Physik der Kondensierten Materie 2

Rudolf Gross SS 2021 Teil 7 Vorlesungsstunde: 20.04.2021-1

Zusammenfassung: Teil 6a, 19.04.2021/2

- pn-Übergang im thermischen Gleichgewicht → Kompensation von Diffusions- und Driftströmen
 - Diffusionsspannung: $eV_D = k_B T \ln\left(\frac{n_n p_p}{n_i^2}\right)$
 - Einstein-Relationen: $D_n = \frac{k_B T}{e} \mu_n$ $D_p = \frac{k_B T}{e} \mu_p$
 - lok. LT-Dichte:

Durchlassrichtung

p

ᆔ

Sperrrichtung

• Schottky-Modell zur Berechung von $\phi(x)$

$$-\epsilon\epsilon_{0}\frac{\partial^{2}\phi}{\partial x^{2}} = \rho(x) = \begin{cases} 0 & \text{für } x < -d_{p} \\ -en_{A} & \text{für } -d_{p} \le x \le 0 \\ +en_{D} & \text{für } 0 \le x \le d_{n} \\ 0 & \text{für } x > d_{n} \end{cases} \text{ Integration} \qquad \phi(x) = \begin{cases} \phi(-\infty) & \text{für } x < -d_{p} \\ \phi(-\infty) + \frac{en_{A}}{2\epsilon\epsilon_{0}} (d_{p} + x)^{2} & \text{für } -d_{p} \le x \le 0 \\ \phi(+\infty) + \frac{en_{D}}{2\epsilon\epsilon_{0}} (d_{n} - x)^{2} & \text{für } 0 \le x \le d_{n} \\ \phi(+\infty) & \text{für } x > d_{n} \end{cases}$$

• pn-Übergang mit angelegter Spannung

$$\phi(+\infty) - \phi(-\infty) = V_D - U \quad \overrightarrow{\mathsf{IVC}} \quad J(U) = (J_p^{\text{gen}} + J_n^{\text{gen}}) \left(e^{eU/k_B T} \right)$$

Sättigungsstrom: von U unabhängiger Minoritäts-LT-Strom

-1

• Breite der Raumladungszone

$$\boldsymbol{U} = \boldsymbol{0} \quad \begin{bmatrix} d_n &= \left(\frac{2\varepsilon\varepsilon_0 V_D}{e} \frac{n_A/n_D}{n_A + n_D}\right)^{1/2} \\ d_p &= \left(\frac{2\varepsilon\varepsilon_0 V_D}{e} \frac{n_D/n_A}{n_A + n_D}\right)^{1/2} \end{bmatrix} \quad \boldsymbol{U} \neq \boldsymbol{0} \quad \begin{bmatrix} d_n &= d_n (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix} \quad \text{-Ladung:} \quad \delta Q_{\text{RL}} = en_D A \frac{\frac{\partial d_n}{\partial U}}{\frac{\partial U}{U_0}} \delta U + en_A A \frac{\frac{\partial d_p}{\partial U}}{\frac{\partial U}{U_0}} \delta U \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix} \quad \text{-Kapazität:} \quad \delta Q_{\text{RL}} = en_D A \frac{\frac{\partial d_n}{\partial U}}{\frac{\partial U}{U_0}} \delta U + en_A A \frac{\frac{\partial d_p}{\partial U}}{\frac{\partial U}{U_0}} \delta U \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix} \quad \text{-Kapazität:} \quad \delta Q_{\text{RL}} = en_D A \frac{\frac{\partial d_n}{\partial U}}{\frac{\partial U}{U_0}} \delta U + en_A A \frac{\frac{\partial d_p}{\partial U}}{\frac{\partial U}{U_0}} \delta U \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix} \quad \text{-Kapazität:} \quad \delta Q_{\text{RL}} = en_D A \frac{\frac{\partial d_n}{\partial U}}{\frac{\partial U}{U_0}} \delta U + en_A A \frac{\frac{\partial d_p}{\partial U}}{\frac{\partial U}{U_0}} \delta U \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix} \quad \text{-Kapazität:} \quad \delta Q_{\text{RL}} = en_D A \frac{\frac{\partial d_n}{\partial U}}{\frac{\partial U}{U_0}} \delta U + en_A A \frac{\frac{\partial d_p}{\partial U}}{\frac{\partial U}{U_0}} \delta U \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix} \quad \text{-Kapazität:} \quad \delta Q_{\text{RL}} = en_D A \frac{\frac{\partial d_n}{\partial U}}{\frac{\partial U}{U_0}} \delta U + en_A A \frac{\frac{\partial d_p}{\partial U}}{\frac{\partial U}{U_0}} \delta U \\ d_p &= d_p (U=0) \left(1 - \frac{U}{V_D}\right)^{1/2} \end{bmatrix}$$

Zusammenfassung: Teil 6b, 19.04.2021/2

Schottky-Kontakt

- unterschiedliche Austrittsarbeit von Metall und HL \rightarrow chemische Potenziale sind um $\Phi_M - \Phi_H$ verschoben
- Behandlung äquivalent zu *pn*-Übergang $\rightarrow \Phi_M - \Phi_H$ entspricht V_D

• Schottky-Modell zur Berechung von $\phi(x)$

$$\rho(x) = \begin{cases} en_D & \text{für } -d_n \le x \le 0 \\ 0 & \text{sonst} \end{cases} \quad \text{Integration} \\ \text{Randbed.} \qquad \phi(x) = \begin{cases} (\Phi_M - \Phi_H) - \frac{en_D}{2\epsilon\epsilon_0} (d_n + x)^2 & \text{für } -d_n \le x \le 0 \\ 0 & \text{sonst} \end{cases}$$

entspricht Diffusionsspannung bei pn-Kontakt

• Breite der Raumladungszone

$$\boldsymbol{U} = \boldsymbol{0} \quad d_n = \left(\frac{2\epsilon\epsilon_0}{en_D} \left(\Phi_M - \Phi_H\right)\right)^{1/2}$$

$$\boldsymbol{U} \neq \boldsymbol{0} \qquad \boldsymbol{d}_n = \left(\frac{2\epsilon\epsilon_0}{en_D} \left(\Phi_M - \Phi_H - \Phi_H\right)\right)$$

• Bauelemente basierend auf pn-Übergang

- Zener-Diode, Rückwärtsdiode, Esaki-Diode

1/2

- Solarzelle ist *pn*-Kontakt, in dessen RL-Zone durch Lichteinstrahlung Elektron-Loch-Paare erzeugt werden
 - erstmalige Realisierung durch **Chapin, Fuller** und **Pearson** (1954)
 - große wirtschaftliche Bedeutung (erneuerbare Energien)

Aufbau und prinzipielle Funktionsweise

typischer Aufbau einer Si-Solarzelle

- dünne hochdotierte ($\simeq 10^{19} \text{cm}^{-3}$) *n*-Schicht
- dicke niedrigdotierte *p*-Schicht (RL sollte breiter als Absorptionslänge sein)
- Anti-Reflexionsschicht
- Vorder- und Rückseitenkontakt

Funktionsweise

- Erzeugung von e-h-Paaren in RL-Zone
- Trennung von e und h durch *E*-Feld in RL-Zone \rightarrow zusätzlicher Driftstrom I_L von Minoritäts-LT
- angesammelte Ladung führt zu Potenzialdifferenz eU_{oc} ohne externe Last (open circuit Spannung)

Front-

Sonnenlicht

Schicht

positiv aufgeladen: E_{pot} der Elektronen um (-e)(+U) abgesenkt

negativ aufgeladen: $E_{\rm pot}$ der Elektronen um (-e)(-U) angehoben

 E_v^n

- Strom-Spannungs-Kennlinie
 - Ersatzschaltbild: pn-Kontakt mit zusätzlicher Stromquelle J_L ,

 J_L = Stromdichte durch lichtinduzierte LT

Strom-Spannungs-Kennlinie

$$J(U) = J_s \left[\exp\left(\frac{eU}{k_B T}\right) - 1 \right] - J_L$$

- Solarzelle ohne Last (open circuit): $J(U_{oc}) = 0$

Auflösen nach U_{oc}:

$$U_{oc} = \frac{k_B T}{e} \ln \left(\frac{J_L}{J_s} + 1 \right) \simeq \frac{k_B T}{e} \ln \left(\frac{J_L}{J_s} \right) \quad \text{da meist } J_L \gg J_s$$

- kurzgeschlossene Solarzelle : U = 0

• Elektrotechnik: Welchen Arbeitspunkt muss ich verwenden, um die maximale Leistung zu entnehmen?

IVC unter Beleuchtung:

$$J = J_s \left[\exp\left(\frac{eU}{k_B T}\right) - 1 \right] - J_L$$

an Last abgegeben Flächenleistung P:

 $P=J\cdot U$

Bestimmung des Maximums von $P_m = J_m \cdot U_m$:

 $\frac{dP}{dU} = 0$

• Berechnung von U_m

$$P = UJ_s \left[\exp\left(\frac{eU}{k_BT}\right) - 1 \right] - UJ_L \qquad \Longrightarrow \qquad \frac{dP}{dU} = 0 = J_s \exp\left(\frac{eU_m}{k_BT}\right) + \frac{eU_mJ_s}{k_BT} \exp\left(\frac{eU_m}{k_BT}\right) - J_s - J_L$$

- ausklammern von
$$\exp\left(\frac{eU_m}{k_BT}\right)$$
: $0 = \exp\left(\frac{eU_m}{k_BT}\right)\left[J_s + \frac{U_mJ_se}{k_BT}\right] - J_s - J_L$

- teilen durch
$$J_s$$
:

$$0 = \exp\left(\frac{eU_m}{k_BT}\right) \left[1 + \frac{U_m e}{k_BT}\right] - 1 - \frac{J_H}{J_s}$$

umformen:

$$U_m = \frac{k_{\rm B}T}{e} \ln \left(\frac{\frac{J_L}{J_S} + 1}{\frac{eU_m}{k_{\rm B}T} + 1} \right)$$

 $1 + \frac{J_L}{J_s} = \exp\left(\frac{eU_m}{k_BT}\right) \left[1 + \frac{U_m e}{k_BT}\right]$

Berechnung von J_m

$$J_m = J_s \left[\exp\left(\frac{eU_m}{k_BT}\right) - 1 \right] - J_L \qquad \text{mit} \qquad U_m = \frac{k_BT}{e} \ln\left(\frac{\frac{J_L}{J_s} + 1}{\frac{eU_m}{k_BT} + 1}\right)$$

einsetzen von
$$U_m$$
 ergibt: $J_m = J_s \left(\frac{J_L}{J_s} + 1 - 1 \right) - J_L$

ausklammern von
$$\frac{J_L}{J_s}$$
:

$$J_m = -J_L \left(1 - \frac{1 + \frac{J_s}{J_L} - \frac{J_s}{J_L} \left(\frac{eU_m}{k_B T} + 1\right)}{\frac{eU_m}{k_B T} + 1} \right)$$

 $J_m = -J_L \left(\frac{J_s}{J_L} - \frac{1 + \frac{J_s}{J_L}}{\frac{eU_m}{k_{\rm B}T} + 1} \right) - J_L$

$$J_m = -J_L \left(1 - \frac{1 - \frac{J_s}{J_L} \frac{eU_m}{k_B T}}{\frac{eU_m}{k_B T} + 1} \right)$$

meistens gilt $J_L \gg J_s$, $eU_m \gg k_{\rm B}T$ $J_m \simeq -J_L \left(1 - J_L \right)$

Berechnung von $E_m = \frac{P_m}{I_L/e}$: pro erzeugtem Ladungsträger am Lastwiderstand im Mittel abgegebene Energie

wir verwenden:

$$U_m = U_{oc} - \frac{k_{\rm B}T}{e} \ln\left(\frac{eU_m}{k_{\rm B}T} + 1\right)$$

$$J_m \simeq -J_L \left(1 - \frac{1}{eU_m/k_{\rm B}T} \right)$$

für
$$J_L \gg J_s$$
, $eU_m \gg k_{\rm B}T$

$$E_m = \frac{P_m}{J_L/e} = \frac{-U_m J_m}{J_L/e} = -e U_m \frac{J_m}{J_L}$$

einsetzen von
$$J_m$$
 ergibt:

von
$$J_m$$
 ergibt: $E_m = eU_m \left(1 - \frac{1}{eU_m/k_BT}\right) = eU_m - k_BT$

einsetzen U_m ergibt:

$$E_m = e \left[U_{oc} - \frac{k_{\rm B}T}{e} \ln \left(\frac{eU_m}{k_{\rm B}T} + 1 \right) \right] - k_B T$$

$$E_m = eU_{oc} - k_{\rm B}T \left[\ln \left(\frac{eU_m}{k_{\rm B}T} + 1 \right) + 1 \right]$$

um E_m groß zu machen, sollte $U_{oc} \simeq \frac{k_{\rm B}T}{e} \ln \left(\frac{J_L}{J_{\rm c}} \right)$ groß sein → $J_L \gg J_s$: - hohes J_L durch Konzentratorzellen - kleines J_s durch T-Erniedrigung $(J_s \simeq 10^{-15} \text{ cm}^{-2} \text{ für Si} @ 300 \text{ K})$

- Wirkungsgrad von Solarzellen
 - Definition des Wirkungsgrads/der Konversionseffizienz:

 $\eta = \frac{P_m}{P_{in}} = \frac{\text{maximal gelieferte elektrische Leistung}}{\text{ankommende Strahlungsleistung}}$

Welcher Anteil der Lichtleistung kann maximal in elektrische Leistung umgewandelt werden?

zusätzlich zu der pro erzeugtem LT an Last abgegebenen Energie E_m müssen wir noch wissen, welche mittlere
 Strahlungsenergie zur Erzeugung eines LT notwendig ist

Verlustprozesse bei der Umwandlung von Strahlungsenergie in elektrische Energie

- i. Photonen mit $h\nu < E_g$ können keine e-h Paare anregen
- ii. Photonen mit $hv > E_g$ regen e-h Paare an, die aber einen Teil ihrer Energie durch Relaxation an Bandkante verlieren
- iii. ein Teil der Photonen wird an Oberfläche der Solarzelle reflektiert
- iv. durch Kontaktierungsschichten wird ein Teil der Oberfläche abgedeckt: Reduktion der effektiven Zellfläche
- v. Flächenbedarf von Halterungen/Befestigungen
- vi.

• Zusammenhang zwischen einfallendem Photonenfluss $J_{\rm ph}$ und erzeugter elektrischer Stromdichte J_L

Annahme: Jedes einfallende Photon mit Energie $h\nu > h\nu_g = E_g$ kann e-h Paar erzeugen

• Photonenfluss $J_{\rm ph}$ und zugehörige elektrische Stromdichte J_L für AM 1.5 als Funktion von $E_g = h v_g$

schraffierte Fläche = $J_L(E_g) \cdot E_g$ /e:

Flächenleistung, falls alle erzeugten LT die Energie E_g abgeben könnten

rote Fläche :

reduzierte Flächenleistung, da $E_m < E_g$

Wirkungsgrad :

 $\eta = \frac{\text{rote Fläche}}{\text{Fläche unter Strahlungsfluss} - \text{Kurve}}$

 $\eta_{max}\simeq 31\%$ für $E_g=1.35$ eV

Grenzfälle:

$$\eta \to 0$$
 für $E_g \to 0$: $J_L = \max$, aber $E_m \to 0$
 $\eta \to 0$ für $E_g \to \infty$: $E_m = \max$, aber $J_L \to 0$

• maximale Konversionseffizienz

Asterisks show the best confirmed solar cell efficiencies under AM 1.5 illumination

Halbleitermaterial	Kristallinität/ Schichtstruktur	Wirkungsgrad Labor (%)	Wirkungsgrad Produktion (%)	
Si	amorph	13	5–8	
	polykristallin	20	13–16	
	monokristallin	25	14–17	
GaAs	Einschicht	25	15–22	
GaAs/GaInP/GaInAs	Mehrschicht	40	20–28	mehrere HL-Materialien mit unterschiedlichem Eg werden gestapelt
Cu(In,Ga)Se ₂	Einschicht	20	13–15	
CdTe	Einschicht	16.5	5–12	
Organische Halbleiter	Einschicht	6.5		

10.3.4 Bipolarer Transistor

• Entwicklung im Jahr 1947 durch Bardeen, Brattain und Shockley bei AT&T Bell Labs.

John **Bardeen**, Walter **Brattain**, William **Shockley**

Nobelpreis für Physik 1956: "für ihre Untersuchungen über Halbleiter und ihre Entdeckung des Transistoreffekts"

- sehr breite Anwendung in Analog- und Digitalelektronik
- bereits im Jahr 2002 wurden mehr als 1 Trillion Transistoren produziert

10.3.4 Bipolarer Transistor

- Bandverlauf im *npn*-Transistor
 - zwei hintereinandergeschaltete pn-Übergänge
 - Emitter-Basis (EB): Durchlassrichtung
 - Basis-Kollektor (BC): Sperrrichtung
 - Elektronen, die über EB-Kontakt fließen, sollten alle durch U_{BC} in Kollektor abgesaugt werden
 - $\succ I_{\rm EB} \approx I_{\rm BC} \Rightarrow I_{\rm B} \approx 0$
 - → Leistung im EB-Kreis: $P_{\rm EB} = I_{\rm B}U_{\rm EB} \simeq 0$
 - → Leistung im BC-Kreis: $P_{\rm EB} = I_{\rm BC} U_{\rm BC} \gg 0$
 - ➢ dünne Basis, da sonst $I_{EB} > 0$ wegen Rekombination

Verstärkendes Bauelement:

kleines $\delta U_{\rm EB}$ resultiert in großem $P_{\rm BC} = I_{\rm BC} U_{\rm BC}$ im Ausgangskreis

10.3.4 Dreitor-Bauelemente

• Bipolarer und Feldeffekt-Transistor gehören zu den sogenannten Dreitor-Bauelementen

Landauersches Flüssigkeitsmodell

→ Allgemeines Prinzip:

Fluss einer Flüssigkeit A (z.B. Elektronen) wird über einen Kolben durch zweite Flüssigkeit B möglichst leistungslos gesteuert

→ Grenzfrequenz:

 $f_{\text{grenz}} = v_{\text{fl}}/d_{\text{B}}$ \rightarrow hohe Grenzfrequenz erfordert kurze Kanallänge und hohe Fließgeschwindigkeit z.B. Photonen: Lichtgeschw. *c*, Fluxonen bei Rapid Single Flux Quantum Logik : etwa *c*/10)

10.3.4 Dreitor-Bauelemente

Rolf Landauer

Born: February 4, 1927, Stuttgart Died: April 27, 1999, Briarcliff Manor, New York, United States

10.3.4 Dreitor-Bauelemente

• Entwicklung der Kanallänge von Feldeffekt-Transistoren

65 nm process 2005

45 nm process 2007

32 nm 2009

22 nm 2011

Θ

10.4 Niedrigdimensionale Elektronengassysteme

- Räumliche Einschränkung von HL-Systemen durch Potenzialwälle erlaubt Reduktion der Dimensionalität
 - relevante Längenskala: Fermi-Wellenlänge $\lambda_F \propto n^{-1/3}$
 - Metalle: $\lambda_{\rm F} \leq 1 \text{ nm da } n \geq 10^{22} \text{ cm}^{-3}$
 - Halbleiter: $\lambda_{\rm F} \ge 10 \text{ nm da } n \le 10^{19} \text{ cm}^{-3}$
 - Nomenklatur:
 - 2D: zweidimensionales Elektronengas (2DEG)
 - ID: eindimensionales Elektronengas (1DEG)
 - > 0D: nulldimensionales Elektronengas (0DEG)

- → Realisierung schwierig
- → Realisierung einfach

- → Quantendraht (quantum wire)
- \rightarrow Quantenpunkt (quantum dot)

10.4 Niedrigdimensionale Elektronengassysteme

• zweidimensionales Elektronengas (Wiederholung)

– Einschränkung in eine Raumrichtung (z) führt zu 2DEG

– Verschwinden der Wellenfünktion bei $z = \pm L/2$ führt zu Einschränkung der möglichen Wellenzahlen

$$k_{z,n} = \frac{2\pi}{\lambda_n} = \frac{\pi}{L}n$$
 $n = 1,2,3,...$

diskrete Eigenenergien

$$\varepsilon_{z,n} = \frac{\hbar^2 k_{z,n}^2}{2m} = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} n^2 \qquad n = 1,2,3, \dots$$

 $V(z) = \begin{cases} 0 & \text{für } -\frac{L}{2} < z < +\frac{L}{2} \\ \infty & \text{für } z \ge \frac{L}{2} & - \text{Gesamtenergie} \end{cases}$

$$E_n = E_{||} + \varepsilon_{z,n} = \frac{\hbar^2 k_{||}^2}{2m} + \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} n^2 \qquad n = 1,2,3,...$$

freie Bewegung in *xy*-Ebene (parabolische **Subbänder**) diskrete Energien durch Confinement in *z*-Richtung

Einschränkung in weitere Raumrichtungen führt zu 1D und 0D Elektronengas

Confinement-Energie

 $\varepsilon_{z,1} = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} > 0$

Ursache: Unschärferelation

 ε_4

μ

 $\boldsymbol{\varepsilon}_3$

 $\boldsymbol{\varepsilon}_2$

 ε_1

-L/2

0 L/2 z

10.4 Niedrigdimensionale Elektronengassysteme

• zweidimensionales Elektronengas

Zusammenfassung: Teil 7a, 20.04.2021/1

• Solarzelle

zusätzlicher Driftstrom durch Beleuchtung

 $I = 0 \Rightarrow U_{oc} = \frac{k_{\rm B}T}{e} \ln\left(\frac{J_L}{J_s} + 1\right)$

maximale Flächenleistung: aus dP/dU = 0 folgt / I 1

$$U_m = \frac{k_{\rm B}T}{e} \ln \left(\frac{\frac{J_L}{J_s} + 1}{\frac{eU_m}{k_{\rm B}T} + 1} \right) \qquad \qquad J_m = -J_L \left(1 - \frac{J_L}{k_{\rm B}T} + 1 \right)$$

$$\left(1 - \frac{1 - \frac{J_s}{J_L} \frac{eU_m}{k_{\rm B}T}}{\frac{eU_m}{k_{\rm B}T} + 1}\right)$$

$$P_m = -J_m U_m = \frac{J_L}{e} \cdot E_m$$

Konversionseffizienz: max. Ausgangsleistung/einfallende Strahlungsleistung

$$\eta = \frac{P_m}{P_{in}} = \frac{J_L E_m / e}{P_{in}} \qquad \text{maximal 31\% bei } E_g \simeq 1.35 \text{ eV}$$

$$J_L(v_g) = e J_{\text{ph}}(v_g) = e \int_{\nu = \nu_g}^{\infty} \frac{dJ_{\text{ph}}(\nu)}{d\nu} d\nu \qquad \text{durch Photonenstromdichte } J_{\text{ph}}$$
erzeugte elektrische Stromdichte J_L

Wirkungsgrad: limitierende Faktoren

- (i) Photonen mit $h\nu < E_{g}$ tragen nicht bei
- (ii) für Photonen mit $h\nu > E_{\rm g}$ wird nur $E_{\rm m} < h\nu$ abgegeben
- (iii) Reflexion an Oberfläche, effektive Fläche < 100%, etc.
- (iv) Optimierung des Arbeitspunktes

Zusammenfassung: Teil 7b, 20.04.2021/1

• bipolarer Transistor

zwei *pn*-Kontakte: -

Emitter-Basis-Kontakt in Durchlassrichtung Basis-Kollektor-Kontakt in Sperrrichtung

- Elektronen, die über EB-Kontakt in Basis fließen, werden durch BC-Potenzial abgesaugt
 - $\rightarrow I_{\rm EB} \approx I_{\rm BC} \Rightarrow I_{\rm B} \approx 0$ $\rightarrow P_{\rm EB} = I_{\rm B} U_{\rm EB} \approx 0$ $\rightarrow P_{\rm BC} = I_{\rm BC} U_{\rm BC} \gg 0$

• niedrigdimensionale Elektronengassysteme

- Einschluss von Elektronengas auf Längenskala $L < \lambda_{\text{Fermi}}$
- 0D: Quantenpunkt, 1D: Quantendraht, 2D: 2D-Elektronengas

3