac{k_1^2}{2m_{1,LB}} + \frac{k_2^2}{2m_{2,LB}} + \frac{k_3^2}{2m_{3,LB}} \right)$$

- nach oben gekrümmte Parabel

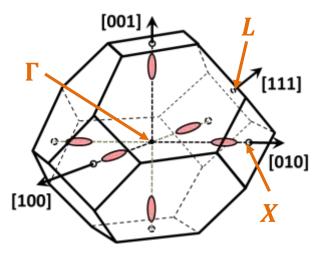
 LT mit positiver effektiver Masse
- Elektronen im LB mit positiven effektiven Massen m_{e1}, m_{e2}, m_{e3}

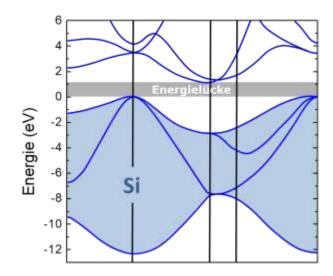
Valenzbandmaximum:

$$E(k) = E_V + \frac{\hbar^2}{2} \left(\frac{k_1^2}{2m_{1,VB}} + \frac{k_2^2}{2m_{2,VB}} + \frac{k_3^2}{2m_{3,VB}} \right)$$

- nach unten gekrümmte Parabel > LT mit negativer effektiver Masse
- mit $m_h^\star = -m_e^\star$ und $E_h(k) = -E_e(k)$
 - \rightarrow Löcher im VB mit positiven effektiven Massen m_{h1} , m_{h2} , m_{h3}
 - → Energie der Löcher nimmt mit Abstand von Valenzbandoberkante zu ("Seifenblasen, die unter Wasserfläche gedrückt werden")

effektive Bandmasse





Silizium:

- Leitungsband:
 - LB hat sechs Minima entlang der {100}-Richtungen
 - E = const. Ellipsoide müssen rotationssymmetrisch sein bez. Rotation um Würfelachsen
 - → zigarrenförmige Ellipsoide, gestreckt in Richtung der Würfelachsen
 - → zwei effektive Massen:

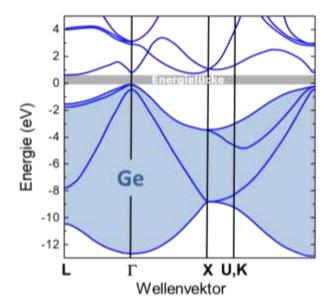
longitudinale effektive Masse $m_{\rm el}^{\star} \simeq 0.98~m_e$ (entlang Achse) transversale effektive Masse $m_{et}^{\star} \simeq 0.19 \ m_e$ (senkrecht Achse)

- Valenzband:
 - zwei entartete Valenzbänder bei k=0 (Γ -Punkt)
 - E = const. Flächen sind kugelsymmetrisch
 - \rightarrow Kugeln um Γ -Punkt
 - → jeweils *eine effektive Masse* für jedes Band

light holes: $m_{
m lh}^{\star} \simeq 0.16 \, m_e$ heavy holes: $m_{
m hh}^{\star} \simeq 0.49 \, m_e$

effektive Bandmasse





Germanium

Leitungsband:

- LB hat acht (halbe) Minima entlang der {111}-Richtungen
- E = const. Ellipsoide müssen rotationssymmetrisch sein bez. Rotation um Würfeldiagonalen
 - → zigarrenförmige Ellipsoide, gestreckt in Richtung der Würfeldiagonalen
 - → zwei effektive Massen:

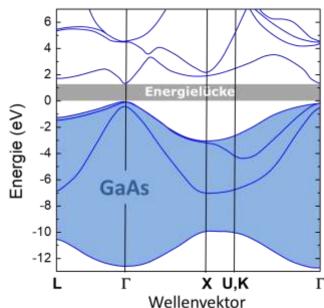
longitudinale effektive Masse $m_{el}^\star \simeq 1.59~m_e$ (entlang Achse) transversale effektive Masse $m_{et}^\star \simeq 0.081~m_e$ (senkrecht Achse)

Valenzband:

- zwei entartete Valenzbänder bei k=0 (Γ -Punkt)
- E = const. Flächen sind kugelsymmetrisch
 - \rightarrow Kugeln um Γ -Punkt
 - → jeweils *eine effektive Masse* für jedes Band

light holes: $m_{
m lh}^{\star} \simeq 0.043 \ m_e$ heavy holes: $m_{
m hh}^{\star} \simeq 0.33 \ m_e$

effektive Bandmasse



GaAs (tetraedrisch koordinierte Zinkblendestruktur)

Leitungsband:

- ein LB-Minimum bei k=0 (Γ -Punkt)
- E = const. Fläche ist kugelsymmetrisch
 - \rightarrow Kugel um Γ -Punkt
 - → eine effektive Masse

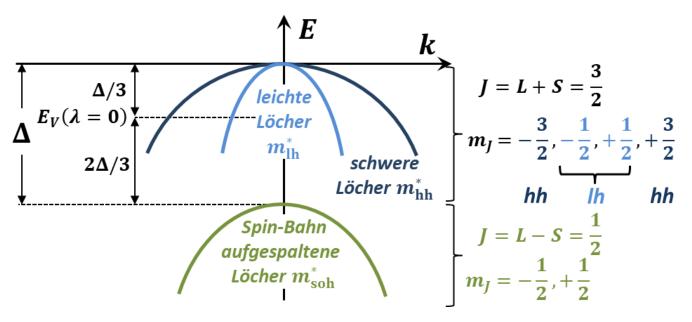
$$m_{\rm e}^{\star} \simeq 0.063 m_{\rm e}$$

Valenzband:

- zwei entartete Valenzbänder bei k=0 (Γ -Punkt)
- E = const. Flächen sind kugelsymmetrisch
 - \rightarrow Kugeln um Γ -Punkt
 - → jeweils *eine effektive Masse* für jedes Band

light holes: $m_{
m lh}^{\star} \simeq 0.082~m_e$ heavy holes: $m_{
m hh}^{\star} \simeq 0.51 \ m_e$

• Parabolische Bandnäherung: genaue Analyse erfordert Berücksichtigung der Spin-Bahn-Kopplung $\mathcal{H}_{SO} = -\lambda~ ext{L}\cdot ext{S}$



_	energetische Aufspaltung Δ der
	Zustände mit $J = L + S = 3/2$ und $J =$
	L - S = 1/2

VB wird aus atomaren p-Zustände

insgesamt drei Bänder:

gebildet

lh: light holeshh: heavy holessoh: split-off holes

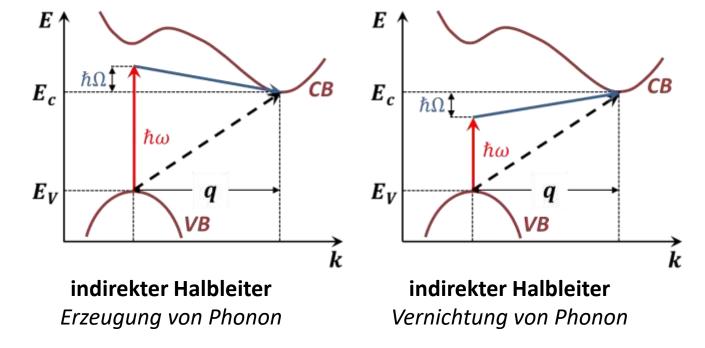
weitere effektive Masse m_{soh}^*

Halbleiter	Δ [meV]		
Si	44		
Ge	290		
GaAs	350		

• effektive Massen von Si, Ge, GaAs und einigen anderen wichtigen Halbleitern

Halbleiter	$m_{\rm e}^*/m$	m_{et}^*/m	$m_{ m el}^*/m$	$m_{\rm lh}^*/m$	$m_{\rm hh}^*/m$	$m_{\rm soh}^*/m$	Δ (eV)
Si		0.19	0.98	0.16	0.49	0.24	0.044
Ge		0.081	1.59	0.043	0.33	0.084	0.295
GaAs	0.063			0.082	0.51	0.14	0.341
GaSb	0.041			0.04	0.4	0.15	0.80
GaP		1.12	0.22	0.14	0.79	0.25	0.08
InAs	0.023			0.026	0.41	0.16	0.41
InP	0.073			0.089	0.58	0.17	0.11
InSb	0.014			0.015	0.43	0.19	0.81

- optische Absorption von <u>indirekten</u> Halbleitern
 - Absorptionskoeffizient: $\alpha = -\frac{1}{I} \left(\frac{dI}{dx} \right)$
 - Anregung von Interband (VB LB) Übergängen durch Photonen führt zu optischer Absorption
 - optische Absorption erlaubt Bestimmung von Energielücke



Energie und Impulserhaltung:

$$\Delta E_{i,f} = E_g = \hbar \omega \left(\mathbf{k}_{\gamma} \right) \pm \hbar \Omega(\mathbf{q})$$
$$\hbar \Delta \mathbf{k} = \hbar \mathbf{k}_{\gamma} \pm \hbar \Omega(\mathbf{q})$$

- $-k_{\nu}$ sehr klein ($\ll\pi/a$) für $\hbar\omega=E_{q}\sim1$ eV
 - → Photon-induzierte Übergänge verlaufen quasi vertikal
- $-\hbar\Omega\ll E_g$
 - → Phonon-induzierte Übergänge verlaufen quasi horizontal

bei indirekten HL erfordert Impulserhaltung Erzeugung- oder Vernichtung von Phonon

ightharpoonup quantitative Analyse erfordert Berechung von Übergangsmatrixelementen, häufig $lpha \propto \left(\hbar\omega - \hbar\Omega - E_a\right)^2$

- optische Absorption von <u>direkten</u> Halbleitern
 - Anregung von Interband (VB − LB) Übergängen durch Photonen erfordert keine Beteiligung von Phononen
 → nur Energieerhaltung relevant
 - Absorptionskoeffizient $\alpha \propto kombinierter Zustandsdichte$

Energieerhaltung:

$$\Delta E_{i,f} = E_g = E_C(\mathbf{k}) - E_V(\mathbf{k}) = \frac{\hbar^2 k^2}{2m_e^*} + \frac{\hbar^2 k^2}{2m_h^*} = \left(\frac{1}{m_e^*} + \frac{1}{m_h^*}\right) \frac{\hbar^2 k^2}{2}$$

$$m_{\mathrm{komb}}^* = \mathbf{kombinierte\ effektive\ Masse}$$

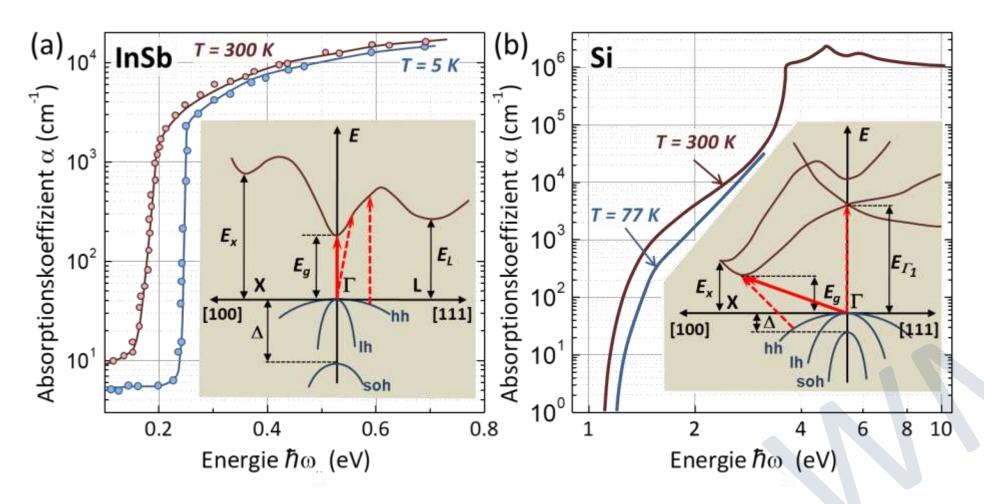
kombinierte Zustandsdichte (Berechnung aus m_{komb}^{\star} mit Ausdruck für freies Elektronengas $D(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$):

$$D_{\text{komb}}(E) = \frac{V}{2\pi^2} \left(\frac{2m_{\text{komb}}^{\star}}{\hbar^2}\right)^{3/2} \sqrt{\Delta E_{i,f} - E_g}$$

$$\alpha \propto D_{\text{komb}}(E) \propto (m_{\text{komb}}^{\star})^{3/2} \sqrt{\hbar \omega - E_g}$$

Fermi's Goldene Regel:

optische Absorption von (a) direktem und (b) indirektem Halbleiter

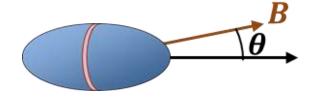


bei T=300 K steigt α bereits bei kleinerem $\hbar\omega$ an, da hier häufiger Übergänge mit Phononen-Vernichtung stattfinden können

Bestimmung der effektiven Masse mit Hilfe der Zyklotron-Resonanz

Zyklotronmasse:

(Elektronen im LB)

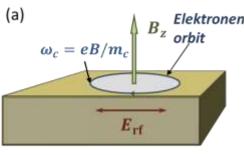


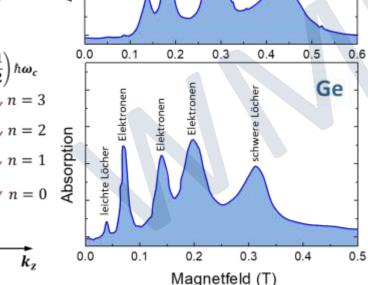
$$m_c = \sqrt{\frac{m_1 m_2 m_3}{\hat{B}_1^2 m_1 + \hat{B}_2^2 m_2 + \hat{B}_3^2 m_3}} = \sqrt{\left(\frac{\cos^2 \theta}{m_{\text{et}}^2} + \frac{\sin^2 \theta}{m_{\text{et}} m_{\text{el}}}\right)^{-1}}$$

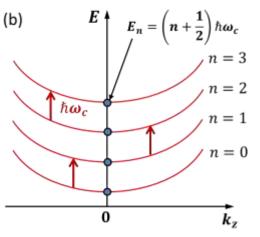
Messung der Mikrowellenabsorption:

Zusammenhang zwischen m^* und m_c :

$$m_c = \sqrt{rac{\det(m^\star)}{m_{zz}}}$$
 für $B \mid\mid \hat{z}$







Zusammenfassung: Teil 3, 13.04.2021/1

Bandstruktur

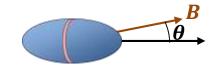
- parabolische N\u00e4herung der LB-Unterkante und der VB-Oberkante
- \rightarrow Bandkrümmung \rightarrow effektive Masse-Tensor $(m^*)_{ij}$
- ➤ **Leitungsband**: Flächen konstanter Energie sind Ellipsoide, charakterisiert durch Angabe von drei Hauptachsen, drei effektiven Massen: zwei sind gleich, da Rotationsellipsoid, Position im **k**-Raum: Si (0.8 x Entfernung zu *X*-Punkt), Ge (*L*-Punkt)
- \triangleright Valenzband: Flächen konstanter Energie sind Kugeln um Γ-Punkt, eine effektive Masse für jedes der drei VB: lh-, hh- und soh
- > Spin-Bahn-Kopplung: Aufspaltung der drei entarteten VB → lh-, hh- ⇔ soh-Band

• optische Absorption

- ightharpoonup Absorptionskoeffizient: $\alpha = -\frac{1}{I} \left(\frac{dI}{dx} \right)$
- ightarrow lpha bestimmt durch Interbandübergänge VB \leftrightarrow LB ightarrow Bestimmung der Bandlücke E_g
- \succ E- und k-Erhaltung: Photonen liefern Energie, Phononen den Impuls (ohne Phononen \approx vertikale Übergänge in E(k) Diagramm
- quantitative Analyse erfordert Kenntnis des Übergangsmatrixelemente und der Dichte der Anfangsund Endzustände (Fermi's Goldene Regel)
 - ightarrow kombinierte effektive Masse $rac{1}{m_{
 m komb}^*} = rac{1}{m_{
 m h}^*} + rac{1}{m_{
 m e}^*}$, komb. Zustandsdichte $D_{
 m komb} \propto (m_{
 m komb}^*)^{3/2}$

• Zyklotron-Resonanz

Bestimmung der effektiven Masse: $m_c = \sqrt{\left(\frac{\cos^2 \theta}{m_{\rm et}^2} + \frac{\sin^2 \theta}{m_{\rm et} m_{\rm el}}\right)^{-1}}$



 $m_c = \sqrt{rac{\det(m^\star)}{m_{zz}}}$ für $B \mid\mid \hat{z}$