Physik der Kondensierten Materie 1

Rudolf Gross WS 2020/2021 Teil 9 Vorlesungsstunde: 01.12.2020

Zusammenfassung: Teil 8, 26.11.2020/1

Zusammenfassung: Teil 8, 26.11.2020/2

Beispiel: Erhöhung der Beweglichkeit von Ladungsträgern in Halbleitern durch mechanische Verspannung

strain

compressive

tensile

decrease

- Heteroepitaxie von Materialien: z.B. Halbleiter, Kupratsupraleiter, ...
 - → Gitterfehlanpassung führt zu Verspannungseffekten, trotzdem kohärentes Wachstum möglich

Gitterkonstanten und Energielücken von Halbleitermaterialien

farbig markierte Familien haben ähnliche Gitterkonstanten und können deshalb fast verspannungsfrei übereinander gewachsen werden

• Beispiel: Verspannte GaP/InP- und InAs/GaAs-Heterostrukturen

stark verspannt

wenig verspannt

große Gitterfehlanpassung von Substrat führt zu Bildung von Stufenversetzungen ab kritischer Schichtdicke

Wann bilden sich Stufenversetzungen?

- → elast. Energiedichte in verspanntem Film > Energiedichte für Bildung von Stufenversetzungen
- Gitterfehlanpassung:

elast. Energie/Fläche:
$$U_{\rm el} = B \ e^2 d \propto d$$

Energie/Länge von Stufenversetzung:

$$U_V \simeq \frac{1}{2} Db \left[\ln(R/b) + 1 \right]$$

- → Energie/Fläche
- $U_{\gamma} \simeq \frac{2U_V}{c}$

kritische Schichtdicke:
$$U_{\rm el} = U_{\rm r}$$

Rechnung liefert:

$$U_{\rm el} = U_{\gamma}$$

 $d_c \propto \frac{1}{B f}$

 $a_{\rm F}$: Gitterkonstante von Film $a_{\rm S}$: Gitterkonstante von Substrat

 $e = \Delta a_{\rm F}/a_{\rm F}$, $d = {\rm Filmdicke}$, B = Kompressionsmodul

b = Burgers-Vektor,D = Funktion(Schermoduln)

s = Abstand der Versetzungen (Faktor 2, da zwei zueinander senkrecht verlaufende Versetzungsarrays vorliegen)

(Übergang von verspanntem zu relaxiertem Wachstum)

• Relaxation von Verspannungen durch Bildung von Inseln -> selbst-assemblierte Quantenpunkte

Substrat mit kleinerer Gitterkonstante z.B. Si, GaAs epitaktische Schicht mit größerer Gitterkonstante z.B. Ge, InAs

Durchmesser der QP $\simeq 20$ nm Höhe der QP $\simeq 8$ nm

4.5 Technische Größen

- in der Technik werden oft polykristalline Materialien verwendet
 - → sind in guter Näherung isotrop (können mit zwei elastischen Konstanten beschreiben werden)
 - → einfachere Beschreibung der elastischen Eigenschaften durch "technische" Größen

• nur zwei der vier technischen Größen sind voneinander unabhängig (ohne Rechnung)

$$\frac{1}{B} = \frac{3}{E} (1 - 2\nu)$$
 $G = \frac{E}{2(1 + \nu)}$

4.5 Technische Größen

• technische Größen können natürlich durch die Elastizitätsmoduln ausgedrückt werden

Beispiel: Kubische Kristalle (ohne Herleitung):

$$E = \frac{(C_{11} - C_{12})(C_{11} + 2C_{12})}{C_{11} + C_{12}}$$
$$\mu = \frac{C_{12}}{C_{11} + C_{12}}$$
$$G = C_{44}$$
$$B = \frac{1}{3}(C_{11} + 2C_{12}) .$$

$$C_{44} = \frac{1}{S_{44}}$$

$$C_{11} - C_{12} = \frac{1}{S_{11} - S_{12}}$$

$$C_{11} + 2C_{12} = \frac{1}{S_{11} + 2S_{12}}$$

Zusammenhang zwischen Elastizitätsmoduln *C* und elastischen Konstanten *S*

4.6 Elastische Wellen WΜÌ

Transversale Welle (Scherwelle)

(Auslenkung senkrecht zur Ausbreitungsrichtung)

Longitudinale Welle

(Auslenkung parallel zur Ausbreitungsrichtung)

4.6 Elastische Wellen

Analogie zu Masse-Feder-System

Masse

– Masse-Feder-System: Federkonstante k, Masse m, Schwingungsfrequenz $\omega = \sqrt{\frac{k}{m}}$

Differentialgleichung: $\frac{d^2x}{dt^2} = -\frac{k}{m} x$

– Übertragen auf **1D elastischen Festkörper**:

ightarrow kontinuierliches Medium

 \rightarrow Angabe der Größen pro Längeneinheit:

relative Auslenkung

u = x/L

 $\tilde{
ho}$

 $C_{\rm eff}$

(Einheit: Masse pro Längeneinheit)

Federkonstante pro Längeneinheit

→ Differentialgleichung

→ charakteristische Frequenz

$$\frac{d^2u}{dt^2} = -\frac{C_{\text{eff}}}{\widetilde{\rho}} u$$

(Einheit: Kraft pro Fläche wie Elastizitätsmodul)

4.6 Elastische Wellen

• Gegenüberstellung: Masse-Feder-System ⇔ Welle in 1D elastischem Medium

4.6 Elastische Wellen

wir betrachten zunächst als einfachsten Fall ein isotropes Medium (1D) ۲

Verschiebung s_x des infinitesimalen Würfels in x-Richtung durch Nettokraft ΔF_x

$$\Delta F_{x} = \left[\sigma_{xx}(x + \Delta x) - \sigma_{xx}(x)\right] \Delta y \Delta z = \frac{\partial \sigma_{xx}}{\partial x} \Delta x \Delta y \Delta z$$

Gleichsetzen mit Trägheitskraft $\rho \Delta x \Delta y \Delta z \frac{\partial^2 s_x}{\partial t^2}$: —

$$\rho \Delta x \Delta y \Delta z \frac{\partial^2 s_x}{\partial t^2} = \frac{\partial \sigma_{xx}}{\partial x} \Delta x \Delta y \Delta z \quad \Rightarrow \rho \frac{\partial^2 s_x}{\partial t^2} = \frac{\partial \sigma_{xx}}{\partial x}$$

- wir verwenden
$$\sigma_{xx} = C_{11}e_{xx} = C_{11}\frac{\partial s_x}{\partial x}$$
 und erhalten:

$$\implies \frac{\partial^2 s_x}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 s_x}{\partial x^2}$$

anisotropes Medium (3D): _

$$\frac{\partial^2 s_i}{\partial t^2} = \frac{1}{\rho} \sum_j \frac{\partial \sigma_{ij}}{\partial j} = \frac{1}{\rho} \sum_{j,k,l} C_{ijkl} \frac{\partial^2 s_l}{\partial j \partial k} \quad i, j, k, l = x, y, z \quad \text{(Trägheitskraft in } i\text{-Richtung wird auch durch Businessimmt)} \\ \text{Rückstellkräfte in andere Raumrichtungen bestimmt)}$$

- wir betrachten als einfachsten Fall einen kubischen Kristall
 - → Elastizitätstensor hat nur 3 Komponenten: C_{11} , C_{12} , C_{44}
 - wir benutzen $s_x = u$, $s_y = v$, $s_z = w$

$$\frac{\partial^2 s_i}{\partial t^2} = \frac{1}{\rho} \sum_{i} \frac{\partial \sigma_{ij}}{\partial j} \Rightarrow \frac{\partial^2 u}{\partial t^2} = \frac{1}{\rho} \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} \right)$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial e_{xx}}{\partial x} + \frac{C_{12}}{\rho} \left(\frac{\partial e_{yy}}{\partial x} + \frac{\partial e_{zz}}{\partial x} \right) + \frac{2C_{44}}{\rho} \left(\frac{\partial e_{xy}}{\partial y} + \frac{\partial e_{xz}}{\partial z} \right)$$

- Umformen durch Benutzung der Dehnungskoeffizienten e_{ij} :

$$\frac{\partial^2 u}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 u}{\partial x^2} + \frac{C_{44}}{\rho} \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \frac{C_{12} + C_{44}}{\rho} \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 w}{\partial x \partial z} \right)$$

entsprechende Ausdrücke ergeben sich für $\frac{\partial^2 v}{\partial t^2}$ und $\frac{\partial^2 w}{\partial t^2}$

\widehat{C} =	$\begin{pmatrix} C_{11} \\ C_{12} \\ C_{12} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{array}{cccc} C_{12} & C_{12} \\ C_{11} & C_{12} \\ C_{12} & C_{11} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ C_{44} \\ 0 \\ 0 \end{array}$	0 0 0 C ₄₄ 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ C_{44} \end{pmatrix}$							
σ_1	=	$C_{11}e_1$	+ 0	2 ₁₂ e	2+	$C_{13}e_{1}$	3+1	C ₁₄ e ₄	+	$C_{15}e_{5}$; +	$C_{16}e_{6}$
σ_2	=	$C_{21}e_{1}$	+ c	222e	2+	$C_{23}e_3$	3 + 0	C24e4	+	C ₂₅ e ₅	; +	$C_{26}e_{6}$
σ_3	=	$C_{31}e_{1}$	+ c	320	2+	C ₃₃ e	3+0	C34e4	+	C35e5	;+	C36e6
σ_4	=	$C_{41}e_1$	+ c	420	2+	C ₄₃ e	3+9	C44e4	+	$C_{45}e_{5}$; +	$C_{46}e_{6}$
σ_5	=	$C_{51}e_1$	+ c	520	2+	C53e	3+0	C54e4	+	C5585	;+	C56e6
σ_6	=	$C_{61}e_1$	+ c	262e	2 +	C ₆₃ e	3+1	C ₆₄ e ₄	+	C ₆₅ e ₅	;+	C ₆₆ e ₆

$$e_{xx} = \frac{\partial u}{\partial x} \qquad e_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$$
$$e_{yy} = \frac{\partial v}{\partial y} \qquad e_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$
$$e_{zz} = \frac{\partial w}{\partial z} \qquad e_{zx} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)$$

gekoppeltes System von Differentialgleichungen

$$\frac{\partial^2 u}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 u}{\partial x^2} + \frac{C_{44}}{\rho} \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \frac{C_{12} + C_{44}}{\rho} \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 w}{\partial x \partial z} \right)$$

$$\frac{\partial^2 v}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 v}{\partial y^2} + \frac{C_{44}}{\rho} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} \right) + \frac{C_{12} + C_{44}}{\rho} \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 w}{\partial y \partial z} \right)$$

$$\frac{\partial^2 w}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 w}{\partial z^2} + \frac{C_{44}}{\rho} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) + \frac{C_{12} + C_{44}}{\rho} \left(\frac{\partial^2 u}{\partial x \partial z} + \frac{\partial^2 v}{\partial y \partial z} \right)$$

- → Lösung erfordert im allgemeinen Fall etwas Aufwand
- → wir betrachten zuächst nur den einfachen Fall der Ausbreitung in [100]-Richtung eines kubischen Kristalls

- **longitudinale Welle in [100]-Richtung** (wir setzten diese mit *x*-Richtung gleich)
 - Lösungsansatz: $u(x, t) = u_0 \exp[i(kx \omega t)]$

- einsetzen in
$$\frac{\partial^2 u}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 u}{\partial x^2} + \frac{C_{44}}{\rho} \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \frac{C_{12} + C_{44}}{\rho} \left(\frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 w}{\partial x \partial z} \right)$$
 ergibt:

$$\frac{\partial^2 u}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 u}{\partial x^2} \Rightarrow -\omega^2 u(x,t) = -\frac{C_{11}}{\rho} k^2 u(x,t)$$

$$\omega^2 = \frac{C_{11}}{\rho} k^2$$
 oder $\omega = \sqrt{\frac{C_{11}}{\rho}} k$

Dispersionsrelation für elastische Longituninalwelle

- → linearer Zusammenhang zwischen Frequenz und Wellenzahl
- \rightarrow Proportionalitätskonstante ist Ausbreitungsgeschwindigkeit v_{long} der longitudinalen Welle

longitudinale Schallgeschwindigkeit $v_{\text{long}} = \frac{\omega}{k} = \frac{\omega}{2\pi} \lambda = \sqrt{\frac{C_{11}}{\rho}}$ (umso größer, je größer C_{11} und je kleiner ρ)

- transversale Welle in [100]-Richtung (wir setzten diese mit x-Richtung gleich)
 - Lösungsansatz: $v(x, t) = v_0 \exp[i(kx \omega t)]$

- einsetzen in
$$\frac{\partial^2 v}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 v}{\partial y^2} + \frac{C_{44}}{\rho} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} \right) + \frac{C_{12} + C_{44}}{\rho} \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 w}{\partial y \partial z} \right)$$
 ergibt:

$$\frac{\partial^2 v}{\partial t^2} = \frac{C_{44}}{\rho} \frac{\partial^2 v}{\partial x^2} \implies -\omega^2 v(x,t) = -\frac{C_{44}}{\rho} k^2 v(x,t)$$

$$\omega^2 = \frac{C_{44}}{\rho} k^2$$
 oder $\omega = \sqrt{\frac{C_{44}}{\rho}} k$

Dispersionsrelation einer elastischen Transversalwelle

transversale Schallgeschwindigkeit
$$v_{\text{trans}} = \frac{\omega}{k} = \frac{\omega}{2\pi} \lambda = \sqrt{\frac{c_{44}}{\rho}}$$

(umso größer, je größer C_{44} und je kleiner ρ)

- analoges Ergebnis f
 ür die Schwingung in w-Richtung

• longitudinale und transversale Welle in [110]- oder [111]-Richtung

äquivalente Diskussion liefert Ausdrücke für Schallgeschwindigkeiten $\sqrt{C_{
m eff}/
ho}$

Richtung		[100]	[110]	[111]
longitudinal (Kompressionswelle)	L	<i>C</i> ₁₁	$\frac{1}{2}(C_{11}+C_{12}+2C_{44})$	$\frac{1}{3}(C_{11}+2C_{12}+4C_{44})$
transversal (Torsionswelle)	$\begin{array}{c} T_1 \\ T_2 \end{array}$	$\begin{array}{c} C_{44} \\ C_{44} \end{array}$	$C_{44} = \frac{1}{2}(C_{11} - C_{12})$	$\frac{\frac{1}{3}(C_{11} - C_{12} + C_{44})}{\frac{1}{3}(C_{11} - C_{12} + C_{44})}$

Effektive Elastizitätsmoduln für die Wellenausbreitung in [100], [110] und [111] Richtung in kubischen Medien

Longitudinale Welle (Kompressionswelle)

V Direction of Propagation

Transversale Welle (Scherwelle)

• Messung von Schallgeschwindigkeit v_s ergibt Information über die elastischen Konstanten eines Materials

häufige verwendete Methode: Laufzeitmessung von Ultraschallimpulsen

• Werte für C_{11} , C_{12} und C_{44} von einigen kubischen Kristallen

Kristall	$C_{11} (10^{11} \text{ N/m}^2)$	$C_{12} (10^{11} \mathrm{N/m^2})$	$C_{44} (10^{11} \text{ N/m}^2)$	ρ (g/cm ³)
W	5.233	2.045	1.607	19.371
Та	2.609	1.574	0.818	16.696
Cu	1.684	1.214	0.754	9.018
Ag	1.240	0.937	0.461	10.635
Au	1.923	1.631	0.420	19.488
Al	1.068	0.607	0.282	2.733
Pb	0.495	0.423	0.149	11.599
Ni	2.508	1.500	1.235	8.968

"harte" Materialien besitzen hohe C_{ij} und damit hohe Schallgeschwindigkeiten

• Anwendungsbeispiel: Detektion von Rissen

Oszilloskopschirm

• Anwendungsbeispiel: Inspektion von Radreifen bei der DB

WS 2020

0

• Anwendungsbeispiel: akustische Oberflächenwellen

Zusammenfassung: Teil 9, 01.12.2020/1

• epitaxiale Verspannung in Dünnschichtheterostrukturen

• technische Größen: (i) Elastizitätsmodul oder Young-Modul E: $\sigma = E \frac{\Delta \ell}{\ell}$ (iii) Kompressionsmodul B: $p = -\sigma = -B \frac{\Delta V}{V}$

(ii) Poissonzahl ν oder Querzahl μ : $\nu = \frac{1}{\mu} = \frac{-\Delta d/d}{\Delta \ell/\ell}$ (iv) Schub-, Scher- oder Gleitmodul G $\sigma = G \tan \alpha \simeq G \alpha$

- Wichtig: nur zwei der 4 Größen sind unabhängig voneinander $\rightarrow \frac{1}{B} = \frac{3}{E} (1 - 2\nu)$ $G = \frac{E}{2(1 + \nu)}$

- kubisches Kristallsystem: $E = \frac{(C_{11} - C_{12})(C_{11} + 2C_{12})}{C_{11} + C_{12}}, \quad \mu = \frac{C_{12}}{C_{11} + C_{12}}, \quad G = C_{44}, \quad B = \frac{1}{3}(C_{11} + 2C_{12})$

• elastische Wellen (1D): • Differentialgleichung: • charakteristische Frequenz: $\frac{\partial^2 u}{\partial t^2} = -\frac{C_{eff}}{\tilde{\rho}} u \qquad \omega = \sqrt{\frac{C_{eff}}{\tilde{\rho}}}$ $\omega = \sqrt{\frac{C_{eff}}{\tilde{\rho}}}$ $\omega = \sqrt{\frac{C_{eff}}{\tilde{\rho}}}$ $\Delta F_x = [\sigma_{xx}(x + \Delta x) - \sigma_{xx}(x)] \Delta y \Delta z = \frac{\partial \sigma_{xx}}{\partial x} \Delta x \Delta y \Delta z \qquad \Longrightarrow \qquad \rho \frac{\partial^2 s_x}{\partial t^2} = \frac{\partial \sigma_{xx}}{\partial x} \qquad (1D-Fall)$ $\min \sigma_{xx} = C_{11}e_{xx} = C_{11}\frac{\partial s_x}{\partial x} \qquad \Rightarrow \qquad \frac{\partial^2 s_x}{\partial t^2} = \frac{C_{11}}{\rho} \frac{\partial^2 s_x}{\partial x^2}$ $- \operatorname{anisotropes Medium} \qquad \frac{\partial^2 s_i}{\partial t^2} = \frac{1}{\rho} \sum_j \frac{\partial \sigma_{ij}}{\partial j} = \frac{1}{\rho} \sum_{j,k,l} C_{ijkl}\frac{\partial^2 s_l}{\partial j \partial k} \qquad (3D-Fall)$ i, j, k. l = x, y, z

Zusammenfassung: Teil 9, 01.12.2020/2

• elastische Wellen in kubischen Kristallen:

$$\frac{\partial^2 s_i}{\partial t^2} = \frac{1}{\rho} \sum_{j} \frac{\partial \sigma_{ij}}{\partial j} = \frac{1}{\rho} \sum_{j,k,l} C_{ijkl} \frac{\partial^2 s_l}{\partial j \partial k} \qquad i, j, k, l = x,$$

$$y, z \qquad s_x = u, s_y = v, s_z = w$$

in Voigt-Notation
$$\widehat{C} = \begin{pmatrix} C_{11} \ C_{12} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{11} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{11} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{11} \ C_{12} \ 0 \ 0 \ 0 \\ C_{12} \ C_{12} \ C_{11} \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0 \ C_{44} \ 0 \\ \sigma_{zx} = C_{11}e_{xx} + C_{12}e_{yy} + C_{13}e_{zz} + C_{14}e_{yz} + C_{15}e_{xz} + C_{16}e_{xy} \\ \sigma_{yy} = C_{21}e_{xx} + C_{22}e_{yy} + C_{23}e_{zz} + C_{24}e_{yz} + C_{25}e_{xz} + C_{26}e_{xy} \\ \sigma_{zz} = C_{31}e_{xx} + C_{32}e_{yy} + C_{33}e_{zz} + C_{34}e_{yz} + C_{45}e_{xz} + C_{46}e_{xy} \\ \sigma_{yz} = C_{41}e_{xx} + C_{42}e_{yy} + C_{43}e_{zz} + C_{44}e_{yz} + C_{45}e_{xz} + C_{46}e_{xy} \\ \sigma_{zx} = C_{51}e_{xx} + C_{52}e_{yy} + C_{53}e_{zz} + C_{54}e_{yz} + C_{55}e_{xz} + C_{56}e_{xy} \\ \sigma_{zx} = C_{61}e_{xx} + C_{52}e_{yy} + C_{53}e_{zz} + C_{54}e_{yz} + C_{55}e_{xz} + C_{56}e_{xy} \\ \sigma_{zx} = C_{61}e_{xx} + C_{52}e_{yy} + C_{53}e_{zz} + C_{54}e_{yz} + C_{55}e_{xz} + C_{56}e_{xy} \\ \sigma_{zx} = C_{61}e_{xx} + C_{62}e_{xy} + C_{62}e_{xy} + C_{64}e_{xy} + C_{65}e_{xy} + C_{66}e_{xy} \\ \sigma_{zx} = C_{61}e_{xx} + C_{62}e_{xy} + C_{64}e_{xy} + C_{65}e_{xy} + C_{66}e_{xy} \\ \sigma_{zx} = C_{61}e_{xy} + C_{62}e_{xy} + C_{64}e_{yz} + C_{66}e_{xy} + C_{66}e_{xy} + C_{66}e_{xy} \\ \sigma_{zx} = C_{61}e_{xy} + C_{62}e_{xy} + C_{64}e_{xy} + C_{66}e_{xy} + C_{6$$

Beschreibung mit nur 3 Elastizitätsmoduln: C_{11}, C_{12}, C_{44}

(i) in [100] Richtung, longitudinal: Ansatz:
$$u(x,t) = u_0 \exp(i(kx - \omega t))$$
 $\omega^2 \rho = C_{11}k^2$ \Longrightarrow $v_{\text{long}} = \frac{\omega}{k} = \frac{\omega}{2\pi}\lambda = \sqrt{\frac{C_1}{4\pi}}$

in **[100] Richtung**, *transversal*: Ansatz:
$$v(x, t) = v_0 \exp(i(kx - \omega t))$$

$$\omega^2
ho = C_{44} k^2$$

$$v_{\rm trans} = \frac{\omega}{k} = \frac{\omega}{2\pi}\lambda = \sqrt{\frac{C_{44}}{\rho}}$$

	Richtung		[100]	[110]	[111]	
richtungsabhängige effektive	longitudinal (Kompressionswelle)	L	C ₁₁	$\frac{1}{2}(C_{11}+C_{12}+2C_{44})$	$\frac{1}{3}(C_{11}+2C_{12}+4C_{44})$	
"Elastizitätsmoduln $C_{ m eff}$ "	transversal (Torsionswelle)	T ₁ T ₂	C_{44} C_{44}	C_{44} $\frac{1}{2}(C_{11} - C_{12})$	$\frac{\frac{1}{3}(C_{11} - C_{12} + C_{44})}{\frac{1}{3}(C_{11} - C_{12} + C_{44})}$	

Anwendung: Ultraschallanalyse von Materialien, z.B. Rissbildung

(ii)

۲