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In superconducting quantum circuits, such as quantum bits, information is processed
and transferred in the form of microwave quantum signals. Moreover, at the end of
quantum information protocols, these signals have to be recorded by room tempera-
ture electronic devices. Since microwave quantum signals typically consist of very few
photons, they must be amplified in order to achieve reasonable signal-to-noise ratios.
Therefore, low-noise amplification of quantum signals is crucial. Modern low-noise mi-
crowave amplifiers are built upon superconducting Josephson parametric devices, such as
a flux-driven Josephson Parametric Amplifier (JPA), which allows to reach the standard
quantum limit of amplification and even go beyond it. The current JPA is formed by a
superconducting quantum interference device (SQUID) combined with a superconduct-
ing coplanar waveguide resonator. The combined system acts as a tunable nonlinear
microwave resonator, whose frequency can be varied in-situ via an external magnetic
field. A mechanical analogue would be a pendulum of variable length, allowing one to
tune its eigenfrequency. Tunability of the nonlinear microwave resonator can be ex-
ploited to parametrically pump the JPA via application of a strong microwave signal at
twice the resonant frequency. This, in turn, can result in a strong parametric amplifica-
tion of weak quantum signals incident at the JPA. The same parametric amplification
mechanism can be exploited further for generation of genuine quantum signals in the
form of squeezed vacuum states.

The students’ mission in this practical training is to experimentally study the para-
metric quantum-limited amplification phenomenon with the flux-driven superconducting
JPA. This goal can be split in several parts: (i) analyze the magnetic field dependence
of the JPA’s resonance frequency via microwave transmission measurements with a Vec-
tor Network Analyzer (VNA) and determine the JPA frequency modulation period in
terms of the magnetic coil current, (ii) find a suitable working point for parametric
amplification and record the corresponding resonance response, (iii) apply a microwave
pump signal at an appropriate frequency in order to obtain and measure a substantial
parametric amplification gain.
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1 Theory

1.1 Superconductivity and Josephson junctions

One of the most important properties of a superconductor is the Meißner-Ochsenfeld
effect, i.e., the expulsion of magnetic flux from the bulk of the superconductor (perfect
diamagnetism) below a certain transition temperature. An important consequence of
this effect is perfect conductivity which makes superconducting materials a good choice
to minimize dissipative losses. All these intriguing effects can be explained by macro-
scopic quantum nature of the superconducting state, when, under certain conditions,
normal electrons may form a quantum condensate of the so-called Cooper pairs (or,
superelectrons) with a unified wave function. A direct consequence of the quantum-
mechanical coherence of this wave function is magnetic fluxoid quantization in closed
superconducting contours. From fundamental point of view, the latter is similar to Bohr-
Sommerfeld quantization of normal electron wave function in atoms. Another intriguing
phenomenon, which arises from the quantum nature of superelectrons, is the Josephson
effect. It has been theoretically predicted by B. Josephson [1]. The Josephson effect can
be observed if two superconductors are weakly coupled to each other. This effect can
also be understood by considering superconductivity as the quantum-mechanical phe-
nomenon which manifests on macroscopic scales. The Josephson effect originates from
the overlap of the wave functions of each superconductor Ψi(r, t) =

√
n∗i (r, t)e

iθi(r,t),
where i= 1, 2 denotes superconductor 1 or 2 [2]. Here,

√
n∗i (r, t) is the density of super-

conducting Cooper pairs, and θi(r, t) is the global phase of the wave function for each
superconductor. An overlap of the wave functions can be achieved by placing a thin
layer of non-superconducting material, such as an insulator, between the two supercon-
ductors, as shown in Fig. 1.1 (a). Such a structure is referred to as a Josephson junction.
Due to the weak coupling, there can be a finite phase difference across the Josephson
junction which will be important to describe the Josephson effect. The gauge invariant
phase difference across the Josephson junction is given by [3]

ϕ(r, t) = θ2(r, t)− θ1(r, t)− 2π

Φ0

∫ 2

1
A(r, t) · dl , (1.1)

where Φ0 = h
2e is the magnetic flux quantum and A(r, t) is a magnetic vector potential.

The integration path is along a line from superconductor 1 to superconductor 2. The
Josephson effect is commonly described by two equations, the first one being the current-
phase relation [4]

js(ϕ, r) = jc(r) sin(ϕ) , (1.2)
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Figure 1.1: (a) Schematic of a Josephson junction with superconductors in gray and an
insulating layer in green. (b) Schematic of dc-SQUID with one Josephson
junction in each arm of the superconducting loop. Each Josephson junction
is associated with a phase difference ϕi.

where js(ϕ, r) is the supercurrent density through the Josephson junction and jc(r) is
the critical Josephson current density. For simplicity, we consider spatially homogeneous
0D-systems (with dimensions smaller than the characteristic screening length) and arrive
at the first Josephson equation for the total current

Is(ϕ) = Ic sin(ϕ) , (1.3)

where Is is the total supercurrent through the Josephson junction and Ic is the critical
Josephson current of the whole junction.

The second Josephson equation, also called the voltage- or energy-phase relation,
describes the time evolution of the phase difference in the presence of a finite energy
difference 2eV = h̄ω= h̄∂ϕ/∂t between the coupled superconductors. That is, it connects
the voltage V across a Josephson junction to the time-derivative of the phase difference [4]

∂ϕ

∂t
=

2π

Φ0
V (t) . (1.4)

Consequently, a constant voltage across a Josephson junction leads to a linear evolution
of ϕ in time which, in turn, causes a sinusoidal oscillation of the supercurrent Is.

In this context, it is useful to define the nonlinear inductance Ls = V (dIs/dt)
−1 of a

Josephson junction [4]

Ls(ϕ) =
Φ0

2πIc cosϕ
= Lc

1

cosϕ
, (1.5)

where Lc = Φ0/(2πIc) corresponds to the minimal Josephson junction inductance. Ls can
be derived by using the Josephson equations and definition of the inductance V = LdIs

dt .
The nonlinear properties of a Josephson junction make it a central building block for
superconducting circuits where it is often utilized as a nonlinear, lossless inductance.

The dynamics of a Josephson junction can also be described using related energies and
potentials. The Josephson coupling energy EJ originates from the finite overlap of the
wave functions and is defined as E =

∫ t
0 V Isdt =

∫ ϕ
0 V Is(dt/dϕ)dϕ [4]. By substituting
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the Josephson equations into this integral, one obtains

EJ(ϕ) =
Φ0Ic

2π
(1− cosϕ) = EJ0(1− cosϕ) , (1.6)

where EJ0 = Φ0Ic/2π.

If one drives a Josephson junction with an external current I, acting as a generalized
force, the potential energy is given by the tilted washboard potential [5, 4]

Epot(ϕ) = EJ(ϕ)− I
(

Φ0

2π
ϕ

)
= EJ0

(
1− cosϕ− I

Ic
ϕ

)
. (1.7)

To gain an intuitive understanding of the dynamics under the external current I, one can
imagine the phase difference ϕ as a classical particle moving inside this potential. Here, it
is important to remember that this classical description of the Josephson junction is valid
only in the limit of a large effective mass. The effective mass of the Josephson junction
is proportional to its total capacitance C. More specifically, the crossover between the
classical and quantum descriptions of the Josephson junction can be described a number
of quantized energy levels N in a single isolated period of the corresponding washboard
potential. Then, the classical limit can be defined as N � 1. By approximating the
washboard potential with a parabolic function (harmonic approximation), one can show
that [4]

N '
√

EJ

8EC
∝ C. (1.8)

This equation illustrates the fact that by reducing the junction size, and thereby, its
capacitance C, one can eventually enter the quantum regime for the Josephson junction.
On contrary, if one wishes to apply the classical description, it is necessary to keep the
Josephson junction dimensions relatively large (typically, on the order of few microns,
or larger). One can also shunt the junction with a large external capacitance Ce in order
to increase its total effective capacitance, and respectively, reach the classical regime of
N � 1.

In the classical limit, the zero-voltage state and voltage state of a Josephson junction
are related to the phase particle resting and moving in the potential, respectively. The
first state can be obtained for |I| < Ic, where the particle rests in a local minimum of
the potential in the absence of noise sources. The second state corresponds to the phase
particle rolling down the potential for |I| > Ic, where no local minima exist anymore.

If we consider a Josephson junction with a finite capacitance C and normal resistance
R, we can describe the Josephson junction dynamics with the Resistively and Capaci-
tively Shunted Junction (RCSJ) model. This model is only an approximation since it
does not consider the superconducting energy gap. The equation of motion within the
RCSJ model reads [5, 6]

ϕ̈

ω2
p

+
ϕ̇

ωc
= j − sinϕ = − 1

EJ0

∂Epot(ϕ)

∂ϕ
, (1.9)
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where ωp =
√

2πIc/Φ0C is the plasma frequency, ωc = 2πIcR/Φ0 a characteristic fre-
quency and j = I/Ic the normalized supercurrent through the Josephson junction. In
principle, Eq. 1.9 can be interpreted as a damped nonlinear LC oscillator. Therefore, the
aforementioned plasma frequency ωp can be viewed as an eigenfrequency of small ampli-
tude phase oscillations in the Josephson junction, while the characteristic frequency ωc

sets the timescale for energy dissipation due to the presence of finite normal resistance.

Alternatively, the dynamics of a Josephson junction can be described with the cor-
responding Lagrangian. This approach will be useful when investigating more complex
scenarios such as the response of JPAs to an applied magnetic flux. If we neglect the
resistive term, we obtain the Lagrangian of a single Josephson junction,

L = K(ϕ̇)− Epot(ϕ) =
h̄2ϕ̇2

4Ec
− EJ0 (1− cosϕ− jϕ) , (1.10)

where Ec = (2e)2/2C is the charging energy of the capacitor with the charge of one
Cooper pair and K(ϕ̇) is the kinetic energy corresponding to the first term on the left
hand side of Eq. (1.9). The equation of motion can be obtained from the Lagrangian as

d

dt

∂L
∂ϕ̇
− ∂L
∂ϕ

= 0 . (1.11)

We note that Eqs. (1.9) and (1.10) are a quasi-classical description of the Josephson
junction dynamics. They describe the classical motion of a phase particle in the tilted
washboard potential. For a description of superconducting qubits based on Josephson
junctions, a full quantum mechanical description of the Josephson junctions is required.
As mentioned above, this occurs when the charging energy becomes comparable with
the Josephson energy, EC ∼ EJ, respectively, N ∼ 1. In this situation, the Josephson
phase difference ϕ stops being a good quantum number and we have to consider the
commutation relation between the corresponding phase operator ϕ̂ and charge operator
Q̂ [7]. Depending on the relative magnitude of the Josephson energy EJ and the charging
energy Ec, one obtains different types of superconducting qubits [8]. For the Josephson
junctions used in the JPAs presented here, the Josephson energy strongly dominates over
the charging energy, EJ/Ec ' 103. Furthermore, the Josephson nonlinearity in JPAs
is diluted by galvanically connecting the Josephson junctions to a coplanar waveguide
resonator. Consequently, the dynamics of the phase difference ϕ̂ can be well described
with the above quasi-classical model, and the charging energy of the Josephson junction
and any uncertainty between the charge and phase degree of freedom can be neglected.

Task 1: Josephson junctions

Would it be possible to build a superconducting Josephson junction working at
room temperatures? Consider your knowledge regarding the fundamental terms:
superconducting critical temperature Tc, Cooper pairs, Meißner-Ochsenfeld effect,
flux quantum, Josephson contact, Josephson equations.
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Task 2: Tilted washboard potential

Draw the potential energy of a lumped Josephson junction as a function of the
Josephson phase difference. How does this potential change when one increases the
bias current through the Josephson junction?

Task 3: Conjugate variables

What are the conjugate variables relevant to Josephson junctions? Which physical
parameters define the corresponding regimes?

1.2 Dc-SQUID

A central building block of the JPA is a direct current superconducting quantum inter-
ference device (dc-SQUID). It consists of two Josephson junctions with critical currents
Ic in a superconducting loop, as shown in Fig. 1.1 (b). For simplicity, we assume equal
critical currents of the Josephson junctions but different Ic are also possible. An ex-
ternally applied magnetic field B causes a magnetic flux Φext through the loop. Due
to boundary conditions, the total phase change along a closed contour C around the
dc-SQUID loop is fixed to

∮
C ∇θ = 2πn with n ∈ Z0. By using the gauge invariant

phase difference in Eq. (1.1) and the phase gradient in the bulk superconductor, we can
write [4]

∇θ =
2π

Φ0
(ΛJs + A) , (1.12)

where Js is the supercurrent density, A is the vector potential and Λ is the London
parameter. For simplicity, we choose an integration path inside the bulk superconductor
where the supercurrent density Js is approximately zero and obtain

ϕ2 − ϕ1 =
2πΦ

Φ0
+ 2πn . (1.13)

This equation provides us with a connection between the phase differences ϕ1,2 across
the Josephson junctions and the total magnetic flux Φ threading the loop. The total
magnetic flux Φ = Φext + LloopIcirc consists of the externally applied flux Φext and the
self-induced flux LloopIcirc, where Lloop is the self-inductance of the superconducting
loop. The circulating current is given by

Icirc =
I1 − I2

2
= Ic cos

(
ϕ1 + ϕ2

2

)
sin

(
ϕ1 − ϕ2

2

)
= −Ic cosϕ+ sinϕ− , (1.14)

where we introduced new phase differences

ϕ+ ≡
ϕ1 + ϕ2

2
and ϕ− ≡

ϕ2 − ϕ1

2
, (1.15)
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in order to simplify the notation. For example, the fluxoid quantization condition in
terms of the new phase difference ϕ− reads

ϕ− = π
Φ

Φ0
+ πn . (1.16)

Here, it is useful to define the total transport current through the dc-SQUID

Itr = I1 + I2 = 2Ic sin

(
ϕ1 + ϕ2

2

)
cos

(
ϕ1 − ϕ2

2

)
= 2Ic sinϕ+ cosϕ− , (1.17)

which is given by the sum of the currents through each Josephson junction. The screen-
ing properties of the superconducting loop are summarized in the so-called screening
parameter [9]

βL ≡
2LloopIc

Φ0
, (1.18)

which relates the maximally induced flux LloopIc to half of a flux quantum Φ0/2. With
the above equations we can write the total flux through the dc-SQUID loop as

Φ

Φ0
=

Φext

Φ0
− βL

2
cosϕ+ sinϕ− , (1.19)

If we now consider the limiting case βL ' 0, the self-induced flux by the dc-SQUID can
be neglected and, consequently, the total flux can be approximated by the externally
applied flux, Φ ≈ Φext. Then, in analogy to the critical current of a Josephson junction,
one can define a maximum transport current of the dc-SQUID [5]

Imax
s (Φext) = 2Ic

∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣ . (1.20)

Consequently, for βL ' 0, the dc-SQUID can be considered as a single Josephson junction
with a flux-modulated maximum supercurrent and, thus, in analogy to Eq. (1.5), a flux-
tunable inductance of the dc-SQUID can be defined as [10]

Ls(Φext) =
Φ0

2πImax
s

=
Φ0

4πIc

∣∣∣cos
(
πΦext

Φ0

)∣∣∣ . (1.21)

This equation nicely illustrates that the dc-SQUID can be applied both as an in-situ
flux-tunable inductance as well as a nonlinear element in superconducting circuits.

For the case βL > 0, the self-inductance of the loop can no longer be neglected.
Therefore, the behavior of the dc-SQUID is described by Eqs. (1.17) and (1.19). These
two equations need to be solved self-consistently under the constraint of the fluxoid
quantization condition in Eq. (1.13). For general cases, it is not possible to obtain an
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analytic expression but nevertheless one can define

Imax
s (Φext) = 2Ic · jc(Φext) , (1.22)

Ls(Φext) =
Φ0

4πIc · jc(Φext)
, (1.23)

where jc(Φext) is a dimensionless critical supercurrent through the dc-SQUID. We refer
the reader to Sec. 1.4 for a detailed discussion on how we simulate and use jc(Φext) in
order to describe the flux dependence of a coplanar waveguide resonator short-circuited
to ground by a dc-SQUID.

Similarly to the case of a single Josephson junction, one can write Kirchhoff’s law for
both junctions [5]

ϕ̈1

ω2
p1

+
ϕ̇1

ωc1
= − sinϕ1 + jtr +

1

πβL

(
ϕ2 − ϕ1 − 2π

Φext

Φ0

)
, (1.24)

ϕ̈2

ω2
p2

+
ϕ̇2

ωc2
= − sinϕ2 + jtr −

1

πβL

(
ϕ2 − ϕ1 − 2π

Φext

Φ0

)
, (1.25)

where indices 1 and 2 denote the two Josephson junctions and jtr = Itr/(2Ic). Finally,
we neglected the dissipative terms and define the Lagrangian of a dc-SQUID [11]

L =
h̄2

4Ec
(ϕ̇2

1+ϕ̇2
2)−EJ0 (2− cosϕ1 − cosϕ2 − jtr(ϕ1 + ϕ2))− EJ0

2πβL

(
ϕ2 − ϕ1 − 2π

Φext

Φ0

)2

,

(1.26)
which can also be written in the form

L =
h̄2

2Ec
(ϕ̇2

++ϕ̇2
−)−EJ0 (2− 2 cosϕ+ cosϕ− − 2jtrϕ+)−2EJ0

πβL

(
ϕ− − π

Φext

Φ0

)2

. (1.27)

Task 4: Flux-tunable dc-SQUID

Sketch a flux dependence of the maximum Josephson supercurrent through a dc-
SQUID.

Task 5: Screening parameter

What is the physical meaning of the screening parameter βL?

1.3 Coplanar waveguide resonators

In circuit quantum electrodynamics, superconducting resonators have various purposes.
For example, they can serve as quantum bus [12], quantum memory [13], or can be
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Figure 1.2: (a) Distributed element model of a CPW resonator. This resonator can
be described as a CPW transmission line with the length l which is short-
circuited to ground at one end, creating a voltage node (current anti-node).
Such resonator configuration corresponds to the λ/4-type. Here, L0 and C0

are the inductance and capacitance per unit length, and Cc is a coupling
capacitance which allows an input signal ain to enter and a signal aout to
leave the resonator. (b) Input-output model of a resonator with an inter-
nal mode â and internal loss rate κint which couples to a loss mode b̂out.
Input-output coupling is expressed by an external coupling rate κext. The
operators âin, âout, â, and b̂out are treated quantum-mechanically. (c) Re-
flection magnitude |Γ| and reflection angle Arg (Γ) versus readout frequency
for Qext = 300, Qint = 1000 and ω0/2π= 5 GHz.

applied to study fundamental light-matter interactions [14]. Furthermore, they are an
essential part of JPAs.

First, we consider a coplanar waveguide (CPW) which acts as a quasi one-dimensional
transmission line. Since we are interested in frequencies in the gigahertz regime, the lat-
eral dimensions of the CPW should be on the order of the corresponding wavelength,
i.e. on the order of a few millimeters. Therefore, the CPW needs to be described with a
distributed element model, where each circuit element is considered to be infinitesimally
small. The wave propagation through such a system is generally described by the telegra-
pher’s equations [15]. Since our CPW structures consist of a superconducting material,
we can approximate the CPW with a lossless transmission line with a characteristic
impedance [15]

Z =

√
L0

C0
, (1.28)

where L0 and C0 are the inductance and capacitance per unit length of the transmis-
sion line, respectively. In general, disregarding polarization, an infinite homogeneous
transmission line does not have any mode restrictions due to the absence of boundary
conditions.

In order to create a resonant structure, one needs to apply boundary conditions to the
waves propagating through the transmission line. One way to realize such a boundary
condition is to create a discontinuity in the transmission line by introducing a line break
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with a corresponding capacitance Cc. Simultaneously, this capacitor acts as an external
port to couple to the field inside the resonator. Alternatively, one can short-circuit the
CPW to ground which creates a voltage node and current antinode. We focus on quarter-
wavelength resonators where both of these boundary conditions are employed, namely, a
coupling capacitance at one end of the resonator and a short to ground at the other end
as shown in Fig. 1.2 (a). The fundamental resonance frequency of a quarter-wavelength
resonator with length l is given by [16]

fr =
c√
εeff

1

4l
=

1

4l
√
L0C0

, (1.29)

where εeff = c2/v2
ph is the effective permittivity of the CPW, c is the velocity of light in

vacuum and vph = 1/
√
L0C0 is the phase velocity. The length of the resonator is con-

nected to the wavelength of the fundamental mode as l=λ/4, hence the name quarter-
wavelength resonator.

In order to probe the resonator, a microwave tone is applied and the reflected signal
from the resonator is measured as depicted in Fig. 1.2 (b,c). The reflected signal can
differ in amplitude and phase from the applied signal which is captured by the complex
reflection coefficient [17]

Γ =
(ω − ω0)2 + iκint(ω − ω0) + (κ2

ext − κ2
int)/4

[(ω − ω0) + i(κext +κint)/2]2
, (1.30)

which is calculated using an input-output formalism. Here, κint and κext are the internal
and external loss rates, respectively, and ω0 is the resonance frequency of the resonator
in angular units.

The loss rates are related to the quality factorQ of the resonator, which is an important
quantity characterizing its performance. The quality factor is defined as [15]

Q = 2π
average energy stored

energy loss/cycle
=

ω0

κtot
, (1.31)

where κtot =κint+κext defines the total loss rate. Consequently, the loaded quality factor
Ql is defined by the sum of loss rates

1

Ql
=

1

Qint
+

1

Qext
=
κint + κext

ω0
, (1.32)

where Qint =ω0/κint and Qext =ω0/κext are the internal and external quality factor,
respectively. The external loss rate is mainly defined by the coupling capacitance and
determines how well a probe tone couples to the resonator. The internal loss rate is
a sum of various, typically unwanted, loss mechanisms such as losses from two-level
fluctuators [18], surface resistance [19], or radiation losses.
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Task 6: Resonator

How to design a coplanar waveguide resonator for a given fr? How to design the
corresponding quality factors?

1.4 Resonance frequency of the JPA

Figure 1.3: (a) Change of effective length of resonator to illustrate the change of reso-
nance frequency due to the magnetic flux modulation through a dc-SQUID.
(b) Circuit diagram of a flux-driven JPA consisting of an input capacitance
(grey), CPW resonator (orange), dc-SQUID (blue), and pump line (green).
(c) Resonance frequency vs. externally applied flux. A constant magnetic
flux Φdc fixes the working point at a frequency ω0.

We now consider the flux-driven JPA [20] consisting of a quarter-wavelength CPW
resonator, which is short-circuited to ground by a dc-SQUID (see Fig. 1.3). Here, the
dc-SQUID acts as a flux-tunable nonlinear inductor which contributes to the quasi-static
resonance frequency ω0 of the JPA. As discussed in Sec. 1.2, we can use a magnetic flux
to tune the dc-SQUID inductance and, in this way, the resonance frequency of the
whole JPA circuit. In order to induce parametric effects, an on-chip antenna couples
inductively to the dc-SQUID loop via the loop inductance Lloop and is used to apply a
strong coherent pump tone with an angular frequency ωp = 2ω0.

In the following, we discuss how the resonance frequency of the JPA circuit depends
on an external magnetic flux Φext threading the dc-SQUID loop. The treatment is
applicable for arbitrary flux-screening of the dc-SQUID which can be quantified by the
dimensionless screening parameter βL, as defined in Eq. (1.18). Based on the distributed
element model for the quarter-wavelength resonator and a lumped element model for
the dc-SQUID (see Fig. 1.3), one arrives at a transcendental equation for the resonance
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frequency ω0 of the JPA [21, 22, 23]

πω0

2ωr
tan

(
πω0

2ωr

)
=

(2π)2

Φ2
0

LrEs(Φext)−
2Cs

Cr

(
πω0

2ωr

)2

. (1.33)

Here, Lr, Cr, and ωr/2π are the total inductance, the total capacitance and the resonance
frequency of the bare resonator, respectively, Es(Φext) is the flux-dependent potential
energy of the dc-SQUID as defined below, and Cs is the capacitance of one Josephson
junction. For the presented samples, the last term in Eq. (1.33) can be neglected, since
the capacitance of the Josephson junctions is much smaller than the one of the resonator,
Cs � Cr. For a vanishing transport current Itr through the dc-SQUID, the normalized
critical supercurrent jc(Φext), used in Eqs. (1.22) and (1.23), only depends on ϕ− and
can be simplified to

jc = | cosϕmin
− (Φext)| , (1.34)

where ϕ±≡ (ϕ1±ϕ2)/2 are defined in Eq. (1.15). The superscript in ϕmin
± (Φext) denotes

the steady-state phase differences for a given external flux Φext. Thus, the Josephson
inductance of the dc-SQUID reads

Ls(Φext) =
Φ0

4πIc| cosϕmin
− (Φext)|

, (1.35)

where Ic is the critical current of a single Josephson junction. Using Ls, we can express
the flux-dependent energy of the dc-SQUID as

Es(Φext) =
Φ2

0

(2π)2

1

Ls(Φext) + Lloop/4
, (1.36)

where the non-zero dc-SQUID loop inductance Lloop is split between both arms of the
dc-SQUID [24].

The tangent in Eq. (1.33) can be expanded into a Laurent series near π/2 for ω0/ωr '
1. Consequently, we obtain a simplified expression for the resonance frequency of the
JPA in terms of inductances

ω0(Φext) = ωr

[
1 +

Ls(Φext) + Lloop/4

Lr

]−1

. (1.37)

We now discuss the effect of flux-screening of the dc-SQUID depending on the screening
parameter βL. In general, ϕmin

− (Φext) exhibits a non-trivial dependence on the external
magnetic flux. According to the fluxoid quantization, ϕmin

− (Φext) is related to the to-
tal flux Φ = Φext +LloopIcirc threading the dc-SQUID according to ϕmin

− =π(Φ/Φ0). As
already discussed in Sec. 1.2, we have Φ≈Φext in the case of a vanishing screening pa-
rameter βL' 0. In this case, the phase of one Josephson junction relative to the other
one is fixed by the fluxoid quantization, reducing the available degrees of freedom from
two to one. This results in a single-valued dependence ϕmin

− =π(Φext/Φ0). A mechani-
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cal analog of this situation are two strongly coupled pendula, where the system can be
described by a single deflection angle, i.e., a single degree of freedom due to the rigid
coupling. However, if the screening parameter βL becomes non-zero, there is no analytic
expression for ϕmin

− (Φext) anymore and the dependence has to be calculated numerically.
Consequently, the JPA resonance frequency can exhibit a non-trivial behavior when
varying the external flux.

Task 7: Bonus – Critical coupling

We have considered external and internal quality factors Qext, Qint. When would
the JPA resonator become critically coupled? If in doubt, refer to the general
resonator theory for the latter question. How could it be possible to achieve critical
coupling in the case of a flux-tunable JPA?

1.5 Parametric amplification with flux-driven JPAs

In general, amplification in nonlinear resonators can be enabled by driving a parametric
process with an external pump tone. The pump tone must very one of the parameters of
this resonator, such as inductance L or capacitance C, in a periodic fashion which gives
rise to parametric effects [25, 26]. In order for such processes to happen, the resonator
requires a nonlinear element. For superconducting circuits, Josephson junctions are rou-
tinely used for this purpose and a variety of parametric amplifiers have been realized
based on them [27, 28, 29, 30, 31, 32, 33]. We focus on flux-driven JPAs [20] where
the pump tone is inductively coupled to the JPA and has a frequency ωp of twice the
resonance frequency of the circuit. Here, the pump tone leads to a periodic modula-
tion of the dc-SQUID inductance which, in turn, causes a periodic modulation of the
resonance frequency ω0 of the JPA circuit. Consequently, the induced parametric mod-
ulation enables a three-wave mixing process where an incident signal mode at frequency
ωs =ωp/2 + δω and detuning δω is amplified, as depicted in Fig. 1.4. At the same time,
an idler mode at frequency ωi =ωp/2− δω is created. One can imagine this process as a
pump photon splitting into one signal photon and one idler photon such that the energy
is conserved, ωp =ωs +ωi [34].

In order to describe the flux-driven JPA analytically, we employ an input-output model
for the JPA developed by Yamamoto et al. [17] and start with an unperturbed classical
harmonic oscillator whose resonance frequency ω0 is periodically modulated such that
ω0 → ω0 [1 + ε/2 cos(αω0t)], where ε/2 and αω0 are the amplitude and frequency of the
modulation, respectively. Consequently, the classical equation of motion reads [17]

d2x

dt2
+ ω2

0 [1 + ε cos(αω0t)]x = 0 . (1.38)

Here, we neglected the ε2 term since we only consider small modulation amplitudes, i.e.,
small pump amplitudes. In a quantum-mechanical picture, the corresponding Hamilto-
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frequency

pumpsignal

ω0 ωp/2+δωωp/2-δω0

idler

ωp

Figure 1.4: Scheme of relevant frequencies for parametric amplification with a flux-driven
JPA. The pump frequency ωp is at roughly twice the JPA resonance frequency
ω0. The signal mode at frequency ωp/2 + δω is amplified and an idler mode
at frequency ωp/2− δω is created.

nian in terms of the annihilation and creation operators reads

H = h̄ω0

[
â†â+

1

2
+ ε cos(αω0t)(â+ â†)2

]
. (1.39)

After introducing a signal port and a loss port to the Hamiltonian, the Heisenberg
equation of motion for the resonator field â can be solved in a frame rotating with
αω0/2 and one obtains expressions for the output field of the JPA. For details on the
derivation, we refer the reader to Ref. [17]. We only consider the case where the applied
pump tone is twice the resonance frequency of the JPA, ωp = 2ω0, corresponding to α= 2.
One can differentiate between two operation modes of the JPA which are discussed in
the following.

Task 8: Working point

Where would you expect is an optimal working point of a flux-driven JPA? Explain
your choice.

Task 9: Signal mixing

Define signal, idler, and pump modes in a flux-driven JPA. What is the relation
between these modes?

Nondegenerate gain

The JPA is operated in the nondegenerate operation mode if the input signal at fre-
quency ωs =ωp/2 + δω has a non-zero offset to half the pump frequency, δω 6= 0. In the
nondegenerate operation mode, both electromagnetic quadratures of the signal, are am-
plified equally. Therefore, the JPA acts as a phase-preserving amplifier. In this context,
relation S = S0 cos(ωst + φ) = P cosωst + Q sinωst establishes the connection between
the signal quadratures, P and Q, and the corresponding signal amplitude S0 and phase
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φ. The interpretation of electromagnetic signals in terms of field quadratures is often
used in classical microwave engineering. Additionally, this approach is very useful for
describing quantum signals, where the corresponding quantum-mechanical quadrature
operators do not have deep internal mathematical problems in contrast to various forms
of phase operators (see Ref. [35] for more details).

For a flux-driven JPA, we can write explicit expressions for the signal and idler power
gain as [17]

Gs(δω) =
κ2

intδω
2 +

[
(κ2

int − κ2
ext)/4− ε2ω2

0 − δω2
]2

κ2
totδω

2 +
[
κ2

tot/4− ε2ω2
0 − δω2

]2 , (1.40)

Gi(δω) =
κ2

extε
2ω2

0

κ2
totδω

2 +
[
κ2

tot/4− ε2ω2
0 − δω2

]2 , (1.41)

where κtot =κext +κint is the sum of external and internal loss rates. Equations (1.40)
and (1.41) are only valid for modulation amplitudes below a certain the threshold value
ε ≤ εc =κtot/2ω0. Above this threshold, the JPA acts as a Josephson parametric phase-
locked oscillator, where two dynamical coherent states exist inside the oscillator [17]. The
threshold appears, similar to a driven Duffing oscillator, because multiple stable states
exist for a highly-driven JPA [22]. For vanishing internal losses, κint = 0, we obtain the
relation Gs(δω)−Gi(δω) = 1.

JPAs are routinely used as low-noise amplifiers of microwave signals in the gigahertz
regime, since they provide an excellent noise performance [36, 37, 38, 39]. According
to the Haus-Caves theorem [40, 41], phase-preserving amplifiers possess a lower limit
on the noise they add to the amplified signal. In order to provide a universal measure
between amplifiers of different nature, the noise performance of various amplifiers is often
expressed in terms of extra added noise photons A referred to the input. The minimum
number of added noise photons is limited by [41]

A ≥ 1

2

∣∣∣∣1− 1

Gs

∣∣∣∣ . (1.42)

Consequently, forGs� 1, a phase-preserving amplifier adds at least half of a noise photon
to the input signal, what is known as the standard quantum limit for phase-insensitive
amplification. From a theoretical point of view, this fundamental limit originates from
the fact that the bosonic commutation relation of the amplified mode needs to be ful-
filled [28]. The physical origin of the added noise consists in the admixture of the idler
mode to the signal mode. During the parametric amplification, the noise at the idler
frequency ωi =ωp/2− δω is converted to the signal frequency ωs, where it is combined
with the amplified original signal [34]. The limit of at least half of an added noise photon
is attributed to the noise floor of the idler mode limited by the quantum fluctuations.
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Task 10: Standard quantum limit

What is the standard quantum limit (SQL) of for phase-insensitive amplification?
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What is the physical origin of the SQL? Can the JPA achieve this limit?

Additional topic: degenerate gain
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Figure 1.5: (a) Quadrature gain P as a function of the local oscillator phase φLO for
different modulation amplitudes ε/εc and Qint = 1 · 106. (b) Maximum gain
Pmax and minimum gain Pmin as a function of the modulation amplitude ε/εc
for different internal quality factors Qint. Both panels are calculated with
Qext = 300 and ω0/2π= 5 GHz.

We now consider the case where half the pump frequency and the signal frequency are
degenerate, ωs =ωp/2, which implies δω= 0. In this scenario, the signal and idler modes
have the same frequencies which allows them to interfere with a fixed phase relation.
This results in a phase-sensitive amplification where different quadratures are amplified
with different gains [28]. For our case of flux-driven JPAs, the degenerate signal gain
depends on the phase θ between the pump and the microwave signal and is given by [17]

Gd(θ) =

(
κ2ext−κ2int

4 + ε2ω2
0

)2
+ ε2κ2

extω
2
0 − 2εκextω0

(
κ2ext−κ2int

4 + 4δ2ω2
0

)
sin(2θ)(

κ2

4 − ε2ω2
0

)2 . (1.43)

The latter equation is again only valid below the threshold ε ≤ εc. If we assume an
overcoupled JPA, κext>κint, or more precisely (κ2

ext − κ2
int)/4 + ε2ω2

0 > 0, we can define
the minimum and maximum degenerate gains

Gmin
d =

(
εω0 − (κext − κint)/2

εω0 + (κext + κint)/2

)2

, (1.44)

Gmax
d =

(
εω0 + (κext − κint)/2

εω0 − (κext + κint)/2

)2

, (1.45)

for θmin =π/4 +nπ and θmax = 3π/4 +nπ, respectively. The difference between the
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phases is π/2 which means that the maximally amplified and deamplified quadratures
are orthogonal to each other. Furthermore, without any internal losses, κint = 0, we
obtain

Gmin
d Gmax

d = 1 . (1.46)

In the phase-sensitive regime, JPAs allow for amplification without adding any addi-
tional noise to the signal according to the Haus-Caves theorem. In fact, for a phase-
sensitive amplifier, different amounts of noise can be added to each quadrature [41]

A1A2 ≥
1

16

∣∣∣∣1− 1√
G1G2

∣∣∣∣2 , (1.47)

where A1 and A2 denote the added noise photons in orthogonal quadratures with respec-
tive gains G1 and G2. If we consider an amplifier for which one quadrature is amplified
(G1> 1) while the orthogonal quadrature is deamplified (G2< 1), the added noise can be
zero under the condition G1G2 = 1. According to Eq. (1.46), JPAs can reach this limit
in the absence of internal losses. In fact, it has been experimentally demonstrated that
JPAs can phase-sensitively amplify weak microwave signals with a noise performance
below the standard quantum limit [42, 43, 28].

Task 11: Bonus – Degenerate and nondegenerate gain

Briefly explain the difference between the degenerate and nondegenerate amplifica-
tion regimes.

1.6 Additional topic: squeezing with flux-driven JPAs

In the last subsection, we discussed how JPAs can be used as nondegenerate and degen-
erate amplifiers of microwave signals. In addition, JPAs can also be employed as a tool
to generate quantum signals in the form of squeezed states (see Fig. 1.6). From the well-
known definition of single-mode squeezed (SMS) states in quantum optics [44], we know
that the variance along different quadrature directions varies for SMS states. In this
sense, single-mode squeezing of the JPA is closely connected to the degenerate operation
mode of the JPA. In order to obtain expressions for the variances of a squeezed state pro-
duced by a flux-driven JPA, we assume a fictional homodyne setup depicted in Fig. 1.7.
The demonstrated down-conversion scheme is very important for the squeezed states
detection and tomography because typical characteristics frequencies of these states are
in the range of 5 − 10 GHz. Such high-frequency signals are difficult to directly detect
(digitize) even the best analog-to-digital converters (ADCs) due to technical limitations
of digitization rates. Modern ADCs typically have these rates in the range of 100 MHz
- 1 GHz. Therefore, a more conventional approach is to convert high-frequency signals
to the low-frequency range of several tens of MHz (or lower), where the signal detec-
tion and digitization is easily possible. In Fig. 1.7, the squeezed signal from the JPA
is sent to a mixer which is driven by a local oscillator (LO) with frequency ωp/2 and
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Figure 1.6: Illustration of propagating squeezed vacuum states. Plot (a) shows a quasi-
probability distribution in terms of the so-called Wigner function W (P,Q)
which spans the phase space of field quadratures P and Q. Red dashed
outline illustrates the 1/e-contour of the vacuum fluctuations (vacuum state).
One can suppress vacuum fluctuations by squeezing them in one direction
(and respectively, antisqueezing them in the orthogonal direction, in order to
leave the Heisenberg relation for quadrature variances intact (∆P )2 ·(∆Q)2 ≥
1). Plot (b) presents an alternative illustration of the vacuum and squeezed
vacuum states in terms of the propagating field amplitude as a function of
time. Red dashed lines denote the variance level of vacuum fluctuations.
Grey colored outline corresponds to the squeezed state. One can note that,
at certain moments of time, the field fluctuations are below the vacuum
threshold (vacuum squeezing) or above (antisqueezing). Such propagating
squeezed states are highly nonclassical photonic states which can be exploited
for various purposes of quantum information processing.

phase φLO [45]. The mixer down-converts the squeezed input signal to zero frequency.
The power spectral density P at the mixer output is directly proportional to a certain
quadrature variance of the squeezed signal. This specific quadrature is determined by
the LO phase φLO. In this way, we can investigate the variance in different quadrature
directions by changing φLO. From the theory of a flux-driven JPA presented in Ref. [17],
we obtain

P =
∣∣∣Jb + |Kb|ei(2φLO−π/2)

∣∣∣2 +
∣∣∣Jc + |Kc|ei(2φLO−π/2)

∣∣∣2 , (1.48)

where the first term describes the degenerate signal gain with

Jb =
ε2ω2

0 + (κ2
ext − κ2

int)/4

ε2ω2
0 − κ2/4

and Kb =
−iεκextω0

ε2ω2
0 − κ2/4

, (1.49)

and the second term describes the noise added by the loss channel with

Jc =
κ/2
√
κextκint

ε2ω2
0 − κ2/4

and Kc =
−iε√κextκintω0

ε2ω2
0 − κ2/4

. (1.50)
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Figure 1.7: Measurement scheme of squeezing properties of a flux-driven JPA which
is pumped at a frequency ωp. The squeezed signal around the frequency
ωrf =ωp/2 is down-converted to zero frequency by a mixer which is driven
by a local oscillator with frequency ωp/2 and phase φLO. The power spectral
density P at the mixer output is directly proportional to the variance in
different quadrature directions of the squeezed signal.

For a given phase φLO, P provides the gain for the corresponding quadrature as shown
in Fig. 1.5 (a). For φLO =π/4, we obtain the minimum gain Pmin which corresponds to
the squeezed quadrature. For the orthogonal antisqueezed quadrature at φLO = 3π/4,
we obtain the maximum gain Pmax. Since the internal quality factor Qint = 1 · 106 is
high, we observe Pmax · Pmin' 1. This observation corresponds to noiseless degenerate
amplification discussed in the previous subsection, and therefore, the produced squeezed
state is pure. In Fig. 1.5 (b), we show how Qint influences the maximum and minimum
quadrature gains. In general, the antisqueezed quadrature is only slightly affected by
internal losses while the squeezed quadrature drastically depends on Qint. We note
that, in contrast to the degenerate signal gain in Eq. (1.43), it is important to consider
the added noise due to the loss channel if the JPA is treated as a squeezer. Without
consideration of the loss channel, we would obtain Pmax · Pmin< 1 for low enough Qint

which would lead to a violation of the Heisenberg uncertainty, and thus, to an unphysical
state generated by the theory.

We can express the Hamiltonian of a pumped JPA in the interaction picture and
rotating-wave approximation in the form

Ĥint = ih̄
λ

2

(
â2e−iϕ − (â†)2eiϕ

)
, (1.51)

where ϕ is the pump phase and λ=ω0ε is the effective nonlinearity due to the frequency
modulation induced by the pump tone. As presented in Ref. [46], a direct connection
of the JPA interaction Hamiltonian Ĥint to the squeezing operator can be made. For
ϕ= 0, the Heisenberg equation of motion is

d

dt
â(t) =

1

ih̄
[â(t), Ĥint] = −λâ†(t) , (1.52)
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which is solved by â(t) = â(0) cosh(λt)− â†(0) sinh(λt). This solution coincides with the
action of the squeeze operator on the annihilation operator. Furthermore, the unitary
evolution under the action of the Hamiltonian Ĥint is given by

Û(t) = exp

[
− i
h̄
Ĥintt

]
= exp

[
λ

2

(
â2e−iϕ − (â†)2eiϕ

)
t

]
. (1.53)

By introducing the dimensionless interaction time r=λt, we recreate the original squeez-
ing operator

Û(t) = Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξ(â†)2

)
, (1.54)

with ξ= reiϕ.
In practice, JPAs always produce two-mode squeezed (TMS) states due to their natu-

rally finite bandwidth. Here, correlations exist between quadratures of frequency modes
which are symmetric around half the pump frequency [47, 32]. During the parametric
process in the JPA, photons in these upper and lower sideband modes are generated
from a single pump photon. Consequently, it is intuitively clear that these modes should
be correlated.

Task 12: Bonus – Squeezing

How much squeezing would you expect to generate with a flux-driven JPA for a
given nondegenerate amplification gain G under ideal conditions?
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2 Experimental Setup

PC

Instrument rack

Helium dewar

Microwave
generator

VNA

Current 
source

HEMT 
power supply

Dipstick

JPA

Figure 2.1: Experiment overview.

This chapter focuses on the experimental set-up and relevant procedures required to
successfully characterize the flux-driven superconducting JPA and achieve the goals (i)-
(iii) highlighted in the abstract. A schematic drawing of the whole set-up is shown in
Fig. 2.1. As one can see, it consists of the room temperature control part and the cryo-
genic counterpart. The former includes a Vector Network Analyzer (VNA) for sending
and detecting weak microwave signals, a microwave source for generating strong mi-
crowave signals as required for pumping of the JPA, a dc current source for biasing
of the magnetic JPA coil, a HEMT power supply for operating a cryogenic microwave
preamplifier, and a PC for remote control of all aforementioned devices. The latter,
cryogenic counterpart, consists of a dewar with liquid helium and a simple cryogenic
measurement apparatus which we will call the ”dipstick”. This dipstick carries all cru-
cial cryogenic components including the JPA itself.
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2.1 JPA sample & microwave packaging
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a b c

d e
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Capacitor

Resonator

SQUID

Pump

1mm

Signal

Pump

JPA chip

Signal

Nb

Si

Figure 2.2: Packaged Josephson parametric amplifier. a Closed JPA sample holder with
SMA-compatible microwave connectors. b Opened JPA sample holder. c
Top view of the inside of the JPA sample holder. The JPA chip is placed
in the center of holder connected to two printed circuit boards providing
impedance-matched microwave interface for input, output and pump signals.
d Close-up of the bonded superconducting niobium JPA chip. Green and red
rectangles highlight the areas with the coupling capacitor and dc-SQUID,
respectively. e Close-up of the JPA input capacitor which allows for coupling
between incoming external microwave signals and the internal JPA mode. f
Close-up of the dc-SQUID area. This is the heart of our JPA, which gives
rise to the JPA magnetic field tunability. The latter is the result of quantum
phase interference in the dc-SQUID and can be exploited for quantum-limited
parametric amplification, squeezing, and entanglement generation.

Our JPA is fabricated using a thin-film trilayer niobium process on a silicon substrate.
This process allows to form both the coplanar resonator and Josephson junctions (see
Figs. 2.2d,e,f for details) in order to implement a tunable superconducting cavity, as
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discussed earlier in the Theory chapter. Furthermore, one requires to interface the
resulting JPA chip with the external microwave waveguides and devices. This task
is achieved by using a specific microwave sample holder (shown in Figs. 2.2a,b,c) and
aluminum bonding wires (visible as black wires in Fig. 2.2d). These bonds allow for a
low inductance connection between the JPA and external microwave waveguides, thus,
ensuring proper impedance matching for propagating quantum microwave signals. Later
on, all microwave signals are guided through standardized cables with SMA connectors
(visible as a part of the sample holder in Figs. 2.2a,b).

Task 13: dc-SQUID

From the size of the SQUID (Fig. 2.2)f, estimate the required magnetic field to
create one flux quantum Φ0 = h

2e threading through the dc-SQUID.

2.2 Cryogenic signal routing

The cryogenic part of our experiment is illustrated by Fig. 2.3. In order to tune the
magnetic flux to the SQUID, we use a superconducting coil mounted directly on top of
the JPA sample holder (Fig. 2.3b). Figure 2.3c, shows the signal routing and connections

a b c

4K

RT Output InputPump

EM shield

30
 d

B

20
 d

B

HEMT

JPA
SignalPump

Magnetic coil

Circulator

Coil

Circulator

Cryoperm

JPA

Attenuators

DC lines

Figure 2.3: Cryogenic part of the dipstick. a Cryoperm magnetic shield. b Photo of the
cryogenic set-up. c Experimental cryogenic schematics.

24



in the cryogenic part of our experiment. We measure the JPA response by sending a weak
microwave probe tone to the corresponding input port and detecting a reflected signal.
The circulator is used in order to separate these input and output (reflected) signals.
The cryogenic HEMT amplifier is used to amplify the output JPA signal in order to
increase its signal-to-noise ration and reduce time required for signal averaging. Both
the pump and input microwave lines are equipped with microwave attenuators, which
act as power dividers. They are needed in order to reduce room temperature thermal
noise coming with microwave signals and thermalize it to the cryogenic temperatures
of liquid helium ' 4 K. The cryoperm magnetic shield is used to protect the JPA from
stray magnetic field (e.g., Earth’s magnetic field).

Task 14: Signal flow

Why is it useful to attenuate input and pump signals at temperatures T = 4 K?
What difference would it make to attenuate these signals at room temperatures?
Why do we use a circulator in the signal path? Why are there no attenuators in
the output line?

2.3 Room temperature filters

Signal filtering is important to remove various unwanted modes from the probe and
pump microwave signals going to the JPA. These unwanted contributions may arise
due to different sources, such as local WiFi and cell networks, intermodulation effects in
microwave generators and VNAs, among others. Therefore, we use an extra set of specific
band-pass microwave filters at the top of the dipstick. We expect our JPA resonant
frequencies to be in the range of 5-6 GHz and filter out all other spectral components by
using a specific filter shown in Fig. 2.5a. The pump line is filtered accordingly under the
condition that ωp = 2ωs.

a b

1500 pF

4.7 mH

100 pF100 pF

4.7 mH

2 kΩ

1500 pF

Vin Vout

low pass filter PCB

coil current

HEMT power supply

dipstick feedthrough

Figure 2.4: Low-pass filter box. a Photo of the internal configuration. b Equivalent
electrical circuit.

25



Additionally, we use a set of dc lines to power the HEMT amplifier and control bias
current through the magnetic coil. These dc lines should be filtered as well with a
custom-made low-pass filter with the cutt-off frequency of around 100 kHz (see Fig. 2.4
for details).

Task 15: Microwave filtering

Assume the JPA working resonance frequency of around 6.2 GHz and a set of the
following available microwave filters: band-pass 4-5 GHz, low-pass 3 GHz, band-
pass 4-8 GHz, high-pass 8 GHz, band-pass 10-13 GHz. Which ones would you use
for the signal and pump microwave lines in the current JPA experiment? Why?

Bandpass 9-13 GHz

VNA
2

1

PumpCurrent
Source

HEMT
Power
Supply

LPF

Pump

In
Out

Bandpass 5-6 GHz

Pump 
9-13 GHz

Input 
4.9-6.2 GHz

Output A B

A

B

A

B

a b

Figure 2.5: Cable connection schematics. a Photo of the top flange of the dipstick with
three microwave ports. b Extended schematics of cable connections between

room temperature devices and the dipstick ports. Markers A and B mark
the microwave pump and signal input connections and filters, respectively.

2.4 Electronic measurement equipment

Assuming that all the signal and power lines are connected correctly within the cryogenic
dipstick, we have to consider room temperature connections to measurement electron-
ics. Here, our central measurement tools are a microwave generator, a Vector Network
Analyzer (VNA), and a dc current source. Specifically, we use R&S ZND-K1 VNA for
sending and detecting microwave probe signals, as required for measuring the JPA res-
onant response. Microwave generator R&S SGS100A is used for generation of strong
microwave signals as required for parametric pumping and amplification with our flux-
driven JPA. The dc source current is represented by Keithley 2401 which allows for
flexible and precise control of the dc bias currents running through the magnetic coil on
top of the JPA. In addition to these devices, we have to use a specific power supply to
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power the HEMT amplifier. Figure 2.6 illustrates all these devices and respective inter-
faces. In Fig. 2.5, you can see that port 1 of the VNA is connected to the input line at

Ground

Power

1 2

Input signal Output signal

Device on/off

RF signal on/off

Connection Status Power on/off

Current Mode Adjust On/Off

Dc Output Dc Input

a

b

c d

PC Connection
RF Output

Reference signal

Reference signal input

Figure 2.6: Photos and important elements of room temperature instruments. a Front
and rear views of R&S ZND-K1 vector network analyzer, b Front and rear
views of R&S SGS100A microwave generator, c Front view of Keithley 2401
current source. d Power supply of the cryogenic HEMT amplifier.

the dipstick. As Port 1 is the only port that can generate a signal, we are always measure
the corresponding transmission from Port 1 to Port 2 via the respective S-characteristic
S21.

Safety remarks

• VNA & microwave generator: always wear a grounding hand band when
working with the Vector Network Analyzer (VNA) and microwave generator in
order to protect these devices from electrostatic discharge.

• Current source: don’t exceed 1 mA of dc current flowing through the supercon-

27



Disconnected

Offline

Online

Choose pump frequency Turn on RF signal Choose signal power

Figure 2.7: Graphical user interface (available only via a remote PC) of R&S SGS100A
microwave generator.

ducting coil in order to avoid excessive magnetic fields affecting the sample, which
may lead to degradation of the JPA performance.

Task 16: Signal Power

Assuming the JPA resonance frequency f = 6 GHz, its bandwidth BW = 50 MHz,
and the VNA output power P = 0 dBm, estimate the total attenuation (in dB
units) of the input line required to create 1 photon in the JPA resonator.
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3 Measurement

3.1 Safety introduction

ba

Figure 3.1: Safety equipment. a Cryogenic safety gloves. b Safety goggles.

The experiment involves sensitive electronic equipment and cryogenic fluids. In order
to ensure personal safety and long lifetime of the equipment, students have to follow the
following guidelines:

• Don’t touch any open conductors.

• When working with any microwave cables, always wear the electrostatic band
connected to the VNA ground.

• When fastening SMA connectors, always use torque specialized wrenches.

• Always use safety goggles and the cryogenic safety gloves when handling helium
or touching potentially cold parts.

• During the cooldown procedure, the dipstick must be lowered into the dewar very
slowly. Never open the rubber flange and the pinch lock at the same time.

• Don’t move, shake, or tip the dewar.

• Leave the door open during the experiment.

• The helium dewar must always be connected to the return helium network to avoid
potentially dangerous overpressure.

• Liquid helium has a 757-fold volume increase when evaporating. The dewar may
contain up to 100 l of liquid helium, whereas the volume of an elevator cabin is
8000 l. Therefore, it is strictly forbidden to enter the elevator cabin together with
the transported dewar with liquid helium.
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Task 17: Liquid helium

Calculate how much liquid helium one would need to evaporate to fill the entire
elevator volume with He gas. Compare the result with the the dewar volume.

3.2 Checking the Helium Level

H

Cable binder

H

Cable binder

Membranea b c

Figure 3.2: Helium level measurements. a Insert the helium level meter tool and adjust
the cable binder. b Find an acoustic discontinuity by lowering the level
meter into the dewar and measure the distance H. c Estimate the volume of
liquid helium in the dewar by using the calibration table on the dewar side.
Important! The dewar must contain at least 50 liters of liquid helium prior
the cooldown.

Get the following equipment from the WMI helium hall: a helium level meter, a
whiteboard marker, a cloth, a folding ruler.

1. Mount the dipstick onto the dewar, open the cone closing and slowly lower the
helium level meter until you touch the ground of the dewar.

2. Now, adjust the cable binder at the top of the level meter to the level of the dewar
as shown in Figure 3.2a.

3. Slowly lift the level meter until you hear an acoustic change in the membrane
resonance frequency. Use the folding ruler to measure the level of liquid helium in
the dewar and use the table at the dewar side in order to estimate the corresponding
liquid helium volume.

4. Finally, use a whiteboard marker and write down the date and volume of liquid
helium in the respective field on the dewar itself.
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3.3 Mounting the dipstick onto the dewar

1. Ensure that the cryoperm shield is fully inside of the protective brass cylinder
before mounting of the dipstick to the dewar.

2. Ensure that everyone operating the dipstick and dewar are wearing safety goggles
and cryogenic gloves during the cooldown.

3. The supervisor should bring the dipstick to the dewar.

4. The student loosens the wing screw of the clamp at the dewar lid.

5. The student removes the lid, the supervisor places the dipstick on top of the dewar.
Afterwards, the student fixates the dipstick using the previously loosened clamp.

3.4 Cooling down the sample rod

There are two ways to hold the dipstick in place: by using either the rubber flange, or
the pinch lock (see Fig. 3.4). You should open the pinch lock for adjusting the dipstick
vertical position, while keeping the rubber flange closed at a reasonably close distance
(≤ 15 cm). You should keep one of the two closed at all times to prevent the dipstick
from crashing into the dewar in order to avoid very dangerous overpressure spikes.

3.5 Cryogenic measurements

1. Turn ON the room temperature control electronics. Then, make sure all outputs
are OFF.

2. Connect the dc lines and microwave cables according to Fig.2.5. Additionally,
connect the VNA Port 1 to the dipstick input via an external attenuator chain
fixed at the rack (-40 dB). Strictly follow the safety guidelines.

3. Press the VNA preset button. Set the VNA output power to -20 dBm. Set the
VNA frequency range to 5-6.5 GHz. Identify the JPA resonance dip (usually around
6 GHz) in the absence of external magnetic field and without the microwave pump.

4. Make sure that the dc current source output is set to zero. Switch the current
source range to 1 mA. Switch ON the current source output (actual current must
be still zero). Slowly sweep the current in 1µA steps in the range between -200µA
and 200µA. Observe and record smooth tuning of the JPA resonance dip as a
function of the current. Identify the corresponding JPA bias current period and
flux/current conversion ratio.

5. Identify a suitable amplification working point (usually, it is around Φ0/4 in terms
of magnetic flux through the dc-SQUID) for the JPA. Record the JPA frequency
fJPA and a corresponding S21 curve. Adjust the microwave generator frequency
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1
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31/3
2/3

a b c

4

5

Figure 3.3: Cooldown procedure. a Mount the dipstick at the dewar top 1 . b In or-
der to pre-cool the cryogenic set-up, slowly, over approximately 30 minutes,
lower down the dipstick down into the dewar, however, without touching the
surface of liquid helium yet 2 . An approximate criterion for the pre-cooling
speed is given by the vertical position of the table tennis ball (marked with
red circle here) in the helium return line. The ball should never rise above

33 % of the overall tube height as indicated by 3 in order to ensure some-
what adiabatic cooling, preserve liquid helium, and protect the cryogenic
set-up from excessive thermal stress. c After the pre-cooling is complete,
lower the dipstick slowly into the bottom position but slightly over the de-
war bottm 4 . Do not hit the dewar bottom! When the dipstick is safely at
its lowest position and the overpressure in the helium return line is negligible
5 - the dipstick is ready for cryogenic measurements.

to fpump = 2fJPA and power to 0 dBm. Turn ON the microwave generator. Adjust
the pump power and frequency a little bit to achieve a maximum JPA gain G.
Record and save all experimental data.

6. If G < 10 dB, try to find adjust the JPA working point by changing the bias current
until you find the parameter regime with G > 10 dB. Make sure you have all data
needed for the report. Check chapter 4 for details.

7. In the end of the experiment, switch OFF all outputs (VNA, microwave generator,
current source). Disconnect all cables from the dipstick. Switch OFF all room
temperature electronics. Proceed with a warm-up procedure as described below.
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a

rubber flange

pinch lock

b
ice forming

due to condensation

Figure 3.4: Important parts of the cryogenic dipstick. a The rubber flange is the second
line of security and must always be fastened, especially when the pinch lock
is opened. b Water condenses after warmup on the brass cylinder. Here,
you can observe ice formation on the outside of the protective brass cylinder
during the warm-up.

Figure 3.5: Exemplary S21 transmission measurements with VNA of the JPA sample in
the presence of the pump tone at frequency fp ' 11.33 GHz. Here, marker
”M1” corresponds to the maximum of the JPA amplification response.

3.6 Warm-up procedure

A warming-up procedure is the final step of the student lab. Here, it is important to
follow strict guidelines in order to avoid damages to the cryogenic set-up:

1. Disconnect all the dc and microwave wires and the filter box from the dipstick.
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Figure 3.6: Exemplary S21 transmission measurements with VNA of the JPA sample
in the absence of the pump tone. Marker ”M1” corresponds to the JPA
resonance frequency.

2. Pull up the dipstick to approximately half of its height out of the dewar (so, that
the cryoperm shield inside of the dewar must be positioned safely above the liquid
helium surface) and leave it in this position for around 10-15 minutes.

3. Slowly pull up the dipstick to its upper position, so that the cryoperm shield is
fully located inside of the brass cylinder. Leave the dipstick tightly fixed (use
both the rubber flange and pinch lock) in this upper position for 3-4 hours.
In order to optimize everyone’s time, it is usually reasonable to leave the final
step of the dipstick extraction to the supervisor. It is crucial for the stable
and long-living operation of the whole experiment that the dipstick is
extracted from the dewar only when the it (dipstick) is fully thermalized
at room temperatures. Premature extraction of the dipstick, while it is still
at temperatures below 0 ◦C, will lead to water condensing over various elements
of the cryogenic set-up and may lead to a quick degradation and damages to the
HEMT amplifier and superconducting JPA sample.
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4 Writing the report

4.1 Preparation

Please read through the manual and answer the tasks in a written format before at-
tending the experiment. These tasks should help you to critically consider the most
important points regarding theory, experiment, and safety of the current practicum.

4.2 Evaluation

Your report should be as concise as possible. Briefly motivate the topic and highlight the
most important equations. Describe your experimental procedure. For the description of
the setup and equipment you can rely on the manual. Discuss your results and compare
it to a data set of another student groups, or to the one shown in the current manual.

Your report should provide the plots as shown in Fig. 4.1, demonstrating the flux
dependency and amplification gain G > 10 dB. Try to explain your observations in the
framework of the provided theory of flxu-driven JPAs.
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Figure 4.1: Exemplary expected plots of students’ report. a JPA flux curve. Here, green
crosses illustrate experimentally measured data points, while blue curve de-
picts theoretically expected behaviour according to Eq. 1.37. b Experimental
JPA frequency-dependent S21 characteristics for the cases with the pump
tone off and on.
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