Physik der Kondensierten Materie 1

Rudolf Gross WS 2020/2021 Teil 6 Vorlesungsstunde: 19.11.2020

Zusammenfassung: Teil 5, 17.11.2020/1

• allgemeine Beugungstheorie: Wie groß ist die Streuamplitude Ψ_B bzw. Streuintensität $|\Psi_B|^2$ am Beobachtungspunkt B?

WMI

Zusammenfassung: Teil 5, 17.11.2020/2

• **Debye-Waller Faktor:** – Abnahme der Streuintensität mit steigendem *T* durch Zunahme von inelastischen Streuprozessen

$$I_{hk\ell} = I_0 \exp\left(-\frac{1}{3}G^2 \langle u^2(t) \rangle\right) = I_0 \exp\left(-\frac{k_{\rm B}T}{M\omega^2}G^2\right)$$
$$\frac{1}{2}k \langle u^2(t) \rangle = \frac{1}{2}M\omega^2 \langle u^2(t) \rangle = \frac{3}{2}k_{\rm B}T \Rightarrow \langle u^2(t) \rangle = \frac{3k_{\rm B}T}{M\omega^2}$$

- Streupeaks bleiben scharf
- diffuser Untergrund durch inelastische Streuung

• experimentelle Methoden zur Strukturbestimmung:

- Wellentypen:(i) Photonen:
$$\lambda = hc/E$$
(ii) Materiewellen: $\lambda = h/\sqrt{2ME}$ $\lambda \leq 2d \simeq \mathring{A}$ Röntgenstrahlung
 $\approx 15 \text{ keV}$ Elektronen, Neutronen
 $\approx 150 \text{ eV}$ Elektronen, Neutronen
 $\approx 150 \text{ eV}$ • Methoden der Röntgendiffraktometrie:
- Erfüllen der Bragg-Bedingung $2d \sin \theta = n\lambda$ Variation von λ • Laue-Verfahren:
- Drehkristallmethode: θ fest, λ kontinuierlich
+ oriabel, λ fest
- Debye-Scherrer-Verfahren: θ kontinuierlich, λ fest

3 Bindungskräfte in Festkörpern

• relevante WW-Kraft: nur elektrostatische WW, Gravitation bzw. starke und schwache WW spielen keine Rolle

- Van-der-Waals-Bindung
 Bindung zwischen neutralen Atomen
 mit Edelgaskonfiguration
- ii. Ionische Bindung
 Bindung zwischen positiven und negativen Ionen, z.B. NaCl
- iii. Metallische BindungAtome geben Teil der Elektronen ab"See" von freien Elektronen
- iv. Kovalente Bindung

Bindung zwischen neutralen Atomen, die keine Edelgas-konfiguration haben, mehrere Atome "teilen" Elektronen

v. Wasserstoffbrückenbindung weitgehend ionischer Charakter stark unterschiedliche Größe der Ionen bedeutend für organische Substanzen

3.1 Grundlagen

3.1.1 Bindungsenergie und Schmelztemperatur

Bindungsenergie:

- entspricht der Energiedifferenz zwischen der Summe der Energie aller freien Atome/ Moleküle und der Gesamtenergie des aus diesen Atomen/Molekülen aufgebauten kristallinen Festkörpers
- entspricht der Arbeit, die wir verrichten müssen, um Festkörper in seine atomaren Bestandteile zu zerlegen
 - Bindungsenergie variiert um 3 Größenordnungen, z.B.
 - Ne: 1.92 kJ/mol
 - W: 859 kJ/mol
 - Bindungsenergie ist in etwa proportional zur Schmelztemperatur
 - Bindungsenergie ist in etwa umgekehrt proportional zur Kompressibibiltät $\kappa \propto dV/dp$

kleine Bindungsenergie \rightarrow weicher FK, große Kompressibilität κ große Bindungsenergie \rightarrow harter FK, kleine Kompressibilität κ

3.1.1 Bindungsenergie und Schmelztemperatur

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Н					~	S	Schm	nelzte	empe	eratur	(°C)						Не
1	-259.14 0.05868						В	indu	ingse	nerg	;ie (kJ/	mol						-272
	Li	Be											В	С	N	0	F	Ne
2	180.54	1278		All	alimet	alle Er	dalkali	metalle	Übe	rgangsi	metalle		2300	3500	-209.9	-218.4	-219.62	-248.6
-	Na	Ma	Seltene Erden andere Metalle Halbmetalle/Halbleiter Mg Nichtmetalle Halogene Edelgase											Si	D	S	CL	Ar
3	97.8	650											660.37	1410	44.1	112.8	-100.98	-189.3
	107	145	145 327 146 331 275												135	7.74		
	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	63.65 90.1	839 178	1539	1660 468	1890 512	1857	1245	1535	1495 424	1453 428	1083	419.58	29.78 271	937.4 372	817 285.3	217	-7.2	-157.2
-	Rb	Sr	Y	7r	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sh	Te	T	Xe
5	38.89	764	1523	1852	2468	2617	2200	2250	1966	1552	961.93	320.9	156.61	231.9	630	449.5	113.5	-111.9
	82.2	166	422	603	730	658	661	650	554	376	284	112	243	303	265	211	107	15.9
	Cs	Ba	*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
6	28.5 77.5	725		2150 621	2996 782	3410 859	3180	3045 788	2410 670	1772	1064.43 368	-38.87	303.5 182	327.5 196	271.3 210	254 144	302	-71 19.5
	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
7	27	700 160		?	?	?	?	?	?	?	?	?						
	, , , , , , , , , , , , , , , , , , , ,						1 1.											
		* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho										Но	Er	Tm	Yb	Lu		
	920 795 935 1010 ?								1072	822	1311	1360	1412	1470	1522	1545	824	1656
			**	Ac	Th	Pa	11	Nn	Pu	Am	Cm	Bk	Cf	Fs	Em	Md	No	lr
				1050	1750	1600	1132	640	639.5	994	1340							-
	1050 1750 1600 1132 640 639.5 994 1340 ? </th <th>?</th>												?					

- kurze Wiederholung der wichtigsten Aspekte
 - Schrödinger-Gleichung für Zentralpotenzial $V(r) = -\frac{Ze^2}{r}$

$$\mathcal{H} \Psi(\mathbf{r}) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \Psi(\mathbf{r}) = E \Psi(\mathbf{r})$$

- Lösungen:
 - > einfache Lösungen nur für H-Atom (Zweikörperproblem)
 - > andere Atome: Näherung als effektives Zweikörperproblem mit einem Elektron und einem effektiven Zentralpotenzial $V_{\text{eff}}(r)$ (durch restliche Elektronen abgeschirmtes Kernpotenzial)

 $\Psi_{nlm}(\mathbf{r}) = \Psi_{nlm}(r, \vartheta, \varphi) = R_{nl}(r) \cdot Y_{lm}(\vartheta, \varphi)$

 $R_{nl}(r) = \text{Radialfunktion}$ $Y_{lm}(\vartheta, \varphi) = \text{Kugelflächenfunktionen}$

• Klassifizierung der Zustände mit Quantenzahlen *n*, *l*, *m*:

Quantenzahl	Bezeichnung	Schale
Hauptquantenzahl	$n = 1, 2, 3, \ldots$	K, L, M, N, \ldots Schale
Bahndrehimpulsquantenzahl	$l = 0, 1, 2, \dots, n-1$	s, p, d, f, \ldots Unterschale
Orientierungsquantenzahl oder magnetische Quantenzahl	$m = -l, \ldots, +l$	

- Spin wird von nicht-relativistischer Schrödinger-Gleichung nicht erfasst, zusätzliche Spin-Quantenzahl $m_s = \pm \frac{1}{2}$
- mit Spin gibt es zu jeder Hauptquantenzahl
 - $2 \cdot \sum_{\ell=0}^{n-1} 2\ell + 1 = 2 \cdot n^2$ Zustände

			Unter	rschale		
n	Schale	l = 0 s	1 p	2 d	3 <i>f</i>	
1	К	2				
2	L	2	6			
3	М	2	6	10		
4	N	2	6	10	14	

• einige Kugelflächenfunktionen $Y_{lm}(\vartheta, \varphi)$

radiale Aufenhaltswahrscheinlichkeit

$$W(r)dr = \int_0^{\pi} \int_0^{2\pi} |\Psi_{n\ell m}|^2 r^2 dr \sin \vartheta \, d\vartheta d\varphi$$

 $W(r)dr = r^2 R_{n\ell}^2(r) dr$

- Wahrscheinlichkeit, Elektron in Kugelschale mit
 Radius r und Dicke dr zu finden
- W(r)dr unterscheidet sich von Radialfunktion $R_{nl}(r)$ durch Multiplikation mit Kugelschalenvolumen r^2dr
- da $r^2 dr \rightarrow 0$ für $r \rightarrow 0$, geht auch $W(r) dr \rightarrow 0$,
 obwohl $R_{nl}(0)$ endlich sein kann

Klassifizierung der elektronischen Zustände der Hüllenatome → Periodensystem der Elemente •

- auffüllen der Zustände ____ (Fermionen!) beginnend mit niedrigster Energie
- **7 Perioden** (Reihen): — (Hauptquantenzahl *n*)
- 8 Spalten: nach zwei s-Elektronen kommen sechs *p*-Elektronen
- Nebengruppen: ____ zehn *d*-Elektronen
- Lanthaniden, Actiniden: vierzehn *f*-Elektronen

							Hau	ipt- u	nd Ne	bengr	upper	n						
neu	1	2	3	-4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
alt	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1,00794 1H 18 ¹ Wesserstoff		Per	riode	nsyst	em de	er Ele	ment							4,002602 2He 15 ² Helium			
2	6,941 3Li [He] 25 ¹ Lithium 22,89768	9,012182 4 Be [He] 25 ² Beryllium 24,3050	rel. At Ordr Elen	ommasse nungszahl nentname	12,011 6C [He] 25 ¹ 2p ² Kohlenstoff	Element Elektroi konfigu	tsymbol nen- ration	Ra Ne Hg Al	kein sl gasför flüssig fest	<i>bor:</i> tabiles lso rmig g (bei 20°(otop beki C)	annt	10,811 5 B [He] 25 ² 2p ² Bor 26,981539	12,011 6C [He] 25 ² 2p ² Kohlenstoff 28,0855	14,00674 7N [He] 25 ¹ 2p ³ Stickstoff 30,973762	15,9994 80 [He] 25 ² 2p ⁴ Sauerstoff 32,066	18,9984032 9F [He] 25 ² 2p ⁵ Huor 35,4527	20,1797 10Ne [He] 25 ² 2p ⁶ Neon 30,948
3	11Na [Ne] 35 ¹ Natrium	12 Mg [Ne] 3s ² Megnesium											13 A [Ne] 3s ² 3p ¹ Aluminium	14 Si (Ne) 3s ² 3p ² Silicium	15 P (Ne) 3s ³ 3p ³ Phosphar	16 S [Ne] 3s ² 3p ⁴ Schwefel	17Cl [Ne] 35 ² 3p ³ Chlor	18Ar [Ne] 3s ² 3p ⁶ Argun
4	39,0983 19K [Ar] 4s ¹ Kalhum	40,078 20Ca [Ar] 4s ² Calcium	44,955910 21SC [Ar] 3d ⁵ 45 ² Scandium	47,867 22 Ti [Ar] 3d ² 45 ² Titan	50,9415 23V [Ar] 3d ² 45 ² Vanadium	51,9961 24 Cr [Ar] 3d ⁸ 45 ⁴ Chrom	54,938049 25 Mn [Ar] 3d ⁵ 45 ² Mengan	55,845 26 Fe [Ar] 3d ⁴ 45 ³ then	58,93320 27CO [Ar] 3d'45 ² Cobalt	58,6834 28Ni [Ar] 3d45 ² Nickel	63,546 29CU [Ar] 3d ¹⁰ ds ¹ Kupfer	65,39 30 Zn [Ar] 3d ¹¹⁴ 6 ² Zink	69,723 31 Ga [Ar]3d ¹⁰ 45 ² 4p ¹ Gallum	72,61 32Ge [Ar]3d ¹⁰ 45 ² 4p ² Germanium	74,92160 33AS [Ar]3d ¹⁰ 45 ² 4p ³ Arsen	78,96 34 Se [Ar]3d ¹⁰ 4s ² 4p ⁴ Selen	79,904 35Br [Ar]3d ¹⁰ 4s ² 4p ³ Brom	83,80 36Kr [Ar]3d ¹⁰ 4s ² 4p ⁴ Krypton
5	85,4678 37Rb [Kr] 55 ¹ Rubidium	87,62 38 Sr [Kr] 55 ² Strottken	88,90586 39¥ [Kr] 4d ³ 55 ²	91,224 40 Zr [Kr] 4d ² 5s ² Zirconium	92,90638 41Nb [Kr] 4d ⁹ 55 ² Niobium	95,94 42MO [Kr] 4d ⁹ 5s ¹ Molybdin	[98] 43 TC [Kr] 4d ⁹ 5s ² Technetium	101,07 44Ru [Kr] 4d ⁹ 5s ² Buthenium	102,90550 45Rh [Kr] 4d ⁷⁵⁵⁷ 8bodium	106,42 46Pd [Kr] 4d*5s ² Palladium	107,8682 47Ag [Kr] 4d ¹⁰ 5s ¹ Siber	112,411 48Cd [Kr] 4d ^{pa5s7} Cadmium	114,816 49 1 [Kr]4d ¹⁰ 5s ² 5p ¹ Indum	118,710 50 Sn [Kr]4d ¹⁰ 5s ² 5p ² Zion	121,760 51Sb [Kr]4d ¹⁰ 58 ² 5p ³ Antimon	127,60 52 Te [Kr]4d ¹⁰ 55 ² 5p ⁴ Tellus	126,90447 531 [Kr]4d ¹⁰ 55 ² 5p ³	131,29 54Xe [Kr]4d ¹⁰ 5s ² 5p ⁴ H Xenon
6	132,90543 55 CS [Xe] 68 ¹ Cătium	137,327 56Ba [Xe] 65 ² Strontium	57–71 La-Lu Lantha- noide	178,49 72 Hf [Xe]4f ¹⁴ 5d ² 65 ² Hatnium	180,9479 73 Ta (Xe)4f ³⁴ 5d ³ 65 ² Tantal	183,84 74W [Xe]4f ^{L4} 5d ⁴ 6s ² Wolfram	186,207 75 Re [Xe]4f ¹⁴ 5d ³ 6s ² 8benium	190,23 76 OS [Xe]4f ¹⁴ 5d ⁹ 6s ² Osmium	192,217 77 r [Xe]4f ¹⁴ 5d ² 65 ² Iridium	195,078 78Pt [Xe]4f ¹⁴ 5d ⁸ 65 ² Platin	196,96655 79AU [Xe]4f ¹⁴ 5d ¹⁰ 65 ¹ Gold	200,59 80Hg [Xo]4f ¹⁴ 5d ¹⁰ 6s ² Quecksiber	204,3833 81 Tl [Xe]4f ¹⁴ 5d ¹⁰ 65 ² 6p ¹ Thallium	207,2 82Pb [Xe]4f*5d ¹¹ 6s ² 6p ² 8lei	208,98038 83 Bi (Xe)4f ¹⁴ 5d ¹¹ 6s ² 6p ³ 8ismut	[209] 84 PO [Xe]4f ¹⁴ 5d ²¹ 6s ² 6p ⁴ Polonium	[210] 85At [Xe]4f*5d# 6s ² 6p ³ Astat	(222) 86RN (Xe)4/145di 65 ² 6p ⁶ Radon
7	[223] 87 Fr [Rn] 75 ¹ Franclum	[226] 88 Ra [Rn] 75 ² Redium	89–103 Ac-Lr Actinoide	[261] 104Rf [Rn]5f ¹⁴ 6d ² 7s ² Butherfordian	[262] 105 Db [Rn]5f ²⁴ 6d ³ 75 ² Dubnium	[263] 106 Sg [Rn]5f ¹⁴ 6d ⁴⁷ 5 ⁷ Seaborgium	[254] 107 Bh [Rn]5f ¹⁴ 6d ⁹ 7s ² Botrium	[265] 108 HS [Rn]5f ³⁴ 6d ⁹ 7s ³ Hessium	[268] 109Mt [Rn]54 ¹⁴ 6d ⁷ 75 ¹ Meitnerkum	[269] 110Uur [Rn]5f ¹⁴ 6d ⁹ 7s ² Unusilium	(272) 111 Uuu (Rn)5f ¹⁴ 6d ⁹ 7s ³ Unununium	[277] I 112Uub [Rn]5f ¹⁴ 6d ¹⁰ 75 ² Ununbium	113Uut (Rn]5f ¹⁴ 6d ¹⁰ 7s ⁷ 7p ¹ Ununtrium	(289) 114 Uuq (Rn)5f ³⁴ 6d ³¹ 7s ⁷ 7p ⁷ Ununquedium	115Uup [Res]5f ¹⁴ 6d ¹⁰ 79 ¹ 7p ¹ Ununpesitum	(289) 116Uut (Rn)5f ¹⁴ 6d ¹⁰ 75 ² 7p ⁴ Ununthesium	117 Uus (Rn]5f ¹⁴ 6d ¹¹ 75 ⁷⁷ p ¹ Ununseptiun	[293] 118Uuc [Rn]5f ¹⁴ 6d ¹¹ 75 ³ 7p ⁴ nUnuroctium
		6	138,9055 57La [Xe] 5d ² 6s ² Lanthan 91,224 89AC	140,115 58 Ce [Xe] 4 ² 55 ² Cer 92,90638 90 Th	140,90765 59Pr [Xe] 41 ³ 69 ² Praseodym 95,94 91 Pa	144,24 60Nd [Xe] 4f ⁴ 0s ² Neodym 91,224 92U	[145] 61 Pm [Xe] dPromethium 92,90638 93 Np	150,36 62Sm [Xe] 41%65 ² Semarium 95,94 94Pu	151,964 63EU [Xe] 46765 ² Europium 91,224 95 Am	157,25 64Gd [Xe] 4 ¹⁶ 5 ² 5adolinium 92,90538 96 Cm	Die Elem 158,92534 65Tb (Xe) 4 ¹⁹ 65 ² Terbium 95,94 97 Bk	162,50 162,50 66Dy [Xe] 41 ³⁶ 65 ² Dyspresium 91,224 98Cf	n Ordnungs 164,93032 67HO [Xe] 4f ¹¹ 6s ² Holmium 92,90638 99ES	zahlen 113, 167,26 68 Er [Xe] 4 ^{[13} 05 ² Erbium 95,94 100 Fm	115 und 11 168,93421 69 Tm [Xe] 4 ^{[13} 65 ² Thulium 91,224 101 Md	7 wurden n 173,04 70Yb [Xo] 4f ¹⁴ 5 ² Ytterblum 92,90638 102NO	174,967 71LU [Xe] 47 ¹⁴ 5d ¹ 65 ² Lutetium 95,94 103Lr	nthetisiert
		1	[Rn] 6d ¹ 7s ² Actinium	[Rn] 6d ² 7s ² Thorium	[Rn] 5f²6d²7s² Protectinium	[ftn] 5f ¹ 6d [±] 7s ² Uran	[Rn] 5f%6d ¹ 7s ² Neptunium	[Rn] Sf ⁶ 7s ² Plutonium	(Rn) 5f ⁹ 7s ² Americum	[Rn] Sf ² 6d ¹ 7s ² Curium	[Rn] Sf%d17s ² Berkelium	[Rn] Sf ¹² 7s ² Californium	(Rn) Sf ¹¹ 7s ² Einsteinium	(Rn) Sfill7s ³ Fermium	(RA) 5f1375 ² Mendelevium	(Rn) Sf ^{ur} 7s ² Nobelium	[Rn] 5f ¹⁴ 6d ¹ 7s ² Lawrencium	

- Besonderheiten beim Auffüllen der Schalen:
 - $3p \rightarrow 4s \rightarrow 3d$ (ebenso für 4d und 5d)
 - $6s \rightarrow 4f$ (ebenso für 5f)
- Grund:

s-Elektronen haben endliche Aufenthaltswahrscheinlichkeit am Kern

- kleinerer Abschirmeffekt der übrigen Elektronen
- niedrigere Energieniveaus
 → Abweichung vom H-Atom!

Wasserstoffatom:

$$E_n = -\frac{me^4}{(4\pi\epsilon_0)^2 2\hbar^2} \frac{1}{n^2} = -13.6 \text{ eV} \cdot \frac{1}{n^2}$$
(Rydberg-Ene
$$a_{\rm B} = \frac{4\pi\epsilon_0\hbar^2}{me^2} \simeq 0.529 \text{ Å}$$

(Bohrscher Radius)

							Hau	ipt- u	nd Ne	bengr	upper	n				1991		
neu	1	2	3	-4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
alt	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	118	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1,00794 1H 18 ¹ Wassesstoff		Per	riode	nsyst	em de	er Ele	ment	te									4,002602 2He 1s ² Helium
2	6,941 3Li [He] 25 ¹ Lithium	9,012182 4 Be [He] 25 ² Beryflum	rel. At Ordn Elem	ommasse uungszahl nentname	12,011 6C [He] 2s ² 2p ² Kohlenstoff	Element Elektroi konfigu	tsymbol nen- ration	Ra Ne Hg	kein s gasför flüssig fest	tabiles Iso rmig g (bei 20°(otop beka C)	annt	10,811 5 B [He] 2s ² 2p ² Bot	12,011 6C [He] 2s ² 2p ² Kohlenstoff 28.0855	14,00674 7N [He] 2s ² 2p ³ Stickstoff	15,9994 80 (He) 2s ² 2p ⁴ Sauerstoff 32,065	18,9984032 9F [He] 2s ² 2p ³ [Nor 35.4527	20,1797 10Ne [He] 25 ² 2p ⁶ Neon 30 048
3	11Na [Ne] 35 ¹ Natriam	12Mg [Ne] 3s ² Megoesium											13AI [Ne] 3s ² 3p ¹ Aluminium	14Si [Ne] 3s ² 3p ² Silicium	15P [Ne] 3s ² 3p ³ Phosphor	16S [Ne] 3s ² 3p ⁴ Schwefel	17Cl [Ne] 35 ² 3p ³ Chlor	18Ar [Ne] 3s ² 3p ⁶ Argan
4	39,0983 19K [Ar] 45 ¹ Kallum	40,078 20Ca [Ar] 4s ² Calcium	44,955910 21SC [Ar] 3d ² 45 ² Scandium	47,867 22Ti [Ar] 3d ² 45 ² Titan	50,9415 23V [Ar] 3d ² 45 ² Vanedium	51,9961 24 Cr [Ar] 3d ⁵ 45 ¹ Chrom	54,938049 25Mn [Ar] 3d ⁵ 45 ² Mangan	55,845 26Fe [Ar] 3d ⁶ 45 ² Eisen	58,93320 27CO [Ar] 3d'4s ² Cobelt	58,6834 28Ni [Ar] 3d ⁴ 45 ² Nickel	63,546 29CU [Ar] 3d ¹⁰ 45 ¹ Kupfer	65,39 30Zn [Ar] 3d ¹²⁴ 6 ² Zink	69,723 31Ga [Ar]3d ¹⁸ 45 ² 4p ¹ Gellium	72,61 32Ge [Ar]3d ¹⁰ 45 ² 4p ² Germanium	74,92160 33AS [Ar]3d ¹⁰⁰ 4s ² 4p ³ Arsen	78,96 34 Se [Ar]3d ¹⁸ 4s ² 4p ⁴ Selen	79,904 35 B Г [Ar]3d ¹⁰ 45 ² 4p ³ Brom	83,80 36Kr [Ar]3d ¹⁰ 4s ² 4p ⁴ Krypton
5	85,4678 37 Rb [Kr] 55 ¹ Rubidium	87,62 38 Sr [Kr] 55 ⁷ Strontium	88,90586 39Y [Kr] 4d ⁵ 55 ² Yttrium	91,224 40 Zr [Kr] 4d ² 5s ² Zirconium	92,90638 41Nb [Kr] 4d ⁹ 55 ² Niobium	95,94 42 MO [Kr] 4d ⁹ 5s ¹ Molybdân	[98] 43 TC [Kr] 4d ⁹ 5s ² Technetium	101,07 44RU [Kr] 4d ⁹ 5s ² Ruthenium	102,90550 45Rh [Kr] 4d?5s ⁷ Rbodium	106,42 46Pd [Kr] 4d*5s ² Palladium	107,8682 47Ag [Kr] 4d ¹⁰ 5s ³ Silber	112,411 48Cd [Kr] 4d ^{pa5} 5 ⁷ Cadmium	114,816 49 1 0 (Kr)4d ¹⁰ 5s ² 5p ¹ Indum	118,710 50 Sn [Kr]4d ¹⁰ 56 ² 5p ² Zinn	121,760 51Sb [Kr]4d ¹⁰ 59 ² 5p ³ Antimon	127,60 52 Te [Kr]4d ¹⁰ 55 ² 5g ⁴ Tellur	126,90447 53 [Kr]4d ¹⁰ 54 ² 5p ³ Jod	131,29 54Xe [Kr]4d ¹⁰ 5s ² 5p ⁴ H Xenon
6	132,90543 55 CS [Xe] 65 ¹ Cātium	137,327 56 Ba [Xe] 65 ² Strontium	57-71 La-Lu Lantha- noide	178,49 72Hf [Xe]4f ¹⁴ 5d ² 65 ² Hatnium	180,9479 73 Ta (Xe)4f ⁵⁴ 5d ³ 65 ² Tantal	183,84 74W [Xe]4f ^{LA} 5d ⁴ 6s ² Wolfram	186,207 75 Re [Xe]4f ¹⁴ 5d ³ 65 ² Rhenium	190,23 76 OS [Xe]4f ³⁴ 5d ⁹ 65 ² Osmium	192,217 77 1 [Xe]4f ¹²⁴ 5d ² 65 ² tridium	195,078 78Pt [Xe]4f ¹⁴ 5d ⁶ 65 ² Platin	196,96655 79AU [Xe]4f ¹⁴ 5d ¹⁰ 65 ¹ Gold	200,59 80Hg (Xe)4f ¹⁴ 5d ¹⁰ 6s ² Quecksiber	204,3833 81 Tl [Xe]4f ³⁴ 5d ²⁰ 65 ² 6p ¹ Thallium	207,2 82Pb [Xe]4f ¹⁰⁵ d ¹¹ 6s ² 6p ² 8tei	208,98038 83 Bi [Xe]4f ¹⁴ 5d ¹¹ 6s ² 6p ³ 8ismut	[209] 84 PO [Xe]4f ¹⁴ 5d ²⁰ 6s ² 6p ⁴ Polonium	[210] 85At [Xe]4f=*5d= 6s ² 6p ³ Astat	[222] 86 Rn [Xe]4f ¹⁴ 5d ¹ 65 ² 6p ⁶ Badon
7	[223] 87 Fr [Rn] 78 ¹ Francium	[226] 88 Ra [Rn] 75 ⁷ Radium	89–103 Ac-Lr Actinoide	[261] 104 Rf [Rn]5f ¹⁴ 6d ² 7s ² Rotherfordian	[262] 105 Db [Rn]5f ³⁴ 6d ⁵ 7s ² r Dubnium	[263] 106 Sg [Rn]5f ¹⁴ 6d ⁴ 75 ⁷ Seaborgium	[264] 107 Bh [Rn]5f ¹⁴ 6d ⁹ 7s ² Botrium	[205] 108 HS [Rn]5f ³⁴ 6d ⁴⁷ 5 ³ Hassium	[268] 109Mt [Rn]5f ¹⁴ 6d ⁷ 75 ¹ Meltnerium	[269] 110Uun [Rn]5f ¹⁴ 6d ⁹ 7s ² Ununilium	[272] 1111 Uuu [Rn]5f ¹⁴ 6d ⁹ 7s ³ Unununium	[277] 112Uub [Rn]5f ¹⁴ 6d ¹⁸ 75 ² Ununbium	113Uut [Rn]5f ¹⁴ 6d ¹⁴ 7s ⁷ 7p ¹ Ununtrium	(289) 114Uuq (Rn)5f ³⁴ 6d ³¹ 75 ⁷ 7p ³ Ununguadium	115Uup (Ra)Sf ¹⁴ 0d ¹⁴ 75 ¹⁷ p ³ Ununpeation	(289) 116Uuh (Rn)5f ¹⁴ 6d ¹⁰ 75 ² 7p ⁴ Ununbesium	117Uus (Rn]sf ¹⁴ 6d ¹¹ 7s ⁷⁷ p ³ Ununseption	[293] 118Uuc [Rn]5f ¹⁴ 6d ¹ 75 ³ 7p ⁶
		12			1			12			Die Elem	ente mit de	n Ordnung	zahlen 113,	115 und 11	7 wurden n	och nicht sy	nthetisiert
gi	e)	Ğ	138,9055 57 La [Xe] 5d ² 6s ² Lanthan	140,115 58 Ce [Xe] 4F6s ² Cer	140,90765 59Pr [Xe] 41369 ² Praseodym	144,24 60Nd [Xe] 4f ⁴ 65 ² Neodym	(145) 61 Pm (Xe) 4 ¹⁷ 65 ² Promethium	150,36 62 Sm [Xe] 4 ¹⁶ 65 ² Semarium	151,964 63EU (Xe) 41 ⁷ 65 ² Europium	157,25 64 Gd [Xe] 41 ⁴ 65 ² Gadolinium	158,92534 65 Tb [Xe] 4 ¹⁷ 65 ² Terbium	162,50 66DY [Xe] 4 ⁵¹⁶⁵² Dysprosium	104,93032 67H0 [Xe] 4 ^{[13} 65 ² Holmium	167,26 68 Er [Xe] 4f ¹² 65 ² Erbium	168,93421 69 Tm [Xe] 4f ¹³ 65 ² Thuilum	173,04 70 Yb [Xe] 4 ¹¹⁴ 5 ² Ytterblum	174,967 71LU [Xe] 4f ¹⁴ 5d ¹ 65 ² Lutetium	
		7	91,224 89 AC [Rn] 6d ² 75 ² Actinium	92,90638 90 Th [Rn] 6d ² 75 ² Thorium	95,94 91Pa [Rn] 5f ² 6d ¹ 7s ² Protectinium	91,224 92 U [Rn] 5f ³ 6d [±] 7s ² Uran	92,90638 93Np [Rn] 55%64*75 ² Neptunium	94 Pu [8n] 51 ⁶ 75 ²	91,224 95 Am [Ro] 5f ² 75 ² Americum	92,90638 96 Cm [Rs] 5f ² 6d ¹ 75 ² Curium	95,94 97 Bk [Rn] 5f%d ¹ 75 ² Berkelium	91,224 98 Cf [Rn] 5f ¹²⁷ 5 ² Californium	92,90638 99 ES [Rs] 5f ¹² 75 ² Einsteinium	95,94 100Fm [Rn] 5f ¹² 75 ² Fermium	91,224 101Md [Rn] 5f ¹³ 75 ² Mendelevium	92,90638 102NO [Rn] 5f ¹⁴ 75 ² Nobelium	103Lr [Rn] 5f ¹⁴ 6d ¹⁷ 5 ²	

3.2 Van der Waals Bindung

Beobachtung:

- geringe Bindungsenergie: $\simeq 0.1 \text{ eV}$ / Atom für neutrale Atome mit kugelsymmetrischer Ladungsverteilung (Edelgase)
- Vorschlag von van der Waals: induzierte Dipol-Dipol-Wechselwirkung

Johannes Diderik Van der Waals (1837 - 1923) Nobelpreis für Physik 1910

"für seine Arbeiten über die Zustandsgleichung der Gase und Flüssigkeiten" (Van-der-Waals-Gleichung)"

3.2 Van der Waals Bindung

- neutrales Atom in E-Feld, mittleres Dipolmoment verschwindet: $\langle \mathbf{p}_{\mathrm{A}} \rangle = \mathbf{0}$
 - ightarrow induziertes Dipolmoment $\mathbf{p}_{\mathrm{A}}^{\mathrm{ind}} lpha \mathbf{E}$

Proportionalitätskonstante ist Polarisierbarkeit α_A des Atoms A

 $\mathbf{p}_{A}^{\mathrm{ind}} = \alpha_{A} \mathbf{E}$

 $\langle \mathbf{p}_{\mathrm{A}} \rangle = \mathbf{0}$

• Annahme:

E-Feld wird erzeugt durch Ladung $q_{\rm B}$ eines lons B im Abstand R

$$\mathbf{p}_{\mathrm{A}}^{\mathrm{ind}} = \alpha_{\mathrm{A}} \mathbf{E}_{\mathrm{B,ion}} = \alpha_{\mathrm{A}} \frac{q_{B}}{4\pi\epsilon_{0}R} \ \widehat{\mathbf{R}}$$

• potentielle Energie des Atoms A

$$E_{\text{pot}} = -\mathbf{p}_{\text{A}}^{\text{ind}} \cdot \mathbf{E}_{\text{B,ion}} = -(\alpha_A \mathbf{E}_{\text{B,ion}}) \cdot \mathbf{E}_{\text{B,ion}} \propto \mathbf{E}_{\text{B,ion}}^2$$

3.2.1 WW zwischen fluktuierenden Dipolen

- Annahme:
 - Feld $\mathbf{E}(\mathbf{p}_B)$ am Ort des Atoms A wird erzeugt durch neutrales Atom B mit Dipolmoment \mathbf{p}_{B}
 - $\mathbf{E}(\mathbf{p}_B)$ induziert Dipolmoment \mathbf{p}_A von Atom A, welches wiederum Feld $\mathbf{E}(\mathbf{p}_A)$ am Ort des Atoms B erzeugt

3.2.2 Abstoßende Wechselwirkung

- Überlapp der Wellenfunktionen für kleine Abstände R führt zu Abstoßung \rightarrow Pauli-Prinzip
 - → Elektronen müssen auf energetisch höherliegende Zustände ausweichen
- empirische Beschreibung der Abstoßung durch b/R^{12} -Term $\Rightarrow E_{pot}(R) = \frac{b}{R^{12}} \frac{a}{R^6}$

Lennard-Jones-Potenzial (Paarwechselwirkung)

$$E_{\text{pot}}(R) = 4\epsilon \left[\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^6 \right] \qquad \begin{array}{l} a = 4\epsilon\sigma^6 \\ b = 4\epsilon\sigma^{12} \end{array}$$

Potenzialminimum:

$$\frac{\partial E_{\text{pot}}}{\partial R} = 0 = 4\epsilon \left[\frac{6\sigma}{R^7} - \frac{12\sigma}{R^{13}} \right]$$

$$\tilde{R}_0 = 2^{1/6} \cdot \sigma = 1.1225 \sigma$$

$$E_{\text{pot}}(\tilde{R}_0) = -\epsilon$$
Gleichgewichtsabstand
für Paarwechselwirkung

3.2.3 Gesamtbindungsenergie

Festkörper besteht nicht aus isolierten Atompaaren, sondern aus einem Gitter
 → Aufsummieren über alle Paarwechselwirkungen im Gitter

$$U_{\text{tot}} = \frac{N}{2} \sum_{i \neq j} 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right]$$

$$U_{\rm tot}(R) = 2N\epsilon \left[A_{12} \left(\frac{\sigma}{R} \right)^{12} - A_6 \left(\frac{\sigma}{R} \right)^6 \right]$$

$$A_k = \sum_{i \neq j} \frac{1}{\alpha_{ij}^k}, \qquad k = 6, 12$$

Gittersummen, charakteristisch für Gittertyp

Hinweis:

Die Summe beschreibt gerade die Bindungsenergie eines einzelnen Atoms j, das mit allen anderen Atomen i wechselwirkt. Um die Gesamtenergie zu erhalten, müssen wir diesen Beitrag mit N/2 multiplizieren

mit $r_{ij} = \alpha_{ij}R$, R = Abstand nächster Nachbarn

Kristallstruktur	A ₆	A ₁₂
fcc	14.4539	12.1319
hcp	14.4549	12.1323
bcc	12.253	9.114

3.2.3 Gleichgewichtsgitterkonstante

• Gleichgewichtsatomabstand R₀

$$\frac{\partial U_{\text{tot}}}{\partial R} = 0 = -2N\epsilon \left[12A_{12}\frac{\sigma^{12}}{R^{13}} - 6A_6\frac{\sigma^6}{R^7} \right]$$

$$\implies R_0 = \left(2\frac{A_{12}}{A_6}\right)^{1/6} \cdot \sigma$$

 $U_{\text{tot}}(R_0) = -\frac{1}{2}N\epsilon \frac{A_6^2}{A_{12}}$

• Gesamte Bindungsenergie $U_{tot}(R_0)$

$$U_{\text{tot}}(R_0) = 2N\epsilon \left[A_{12} \left(\frac{\sigma}{R_0} \right)^{12} - A_6 \left(\frac{\sigma}{R_0} \right)^6 \right]$$

• fcc- versus hcp-Struktur

$$U_{\text{tot}}(R_0) = -N\epsilon \begin{cases} 8.61016 & \text{fcc} - \text{Struktur} \\ 8.61107 & \text{hcp} - \text{Struktur} \end{cases}$$

$$R_0 = 1.09 \cdot \sigma$$

Hinweis:

Edelgase haben fcc-Struktur statt hcp-Struktur, obwohl U_{tot} größer für hcp-Struktur

- → Nullpunktschwingungen spielen eine nicht vernachlässigbare Rolle
- → genauere Bandstrukturrechnungen werden benötigt

(Modifizierung der van der Waals Bindungsenergie durch den Überlapp von angeregte atomaren Zuständen mit den Nachbaratomen im Kristall)

3.2.3 Gleichgewichtsgitterkonstante

Effekt von Nullpunktsfluktuationen

$$\frac{1}{2}kx_{\max}^2 = \frac{1}{2}M\omega^2 x_{\max}^2 = \frac{\hbar\omega}{2} \implies x_{\max}^2 = \frac{\hbar}{M\omega} \implies x_{\max} \sim (0.3 - 0.4) \times \text{Gitterkonstante für He}$$

• in harmonischer Näherung können wir Federkonstante $k = (\partial^2 U_{tot} / \partial R^2)_{R=R_0}$ verwenden

F	_ ħω _	ħ	k	ħ	$(\partial^2 U_{\rm tot}/\partial R^2)_{R=R_0}$
Ľ	$\frac{1}{2} = \frac{1}{2}$	$\frac{1}{2}$	\overline{M}	$\overline{2}_{\sqrt{2}}$	M

Nullpunktsenergie

Materialparameter von Edelgaskristallen

	Ne	Ar	Kr	Xe
ϵ (eV)	0.0031	0.0104	0.0141	0.0200
σ (Å)	2.74	3.40	3.65	3.98
R_0/σ	1.14	1.11	1.10	1.09
$U_{\rm tot}/N~({\rm meV})$	-26	-89	-127	-174
E_0 (meV)	8	9	7	6
$(U_{\rm tot}/N) + E_0 ({\rm meV})$	-18	-80	-120	-168
exp. Bindungsenergie	-20	-81	-116	-166

 $R_0^{\exp} \ge R_0 = 1.09 \cdot \sigma$ wegen Nullpunktsfluktuationen

3.2.4 Kompressibilität

• Definition:

$$\kappa = -\frac{1}{V} \left. \frac{\partial V}{\partial p} \right|_{T=const} = \frac{1}{B}$$

 $\kappa =$ Kompressibilität, B = Kompressions- oder Bulk-Modul

(gibt Kraft/Fläche an, die pro relativer *V*-Änderung benötigt wird)

- Zusammenhang mit innerer Energie:
 - innere Energie bei T = 0: dU = TdS pdV = -pdV
 - mit $p = -\partial U / \partial V$ erhalten wir:

$$B = -V \frac{\partial p}{\partial V} = V \frac{\partial^2 U}{\partial V^2} = v \frac{\partial^2 u}{\partial v^2} \qquad u = U/, \quad v = V/N$$

Bulk-Modul wird durch Krümmung des Potenzials bestimmt (bei 1D harmonischem Oszillator entspricht dies der Federkonstante)

• Bulk-Modul von fcc-Gitter (ohne Rechnung):

$$B_{0} = \frac{4\epsilon}{\sigma^{3}} A_{12} \left(\frac{A_{6}}{A_{12}}\right)^{5/2} = 75.2 \frac{\epsilon}{\sigma^{3}}$$

	Ne	Ar	Kr	Xe
B_0^{theor} (10 ⁸ Pa)	18.1	31.8	34.6	38.1
B_0^{\exp} (10 ⁸ Pa)	11	27	35	36

3.3 Ionische Bindung

- elektrostatische Wechselwirkung zwischen entgegengesetzt geladenen lonen
- wichtig:
 - i. Ionisationsenergie I

Energie, die benötigt wird, um Atom ein Elektron zu nehmen

ii. Elektronenaffinität A

Energie, die gewonnen wird, wenn man Atom ein zusätzliche Elektron gibt äquivalent: Energie, die erforderlich ist, um ein Elektron aus einem einfach negativ geladenen Ion zu lösen \rightarrow Ionisierungsenergie eines Anions

- Energiebilanz für NaCl-Kristall:
 - 1. Na \rightarrow Na⁺ + e⁻ + I
 - 2. $e^- + Cl \rightarrow Cl^- + A$
 - 3. $Na^+ + Cl^- \rightarrow Na^+Cl^- + E_{Mad} \longleftarrow$

Ionisationsenergie: I(Na) = 5.14 eVElektronenaffinität: A(Cl) = -3.61 eVMadelung-Energie:

resultiert aus elektrostatischer WW der negativen und positiven Ionen

Größenordnung der Madelung-Energie:

E

WW zwischen Punktladungen:
$$E_{\text{Mad}} = \frac{q_1 q_2}{4\pi\epsilon_0 a} = -\frac{e^2}{4\pi\epsilon_0 a} \simeq -5 \text{ eV} \text{ für } a \simeq 2.8 \text{ Å}$$

Bindungsenergie:

$$E_{\rm B} = E_{\rm Mad} + A + I$$

3.3 Ionische Bindung

günstiger Fall für ionische Bindung

				2	Atom	A	(eV)	I	(eV)	Ate	om	A (eV	7)	I (eV)						
					H	-0	.7542	13	.598	Si		-1.3	9	7.900						
g	ering	ge			Li	-0	.62	5	.392	Р		-0.7	4	10.487			h	ohe		
Ionisat	tions	ener	rgie		С	-1	.27	11	.260	S		-2.0	8	10.360		Ele	ktror	nenaf	finit	ät
				37	0	-1	.46	13	.618	Cl		-3.6	1	12.968						
				3	F	-3	.40	17	.427	Br		-3.3	6	11.814						
Group	1	2		3	Na	-0	.55	5	.139	Ι		-3.0	6	10.451	14	15	16	17	18	
Period 1 K	1				Al	-0	.46	5	.986	Κ		-0.5	0	4.341					2	
	H	3												5	6	7	8	9	10	
2 L	Ĺi	Be												B	č	Ň	X	Ē	Ne	
зМ	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
4	19 - K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 C0	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	- 77 - Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 HS	109 Mt	110 Ds	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo	
*Lant	hanoi	ds	*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Но	68 Er	69 Tm	70 Yb			
**Ac	tinoid	5	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No			

- Coulomb-Wechselwirkung ist langreichweitig
 - → gesamte Bindungsenergie durch Aufsummieren über alle Ionen

$$U_{\text{tot}} = \frac{N}{2} \sum_{i \neq j} \left[\mp \frac{q^2}{4\pi\epsilon_0 r_{ij}} + \lambda e^{-r_{ij}/\rho} \right]$$

bei Aufsummation über Ionenpaare fehlt der Faktor ½ !

- empirisches Born-Mayer oder Buckingham-Potenzial zur Berücksichtigung der kurzreichweitigen Abstoßung wegen Pauli-Prinzip
- > λ, ρ : empirische Material-Konstanten
- van der Waals Wechselwirkung zwischen Na⁺ und Cl⁻ -Ionen wird vernachlässigt (um 2 GO kleiner)

Erwin Rudolf Madelung (1881 - 1972)

• Diskussion der verschiedenen Beiträge

− Beitrag von Coulomb-Wechselwirkung
 → benutzen von r_{ij} = α̃_{ij} R

$$U^{C}(R) = -\frac{N}{2} \frac{q^{2}}{4\pi\epsilon_{0}R} \sum_{i\neq j} \pm \frac{1}{\tilde{\alpha}_{ij}} = -\alpha \frac{N}{2} \frac{q^{2}}{4\pi\epsilon_{0}R}$$

Madelung-Konstante $\alpha = \sum_{i\neq j} \pm \frac{1}{\tilde{\alpha}_{ij}}$

− Reichweite der abstoßenden WW sehr klein
 → Aufsummation nur über Zahl Z_{NN} der NN

 $r_{ij} = R$ (Abstand nächster Nachbarn)

$$U^{P}(R) = \frac{N}{2} Z_{\rm NN} \,\lambda e^{-R/\rho}$$

• Bindungsenergie pro Ionenpaar $\widetilde{U}(R)$ teilen von U_{tot} durch N/2

$$\widetilde{U}(R) = -\alpha \; \frac{q^2}{4\pi\epsilon_0 R} + \; Z_{\rm NN} \lambda e^{-R/\rho}$$

Coulomb-Energie von benachbarten Ionenpaaren multipliziert mit Madelung-Konstante α

- Berechnung der Madelung-Konstante für NaCl-Struktur (fcc)
 - Madelung-Konstante hängt ab von Kristallstruktur
 - Beispiel: Na im NaCl
 - 6 Cl⁻-Ionen im Abstand R = a/2
 - 12 Na⁺-Ionen im Abstand $R\sqrt{2}$
 - 8 Cl⁻-Ionen im Abstand $R\sqrt{3}$
 - 6 Na⁺-Ionen im Abstand $R\sqrt{4}$
 - ...

→
$$\alpha = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \dots = 1.747565$$

• Madelung-Konstante für verschiedene Kristallstrukturen

Struktur	Madelung-Konstante
NaCl-Struktur	$\alpha_{\rm NaCl} = 1.747565$
CsCl-Struktur	$\alpha_{\rm CsCl} = 1.762675$
ZnS-Struktur	$\alpha_{ZnS} = 1.633806$

Madelung-Konstante ist für CsCl (sc) -Struktur am größten

- alle Ionenkristalle sollten CsCl-Struktur haben, was aber nicht der Fall ist
- Problem: Verhältnis der Radien der beteiligten Ionen
- unterschiedlich geladenen Ionen müssen sich "berühren" können, da sonst Bindungsenergie reduziert ist

SC

CI⁻

Cs[†]

3.3.1 Madelung-Energie

• Herleitung des kritischen Ionenverhältnisses

Raumdiagonale: $a\sqrt{3} = 2(r_A + r_B)$

-a-

CsCl-Struktur nur dann optimal, wenn sich blaue und rote Kugeln berühren können

- $\rightarrow a \ge 2r_A$
- → kritisches Radienverhältnis

$$2(\mathbf{r}_A + \mathbf{r}_B) = a\sqrt{3} \ge 2\mathbf{r}_A\sqrt{3}$$

$$\frac{r_A}{r_B} + 1 \ge \frac{r_A}{r_B} \sqrt{3} \quad \Longrightarrow \quad \frac{r_A}{r_B} \le \frac{1}{\left(\sqrt{3} - 1\right)} = 1.366$$

3.3.2 Gleichgewichtsgitterkonstante

- Bestimmung von Gleichgewichtsgitterkonstante R₀ durch Maximierung der Bindungsenergie
 - Bindungsenergie pro Ionenpaar:

$$\widetilde{U}(R) = -\alpha \; \frac{q^2}{4\pi\epsilon_0 R} + Z_{\rm NN} \lambda e^{-R/\rho}$$

$$\Rightarrow \frac{\partial \widetilde{U}(R)}{\partial R} = 0 = \alpha \frac{q^2}{4\pi\epsilon_0 R^2} - \frac{1}{\rho} Z_{\rm NN} \lambda e^{-R/\rho}$$
$$R_0^2 e^{-R_0/\rho} = \rho \alpha \frac{q^2}{4\pi\epsilon_0 Z_{\rm NN} \lambda}$$

 \rightarrow wir müssen λ und ρ kennen, um R_0 zu bestimmen

- \rightarrow in der Praxis bestimmt man λ und ρ durch Messung von R_0 und Kompressibilität κ
- Einsetzen von Ausdruck für $e^{-R_0/\rho}$ in Ausdruck für \widetilde{U} ergibt:

$$\widetilde{U}(R_0) = E_{\text{Mad}} = -\alpha \; \frac{q^2}{4\pi\epsilon_0 R_0} \left(1 - \frac{\rho}{R_0}\right)$$

3.3.3 Kompressibilität und Bulk-Modul

• Kompressibilität *k* und Bulk-Modul *B*

$$B = \frac{1}{\kappa} = -V\frac{\partial p}{\partial V} = V\frac{\partial^2 U}{\partial V^2} = v\frac{\partial^2 u}{\partial v^2}$$

Berechnung erfordert etwas Aufwand

$$B = \frac{1}{\kappa} = V \frac{\partial^2 U}{\partial V^2} = V \frac{\partial}{\partial V} \left(\frac{\partial U}{\partial R} \frac{\partial R}{\partial V} \right) = V \left[\frac{\partial^2 U}{\partial R^2} \left(\frac{\partial R}{\partial V} \right)^2 + \frac{\partial U}{\partial R} \frac{\partial^2 R}{\partial V^2} \right]$$

- nach einigen Rechenschritten erhalten wir für NaCl (fcc-Struktur)

$$B = \frac{1}{\kappa} = \frac{1}{18R_0} \left(\frac{Z_{\rm NN} \lambda}{\rho^2} \, {\rm e}^{-R_0/\rho} - \frac{\alpha q^2}{2\pi \epsilon_0 R_0^3} \right)$$

Kristall	R_0 (Å)	$\kappa (10^{-11} \text{ m}^2/\text{N})$	ρ (Å)	λ (eV)	$\widetilde{U}^{ ext{theor.}}$ (eV)	$\widetilde{U}^{\mathrm{exp.}}$ (eV)
LiF	2.014	1.49	0.291	306	10.70	10.92
LiCl	2.570	3.36	0.330	509	8.55	8.93
NaCl	2.820	4.17	0.322	1090	7.92	8.23
NaJ	3.237	6.62	0.345	1655	6.96	7.35
KCl	3.147	5.75	0.327	2068	7.17	7.47
KJ	3.533	8.55	0.349	2936	6.43	6.75

Zum Vergleich:

Bindungsenergie von					
<i>i</i> an	der	Waa	ls-Kı	ristal	len

Ne:	$\widetilde{U}^{ ext{exp}} = -$ 20 meV
Ar:	$\widetilde{U}^{ ext{exp}} = -$ 81 meV
Kr:	$\widetilde{U}^{ ext{exp}} = -$ 120 meV
Xe:	$\widetilde{U}^{ ext{exp}} = -$ 166 meV

 $\rho \sim 0.1 R_0 \rightarrow$ abstoßendes Potenzial ist sehr kurzreichweitig

Wichtig: wir können einen Ionenkristall nicht einfach in seine Bestandteile zerlegen

 \rightarrow Experimentelle Bestimmung von \widetilde{U} indirekt über Born-Haberschen Kreisprozess

Zusammenfassung: Teil 6, 19.11.2020/1

• Bindungsenergie

- entspricht der Energiedifferenz zwischen der Summe der Energie aller freien Atome/ Moleküle und der Gesamtenergie des aus diesen Atomen/Molekülen aufgebauten kristallinen Festkörpers
- entspricht Arbeit, die wir verrichten müssen, um Festkörper in seine atomaren Bestandteile zu zerlegen
- Bindungstypen:
- van der Waals, ionisch, metallisch, kovalent, Wasserstoffbrückenbindung

• Van der Waals Bindung

- attraktive WW: induzierte Dipol-Dipol-WW
- repulsive Abstoßung wegen Pauli-Prinzip:
 empirische Beschreibung durch 1/R¹² Term
 - Lennard-Jones Potenzial (Paarwechselwirkung)

$$E_{\text{pot}}(R) = 4\epsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]$$

 A_6

14.4539

14.4549

12.253

 A_{12}

12.1319

12.1323

9.114

Gittersummen A_k

Kristallstruktur

fcc

hcp

bcc

6

- Van der Waals Bindung: gesamte Bindungsenergie *→* Aufsummieren über Gitter
 - Aufsummieren über alle Paare *i,j* in Gitter:

$$U_{\text{tot}} = \frac{N}{2} \sum_{i \neq j} 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$

$$\operatorname{mit} r_{ij} = \alpha_{ij}R \operatorname{und} A_k = \sum_{i \neq j} \frac{1}{\alpha_{ij}^k}, \ k = 6,12 \qquad U_{\text{tot}} = \frac{N}{2} \sum_{i \neq j} 4\epsilon \left[A_{12} \left(\frac{\sigma}{R} \right)^{12} - A_6 \left(\frac{\sigma}{R} \right)^{12} \right]$$

Gittersummen A_k

Zusammenfassung: Teil 6, 19.11.2020/2

• Gleichgewichtsabstand

$$\frac{dU_{\text{tot}}}{dR} = 0 \quad \Rightarrow \quad R_0 = \left(2\frac{A_{12}}{A_6}\right)^{1/6} \cdot \sigma \qquad \qquad U_{\text{tot}}(R_0) = -\frac{1}{2}N\epsilon\frac{A_6^2}{A_{12}}$$

• Kristallstruktur

Edelgase haben fcc-Struktur statt hcp-Struktur, obwohl $U_{\rm tot}$ maximal für hcp-Struktur

- Nullpunktschwingungen und Überlapp der Elektronenhüllen nicht berücksichtigt
- Nullpunktsschwingungen

Abschätzung: aus
$$\frac{1}{2}\hbar\omega = \frac{1}{2}kx_{\max}^2$$
 folgt $x_{\max}^2 = \hbar/M\omega$ ($x_{\max} \sim 0.3a$ für He \rightarrow wird nicht fest)

• Kompressibilität:

$$\kappa = -\frac{1}{V} \frac{\partial V}{\partial p} \bigg|_{T=\text{const}} = \frac{1}{B}$$

Kompressions-Modul
$$B = -V \frac{1}{V} \frac{\partial p}{\partial V} \Big|_{T=\text{const}} = V \frac{\partial^2 U}{\partial V^2} \Big|_{T=\text{const}}$$

 $U_{\text{tot}}(R_0) = -N\epsilon \begin{cases} 8.61016 & \text{fcc} - \text{Struktur} \\ 8.61107 & \text{hcp} - \text{Struktur} \end{cases}$

Zusammenfassung: Teil 6, 19.11.2020/3

• Ionische Bindung

Energiebilanz für NaCl-Ionenbindung: 1. Na
$$\Rightarrow$$
 Na⁺ + e⁻ + I
2. e⁻ + Cl \Rightarrow Cl⁻ + A
3. Na⁺ + Cl⁻ \Rightarrow Na⁺Cl⁻ + $E_{mad} \in$

Ionisationsenergie:I(Na) = 5.14 eVElektronenaffinität:A(Cl) = -3.61 eV

Madelung-Energie: resultiert aus elektrostatischer WW der negativen und positiven Ionen

- Größenordnung der Madelung-Energie:
$$E_{\text{Mad}} = \frac{q_1 q_2}{4\pi\epsilon_0 a} = -\frac{e^2}{4\pi\epsilon_0 a} \simeq -5 \text{ eV}$$
 für $q_{1,2} = \pm e$ und $a \simeq 2.8 \text{ Å}$

- Bindungsenergie eines Ionenpaares:

 $E_{\rm B} = E_{\rm Mad} + A + I$

- Madelung-Konstante
 - Aufsummieren über alle Paar-WW im Gitter:
 - > Beitrag von Coulomb-WW, mit $r_{ij} = \tilde{\alpha}_{ij} R$ (R = NN-Abstand)

$$U^{C}(R) = -\frac{N}{2} \frac{q^{2}}{4\pi\epsilon_{0}R} \sum_{i\neq j} \pm \frac{1}{\tilde{\alpha}_{ij}} = -\alpha \frac{N}{2} \frac{q^{2}}{4\pi\epsilon_{0}R}$$
Madelung-Konstante α

> Beitrag von abstoßender WW

$$U^{P}(R) = \frac{N}{2} Z_{\rm NN} \lambda e^{-R/\rho}$$

(nur nächste Nachbar-WW relevant wegen kurzer Reichweite)

• Bindungsenergie pro Ionenpaar

Ũ

$$\widetilde{U}(R) = -\alpha \, \frac{q^2}{4\pi\epsilon_0 R} + Z_{\rm NN} \lambda e^{-R/\rho} \qquad \qquad \widetilde{U}(R_0) = E_{\rm Mad} = -\alpha \, \frac{q^2}{4\pi\epsilon_0 R} \left(1 - \frac{q^2}{4\pi\epsilon_0 R}\right)$$

$$U_{\text{tot}} = \frac{N}{2} \sum_{i \neq j} \left[\mp \frac{q^2}{4\pi\epsilon_0 r_{ij}} + \lambda e^{-r_{ij}/\rho} \right]$$

empirisches Born-Mayer oder Buckingham-Potenzial zur Berücksichtigung der kurzreichweitigen Abstoßung

(hängt von Kristallstruktur ab, für CsCl-Struktur am größten, trotzdem andere Kristallstrukturen möglich wegen Fehlanpassung der Ionenradien)

Struktur	Madelung-Konstante
NaCl-Struktur	$\alpha_{\rm NaCl} = 1.747565$
CsCl-Struktur	$\alpha_{\rm CsCl} = 1.762675$
ZnS-Struktur	$\alpha_{ZnS} = 1.633806$