
Walther-Meißner-Institut

Physik der Kondensierten Materie I – WS 2020/21 Rudolf Gross Stefan Filipp

LS für Technische Physik, E23, Physik-Department, TUM

Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften

Wann, Wo, Wie, Warum,

Vorlesungszeiten:

Dienstag: 12:30 – 14:00 Uhr

Donnerstag: 10:15 – 11:45 Uhr

(keine Präsenzveranstaltungen)

- asynchrones E-Learning: Vorlesungsinhalte werden über Videos (mp4) angeboten
- zusätzlich können Vorlesungsfolien können als pdf-Files heruntergeladen werden
- ferner wird jeweils am Diensttag, 12:30 14:00 Uhr ein Tutorium per Zoom-Meeting angeboten https://tum-conf.zoom.us/j/95428265505, Meeting ID: 954 2826 5505, Passcode: 642658
 - → Diskussion von Fragen zum Vorlesungsstoff, Vertiefung des Vorlesungsstoffs (Fragen können vorab per Email an Rudolf.Gross@wmi.badw.de geschickt werden)
 - → Behandlung von zusätzlichen Themen, Diskussion von aktuellen Forschungsergebnissen,
 - **→** organisatorische Fragen
 - → Feedback zur Vorlesung

Vorlesungsinhalt:

- vermitteln der grundlegenden Eigenschaften und Phänomene von Festkörpern
- schaffen der Basis für Spezialvorlesungen
 - → z.B. Halbleiterphysik, Magnetismus & Spinelektronik, Supraleitung und Tieftemperaturphysik, Quantentechnologie,
- begeistern für eines der wichtigsten Gebiete der Physik
 - → große Bedeutung der Physik der Kondensierten Materie im Alltagsleben

Physik der Kondensierten Materie ist enorm breites Gebiet Warnung:

- → wir können oft nur an der Oberfläche kratzen !!
- → zahlreiche Spezialvorlesungen im Masterstudiengang!!

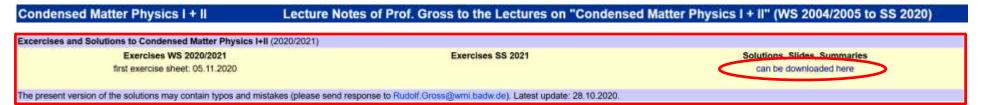
Übungsgruppen:

	Zeit	Raum	
Übungsgruppe 1	Mo 08:30-10:00Uhr	Zoom-Meeting	
Übungsgruppe 2	Mo 12:30-14:00Uhr	Zoom-Meeting	
Übungsgruppe 3	Mi 10:15-11:45Uhr	Zoom-Meeting	
Übungsgruppe 4	Do 08:30-10:00Uhr	Zoom-Meeting	

Koordination der Übungen:

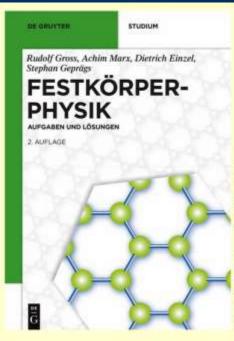
Dr. Stephan Geprägs

Stephan.Gepraegs@wmi.badw.de


- Einteilung der Übungsgruppen: es wird zunächst keine Zuteilung zu Übungsgruppen vorgenommen
- Übungsaufgaben: jeweils bis spätestens Donnerstag der vorhergehenden Woche
- Übungsaufgaben und Musterlösungen als pdf-File erhältlich: http://www.wmi.badw.de/teaching/Lecturenotes/index.html

KM1 – Übungsblätter/Musterlösungen

http://www.wmi.badw.de/teaching/Lecturenotes


Benutzername: Student

Passwort: KM1-Uebung

ndensed Matter Physics I + II	Lecture Notes of Prof. Gross to the Lectures on "Condensed Matter Physics I + II" (WS 2004/2005 to SS 2021)	
	Excercises and Solutions to Condensed Matter Physics I + II (R. Gross: WS 2020/202	21 and SS2021)	
	Exercises and Solutions, WS 2020/2021	Exercises and Solutions, SS 2021	
	The present version of the solutions may contain typos and mistakes (please send respon	se to Rudolf.Gross@wmi.badw.de). Latest update: 28.10.2020.	
	Slides and summaries to Condensed Matter Physics I + II (R. Gross WS 2020/2021 ar	nd SS2021)	
	Movies KM-Expert-1, WS2020/2021	Slides KM-Expert-1, WS2020/2021	
	Marine VAL Francis C CCCCCC	CHARLES THE CARREST OF CORRECT	
	Movies KM-Expert-2, SS2020 KM2_2019-2020_Organisation.pdf	Slides KM-Expert-2, SS2020	
	1-KM-Expert-2 VS 20April2020-1.mp4	1-KM-Expert-2 VS 20April2020-1.pdf	

Stephan.Gepraegs@wmi.badw.de

KM1 – Übungsblätter/Musterlösungen

- Titel: Festkörperphysik. Aufgaben und Lösungen, 2. überarbeitete und erweiterte Auflage
- · Verlag: Walter de Gruyter GmbH, Berlin/Boston
- Erschienen: Mai 2018
- Ausstattung/Bilder: Paperback, XI, 327 S., mehr als 80 schw.-w. Abb., 3 schw.-w. Tab.
- · Sprache: Deutsch
- ISBN 978-3-11-056611-6, e-book: ISBN 978-3-11-056613-0
- Preis: EUR 29,95

Kurzbeschreibung:

Erst beim Lösen von Aufgaben stellen sich Fragen, die man meint geklärt und verstanden zu haben. Zur Ergänzung des anerkannten Lehrbuchs Festkörperphysik von Rudolf Gross und Achim Marx dient das vorliegende Übungsbuch mit 100 Aufgaben und kompletten Musterlösungen zu allen großen Gebieten der modernen Festkörperphysik. Anhand ausführlicher Lösungswege ermöglicht es sowohl eine Vertiefung und Erweiterung der Kenntnisse als auch die Selbstkontrolle des erlernten Stoffs. Die erfahrenen Dozenten leiten Studierende dazu an, sich physikalisches Wissen selbst zu erarbeiten und Hindernisse bei der Findung des eigenen Lösungswegs zu überwinden.

Die einzelnen Lösungsschritte sind nachvollziehbar und verständlich formuliert, wobei zahlreiche Abbildungen die bearbeiteten Themen zusätzlich veranschaulichen.

Ideal zur Prüfungsvorbereitung und zum selbständigen Lernen.

Condensed Matter Physics I + II	Lecture Notes of Prof. Gross to the Lectures on "Condensed Matter Physics I + II" (WS 2004/2005 to SS 2020)					
Excercises and Solutions to Condensed Matter Physics I-	HI (2020/2021)					
Exercises WS 2020/2021	Exercises SS 2021	Solutions Slides Summaries				
first exercise sheet: 05.11.2020		can be downloaded here				
The present version of the solutions may contain typos and mistakes (please send response to Rudolf Gross@wmi.badw.de). Latest update: 28.10.2020.						

Benutzername: Student

Passwort: KM1-Uebung

http://www.wmi.badw.de/teaching/Lecturenotes/index.html

KM1 – Klausuren

Titel	Zeit	Ort	Info	Anmeldung
Prüfung zu Physik der kondensierten Materie 1	Do 04.03.2021, 11:30 – 13:00 h	101, Hörsaal 1, "Interims I" (5620.01.101), 004, Hörsaal 1 "Interims II" (5416.01.004)		07.12.2020 - 15.01.2021
Prüfung zu Physik der kondensierten Materie 1	Di 06.04.2021, 11:30 – 13:00 h	MW 1050, Johann-Bauschinger- Zeichensaal (5510.01.050)		0822.03.2021

alle Studierenden müssen sich selbst anmelden!!

Erlaubte Hilfsmittel:

1 A4-Blatt, einseitig, HANDSCHRIFTLICH beschrieben (nicht kopiert/gedruckt/...)

Inhalt der Vorlesung

Themen

- 1 Aufbau von Kristallen: Klassifizierung von Kristallstrukturen, Richtungen und Ebenen, Defekte, Oberflächen
- 2 Reziprokes Gitter und Strukturanalyse: Brillouin-Zonen, von Laue- und Bragg-Bedingung, Struktur- und Atomformfaktor, Debye-Waller-Faktor
- 3 Bindungskräfte: Van der Waals, ionische, kovalente und metallische Bindung, Wasserstoffbrückenbindung
- 4 Elastische Eigenschaften: Kontinuumsmechanik, Spannung, Dehnung, Elastizitätstensor, elastische Wellen
- **5 Gitterdynamik:** klassische Theorie des Kristallgitters, Dispersionsrelation der Gitterschwingungen, Phononen
- 6 Thermische Eigenschaften des Kristallgitters: spezifische Wärme (klassisch, quantenmechanisch), Debye- und Einstein-Näherung, thermische Ausdehnung, Wärmeleitfähigkeit

Themen

- 7 Das freie Elektronengas:
 - Fermi-Gas, Fermi-Energie, Dispersionsrelation, spezifische Wärme, elektrische und thermische Leitfähigkeit, Hall-Effekt
- 8 Elektronen im periodischen Potenzial:
 - Bloch-Wellen, Dispersionsrelation und Bandstruktur, Näherung von schwach und stark gebundenen Elektronen, Metalle/Halbmetalle/Isolatoren, Fermi-Flächen
- 9 Dynamik von Kristallelektronen:
 - Semiklassiche Beschreibung, Bewegung in elektrischen und magnetischen Feldern, Streuprozesse, Boltzmann-Transportgleichung, thermoelektrische und thermomagnetische Effekte

Fortsetzung in KM 2:

quantenmechanische Beschreibung der Elektronenbewegung

Themen

10. Halbleiter:

Elektronische Struktur und Transporteigenschaften

Bandlücke, Ladungsträgerkonzentration, Dotierung,

Halbleiteranwendungen

```
p-n Übergang, Zener-Diode, Esaki-Diode, Solarzelle, Injektionslaser,
Transistor, niedrigdimensionale Elektronengassysteme, .....
```

11. Dielektrische Eigenschaften:

Dielektrische Eigenschaften des Elektronengases

dielektrische Funktion, Plasmonen, elektrostatische Abschirmung, Polaritonen,

Dielektrische Eigenschaften von Isolatoren

Dielektrizitätskonstante und Polarisation, Polarisationskatastrophe, Ferroelektrizität, weiche optische Phononen,

Themen

12. Magnetismus:

Dia- und Paramagnetismus

Langevin-Gl. für Diamagnetismus, Paramagnetismus, adiabatische Entmagnetisierung, Paramagnetismus der Leitungselektronen,

Ferro- und Antiferromagnetismus

ferromagnetische Ordnung, Spinwellen, ferrimagnetische Ordnung, antiferromagnetische Ordnung, Domänen,

Magnetische Resonanz

Dynamik und Relaxation der Magnetisierung, Bloch-Gleichungen,

Themen

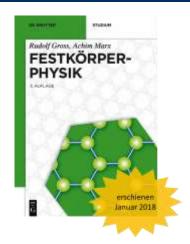
13. Supraleitung:

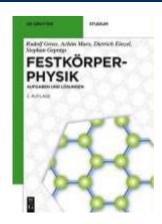
Grundlagen der Supraleitung

```
Meißner-Effekt, Thermodynamik, London-Eindringtiefe, Kohärenzlänge,
Supraleiter 1. und 2. Art, BCS-Theorie, .....
```

Makroskopische Quantenphänomenen

Flussquantisierung, Josephson-Effekte, Quanteninterferometer,


Literatur


Einführung in die Festkörperphysik

Festkörperphysik, 3. Auflage

Rudolf Gross, Achim Marx, de Gruyter Oldenbourg München (2018), ISBN-13: 978-3-11-055822-7

Festkörperphysik,

N. W. Ashcroft, N. D. Mermin, Oldenbourg-Verlag, 3. Auflage (2007).

Einführung in die Festkörperphysik,

Charles Kittel, Oldenbourg-Verlag, 12. Auflage (2005).

Festkörperphysik,

Harald Ibach, Hans Lüth, 7. Auflage, Springer Verlag, Berlin (2009).

Einführung in die Festkörperphysik,

K. H. Hellwege, 3. Auflage, Springer Verlag, Berlin (1988).

Zusätzliche Unterlagen

- in Vorlesung gezeigte Grafiken
- Zusammenfassungen der Vorlesungsstunden
- Übungsblätter
- Musterlösungen

http://www.wmi.badw.de/teaching/Lecturenotes/index.html

Physik der Kondensierte Materie an der TU München

Institute und Lehrstühle

Physik-Department:

E10: Back

E13: Müller-Buschbaum

E14: Simmel

E17: Krischer

E20: Barth

E21: Böni

E51: Pfleiderer

Theorie: Knolle, Pollmann

2. Walter Schottky Institut:

E24: Finley, Holleitner

E25: Stutzmann, Brandt, Sharp

Theorie: Knap

3. Walther-Meißner-Institut:

E23: Gross, Filipp, Deppe, Hackl, Hübl (Althammer, Fedorov, Opel)

4. FRM II:

E13: Müller-Buschbaum

E21: Böni

E51: Pfleiderer

Verar

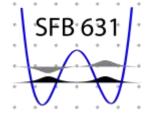
Veranstaltungen

- Münchner Physik Kolloquium (TUM, LMU, MPI) Zeit und Ort: Mo 17:15h, Raum: PH HS2, TUM / E7, LMU
- Festkörperphysik-Kolloquium Zeit und Ort: Do 17:15h, Raum PH HS3
- Walther-Meißner-Seminar
 Zeit und Ort: Fr 11:00h, Seminarraum WMI
- Walter Schottky Seminar
 Zeit und Ort: Di 17:15h, Seminarraum S101, WSI

WMI

Forschungsprojekte

Exzellenzcluster:



Munich Center for Quantum Science and Technology

Sonderforschungsbereiche:

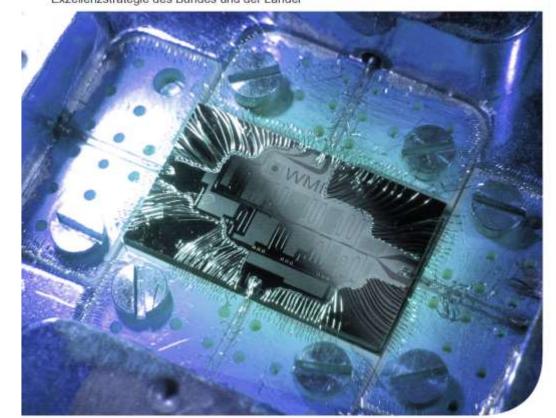
TRR 80

Graduiertenschulen:

QCCC - International PhD Programme of Excellence

Quantum Computing, Control and Communication

DFG Schwerpunktprogramme (Priority Programs):



Neuer Exzellenzcluster

Munich Center for Quantum Science and Technology

Münchner Zentrum für Quanten-Wissenschaften und -Technologie

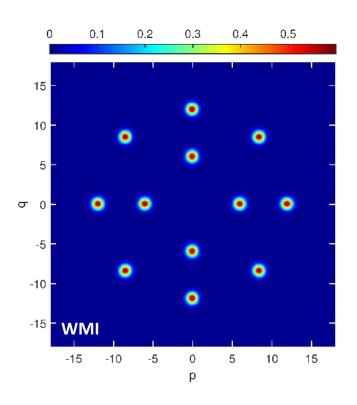
Draft Proposal for a Cluster of Excellence Exzellenzstrategie des Bundes und der Länder

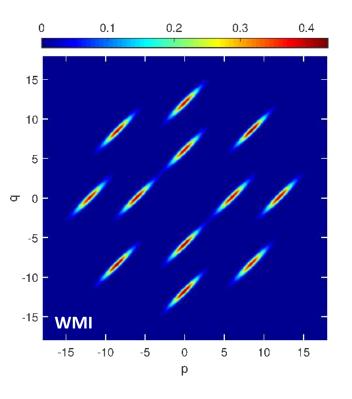
Sprecher:
Immanuel Bloch
Ignacio Cirac
Rudolf Gross

ca. 8 Mio. € / Jahr

Förderzeitraum: 2019 - 2025

Munich Center for Quantum Science & Technology





Munich Center for Quantum Science & Technology

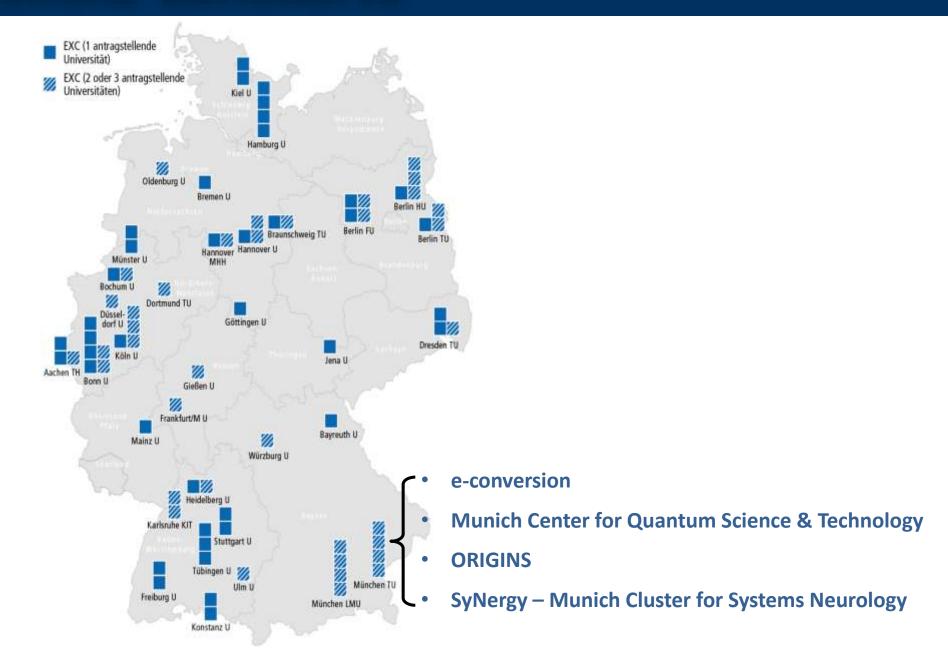
... a Cluster of Excellence joining the Munich competences in Quantum Science, Quantum Technology, and Quantum Matter

Exzellenzstrategie

Bund und Länder fördern ab 2019 wissenschaftliche **Exzellenzstrategie:**

Spitzenleistungen, Forschungskooperationen und die

Profilbildung von Universitäten


Exzellenzcluster: fachübergreifende und international wettbewerbsfähige

Forschungsprojekte zu **besonders relevanten**

wissenschaftlichen Fragestellungen

- **195** Voranträge für Exzellenzcluster
- 88 Voranträge für Vollantrag empfohlen
- 27. September 2018:
 - 57 Exzellenzcluster für Förderung ausgewählt, Förderzeitraum: 7 Jahre, ab 01.01.2019
- Fördervolumen: ca. 2.7 Mrd. € (75% Bund, 25% Länder)

Exzellenz-Landkarte

Center for Quantum Engineering

Forschungsbau: ca. 40 Mio. € Fertigstellung: ca. 2023/24

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN

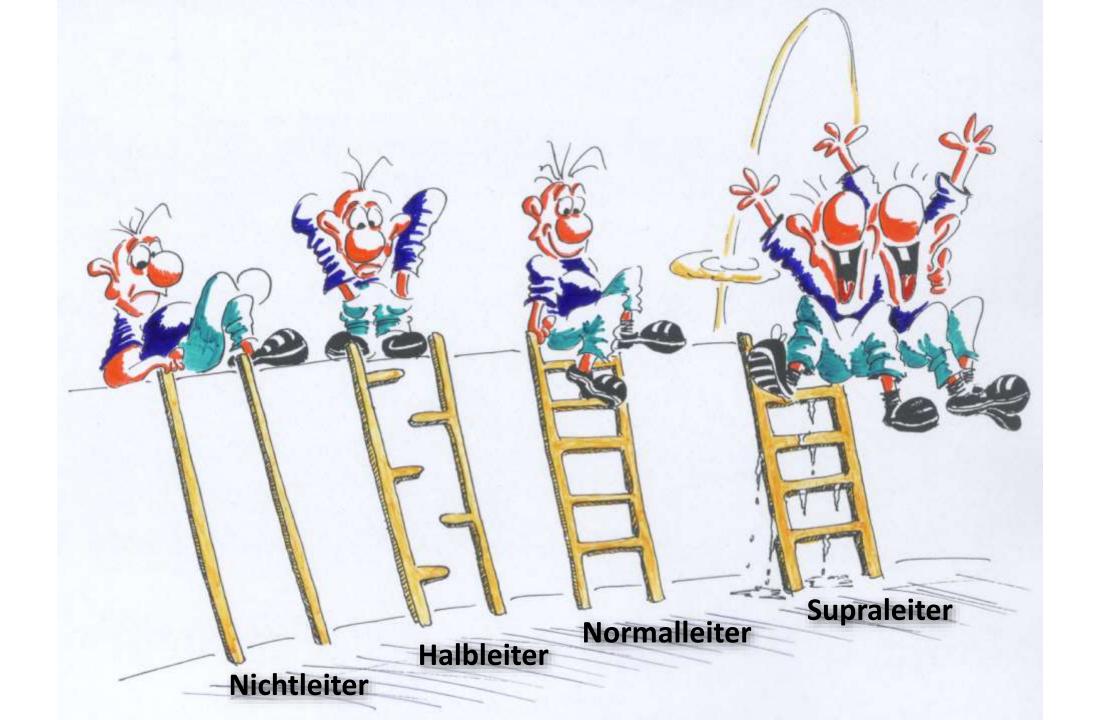

Supraleitung, Magnetismus, Quantensysteme und Quantentechnologie

Nanotechnologie, Dünnschichttechnologe für supraleitende und magnetische Materialien

Walther-Meißner-Institut

Forschung

http://www.wmi.badw.de/research/


Supraleitung

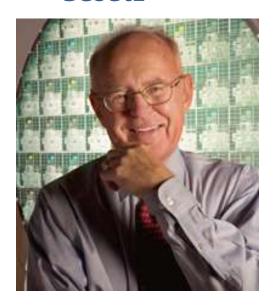
* 16. 12 1882 in Berlin † 15. 11. 1974 in München

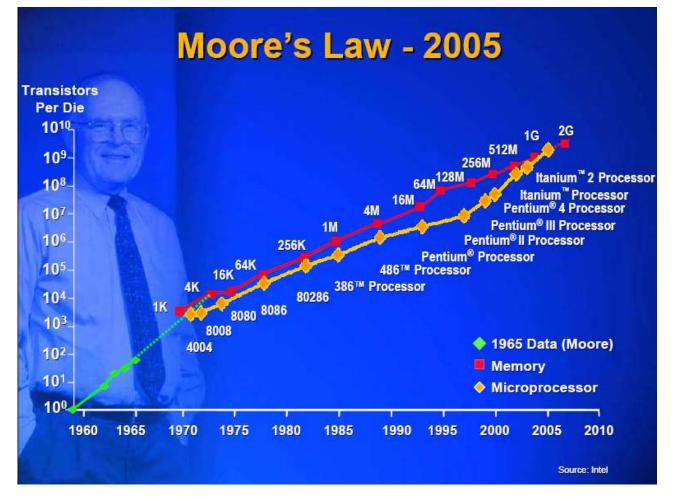
Meißner-Effekt und Stromfluss ohne Widerstand

Nanowissenschaften und

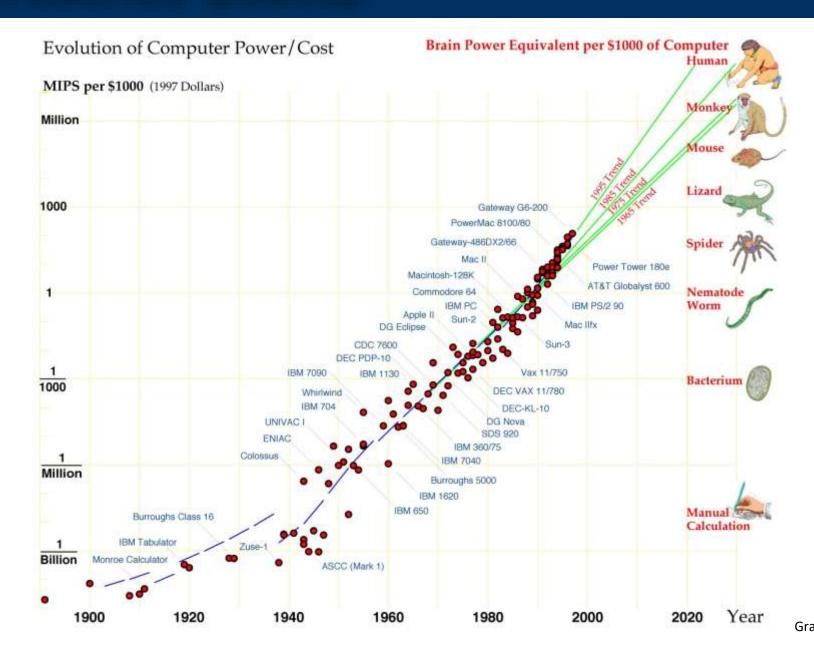
Nanotechnologie

am


WMI

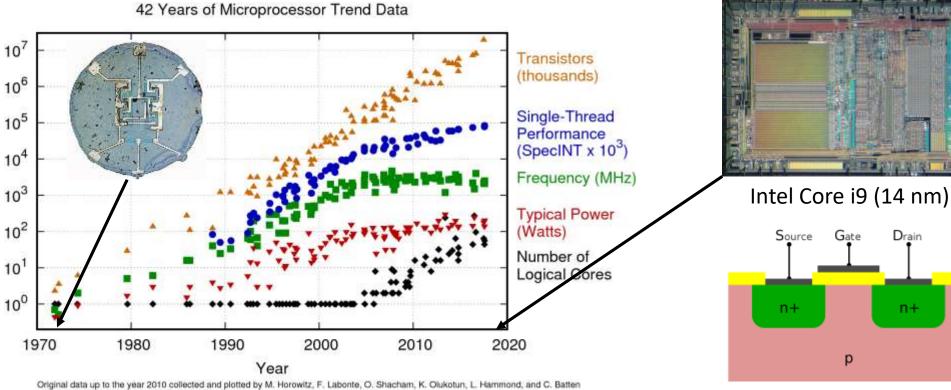


Mooresches Gesetz


1965 beobachtete Moore ein exponentielles Anwachsen der Zahl der Transistoren pro integriertem Schaltkreis und sagte voher, dass sich dieser Trend fortsetzt

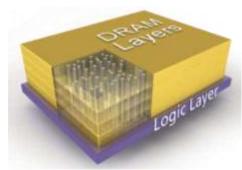
→ Mooresches Gesetz

Mooresches Gesetz


Mooresches Gesetz

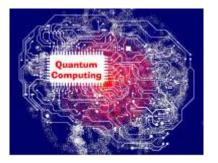
The chips are down for Moore's law

The semiconductor industry will soon abandon its pursuit of Moore's law. Now things could get a lot more interesting

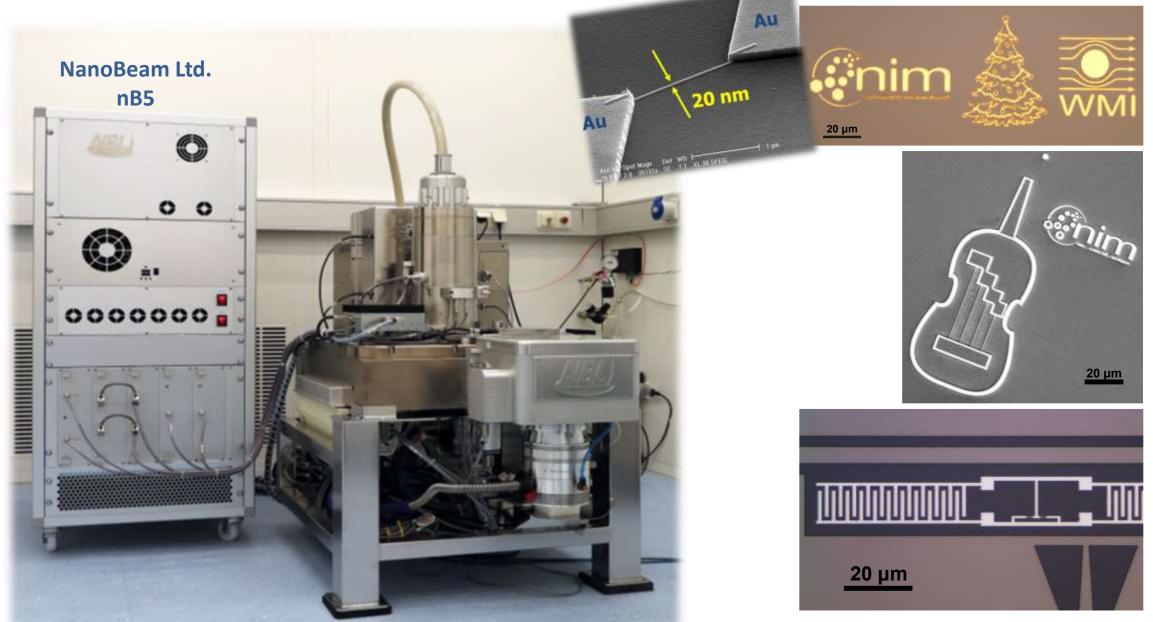


Ende des Mooreschen Gesetzes

New plot and data collected for 2010-2017 by K. Rupp


und dann?

neue Architekturen


neuromorphische Computer

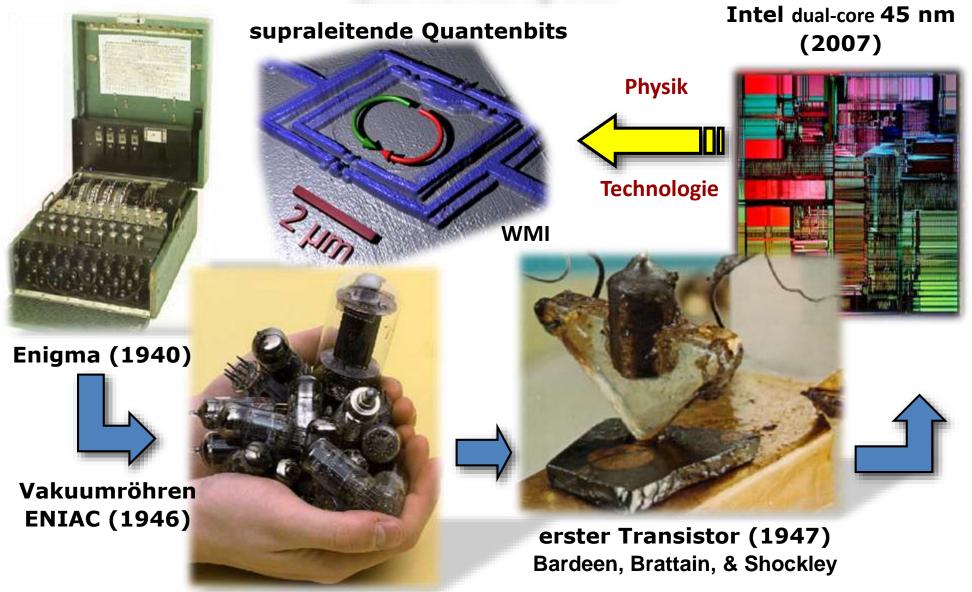
Quantencomputer

Elektronenstrahl-Lithographie Nanonbeam nB5

42

Laserschreiber

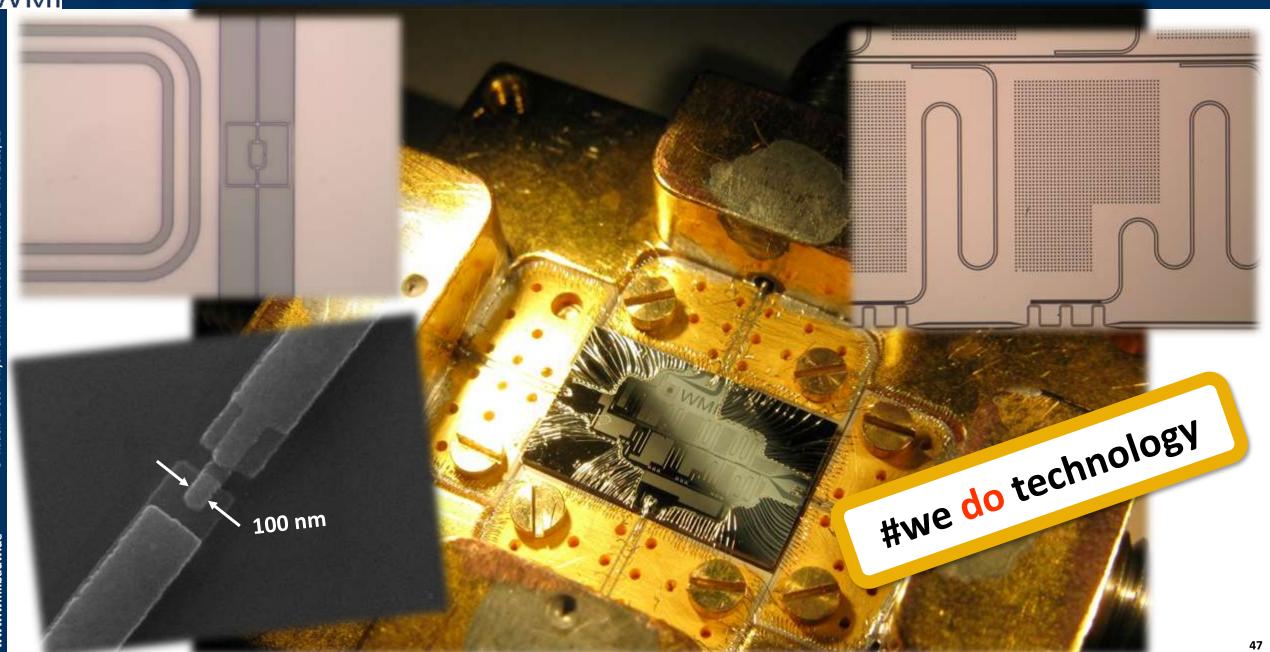
Laserschreiber PicoMaster 200

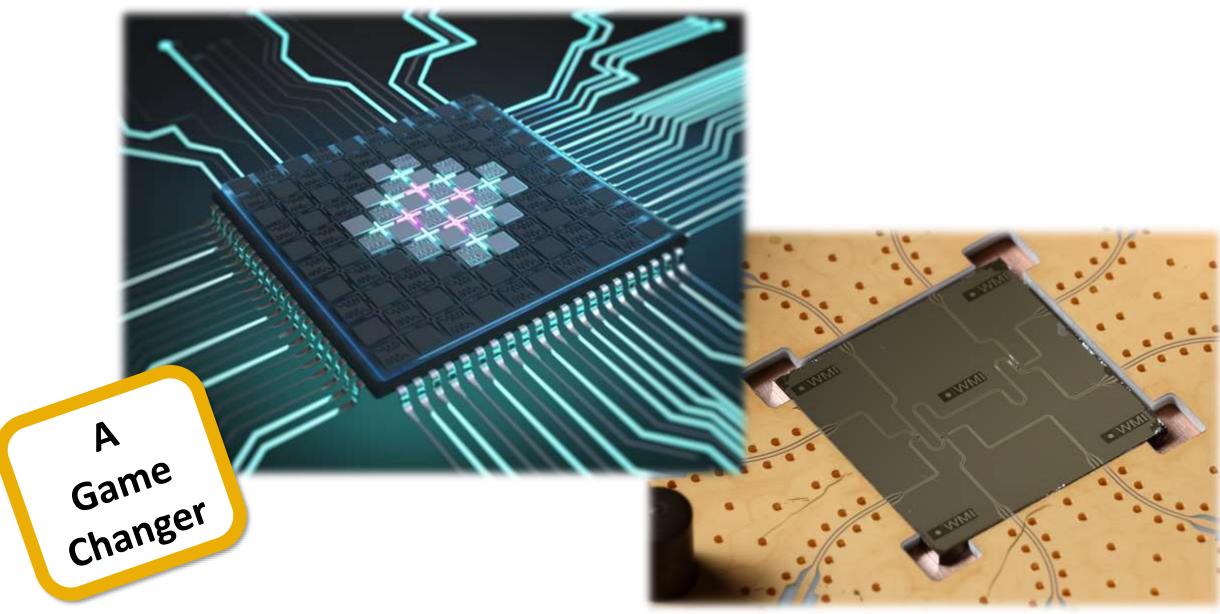

(bis 8 Zoll, Schreibmodule mit 405 und 375 nm Lasern)

Quanteninformationsverarbeitung

Quanteninformationsverarbeitung

Quantencomputer

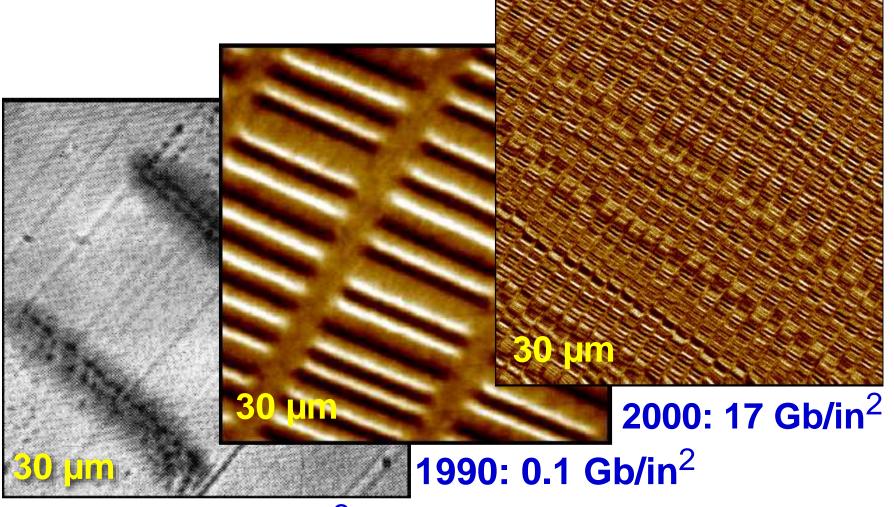




Supraleitende Quantencomputer

Supraleitende Quantencomputer

Magnetismus & Spinelektronik


Magnetische Datenspeicherung

IBM MicroDrive

Magnetische Datenspeicherung

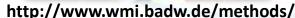
1984: 0.04 Gb/in²

1 in = 2.54 cm

52

Technologie

Walther-Meißner-Institut


Technologieentwicklung

Technologieentwicklung

Einkristallzüchtung, Dünnschichttechnologie Nanotechnologie, Quantentechnologien

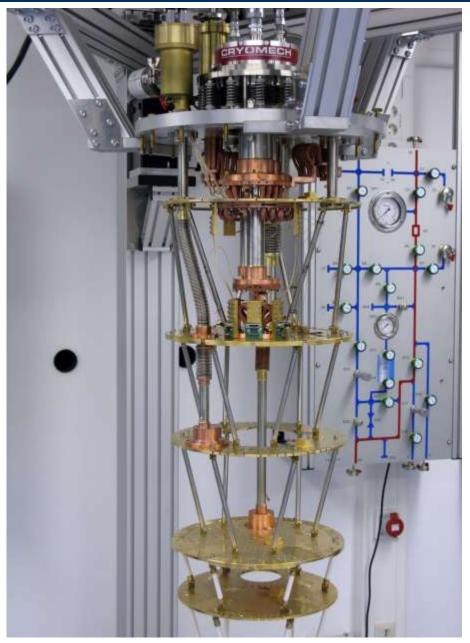
Walther-Meißner-Institut

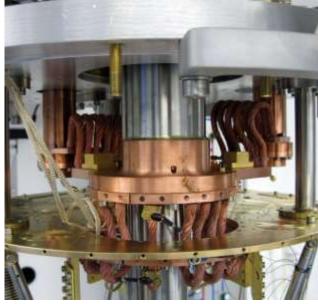
Technologieentwicklung

innovative Kryotechnik

.....WMI entwickelt ersten "trockenen" Mischkühler

K. Uhlig, Cryogenics 42, 73 – 77 (2002)



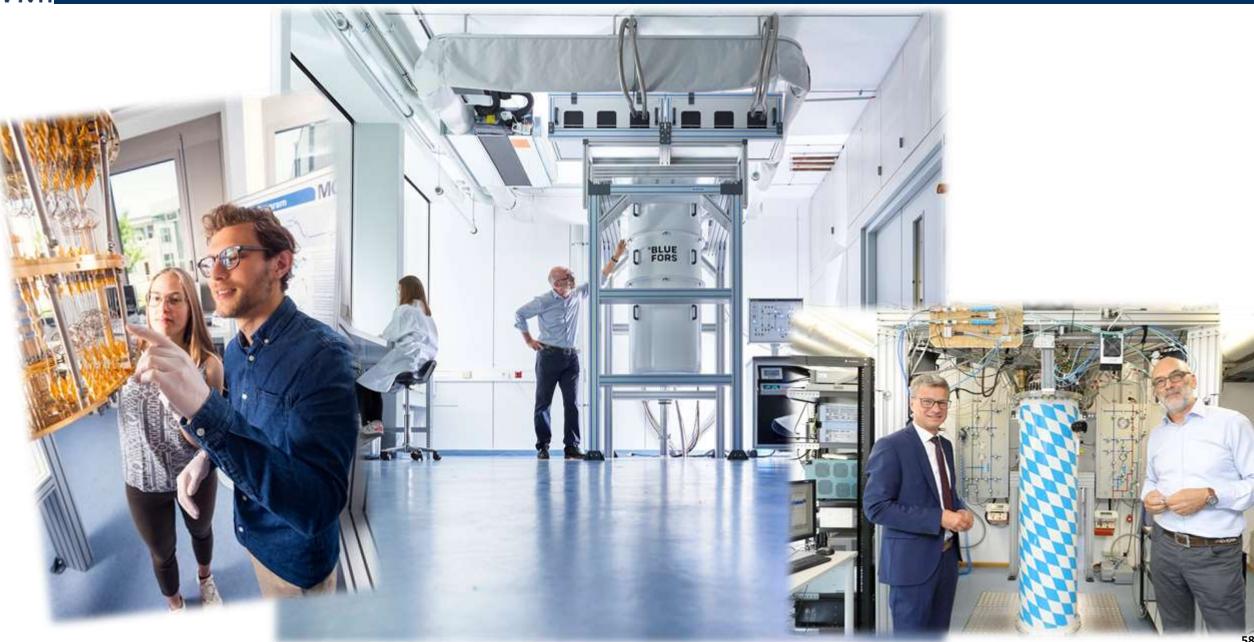




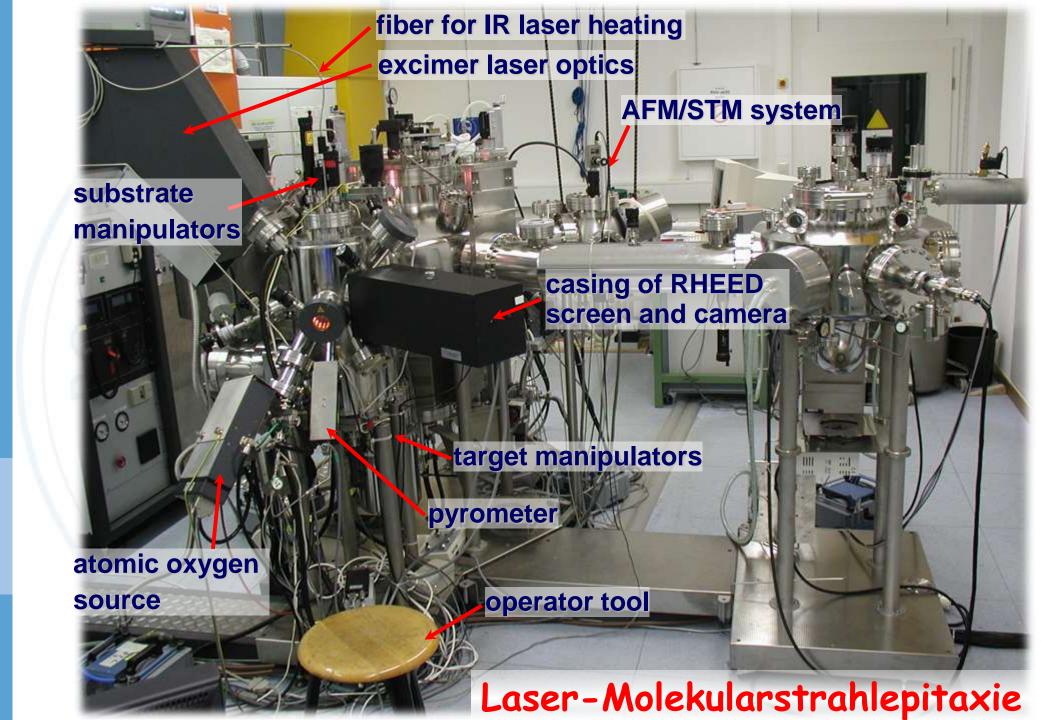
Marktanteil von trockenen Mischkühlern: > 90%

Trockene Mischkühler

dry dilution refrigerator with large sample stage


Marx Höß Uhlig

IBM Q System One



Trockene Mischkühler

UHV Sputtersystem

UHV Sputtersystem für supraleitende Schichten (7 Quellen, bis 4 Zoll)