Physik IV

Atome, Moleküle, Wärmestatistik

Vorlesungsskript zur Vorlesung im SS 2003

Prof. Dr. Rudolf Gross

Walther-Meissner-Institut
Bayerische Akademie der Wissenschaften
und
Lehrstuhl für Technische Physik (E23)

Lenrstuni für Technische Physik (E23) Technische Universität München

Walther-Meissner-Strasse 8
D-85748 Garching
Rudolf.Gross@wmi.badw.de

Inhaltsverzeichnis

	Vorv	wort		xiii				
I	Phy	sik der	· Atome und Moleküle	1				
1	Einf	Cinführung in die Quantenphysik						
	1.1	Der W	elle-Teilchen Dualismus	4				
		1.1.1	Dualismus des Lichtes	4				
		1.1.2	Dualismus der Materie	6				
	1.2	Materi	ewellen und Wellenfunktionen	10				
		1.2.1	Wellenpakete	11				
		1.2.2	Die Heisenbergsche Unschärferelation	13				
		1.2.3	Messprozess und Observable	17				
		1.2.4	Dispersion von Materiewellen	17				
		1.2.5	Gegenüberstellung Quantenphysik – klassische Physik	19				
	1.3	Grund	lagen der Quantenmechanik	22				
		1.3.1	Schrödinger-Gleichung und Materiewellen	22				
		1.3.2	Operatoren	29				
		1.3.3	Erwartungswerte	33				
		1.3.4	Eigenwerte und Eigenfunktionen	34				
		1.3.5	Zulässige Operatoren	36				
		1.3.6	Vertiefungsthema: Quantenmechanische Bewegungsgleichung	37				
		1.3.7	Vertiefungsthema: Vertauschungsrelationen und Heisenbergsche Unschärferelation	38				
		1.3.8	Anwendungen	40				
	1.4	Ununte	erscheidbarkeit	41				
	1.5	Fermi	onen und Rosonen	45				

		1.5.1	Der Spin von Quantenteilchen
		1.5.2	Quantenteilchen mit ganz- und halbzahligem Spin
	1.6	Austau	schsymmetrie und Pauli-Verbot
		1.6.1	Die Austauschsymmetrie
		1.6.2	Das Pauli-Verbot
	1.7		ungsthema: ciomatik der Quantenmechanik
2	Auft	oau der	Atome 57
	2.1	Histori	sches
	2.2	Experi	menteller Nachweis der Existenz von Atomen
	2.3	Größe,	Masse und elektrischer Aufbau von Atomen
		2.3.1	Größe von Atomen
		2.3.2	Der elektrische Aufbau von Atomen
		2.3.3	Bestimmung der Atommasse
	2.4	Die Str	ruktur von Atomen
		2.4.1	Gechichtliche Entwicklung
		2.4.2	Grundlagen zu Streuexperimenten
3	Das	Einelek	tronenatom 81
	3.1	Experi	mentelle Grundlagen
		3.1.1	Spektralanalyse
		3.1.2	Anregung von Atomen
		3.1.3	Das Spektrum des Wasserstoffs
	3.2	Das Bo	phrsche Atommodell
	3.3	Die Sc	hrödinger-Gleichung für Einelektronenatome
		3.3.1	Schwerpunkt- und Relativbewegung
		3.3.2	Teilchen im kugelsymmetrischen Potenzial
		3.3.3	Winkelabhängigkeit
		3.3.4	Der Drehimpuls
		3.3.5	Die Radialabhängigkeit
		3.3.6	Quantenzahlen
		3.3.7	Aufenthaltswahrscheinlichkeiten
	3.4	Der Ele	ektronenspin
		3.4.1	Experimentelle Fakten
		3.4.2	Vertiefungsthema: Theoretische Beschreibung des Spins

4	Das '	Wassers	toffatom	135
	4.1	Experin	nentelle Befunde	. 136
	4.2	Relativi	stische Korrektur der Energieniveaus	. 137
	4.3	Die Spi	n-Bahn-Kopplung: Feinstruktur	. 139
		4.3.1	Der Spin-Bahn-Kopplungsterm	. 139
		4.3.2	Der Gesamtdrehimpuls	. 141
		4.3.3	Energieniveaus des Wasserstoffatoms bei Spin-Bahn-Kopplung	. 143
		4.3.4	Die Feinstruktur beim Wasserstoffatom	. 145
	4.4	Die Lar	nb-Shift	. 148
	4.5	Die Hy	perfeinstruktur	. 154
	4.6	Das Wa	sserstoffatom im Magnetfeld: Normaler Zeeman-Effekt	. 159
		4.6.1	Klassisches Teilchen im Magnetfeld	. 159
		4.6.2	Vertiefungsthema: Quantenmechanische Beschreibung	. 165
	4.7	Anoma	ler Zeeman- und Paschen-Back-Effekt	. 168
		4.7.1	Der anomale Zeeman-Effekt	. 168
		4.7.2	Der Paschen-Back-Effekt	. 172
	4.8	Der Sta	rk-Effekt	. 175
	4.9	Vollstär	ndiges Termschema des Wasserstoffatoms	. 176
	4.10	Vertiefu	ingsthemen	. 178
		4.10.1	Das Modell des Elektrons	. 178
		4.10.2	Vertiefungsthema: Das Korrespondenzprinzip	. 180
5	Wass	serstoffä	ihnliche Systeme	185
	5.1	He ⁺ , Li	++ und Be+++	. 186
	5.2	Die sch	weren Wasserstoffisotope	. 187
	5.3	Rydber	gatome	. 188
	5.4	Exotisc	he Atome	. 191
		5.4.1	Myonische Atome	. 191
		5.4.2	Anti-Wasserstoff	. 193
		5.4.3	Positronium	. 194
	5.5	Quarko	nium	. 196
	5.6	Exziton	en	. 196

0	Obei	rgange	zwischen Energieniveaus 199
	6.1	Überga	angswahrscheinlichkeiten
		6.1.1	Spontane und stimulierte Übergänge
	6.2	Lebens	sdauer angeregter Zustände
	6.3	Linien	breiten von Spektrallinien
		6.3.1	Natürliche Linienbreite
		6.3.2	Dopplerverbreiterung
		6.3.3	Stoßverbreiterung
	6.4	Überga	angsmatrixelemente
		6.4.1	Parität
		6.4.2	Auswahlregeln
		6.4.3	Auswahlregeln für die Bahndrehimpulsquantenzahl – Paritätsauswahlregeln 222
		6.4.4	Auswahlregeln für die magnetische Quantenzahl
		6.4.5	Auswahlregeln für die Spinquantenzahl
		6.4.6	Stärke des Dipolübergangs
		6.4.7	Vertiefungsthema: Multipol-Übergänge höherer Ordnung
		6.4.8	Vertiefungsthema: Zwei-Photonen-Übergänge
		6.4.9	Vertiefungsthema: Spektrales Lochbrennen
7	Meh	relektro	onenatome 237
	7.1	Das He	eliumatom
		7.1.1	Die Zentralfeldnäherung
		7.1.2	Symmetrie der Wellenfunktion
	7.2	Numer	ische Methoden und Näherungsverfahren
		7.2.1	Das Modell unabhängiger Elektronen
		7.2.2	Das Hartree-Verfahren
	7.3	Der Ge	esamtdrehimpuls
		7.3.1	Die L-S - oder Russel-Saunders-Kopplung
		7.3.2	Die j-j-Kopplung
		7.3.3	Termschema bei L-S-Kopplung
		7.3.4	Beispiele für Drehimpulskopplungen und Termschemata
	7.4	Der G	rundzustand des Vielelektronenatoms – Hundsche Regeln

	7.5	Vertiefungsthema: Atomarer Magnetismus				
	7.6		ektronenstruktur von Vielelektronenatomen			
		7.6.1	Schalen und Unterschalen			
		7.6.2	Aufbau der Atomhülle mit zunehmender Kernladungszahl			
		7.6.3	Das Periodensystem der Elemente			
	7.7	Spektre	en der Mehrelektronenatomen			
		7.7.1	Termschema des Heliumatoms			
		7.7.2	Alkalimetalle			
		7.7.3	Erdalkalimetalle			
8	Ang		tomzustände 281			
	8.1	Einfach	nanregungen			
		8.1.1	Anregung und Rekombination durch Stoßprozesse			
	8.2	Komple	exere Anregungsprozesse			
		8.2.1	Anregung mehrerer Elektronen – Autoionisation			
		8.2.2	Innerschalenanregungen			
	8.3	Röntge	nstrahlung			
		8.3.1	Erzeugung von Röntgenstrahlung			
		8.3.2	Das Röntgenspektrum			
		8.3.3	Die Feinstruktur der Röntgenlinien			
		8.3.4	Vertiefungsthema: Streuung und Absorption von Röntgenstrahlung			
		8.3.5	Vertiefungsthema: Röntgenfluoreszenz			
		8.3.6	Vertiefungsthema: Monochromatisierung von Röntgenstrahlung			
9	Mol	eküle	313			
	9.1	Das Eir	nelektronen-Molekül — H ₂ ⁺ -Molekülion			
		9.1.1	Die Schrödinger-Gleichung des Einelektronenmoleküls			
		9.1.2	Die adiabatische Näherung			
		9.1.3	Lösung der elektronischen Wellengleichung			
	9.2	Das Vie	elelektronen-Molekül — H ₂ -Molekül			
		9.2.1	Die Molekülorbitalnäherung			
		9.2.2	Die Heitler-London Näherung			

9.3

9.2.3	Vergleich der Näherungen	332					
9.2.4	Die Molekülbindung	334					
Elektronische Zustände zweiatomiger Moleküle							
Die Ke	ernbewegung	340					
9.4.1	Der starre Rotator	340					
0.40							

	9.4	Die Ke	ernbewegung	340
		9.4.1	Der starre Rotator	340
		9.4.2	Molekülschwingungen	343
II	Wä	irmesta	atistik	349
10	Grui	ndlagen	der Wärmelehre	351
	10.1	System	ne, Phasen und Gleichgewicht	352
		10.1.1	Systeme	352
		10.1.2	Phasen	352
		10.1.3	Gleichgewicht	353
	10.2	Zustan	dsgrößen	355
		10.2.1	Definitionen	355
		10.2.2	Die Temperatur	357
		10.2.3	Der Druck	357
		10.2.4	Teilchenzahl, Stoffmenge und Avogadrozahl	358
		10.2.5	Die Entropie	359
	10.3	Die the	ermodynamischen Potenziale	360
		10.3.1	Prinzip der maximalen Entropie und minimalen Energie	360
		10.3.2	Innere Energie als Potenzial	360
		10.3.3	Entropie als thermodynamisches Potenzial	361
		10.3.4	Die freie Energie oder das Helmholtz-Potenzial	361
		10.3.5	Die Enthalpie	362
		10.3.6	Die freie Enthalpie oder das Gibbsche Potenzial	363
		10.3.7	Die Maxwell-Relationen	364
		10.3.8	Thermodynamische Stabilität	365
	10.4	Die kir	netische Gastheorie	367
		10.4.1	Druck und Temperatur	367
		10.4.2	Die Maxwell-Boltzmann-Verteilung	368
		10.4.3	Freiheitsgrade	369
		10.4.4	Der Gleichverteilungssatz	370

	10.5	Energieformen, Zustandsänderungen und Hauptsätze
		10.5.1 Energieformen
		10.5.2 Energieumwandlung
		10.5.3 Die Wärmekapazität
		10.5.4 Zustandsänderungen
11	Stati	stische Beschreibung 37'
	11.1	Grundbegriffe der Statistik
		11.1.1 Wahrscheinlichkeiten
		11.1.2 Mittelwert, Mittelwert der Abweichung, Schwankung
	11.2	Phasenraum und Verteilungen
		11.2.1 Mikro- und Makrozustände
		11.2.2 Der Phasenraum
		11.2.3 Verteilungen
	11.3	Das Spin-1/2 System
		11.3.1 Die Magnetisierung
		11.3.2 Entartung der Zustände
		11.3.3 Statistische Eigenschaften der Magnetisierung
		11.3.4 Die Gauß-Verteilung für große N
		11.3.5 Die Energie des Spin-1/2-Systems
	11.4	Grundlegende Annahmen der Wärmephysik
		11.4.1 Zeitmittel und Scharmittel
	11.5	Systeme in thermischem Kontakt
	11.6	Entropie, Temperatur und chemisches Potenzial
		11.6.1 Entropie
		11.6.2 Statistische Definition der Temperatur
		11.6.3 Statistische Definition des chemischen Potenzials
		11.6.4 Der 3. Hauptsatz
		11.6.5 Der 2. Hauptsatz
		11.6.6 Wärmefluss
		11.6.7 Teilchenfluss
		11.6.8 Zusammenhang zwischen statistischen und thermodynamischen Größen 412
	11.7	Der Zeitpfeil
	11.8	Magnetische Kühlung

12	Vert	eilungsf	unktionen	423
	12.1	Repräs	entative Ensemble	424
		12.1.1	Abgeschlossenes System	424
		12.1.2	System in Kontakt mit einem Wärmereservoir	424
		12.1.3	System in Kontakt mit einem Wärme- und Teilchenreservoir	425
	12.2	Gibbs-	und Boltzmann-Faktoren	426
		12.2.1	Der Gibbs-Faktor	428
		12.2.2	Der Boltzmann-Faktor	428
	12.3	Zustan	dssummen und Mittelwerte	431
		12.3.1	Große Zustandssumme	431
		12.3.2	Mittelwerte	431
		12.3.3	Zustandssumme	433
		12.3.4	Verteilungsfunktionen und ihre Eigenschaften	436
	12.4	Anwen	dungen der Verteilungsfunktionen	438
		12.4.1	Das ideale einatomige Gas	438
		12.4.2	Gültigkeit der klassischen Näherung	441
		12.4.3	Der Gleichverteilungssatz	442
	12.5	Die Ma	xwellsche Geschwindigkeitsverteilung	446
		12.5.1	Verteilung des Geschwindigkeitsbetrages	448
		12.5.2	Verteilung einer Geschwindigkeitskomponente	451
		12.5.3	Die barometrische Höhenformel	453
		12.5.4	Thermalisierung	454
13	One	ntenstat	iistik	461
13	-		che Teilchen	
	13.1		Klassischer Fall: Maxwell-Boltzmann-Statistik	
			Quantenmechanischer Fall	
	13.2		antenmechanischen Verteilungsfunktionen	
	13.2	•	Quantenstatistische Beschreibung	
			Photonen-Statistik	
			Die Fermi-Dirac-Statistik	
			Die Bose-Einstein-Statistik	
			Quantenstatistik im klassischen Grenzfall	
	13 3		standsdichte	
	10.0	DIV LU		7//

		13.3.1	Das freie Elektronengas
		13.3.2	Das Photonengas
	13.4		ingsthema: se-Einstein Kondensation
		13.4.1	Historische Entwicklung
		13.4.2	Temperatur der Bose-Einstein Kondensation
		13.4.3	Realisierung eines Bose-Einstein Kondensats
		13.4.4	Beobachtung der Bose-Einstein Kondensation
		13.4.5	Atomlaser und Kohärenz
III	[Ar	nhang	505
	A	Rutherf	Fordsche Streuformel
	В	Krumm	llinige Koordinaten
	C	$\widehat{L}_i, \widehat{L}^2$ in	n Kugelkoordinaten
	D	Vertaus	chungsrelationen $\widehat{L}_i, \widehat{L}^2$
	E	Helium	atom
	F	Literatu	ır
	G	SI-Einh	eiten
		G.1	Geschichte des SI Systems
		G.2	Die SI Basiseinheiten
		G.3	Einige von den SI Einheiten abgeleitete Einheiten
		G.4	Vorsätze
		G.5	Abgeleitete Einheiten und Umrechnungsfaktoren
	Н	Physika	dische Konstanten

Teil III

Anhang

A Rutherfordsche Streuformel

Zur Herleitung der Rutherfordschen Streuformel wird der Zusammenhang des Stoßparameters b mit dem Streuwinkel ϑ benötigt. Wir wollen deshalb in diesem Abschnitt den Ausdruck für den Stossparameter beim Stoß eines α -Teilchens (Ladung +2e) mit dem Coulomb-Potenzial eines Atomkerns der Ladung +Ze ableiten. Da die zwischen Kern und α -Teilchen wirkende Coulomb-Kraft stets parallel zu dem vom Kern zum α -Teilchen weisenden Ortsvektor ist, gilt der Flächensatz. In diesem Fall ist die Bahn des α -Teilchens eben und es ist zweckmäßig, den Bahnverlauf in Polarkoordinaten ρ , φ zu betrachten. Ferner können wir das Zweiteilchenproblem auf ein Einteilchenproblem zurückführen, indem wir die Kernmasse m_K als in Ruhe befindlich betrachten und für die Masse des α -Teilchens die reduzierte Masse

$$\mu = \frac{m_{\alpha}m_{K}}{m_{\alpha} + m_{K}} \tag{A.1}$$

und für seine Geschwindigkeit die Relativgeschwindigkeit

$$\mathbf{v} = \mathbf{v}_{\alpha} - \mathbf{v}_{K} \tag{A.2}$$

verwenden. Den Ursprung des Koordinatensystems legen wir in den ruhenden Atomkern (siehe Abb. A1).

Für $\rho \to \infty$, also sehr weit weg vom Atomkern, soll das α -Teilchen die Energie

$$E_{\rm kin} = \frac{1}{2}\mu v_0^2 \tag{A.3}$$

besitzen. Seine Bahn verläuft dort geradlinig. Nähert sich das α -Teilchen dem Kern, so wird es von dieser geradlinigen Bahn abgelenkt. Wir wollen zuerst den Bahnverlauf $\rho(\varphi)$ berechnen. Nach dem Coulombschen Gesetz und $\mathbf{F} = q\mathbf{E}$ bewegt sich das α -Teilchen im elektrischen Feld \mathbf{E} bzw. Potenzial V des Kerns (q = +Ze)

$$\mathbf{E} = \frac{Ze}{4\pi\varepsilon_0 \rho^2} \widehat{\rho} \qquad V = \frac{Ze}{4\pi\varepsilon_0 \rho} , \qquad (A.4)$$

wobei $\hat{\rho}$ der Einheitsvektor in ρ -Richtung ist, also vom Kernort zum Ort des α -Teilchens.

Wegen $\text{rot}\mathbf{E} = \text{rot}\mathbf{F}/q = 0$, d.h. $\text{rot}\mathbf{F} = 0$, gilt für das betrachtete Problem der Energieerhaltungssatz der klassischen Mechanik. Da für die potentielle Energie $E_{\text{pot}} = qV = +2eV$ gilt, da die Ladung des α -Teilchens +2e beträgt, so folgt aus dem Energieerhaltungssatz

$$E_{\rm kin} + E_{\rm pot} = \frac{1}{2}\mu v_0^2 + \frac{2e \cdot Ze}{4\pi\varepsilon_0 \rho} = const. \tag{A.5}$$

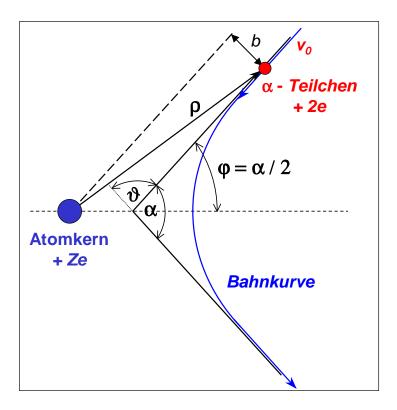


Abbildung A1: Zur Herleitung des Zusammenhangs zwischen Streuwinkel ϑ und Stoßparameter b.

Da für $\rho \to \infty$ die Geschwindigkeit des α -Teilchens gegen v_0 gehen muss, ergibt sich die Konstante zu $\frac{1}{2}mv_0^2$.

Mit der Abkürzung $V(\rho) = k/\rho$, d.h. $k = 2e \cdot Ze/4\pi\varepsilon_0\rho$, und der Bahngeschwindigkeit v = ds/dt erhalten wir mit dem Quadrat des Linienbelements ds in Polarkoordinaten

$$ds^2 = d\rho^2 + \rho^2 d\varphi^2$$

den Ausdruck für die Gesamtenergie zu

$$E_{\rm kin} + E_{\rm pot} = E = \frac{\mu}{2} \left[\left(\frac{d\rho}{dt} \right)^2 + \rho^2 \left(\frac{d\varphi}{dt} \right)^2 \right] + \frac{k}{\rho} = \frac{1}{2} \mu v_0^2 . \tag{A.6}$$

Der vom Kern zum α -Teilchen gerichtete Kraftvektor ist immer parallel zu $\hat{\rho}$, wodurch das Drehmoment $\mathbf{M} = \boldsymbol{\rho} \times \mathbf{F} = 0$ wird. Das heißt, neben dem Energieerhaltungssatz gilt auch der Drehimpulserhaltungssatz.

Zur Berechnung des Drehimpulses betrachten wir in großer Entfernung vom Kern die Parallele zur dort geradlinigen Bahn des α -Teilchens, die durch den Koordinatenursprung geht (siehe Abb. A1). Der Abstand der beiden Geraden definiert den $Sto\beta parameter b$. Mit der Definition $\mathbf{L} = m(\mathbf{r} \times \mathbf{v})$ bzw. $\mathbf{L} = \Theta_{\omega} \omega$ des Drehimpulses, wobei $\Theta_{\omega} = m\rho^2$ und $\omega = d\phi/dt$ ist, erhalten wir den Betrag des Drehimpulses zu

$$|\mathbf{L}| = \mu |\boldsymbol{\rho} \times \mathbf{v}_0| = \mu v_0 \boldsymbol{\rho} \sin(\hat{\boldsymbol{\rho}}, \hat{\mathbf{v}}_0) = \mu v_0 b = const. \tag{A.7}$$

sowie zu

$$|\mathbf{L}| = \Theta_{\omega}\omega = \mu \rho^2 \frac{d\varphi}{dt} = const.$$
 (A.8)

Hieraus erhalten wir durch Gleichsetzen von (A.7) und (A.8) schließlich

$$\frac{d\varphi}{dt} = \frac{v_0 b}{\rho^2} . \tag{A.9}$$

Setzen wir diesen Ausdruck in (A.6) ein, so erhalten wir

$$\frac{\mu}{2} \left[\left(\frac{d\rho}{dt} \right)^2 + \frac{v_0^2 b^2}{\rho^2} \right] + \frac{k}{\rho} = \frac{1}{2} \mu v_0^2 . \tag{A.10}$$

Ersetzen wir schließlich die zeitliche Ableitung von ρ durch

$$\frac{d\rho}{dt} = \frac{d\rho}{d\varphi}\frac{d\varphi}{dt} = \frac{d\rho}{d\varphi}\frac{v_0b}{\rho} = -\frac{v_0d\left(\frac{b}{\rho}\right)}{d\varphi},$$

so folgt

$$\frac{\mu}{2}v_0^2 \left[\left(\frac{d\left(\frac{b}{\rho}\right)}{d\varphi} \right)^2 + \frac{b^2}{\rho^2} \right] + \frac{k}{\rho} = \frac{1}{2}\mu v_0^2 . \tag{A.11}$$

Teilen wir durch $E_{\rm kin}=\frac{1}{2}\mu v_0^2$, so erhalten wir

$$\left[\left(\frac{d \left(\frac{b}{\rho} \right)}{d \varphi} \right)^2 + \frac{b^2}{\rho^2} \right] + \frac{k}{E_{\text{kin}} \rho} = 1 . \tag{A.12}$$

Addieren wir auf beiden Seiten $k^2/4E_{\rm kin}^2b^2$, so können wir weiter umformen zu

$$\left(\frac{d\left(\frac{b}{\rho}\right)}{d\varphi}\right)^{2} + \frac{b^{2}}{\rho^{2}} + \frac{k}{E_{\rm kin}\rho} + \frac{k^{2}}{4E_{\rm kin}^{2}b^{2}} = 1 + \frac{k^{2}}{4E_{\rm kin}^{2}b^{2}} \tag{A.13}$$

bzw. zu

$$\left(\frac{d\left(\frac{b}{\rho}\right)}{d\varphi}\right)^2 + \left(\frac{b}{\rho} + \frac{k}{2E_{\rm kin}b}\right)^2 = 1 + \frac{k^2}{4E_{\rm kin}^2b^2} .$$
(A.14)

Mit der Substitution

$$u = \frac{b}{\rho} + \left(\frac{k}{2E_{\rm kin}b}\right)^2 \qquad du = d\left(\frac{b}{\rho}\right)$$

und unter Benutzung von

$$C^2 = 1 + \left(\frac{k}{2E_{\rm kin}b}\right)^2$$

können wir zu

$$\left(\frac{du}{d\varphi}\right)^2 + u^2 = C^2 \tag{A.15}$$

vereinfachen, woraus wir durch Trennung der Variablen

$$d\varphi = \pm \frac{du}{\sqrt{C^2 - u^2}} = \pm \frac{du}{C\sqrt{1 - \frac{u^2}{C^2}}}$$
(A.16)

erhalten. Integration ergibt

$$\varphi = \arcsin \frac{u}{C} + \varphi_0 = -\arccos \frac{u}{C} + \varphi_0 \tag{A.17}$$

oder

$$\cos(\varphi_0 - \varphi) = \frac{u}{C} . \tag{A.18}$$

Wir legen nun die Winkelmessung so fest, dass durch u = C der Winkelnullpunkt $\varphi = 0$ bestimmt ist. Dann geht (A.18) unter Benutzung der obigen Substitutionen in

$$\cos(\varphi) = \frac{\frac{b}{\rho} + \frac{k}{2E_{\text{kin}}b}}{\sqrt{1 + \left(\frac{k}{2E_{\text{kin}}b}\right)^2}}$$
(A.19)

über. Durch Auflösen nach ρ erhalten wir schließlich die gewünschte Bahnkurve $\rho(\varphi)$ des α -Teilchens

$$\rho = \frac{-\frac{2E_{\rm kin}b^2}{k}}{1 - \sqrt{1 + \left(\frac{2E_{\rm kin}b}{k}\right)^2}\cos\varphi} . \tag{A.20}$$

Die Teilchenbahn stellt einen Hyperbelast mit dem Brennpunkt im streuenden Kern und der numerischen Exzentrizität $\varepsilon = \sqrt{1 + \left(\frac{2E_{\rm kin}b}{k}\right)^2}$ dar.

In Experimenten misst man allerdings nicht die Bahnkurve, sondern den Streuwinkel ϑ . Der Streuwinkel ist durch

$$\vartheta = 180^{\circ} - \alpha$$

gegeben, wobei α der Schnittwinkel der beiden Asymptoten an die Bahnkurve für $\rho \to \infty$ ist (siehe Abb. A1). Das heißt

$$\varphi \rightarrow \frac{\alpha}{2} = \frac{\pi - \vartheta}{2}$$
 für $\rho \rightarrow \infty$. (A.21)

Mit der Polargleichung des Hyperbelastes

$$\rho = \frac{-p}{1 - \varepsilon \cos \varphi}$$

erhalten wir für $\rho \rightarrow \infty$

$$\frac{1}{\rho} = 0 = \frac{1 - \varepsilon \cos(\alpha/2)}{-p} \tag{A.22}$$

oder

$$\frac{1}{\varepsilon} = 0 = \cos\frac{\alpha}{2} = \cos\frac{\pi - \vartheta}{2} = \sin\frac{\vartheta}{2} \tag{A.23}$$

und unter Benutzung der Bahngleichung weiter

$$\left(\frac{2E_{\rm kin}b}{k}\right)^2 = \frac{1}{\sin^2\frac{\vartheta}{2}} - 1 = \frac{1 - \sin^2\frac{\vartheta}{2}}{\sin^2\frac{\vartheta}{2}} = \frac{\cos^2\frac{\vartheta}{2}}{\sin^2\frac{\vartheta}{2}} = \cot^2\frac{\vartheta}{2} \tag{A.24}$$

Durch Auflösen nach dem Stoßparameter erhalten wir den Ausdruck

$$b = \frac{k}{2E_{\text{kin}}} \cot \frac{\vartheta}{2} = \frac{k}{\mu v_0^2} \cot \frac{\vartheta}{2} . \tag{A.25}$$

B Differentialoperatoren in krummlinigen Koordinaten

Wir betrachten einen vom Ursprung eines kartesischen Koordinatensystems zum Punkt P = (u, v, w) weisenden Ortsvektor \mathbf{r} , der eine Funktion der drei beliebigen unabhängigen Variablen u, v, w ist (siehe Abb. B2):

$$\mathbf{r} = \mathbf{r}(u, v, w) = x(u, v, w)\hat{\mathbf{i}} + y(u, v, w)\hat{\mathbf{j}} + z(u, v, w)\hat{\mathbf{k}} . \tag{B.1}$$

Hierbei sind $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ und $\hat{\mathbf{k}}$ die Einheitsvektoren des kartesischen Koordinatensystems.

Das Linienelement dr besitzt die Darstellung

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u} du + \frac{\partial \mathbf{r}}{\partial v} dv + \frac{\partial \mathbf{r}}{\partial w} dw . \tag{B.2}$$

Ist u = const und v = const, die Koordinate w dagegen variabel, dann beschreibt die Raumkurve $\mathbf{r}_{u,v}(w)$ eine bestimmte Raumkurve. Entsprechendes gilt für die anderen Koordinaten. Wir erhalten also insgesamt drei Raumkurven $\mathbf{r}_{u,v}(w)$, $\mathbf{r}_{u,w}(v)$ und $\mathbf{r}_{v,w}(u)$, die ein räumliches Koordinatennetz bilden.

Wir wollen im Folgenden orthogonale Systeme voraussetzen, für die

$$\frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial v} = \frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial w} = \frac{\partial \mathbf{r}}{\partial v} \cdot \frac{\partial \mathbf{r}}{\partial w} = 0.$$
 (B.3)

Mit diesen Bedingungen können wir drei zueinander orthogonale Einheitsvektoren definieren (siehe Abb. B2):

$$\widehat{\mathbf{u}} = \frac{\frac{\partial \mathbf{r}}{\partial u}}{\left|\frac{\partial \mathbf{r}}{\partial u}\right|} \qquad \widehat{\mathbf{v}} = \frac{\frac{\partial \mathbf{r}}{\partial v}}{\left|\frac{\partial \mathbf{r}}{\partial v}\right|} \qquad \widehat{\mathbf{w}} = \frac{\frac{\partial \mathbf{r}}{\partial w}}{\left|\frac{\partial \mathbf{r}}{\partial w}\right|}. \tag{B.4}$$

Mit Hilfe dieser Einheitsvektoren können wir das Linienelement dr schreiben als:

$$d\mathbf{r} = \left| \frac{\partial \mathbf{r}}{\partial u} \right| \widehat{\mathbf{u}} du + \left| \frac{\partial \mathbf{r}}{\partial v} \right| \widehat{\mathbf{v}} dv + \left| \frac{\partial \mathbf{r}}{\partial w} \right| \widehat{\mathbf{w}} dw . \tag{B.5}$$

Die durch Gleichung (B.4) festgelegten Einheitsvektoren bilden die Achsen eines orthogonalen Koordinatensystems mit dem Punkt P = P(u, v, w) als Ursprung. Wir können auch einen anderen Punkt P' = P(u', v', z') betrachten. Auch an diesem Punkt bilden die durch (B.4) definierten Einheitsvektoren $\hat{\mathbf{u}}'$, $\hat{\mathbf{v}}'$ und $\hat{\mathbf{w}}'$ ein orthogonales System, dass aber im Allgemeinen eine andere Orientierung besitzt. Die

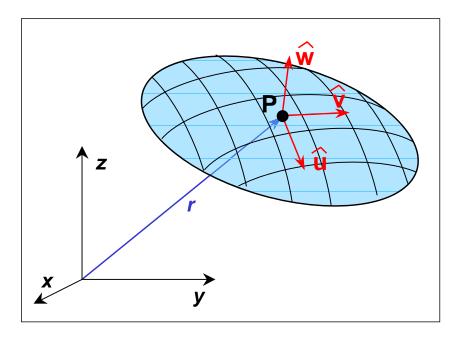


Abbildung B2: Zur Definition von krummlinigen Koordinaten.

orthogonalen Einheitsvektoren $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$ und $\hat{\mathbf{w}}$ unterscheiden sich von den Einheitsvektoren $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ und $\hat{\mathbf{k}}$ des kartesischen Koordinatensystems dadurch, dass sie von Ort zu Ort ihre Richtung ändern. Wir nennen sie deshalb *krummmlinigen Koordinaten*.

Wir betrachten jetzt ein Vektorfeld $\mathbf{A} = \mathbf{A}(u, v, w)$. Man bezeichnet nun auch in krummlinigen Koordinaten die Projektionen \mathbf{A}_u von \mathbf{A} auf $\widehat{\mathbf{u}}$, \mathbf{A}_v von \mathbf{A} auf $\widehat{\mathbf{v}}$ und \mathbf{A}_w von \mathbf{A} auf $\widehat{\mathbf{w}}$ als die Komponenten von \mathbf{A} und wir können schreiben:

$$\mathbf{A} = \mathbf{A}_u + \mathbf{A}_v + \mathbf{A}_w . \tag{B.6}$$

Die Komponenten A_u , A_v und A_w sind dann wie in einem kartesischen Koordinatensystem gegeben durch

$$\mathbf{A}_{u} = A_{u} \, \widehat{\mathbf{u}} \qquad \qquad \mathbf{A}_{v} = A_{v} \, \widehat{\mathbf{v}} \qquad \qquad \mathbf{A}_{w} = A_{w} \, \widehat{\mathbf{w}} . \tag{B.7}$$

Die Zahlen A_u , A_v und A_w heißen Koordinaten von **A** in Bezug auf die Einheitsvektoren $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$ und $\hat{\mathbf{w}}$.

Da (B.6) und (B.7) ganz analog zu den entsprechenden Darstellungen im rechtwinkligen kartesischen Koordinatensystem festgelegt sind, bleiben auch die für das kartesische Koordinatensystem gegebenen Ausdrücke für die skalare und vektorielle Produktbildung in krummlinigen orthogonalen Koordinaten erhalten. Einzige Voraussetzung ist hierbei, dass die Einheitvektoren $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$ und $\hat{\mathbf{w}}$ ein Rechtssystem

$$\hat{\mathbf{u}} \times \hat{\mathbf{v}} = \hat{\mathbf{w}} \qquad \hat{\mathbf{v}} \times \hat{\mathbf{w}} = \hat{\mathbf{u}} \qquad \hat{\mathbf{w}} \times \hat{\mathbf{u}} = \hat{\mathbf{v}}$$
 (B.8)

bilden. Wir können also schreiben:

$$\mathbf{A} \cdot \mathbf{B} = A_u B_u + A_v B_v + A_w B_w \tag{B.9}$$

$$\mathbf{A} \times \mathbf{B} = (A_v B_w - A_w B_v) \widehat{\mathbf{u}} + (A_w B_u - A_u B_w) \widehat{\mathbf{v}} + (A_u B_v - A_v B_u) \widehat{\mathbf{w}} . \tag{B.10}$$

Wir können damit das vollständige Differential der Funktion f = f(u, v, w) schreiben als

$$df = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv + \frac{\partial f}{\partial w} dw = \nabla f \cdot d\mathbf{r} . \tag{B.11}$$

Mit Hilfe von (B.7) können wir ∇f darstellen als

$$\nabla f = \nabla_u f \, \hat{\mathbf{u}} + \nabla_v f \, \hat{\mathbf{v}} + \nabla_w f \, \hat{\mathbf{w}} \,\, , \tag{B.12}$$

woraus weiter mit (B.12), (B.5) und (B.9)

$$\frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv + \frac{\partial f}{\partial w}dw = \left| \frac{\partial \mathbf{r}}{\partial u} \right| \nabla_{u}f du + \left| \frac{\partial \mathbf{r}}{\partial v} \right| \nabla_{v}f dv + \left| \frac{\partial \mathbf{r}}{\partial w} \right| \nabla_{w}f dw$$
(B.13)

folgt. Diese Gleichung ist für beliebige du, dv und dw nur dann erfüllt, wenn der Gradient die Koordinaten

$$\nabla_{u}f = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial u}\right|} \frac{\partial f}{\partial u} \qquad \nabla_{v}f = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial v}\right|} \frac{\partial f}{\partial v} \qquad \nabla_{w}f = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial w}\right|} \frac{\partial f}{\partial w}$$
 (B.14)

hat.

Die Vektordifferentialoperation Divergenz

Zur Herleitung der Vektordifferentialoperation Divergenz in krummlinigen Koordinaten betrachten wir ein quaderförmiges Volumenelement ΔV mit den Kantenlängen Δu , Δv und Δw . Sein Volumen beträgt

$$\Delta V = \left| \frac{\partial \mathbf{r}}{\partial u} \right| \Delta u \cdot \left| \frac{\partial \mathbf{r}}{\partial v} \right| \Delta v \cdot \left| \frac{\partial \mathbf{r}}{\partial w} \right| \Delta w . \tag{B.15}$$

Seine Seitenflächen senkrecht zu den Einheitsvektoren $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$ und $\hat{\mathbf{w}}$ sind gegeben durch

$$\Delta F_u = \left| \frac{\partial \mathbf{r}}{\partial v} \right| \Delta v \left| \frac{\partial \mathbf{r}}{\partial w} \right| \Delta w \tag{B.16}$$

$$\Delta F_{v} = \left| \frac{\partial \mathbf{r}}{\partial u} \right| \Delta u \left| \frac{\partial \mathbf{r}}{\partial w} \right| \Delta w \tag{B.17}$$

$$\Delta F_w = \left| \frac{\partial \mathbf{r}}{\partial u} \right| \Delta u \left| \frac{\partial \mathbf{r}}{\partial v} \right| \Delta v . \tag{B.18}$$

Die Divergenz eines Vektorfeldes A ist nun definiert als die Volumenableitung

$$\nabla \cdot \mathbf{A} = \lim_{\Delta V \to 0} \frac{\int_{\Delta V} \mathbf{A} \cdot d\mathbf{F}}{\Delta V} . \tag{B.19}$$

Hierbei ist $S_{\Delta V}$ die Oberfläche des Volumenelements ΔV und $d\mathbf{F}$ ein Vektor, der senkrecht auf dem Oberflächenelement steht und dessen Betrag gleich dem Flächeninhalt des Oberflächenelements ist. Wir können somit schreiben:

$$\nabla \cdot \mathbf{A} = \lim_{\Delta V \to 0} \frac{1}{\Delta V} \left[\left(\left(A_{u} \left| \frac{\partial \mathbf{r}}{\partial v} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)_{u + \Delta u} - \left(A_{u} \left| \frac{\partial \mathbf{r}}{\partial v} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)_{u} \right) dv dw \right]$$

$$\left(\left(A_{v} \left| \frac{\partial \mathbf{r}}{\partial u} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)_{v + \Delta v} - \left(A_{v} \left| \frac{\partial \mathbf{r}}{\partial u} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)_{v} \right) du dw$$

$$\left(\left(A_{w} \left| \frac{\partial \mathbf{r}}{\partial u} \right| \left| \frac{\partial \mathbf{r}}{\partial v} \right| \right)_{w + \Delta w} - \left(A_{w} \left| \frac{\partial \mathbf{r}}{\partial u} \right| \left| \frac{\partial \mathbf{r}}{\partial v} \right| \right)_{w} \right) du dv \right].$$
(B.20)

Benutzen wir

$$\left(A_{u} \left| \frac{\partial \mathbf{r}}{\partial v} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)_{u+\Delta u} = \left(A_{u} \left| \frac{\partial \mathbf{r}}{\partial v} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)_{u} + \frac{\partial \left(A_{u} \left| \frac{\partial \mathbf{r}}{\partial v} \right| \left| \frac{\partial \mathbf{r}}{\partial w} \right| \right)}{\partial u} \Delta u + O(\Delta u)^{n} \right)$$
mit $n = 2, 3, 4, ...$ (B.21)

und den Ausdruck (B.15) für das Volumenelement ΔV , so erhalten wir

$$\nabla \cdot \mathbf{A} = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial u}\right| \left|\frac{\partial \mathbf{r}}{\partial v}\right| \left|\frac{\partial \mathbf{r}}{\partial w}\right|} \cdot \left[\frac{\partial \left(A_{u}\left|\frac{\partial \mathbf{r}}{\partial v}\right| \left|\frac{\partial \mathbf{r}}{\partial w}\right|\right)}{\partial u} + \frac{\partial \left(A_{v}\left|\frac{\partial \mathbf{r}}{\partial u}\right| \left|\frac{\partial \mathbf{r}}{\partial w}\right|\right)}{\partial v} + \frac{\partial \left(A_{w}\left|\frac{\partial \mathbf{r}}{\partial u}\right| \left|\frac{\partial \mathbf{r}}{\partial v}\right|\right)}{\partial w}\right] . \tag{B.22}$$

Die Vektordifferentialoperation Rotation

Die Berechnung der Rotorkoordinaten auf krummlinigen Koordinaten lässt sich analog zum vorangegangenen Abschnitt durchführen. Die Rotation eines Vektorfeldes, $\nabla \times \mathbf{A}$, ist ein Vektor, der durch die mit dem umgekehrten Vorzeichen genommenen Volumenableitung dieses Feldes dargestellt wird:

$$\nabla \times \mathbf{A} = -\lim_{\Delta V \to 0} \frac{\int_{\Delta V} \mathbf{A} \times d\mathbf{F}}{\Delta V} = +\lim_{\Delta V \to 0} \frac{\int_{\Delta V} d\mathbf{F} \times \mathbf{A}}{\Delta V} . \tag{B.23}$$

Wir können somit schreiben

$$\nabla_{u} \times \mathbf{A} = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial v}\right| \left|\frac{\partial \mathbf{r}}{\partial w}\right|} \left[\frac{\partial \left(A_{w} \left|\frac{\partial \mathbf{r}}{\partial w}\right|\right)}{\partial v} - \frac{\partial \left(A_{v} \left|\frac{\partial \mathbf{r}}{\partial v}\right|\right)}{\partial w}\right]$$
(B.24)

$$\nabla_{v} \times \mathbf{A} = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial u}\right| \left|\frac{\partial \mathbf{r}}{\partial w}\right|} \left[\frac{\partial \left(A_{u} \left|\frac{\partial \mathbf{r}}{\partial u}\right|\right)}{\partial w} - \frac{\partial \left(A_{w} \left|\frac{\partial \mathbf{r}}{\partial w}\right|\right)}{\partial u}\right]$$
(B.25)

$$\nabla_{w} \times \mathbf{A} = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial u}\right| \left|\frac{\partial \mathbf{r}}{\partial v}\right|} \left[\frac{\partial \left(A_{v} \left|\frac{\partial \mathbf{r}}{\partial v}\right|\right)}{\partial u} - \frac{\partial \left(A_{u} \left|\frac{\partial \mathbf{r}}{\partial u}\right|\right)}{\partial v}\right] . \tag{B.26}$$

Der ∇^2 **Operator**

Mit $\nabla^2 f = \nabla \cdot \nabla f$ erhalten wir aus (B.14) und (B.22)

$$\nabla^{2} f = \frac{1}{\left|\frac{\partial \mathbf{r}}{\partial u}\right| \left|\frac{\partial \mathbf{r}}{\partial v}\right| \left|\frac{\partial \mathbf{r}}{\partial w}\right|} \cdot \left[\frac{\partial \left(\frac{|\partial \mathbf{r}}{\partial v}| \frac{\partial \mathbf{r}}{\partial w}\right) \left|\frac{\partial f}{\partial u}\right|}{\partial u}\right) + \frac{\partial \left(\frac{|\partial \mathbf{r}}{\partial u}| \frac{\partial \mathbf{r}}{\partial w}| \frac{\partial f}{\partial v}\right)}{\partial v} + \frac{\partial \left(\frac{|\partial \mathbf{r}}{\partial u}| \frac{\partial \mathbf{r}}{\partial v}| \frac{\partial f}{\partial w}\right)}{\partial w}\right]}{\partial w} \cdot \left[\frac{\partial \mathbf{r}}{\partial u} \left|\frac{\partial \mathbf{r}}{\partial w}\right| \left|\frac{\partial f}{\partial w}\right|}{\partial w}\right] . \tag{B.27}$$

Anwendung auf Kugelkoordinaten

Der Ortsvektor nimmt für Kugelkoordinaten (r, ϑ, φ) die Form

$$\mathbf{r} = r\sin\vartheta\cos\varphi\hat{\mathbf{i}} + r\sin\vartheta\sin\varphi\hat{\mathbf{j}} + r\cos\vartheta\hat{\mathbf{k}}$$
(B.28)

an. Damit erhalten wir

$$\left| \frac{\partial \mathbf{r}}{\partial r} \right| = 1 \tag{B.29}$$

$$\begin{vmatrix} \frac{\partial \mathbf{r}}{\partial r} \end{vmatrix} = 1$$

$$\begin{vmatrix} \frac{\partial \mathbf{r}}{\partial \vartheta} \end{vmatrix} = r$$

$$\begin{vmatrix} \frac{\partial \mathbf{r}}{\partial \varphi} \end{vmatrix} = r \sin \vartheta$$
(B.30)
(B.31)

$$\left| \frac{\partial \mathbf{r}}{\partial \boldsymbol{\varphi}} \right| = r \sin \vartheta \tag{B.31}$$

und demnach aus den oben abgeleiteten Beziehungen für die verschiedenen Differentialoperatoren die Ausdrücke

$$\nabla_r f = \frac{\partial f}{\partial r}$$
 $\nabla_{\vartheta} f = \frac{1}{r} \frac{\partial f}{\partial \vartheta}$ $\nabla_{\varphi} = \frac{1}{r \sin \vartheta} \frac{\partial f}{\partial \varphi}$ (B.32)

$$\nabla \cdot \mathbf{A} = \frac{1}{\partial r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta A_{\vartheta})}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial A_{\varphi}}{\partial \varphi}$$
(B.33)

$$\nabla_r \times \mathbf{A} = \frac{1}{r \sin \vartheta} \left[\frac{\partial (\sin \vartheta A_{\varphi})}{\partial \vartheta} - \frac{\partial A_{\vartheta}}{\partial \varphi} \right]$$
 (B.34)

$$\nabla_{\vartheta} \times \mathbf{A} = \frac{1}{r} \left[\frac{1}{\sin \vartheta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial (rA_{\varphi})}{\partial r} \right]$$
 (B.35)

$$\nabla_{\varphi} \times \mathbf{A} = \frac{1}{r} \left[\frac{\partial (rA_{\vartheta})}{\partial r} - \frac{\partial A_r}{\partial \vartheta} \right]$$
 (B.36)

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial f}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2 f}{\partial \varphi^2} . \tag{B.37}$$

Darstellung von \widehat{L}_i und \widehat{L}^2 in Kugelkoordinaten

In kartesischen Koordinaten gilt für die Komponenten des Drehimpulsoperators

$$\widehat{L}_{x} = i\hbar \left(\sin \vartheta \frac{\partial}{\partial \vartheta} + \cot \vartheta \cos \varphi \frac{\partial}{\partial \varphi} \right) \tag{C.1}$$

$$\widehat{L}_{y} = i\hbar \left(-\cos\vartheta \frac{\partial}{\partial\vartheta} + \cot\vartheta \sin\varphi \frac{\partial}{\partial\varphi} \right) \tag{C.2}$$

$$\widehat{L}_{z} = -i\hbar \frac{\partial}{\partial \varphi} . ag{C.3}$$

Damit ist auch der Operator $\widehat{L}^2 = \widehat{L}_x^2 + \widehat{L}_y^2 + \widehat{L}_z^2$ bekannt.

Zwischen den kartesischen Koordinaten (x, y, z) und den Kugelkoordinaten (r, ϑ, φ) besteht der Zusammenhang

$$x = r\sin\vartheta\cos\varphi \qquad \qquad r = \sqrt{x^2 + y^2 + z^2} \tag{C.4}$$

$$y = r \sin \vartheta \sin \varphi$$
 $\vartheta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$ (C.5)

$$z = r\cos\vartheta$$
 $\varphi = \arctan\frac{y}{x}$ (C.6)

Wir betrachten zunächst \widehat{J}_z . Mit

$$\frac{\partial}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + \frac{\partial \vartheta}{\partial x} \frac{\partial}{\partial \vartheta} + \frac{\partial \varphi}{\partial x} \frac{\partial}{\partial \varphi}$$
(C.7)

können wir die Beziehungen

$$\frac{\partial r}{\partial x} = \frac{x}{r} = \sin \vartheta \cos \varphi \tag{C.8}$$

$$\frac{\partial r}{\partial x} = \frac{x}{r} = \sin \vartheta \cos \varphi \tag{C.8}$$

$$\frac{\partial \vartheta}{\partial x} = \frac{xz}{r^2 \sqrt{x^2 + y^2}} = \frac{\cos \vartheta \cos \varphi}{r} \tag{C.9}$$

$$\frac{\partial \varphi}{\partial x} = \frac{y}{\sqrt{x^2 + y^2}} = -\frac{\sin \varphi}{r \sin \vartheta} \tag{C.10}$$

gewinnen. Setzen wir diese Beziehungen in (C.7) ein, so erhalten wir

$$\frac{\partial}{\partial x} = \sin \vartheta \cos \varphi \frac{\partial}{\partial r} + \frac{\cos \vartheta \cos \varphi}{r} \frac{\partial}{\partial \vartheta} - \frac{\sin \varphi}{r \sin \vartheta} \frac{\partial}{\partial \varphi} . \tag{C.11}$$

Analog erhalten wir

$$\frac{\partial}{\partial y} = \sin \vartheta \sin \varphi \frac{\partial}{\partial r} + \frac{\cos \vartheta \sin \varphi}{r} \frac{\partial}{\partial \vartheta} + \frac{\cos \varphi}{r \sin \vartheta} \frac{\partial}{\partial \varphi} . \tag{C.12}$$

Setzen wir (C.11) und (C.12) sowie (C.4) bis (C.6) in (C.3) ein, so folgt

$$\widehat{L}_{x} = -i\hbar \frac{\partial}{\partial \boldsymbol{\varphi}} \tag{C.13}$$

und analog

$$\hat{L}_{x} = i\hbar \left(\sin \vartheta \frac{\partial}{\partial \vartheta} + \cot \vartheta \cos \varphi \frac{\partial}{\partial \varphi} \right)$$

$$\hat{L}_{y} = i\hbar \left(-\cos \vartheta \frac{\partial}{\partial \vartheta} + \cot \vartheta \sin \varphi \frac{\partial}{\partial \varphi} \right) .$$
(C.14)

Für $\widehat{L}^2=\widehat{L}_x^2+\widehat{L}_y^2+\widehat{L}_z^2$ erhalten wir nach einigen elementaren Umformungen

$$\widehat{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right) + \frac{1}{\sin^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \right] . \tag{C.16}$$

D Vertauschungsrelationen der Drehimpulskomponenten

Wir wollen den Kommutator $[\widehat{L}_x, \widehat{L}_y]$ der Drehimpulsoperatoren (3.3.37) bis (3.3.39) bestimmt werden. Nach Definition (1.3.59) gilt

$$[\widehat{L}_x, \widehat{L}_y] = -[\widehat{L}_y, \widehat{L}_x] = \widehat{L}_x \widehat{L}_y - \widehat{L}_y \widehat{L}_x$$
(D.1)

und damit unter Benutzung von (3.3.37) bis (3.3.39)

$$[\widehat{L}_x, \widehat{L}_y] = \widehat{L}_x (\widehat{z}\widehat{p}_x - \widehat{x}\widehat{p}_z) - (\widehat{z}\widehat{p}_x - \widehat{x}\widehat{p}_z)\widehat{L}_x$$
(D.2)

Für einen beliebigen Operator \widehat{A} , der eine Funktion der Impulsoperatoren \widehat{p}_i und der Ortsoperatoren \widehat{q}_i ist, können wir schreiben:

$$\widehat{p}_{i} \widehat{A}(\widehat{p}_{i}, \widehat{q}_{i}) \Psi = -i\hbar \frac{\partial}{\partial q_{i}} \widehat{A}(\widehat{p}_{i}, \widehat{q}_{i}) \Psi = -i\hbar \frac{\partial \widehat{A}}{\partial q_{i}} \Psi + \widehat{A}(\widehat{p}_{i}, \widehat{q}_{i}) (-i\hbar) \frac{\partial}{\partial q_{i}} \Psi . \tag{D.3}$$

Mit der Definition des Kommutator folgt daraus

$$\frac{\partial \widehat{A}}{\partial q_i} = \frac{\partial \widehat{A}}{\partial \widehat{q}_i} = \frac{i}{\hbar} \left(\widehat{p}_i \widehat{A} - \widehat{A} \widehat{p}_i \right) = \frac{i}{\hbar} [\widehat{p}_i, \widehat{A}] . \tag{D.4}$$

Analog gilt

$$\frac{\partial \widehat{A}}{\partial \widehat{p}_{i}} = \frac{i}{\hbar} \left(\widehat{A} \widehat{q}_{i} - \widehat{q}_{i} \widehat{A} \right) = \frac{i}{\hbar} [\widehat{A}, \widehat{q}_{i}] . \tag{D.5}$$

Da \widehat{p}_x nicht von \widehat{z} und \widehat{L}_x weder von \widehat{x} noch von \widehat{p}_x abhängt, folgt mit (D.4) und (D.5)

$$\widehat{p}_x\widehat{z} - \widehat{z}\widehat{p}_x = 0 \qquad \widehat{L}_x\widehat{p}_x - \widehat{p}_x\widehat{L}_x = 0 \qquad \widehat{L}_x\widehat{x} - \widehat{x}\widehat{L}_x = 0 \qquad (D.6)$$

und damit für (D.2)

$$[\widehat{L}_x, \widehat{L}_y] = \widehat{p}_x \left(\widehat{L}_x \widehat{z} - \widehat{z} \widehat{L}_x \right) - x \left(\widehat{L}_x \widehat{p}_z - \widehat{p}_z \widehat{L}_x \right) \widehat{L}_x \tag{D.7}$$

Weiter gewinnen wir durch Einsetzen von \widehat{L}_x in (D.4) und (D.5) die Beziehungen

$$\widehat{p}_{z}\widehat{L}_{x} - \widehat{L}_{x}\widehat{p}_{z} = i\hbar\widehat{p}_{y} \qquad \widehat{L}_{x}\widehat{z} - \widehat{z}\widehat{L}_{x} = i\hbar\widehat{y} , \qquad (D.8)$$

womit (D.7) unter Benutzung von (3.3.37) bis (3.3.39) in

$$[\widehat{L}_x, \widehat{L}_y] = -i\hbar (\widehat{p}_x \widehat{y} - \widehat{x} \widehat{p}_y) = i\hbar \widehat{L}_z$$
(D.9)

übergeht. Analog folgen die Beziehungen

$$[\widehat{L}_{y},\widehat{L}_{z}] = i\hbar\widehat{L}_{x}$$
 (D.10)

$$[\widehat{L}_z, \widehat{L}_x] = i\hbar \widehat{L}_y . \tag{D.11}$$

Wir wollen nun den Kommutator $[\widehat{L}_z,\widehat{L}^2]$ berechnen. Mit der Beziehung $\widehat{L}^2=\widehat{L}_x^2+\widehat{L}_y^2+\widehat{L}_z^2$ gilt:

$$\begin{split} [\widehat{L}_{z}, \widehat{L}^{2}] &= [\widehat{L}_{z}, \widehat{L}_{x}^{2}] + [\widehat{L}_{z}, \widehat{L}_{y}^{2}] + [\widehat{L}_{z}, \widehat{L}_{z}^{2}] \\ &= [\widehat{L}_{z}, \widehat{L}_{x}] \widehat{L}_{x} + \widehat{L}_{x} [\widehat{L}_{z}, \widehat{L}_{x}] + [\widehat{L}_{z}, \widehat{L}_{y}] \widehat{L}_{y} + \widehat{L}_{y} [\widehat{L}_{z}, \widehat{L}_{y}] \\ &= i\hbar [\widehat{L}_{y} \widehat{L}_{x} + \widehat{L}_{x} \widehat{L}_{y} - \widehat{L}_{x} \widehat{L}_{y} - \widehat{L}_{y} \widehat{L}_{x}] \\ &= 0 . \end{split}$$
(D.12)

Analog erhalten wir

$$[\widehat{L}_x, \widehat{L}^2] = 0$$

$$[\widehat{L}_y, \widehat{L}^2] = 0.$$
(D.13)

$$[\widehat{L}_{v},\widehat{L}^{2}] = 0. \tag{D.14}$$

E Effektives Potenzial beim Heliumatom

Das Potenzial $\Phi(r_1)$ für das erste Elektron eines Heliumatoms ist durch die Abschirmung des zweiten Elektrons gegeben durch

$$\Phi(r_1) = -\frac{Ze}{4\pi\varepsilon_0 r_1} + \frac{e}{4\pi\varepsilon_0} \int_{\vartheta} \int_{\varphi} \int_{r_2} \frac{\Psi_2^* \Psi_2}{r_{12}} dV_2 . \qquad (E.1)$$

Zur Lösung des Integrals benutzen wir (siehe Abb. E3)

$$r_{12}^2 = r_1^2 + r_2^2 - 2r_1 r_2 \cos \vartheta , \qquad (E.2)$$

woraus

$$r_{12}dr_{12} = r_1r_2\sin\vartheta d\vartheta \tag{E.3}$$

folgt. Weiterhin gilt

$$dV_2 = r_2^2 dr_2 \sin \vartheta d\vartheta d\varphi , \qquad (E.4)$$

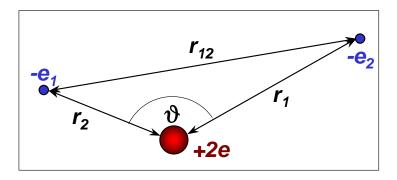
womit wir

$$\frac{dV_2}{r_{12}} = \frac{r_2 dr_2 d\varphi dr_{12}}{r_1} \tag{E.5}$$

erhalten. Wir sehen, dass wir bei der Integration das Integral über $\sin \vartheta d\vartheta$ in ein Integral über dr_{12} ersetzen können. Für die Wellenfunktion des 1s-Zustandes benutzen wir

$$\Psi_{1s} = \frac{Z^{3/2}}{\sqrt{\pi}a_B^{3/2}} \exp(-Zr_2/a_B)$$
 (E.6)

mit Z = 2. Setzen wir Ψ_{1s} in (E.1) ein, so erhalten wir für das Integral



523

Abbildung E3: Zur Definition der Größen beim Heliumatom.

Int =
$$\int \frac{|\Psi_{1s}|^2}{r_{12}} r_2^2 dr_2 \sin \vartheta d\vartheta d\varphi = \int \frac{|\Psi_{1s}|^2}{r_1} r_2 dr_2 dr_{12} d\varphi$$
. (E.7)

Mit $\int_0^{2\pi} d\varphi = 2\pi$ erhalten wir

Int
$$= \frac{2Z^{3}}{a_{B}^{3}} \left[\int_{r_{2}=0}^{r_{1}} \frac{\exp(-Z \cdot 2r_{2}/a_{B}) r_{2}}{r_{1}} dr_{2} \int_{r_{12}=r_{1}-r_{2}}^{r_{1}+r_{2}} dr_{12} + \int_{r_{2}=r_{1}}^{\infty} \frac{\exp(-Z \cdot 2r_{2}/a_{B}) r_{2}}{r_{1}} dr_{2} \int_{r_{12}=r_{2}-r_{1}}^{r_{2}+r_{1}} dr_{12} \right] ,$$
(E.8)

da für die Integrationsgrenze $\vartheta = 0$

$$r_{12} = \begin{cases} r_1 - r_2 & \text{für } r_2 < r_1 \\ r_2 - r_1 & \text{für } r_2 > r_1 \end{cases}$$
 (E.9)

gilt und für $\vartheta = \pi$ die Beziehung $r_{12} = r_2 + r_1$ folgt. Ausführen der Integration und Addition der beiden Summanden in (E.8) ergibt

$$\Phi(r_1) = -\frac{(Z-1)e}{4\pi\varepsilon_0 r_1} - \frac{e}{4\pi\varepsilon_0} \left(\frac{Z}{a_B} + \frac{1}{r_1}\right) \exp\left(\frac{-2Zr_1}{a_B}\right) , \qquad (E.10)$$

wobei wir für Helium Z = 2 setzen müssen.