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Chapter 3

3. Phenomenological Models of Superconductivity

3.1 London Theory

3.1.1 The London Equations

3.2 Macroscopic Quantum Model of Superconductivity

3.2.1 Derivation of the London Equations

3.2.2 Fluxoid Quantization

3.2.3 Josephson Effect

3.3 Ginzburg-Landau Theory

3.3.1 Type-I and Type-II Superconductors

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice

 3.3.4 Type-II Superconductors: Flux Lines
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Fritz Wolfgang London (1900 – 1954)

3.1 London Theory

* 7 March 1900 in Breslau 
† 30 March 1954 in Durham, 

North Carolina, USA

study:      Bonn, Frankfurt, Göttingen, Munich 
and Paris. 

Ph.D.:      1921 in Munich

1922-25: Göttingen and Munich

1926/27: Assistent of Paul Peter Ewald at  Stuttgart, 
studies at Zurich and Berlin with
Erwin Schrödinger. 

1928:       Habilitation at Berlin 

1933-36: London

1936-39: Paris

1939:       Emigration to USA,
Duke Universität at Durham
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Heinz and Fritz London

3.1 London Theory
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1935 Fritz and Heinz London describe the Meißner-Ochsenfeld effect and perfect conductivity

within phenomenological model

➔ they assume a homogeneous superconducting condensate

• starting point is equation of motion of charged particles with mass 𝑚s and charge 𝑞𝑠

(𝜏 = momentum relaxation time)

• two-fluid model: 
- normal conducting electrons with charge 𝑞𝑛 and density 𝑛𝑛
- superconducting electrons with charge 𝑞𝑠 density 𝑛𝑠

• normal state: 𝑛𝑛 = 𝑛, 𝑛𝑠 = 0

• superconducting state 𝑛𝑛 → 0, 𝑛𝑠 → 𝑚𝑎𝑥 for 𝑇 → 0, 𝜏 → ∞ , 𝐉𝑠 = 𝑛𝑠𝑞𝑠𝐯𝑠

1st London equation London coefficient BCS theory:
𝑚𝑠 = 2𝑚𝑒 , 𝑞𝑠 = −2𝑒

𝑛𝑠 = 𝑛/2

3.1.1 London Equations

3.1 London Theory

𝑚𝑠

d𝐯𝐬
d𝑡

+
𝑚𝑠

𝜏
𝐯𝐬 = 𝑞𝑠𝐄

𝜕(Λ𝐉𝑠)

𝜕𝑡
= 𝐄 Λ =

𝑚𝑠

𝑛𝑠𝑞𝑠
2
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3.1.1 London Equations

• take the curl of 1st London equation
𝜕(Λ𝐉𝑠)

𝜕𝑡
= 𝐄 and use 𝛁 × 𝐄 = −𝜕𝐁/𝜕𝑡

flux 𝚽 through an arbitrary area inside a sample with infinite conductivity stays constant
e.g. flux trapping when switching off the external magnetic field

• Meißner-Ochsenfeld effect tells us: not only ሶ𝚽 but 𝚽 itself must be zero
→ expression in brackets must be zero

2nd London equation

• use Maxwell‘s equation 𝛁 × 𝐁 = −𝜇0𝐉s → 𝛁 × 𝛁 × 𝐁 = −𝜇0𝛁 × 𝐉s ⇒ 𝐁 = −
Λ

𝜇0
𝛁 × 𝛁 × 𝐁

with 𝛁 × 𝛁 × 𝐚 = 𝛁 𝛁 ⋅ 𝐚 − 𝛁𝟐𝐚,  we obtain with 𝛁 ⋅ 𝐁 = 𝟎

London penetration depth

𝜕

𝜕𝑡
𝛁 × Λ𝐉𝑠 + 𝐁 = 0

𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎

𝛁𝟐𝐁 −
𝜇0
Λ
𝐁 = 𝛁𝟐𝐁 −

1

𝜆L
2 𝐁 = 𝟎 𝜆L =

Λ

𝜇0
=

𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2
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• example: 𝐵ext = 𝐵𝑧

𝒚

𝑩𝒛(𝟎)

𝑩𝒛

𝒛

𝒙𝜆L

• solution:

• 𝐵𝑧 decays exponentially with characteristic decay length 𝜆L

• 𝑇 dependence of 𝜆L

empirical relation:

3.1.1 London Equations

d2𝐵𝑧
d𝑥2

=
𝐵𝑧

𝜆L
2

𝐵𝑧 𝑥 = 𝐵𝑧 0 exp −
𝑥

𝜆L

𝜆L =
𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2 ∼ 10 − 100 nm

𝜆L 𝑇 =
𝜆L 0

1 − 𝑇/𝑇𝐶
4
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• with 2nd London equation

we obtain for 𝐽𝑠:

3.1.1 London Equations

𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎

𝜕𝐽𝑠,𝑦(𝑥)

𝜕𝑥
−
𝜕𝐽𝑠,𝑥(𝑥)

𝜕𝑦
= −

1

Λ
𝐵𝑧 0 exp −

𝑥

𝜆L
integration yields

𝐽𝑠,𝑦 𝑥 =
𝜆L
Λ
𝐵𝑧 0 exp −

𝑥

𝜆L

𝐽𝑠,𝑦 𝑥 =
𝐻𝑧 0

𝜆L
exp −

𝑥

𝜆L

𝐽𝑠,𝑦 𝑥 = 𝐽𝑠,𝑦 0 exp −
𝑥

𝜆L

Λ = 𝜇0𝜆L
2

𝒛

𝑩𝒛

𝒙𝜆L

𝑱𝒔,𝒚 𝟎

𝒚
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• example: thin superconducting sheet of thickness 𝑑 with 𝐵 ǁ sheet

• Ansatz:

𝒚

𝑩𝒛

𝑩𝒛

𝒙

𝒛

𝜆L

𝒅

• boundary conditions:

• solution:

3.1.1 London Equations

𝐵𝑧 𝑥 = 𝐵𝑧 exp −
𝑥

𝜆L
+ 𝐵𝑧 exp +

𝑥

𝜆L

𝐵𝑧 −𝑑/2 = 𝐵𝑧 +𝑑/2 = 𝐵𝑧

𝐵𝑧 𝑥 = 𝐵𝑧

cosh
𝑥
𝜆L

cosh
𝑑
2𝜆L
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• remarks to the London model: 1. normal component is completely neglected
→ not allowed at finite frequencies !

2. we have assumed a local relation between 𝐉𝑠, 𝐄 and 𝐁

➢ 𝐉𝑠 is determined by the local fields for every position 𝐫

➢ this is problematic since mean free path ℓ → ∞ for 𝜏 → ∞

→ nonlocal extension of London theory by A.B. Pippard (1953)

1st London equation London coefficient

2nd London equation London penetration depth

3.1.1 London Equations

𝜕(Λ𝐉𝑠)

𝜕𝑡
= 𝐄

𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎

Λ =
𝑚𝑠

𝑛𝑠𝑞𝑠
2

𝜆L =
Λ

𝜇0
=

𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2

• Summary:



Chapter 3/RG   - 12www.wmi.badw.de Superconductivity and Low Temperature Physics I

R
. G

ro
ss

an
d

A
. M

ar
x 

, ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

 2
0

2
3

)

WMI
3.2 SC as Macroscopic Quantum Phenomenon

• more solid derivation of London equations by assuming that superconductor can be
desrcribed by a macroscopic wave function

➢ Fritz London (> 1948)
derived London equations from basic quantum mechanical concepts

• basic assumption of macroscopic quantum model of superconductivity:

complete entity of all superconducting electrons can be described by macroscopic wave function

amplitude phase

• hypothesis can be proven by BCS theory (discussed later)

• normalization condition: 
volume integral over 𝜓 2 is equal to the number 𝑁𝑠 of superconducting electrons

𝜓 𝐫, 𝑡 = 𝜓0 𝐫, 𝑡 e𝚤𝜃(𝐫,𝑡)

න𝜓⋆ 𝐫, 𝑡 𝜓 𝐫, 𝑡 d𝑉 = 𝑁𝑠 𝜓 𝐫, 𝑡 2 = 𝜓⋆ 𝐫, 𝑡 𝜓 𝐫, 𝑡 = 𝑛𝑠 𝐫, 𝑡
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• revision: general relations in electrodynamics

electric field:

flux density:

𝐀 𝐫, 𝑡 = vector potential

𝜙el 𝐫, 𝑡 = scalar potential

• canonical momentum:

• electrical current is driven by gradient of electrochemical potential 𝜙 𝐫, 𝑡 = 𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡 /𝑞:

• kinematic momentum:

3.2 SC as Macroscopic Quantum Phenomenon

𝐄 𝐫, 𝑡 = −
𝜕𝐀 𝐫, 𝑡

𝜕𝑡
− 𝛁𝜙el 𝐫, 𝑡

𝐁 𝐫, 𝑡 = 𝛁 × 𝐀 𝐫, 𝑡

−𝛁𝜙 𝐫, 𝑡 = −𝛁𝜙el 𝐫, 𝑡 −
𝛁𝜇 𝐫, 𝑡

𝑞

𝐩 𝐫, 𝑡 = 𝑚𝐯 𝐫, 𝑡 + 𝑞𝐀 𝐫, 𝑡

𝑚𝐯 𝐫, 𝑡 =
ℏ

𝚤
𝛁 − 𝑞𝐀 𝐫, 𝑡

𝑝𝑥 = 𝜕ℒ/𝜕 ሶ𝑥

ℒ = Lagrange function
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• Schrödinger equation for charged particle:

• Madelung transformation 

insert macroscopic wave function 𝜓 𝐫, 𝑡 = 𝜓0 𝐫, 𝑡 e𝚤𝜃(𝐫,𝑡)  into Schrödinger equation  

replacements:    Ψ → 𝜓 = 𝜓0 𝐫, 𝑡 e𝚤𝜃(𝐫,𝑡)

𝑞 → 𝑞𝑠
𝑚 → 𝑚𝑠

• calculation yields – after splitting up into real and imaginary part and assuming a spatially homogeneous amplitude 
𝜓0 𝑟, 𝑡 = 𝜓0(𝑡) of the macroscopic wave function (London approximation) – two fundamental equations

➢ current-phase relation: connects supercurrent density with gauge invariant phase gradient

➢ energy-phase relation: connects energy with time derivative of the phase

3.2 SC as Macroscopic Quantum Phenomenon

1

2𝑚

ℏ

𝚤
𝛁 − −𝑞𝐀 𝐫, 𝑡

2

Ψ 𝐫, 𝑡 + 𝑞𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡 Ψ 𝐫, 𝑡 = 𝚤ℏ
𝜕Ψ 𝐫, 𝑡

𝜕𝑡

Ψ 𝐫, 𝑡 2 = probability to find 
particle at postion 𝑟 at time 𝑡

𝜓 𝐫, 𝑡 2 = probability to find 
superfluid density at postion 𝑟
at time 𝑡
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• we start from Schrödinger equation:

• we use the definition 𝑆 = ℏ𝜃 and obtain with 𝜓 𝐫, 𝑡 = 𝜓0 𝐫, 𝑡 e𝚤𝜃(𝐫,𝑡)

electro-chemical potential

1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀 𝐫, 𝑡

2

𝜓 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡 𝜓 𝐫, 𝑡 = 𝚤ℏ
𝜕𝜓 𝐫, 𝑡

𝜕𝑡

III

= 𝚤ℏ
𝜕𝜓

𝜕𝑡
= 𝚤ℏ

𝜕𝜓0

𝜕𝑡
− 𝜓0

𝜕𝑆

𝜕𝑡
e𝚤𝑆/ℏI

=
1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀

2

𝜓 =
1

2𝑚𝑠
−ℏ2𝛁2 + 𝚤ℏ𝑞𝑠 𝛁 ⋅ 𝐀 + 𝚤ℏ𝑞𝑠 𝐀 ⋅ 𝛁 + 𝑞𝑠

2𝐀2 𝜓0e
𝚤𝑆/ℏII

2.2 Special Topic: Madelung Transformation

1 432



Chapter 3/RG   - 16www.wmi.badw.de Superconductivity and Low Temperature Physics I

R
. G

ro
ss

  ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

 2
0

2
3

) 
 -

 s
u

p
p

le
m

e
n

ta
ry

 m
at

e
ri

al

WMI
2.2 Special Topic: Madelung Transformation

=
1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀

2

𝜓 =
1

2𝑚𝑠
−ℏ2𝛁2 + 𝚤ℏ𝑞𝑠 𝛁 ⋅ 𝐀 + 𝚤ℏ𝑞𝑠 𝐀 ⋅ 𝛁 + 𝑞𝑠

2𝐀2 𝜓0e
𝚤𝑆/ℏII
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• equation for real part:

the term on the rhs is called the quantum or Bloch 
potential, dissappears for spatially homogeneous systems

2.2 Special Topic: Madelung Transformation

I

ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
+

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡 =
ℏ2𝛁2𝜓0 𝐫, 𝑡

2𝑚𝑠𝜓0 𝐫, 𝑡

Λ =
𝑚𝑠

𝑞𝑠
2𝑛𝑠

= London-Koeffizient

S ≡ ℏ𝜃 = action
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• interpretation of energy-phase relation:

with action 𝑆 𝐫, 𝑡 ≡ ℏ𝜃 𝐫, 𝑡 we obtain 𝜕𝑆 𝐫, 𝑡 /𝜕𝑡 = −ℋ 𝐫, 𝑡

➔ energy-phase relation is equivalent to the Hamilton-Jacobi equation in classical physics

the London theory takes the quasi-classical limit
(ℏ → 0) by neglecting the Bohm potential
➢ this is in the spirit of the WKB approximation to quantum

mechanics, in which terms ∝ ℏ are kept and those ∝ ℏ2 are omitted

• consequence of the London approximation is a spatially homogeneous density of the superconducting electrons: 

𝜓0 𝐫, 𝑡 = 𝜓0(𝑡) 𝑛𝑠 𝐫, 𝑡 = 𝜓0 𝐫, 𝑡 2 = 𝜓0 𝑡 2 = 𝑛𝑠(𝑡)

• London approximation results in energy-phase relation

2.2 Special Topic: Madelung Transformation

ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
= −

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡

total energy

energy-phase relation since
𝜕𝜃/𝜕𝑡 ∝ total energy

ℏ
𝜕𝜃

𝜕𝑡
+

1

2𝑛𝑠
Λ𝐉𝑠

2 + 𝑞𝑠𝜙el + 𝜇 =
ℏ2𝛁2𝜓0
2𝑚𝑠𝜓0
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• equation for imaginary part:

continuity equation for probability
density 𝜌 = 𝜓0

2 = 𝑛𝑠 and 
probability current density 𝐉𝜌

𝜕𝑛𝑠

𝜕𝑡
+ 𝛁 ⋅ 𝐉𝜌 = 0: conservation law for probability density

2.2 Special Topic: Madelung Transformation

𝜕𝜓0
2 𝐫, 𝑡

𝜕𝑡
= −𝛁 ⋅ 𝜓0

2
ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫, 𝑡

= 𝜕𝑛𝑠/𝜕𝑡 = 𝑛𝑠𝐯𝑠 = 𝐉𝜌

I
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• we define supercurrent density 𝐉𝑠 = 𝑞𝑠𝐉𝜌 by multiplying 𝐉𝜌 with charge 𝑞𝑠 of superconducting electrons :

current-phase relation

𝐯𝑠 → 𝐉𝑠 = 𝑛𝑠𝑞𝑠𝐯𝑠

2.2 Special Topic: Madelung Transformation

𝐉𝑠 𝐫, 𝑡 = 𝑞𝑠𝑛𝑠 𝐫, 𝑡
ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫, 𝑡

𝐉𝑠 𝐫, 𝑡 =
𝑞𝑠𝑛𝑠 𝐫, 𝑡 ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡

gauge invariant phase gradient 𝛾 = 𝛁𝜃′ −
𝑞𝑠

ℏ
𝐀′ = 𝛁𝜃 −

𝑞𝑠

ℏ
𝐀

➢ supercurrent density is proportional to gauge invariant phase gradient 𝐉𝐬 ∝ 𝛄

for normal conductor 𝐉𝑛 ∝ −𝛁𝜙el = 𝐄

𝐀′ = 𝐀 + 𝛁𝜒

𝜃′ = 𝜃 +
𝑞𝑠

ℏ
𝜒

𝜒 = scalar function

• expression for supercurrent density 𝐉𝑠 is gauge invariant (see below):
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WMI

• canonical momentum:            𝐩 = 𝑚𝑠𝐯𝑠 + 𝑞𝑠𝐀

𝐩 = 𝑚𝑠

ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫, 𝑡 + 𝑞𝑠𝐀

𝐩 = ℏ 𝛁𝜃 𝐫, 𝑡

𝐯𝑠

➔ zero total momentum state for vanishing phase gradient: Cooper pairs 𝐤 ↑, −𝐤 ↓

2.2 Special Topic: Madelung Transformation
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Summary of Lecture No. 3  (1)

• type-I superconductor in an external magnetic field: free enthalpy density

➢ for 𝑝, 𝑇 = 𝑐𝑜𝑛𝑠𝑡. :  d𝐺𝑠 =
𝑉

𝜇0
𝐵extd𝐵ext dℊ𝑠 = d𝐺𝑠/𝑉

➢ integration yields

@ 𝐵ext = 𝐵cth:   ℊ𝑠 𝐵cth, 𝑇 = ℊ𝑛 𝐵cth, 𝑇 ≃ ℊ𝑛 0, 𝑇

condensation energy

ℊ𝑠 𝐵ext, 𝑇 − ℊ𝑠 0, 𝑇 =
1

𝜇0
න

0

𝐵ext

𝐵′ 𝑑𝐵′ =
𝐵ext
2

2𝜇0

Δℊ 𝑇 = ℊ𝑛 0, 𝑇 − ℊ𝑠 0, 𝑇 = ℊ𝑠 𝐵cth, 𝑇 − ℊ𝑠 0, 𝑇 =
𝐵cth
2 (𝑇)

2𝜇0
Δℊ(𝑇) =

𝐵cth
2 (𝑇)

2𝜇0

• temperature dependence of the free enthalpy densities 𝓰𝒏 and 𝓰𝒔

ℊ𝑠 𝑇 = ℊ𝑛 𝑇 −
𝐵cth
2 𝑇

2𝜇0

(empirical relation, calculation within BCS theory)𝐵cth 𝑇 = 𝐵cth 0 1 −
𝑇

𝑇𝑐

2

ℊ𝑛 𝑇 = −න

0

𝑇

𝓈𝑛 𝑇′ 𝑑𝑇′ ∝ −𝑇2

with
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Summary of Lecture No. 3  (2)

• entropy density 𝓼𝒔 = 𝑺𝒔/𝑽

with −
𝜕𝐺

𝜕𝑇 𝑝,𝐵ext
= 𝑆   and  𝓈𝑠 =

𝑆𝑠

𝑉
= −

𝜕ℊ𝑠

𝜕𝑇 𝑝,𝐵ext
,   𝓈𝑛 =

𝑆𝑛

𝑉
= −

𝜕ℊ𝑛

𝜕𝑇 𝑝,𝐵ext
∝ 𝑇  as 𝑐𝑝 = 𝑇 𝜕𝓈𝑛/𝜕𝑇 𝐵ext,𝑝  and  𝑐𝑝 = 𝛾𝑇 (free electron gas)

Δ𝓈 𝑇 = 𝓈𝑛 𝑇 − 𝓈𝑠 𝑇 = −
𝜕Δℊ(𝑇)

𝜕𝑇
𝑝,𝐵ext

Δ𝓈 𝑇 = −
𝐵cth
𝜇0

𝜕𝐵cth
𝜕𝑇

with 𝐵cth 𝑇 = 𝐵cth 0 1 −
𝑇

𝑇𝑐

2

with 𝐶𝑝 = 𝑇
𝜕𝑆

𝜕𝑇 𝑝,𝐵ext
= −𝑇

𝜕2𝐺

𝜕𝑇2 𝑝,𝐵ext

 and Δℊ = ℊ𝑛 𝑇 − ℊ𝑠 𝑇 =
𝐵cth
2 (𝑇)

2𝜇0
 

Δ𝑐 𝑇 = 𝑐𝑛 𝑇 − 𝑐𝑠 𝑇 =− −𝑇
𝜕2Δℊ

𝜕𝑇2
𝑝,𝐵ext

= −
𝑇

𝜇0
𝐵cth

𝜕2𝐵cth
𝜕𝑇2

+
𝜕𝐵cth
𝜕𝑇

2

• specific heat 𝐜𝐩

➢ jump of specific heat at 𝑇 = 𝑇𝑐: Δ𝑐𝑇=𝑇𝑐 = −
𝑇𝑐
𝜇0

𝜕𝐵cth
𝜕𝑇

𝑇=𝑇𝑐

2

= −
8

𝑇𝑐

𝐵cth
2 0

2𝜇0

➢ determination of Sommerfeld coefficient for 𝑇 ≪ 𝑇𝑐:

𝛾 =
Δ𝑐𝑇≪𝑇𝑐
𝑇

=
4

𝑇𝑐
2

𝐵cth
2 0

2𝜇0
⇔ 𝛾 =

𝜋2

3
𝑘B
2
𝐷 𝐸F
𝑉

free electron gas:
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Summary of Lecture No. 3  (3)

• London theory

➢ simplistic derivation of London equations, starting from equation of motion of charged particles with mass 𝑚s and charge 𝑞𝑠

𝜏 = momentum relaxation time
𝑚𝑠

d𝐯𝐬
d𝑡

+
𝑚𝑠

𝜏
𝐯𝐬 = 𝑞𝑠𝐄

superconducting state:   𝑛𝑛 → 0, 𝑛𝑠 → 𝑚𝑎𝑥 for 𝑇 → 0, 𝜏 → ∞ , 𝐉𝑠 = 𝑛𝑠𝑞𝑠𝐯𝑠

1st London equation
(perfect conductivity)

London coefficient

𝜕(Λ𝐉𝑠)

𝜕𝑡
= 𝐄 Λ =

𝑚𝑠

𝑛𝑠𝑞𝑠
2

2nd London equation
(Meißner-Ochsenfeld effect)

𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎 London penetration depth

𝜆L =
Λ

𝜇0
=

𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2

• macroscopic quantum model of superconductivity

➢ basic assumption: complete entity of all superconducting electrons can be described by macroscopic wave function

𝜓 𝐫, 𝑡 = 𝜓0 𝐫, 𝑡 e𝚤𝜃(𝐫,𝑡) with 𝜓 𝐫, 𝑡 2 = 𝑛𝑠 𝐫, 𝑡

➢ Madelung transformation (insertion of 𝜓 𝐫, 𝑡 = 𝜓0 𝐫, 𝑡 e𝚤𝜃(𝐫,𝑡)  into Schrödinger equation ) yields :

current-phase 
relation

𝐉𝑠 = 𝑛𝑠𝑞𝑠𝐯𝑠

𝐉𝑠 𝐫, 𝑡 = 𝑞𝑠𝑛𝑠 𝐫, 𝑡
ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫, 𝑡

gauge invariant phase gradient:

 𝛾 = 𝛁𝜃′ −
𝑞𝑠

ℏ
𝐀′ = 𝛁𝜃 −

𝑞𝑠

ℏ
𝐀

energy-phase 
relation

ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
= −

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡
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Chapter 3

3. Phenomenological Models of Superconductivity

3.1 London Theory

3.1.1 The London Equations

3.2 Macroscopic Quantum Model of Superconductivity

3.2.1 Derivation of the London Equations

3.2.2 Fluxoid Quantization

3.2.3 Josephson Effect

3.3 Ginzburg-Landau Theory

3.3.1 Type-I and Type-II Superconductors

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice

 3.3.4 Type-II Superconductors: Flux Lines
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energy-phase relation

supercurrent density-phase relation

1

2

3.2 SC as Macroscopic Quantum Phenomenon
key results of Madelung transformation:

𝐉𝑠 𝐫, 𝑡 =
𝑞𝑠𝑛𝑠 𝐫, 𝑡 ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡

−ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
=

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡 Λ =

𝑚𝑠

𝑞𝑠
2𝑛𝑠

= London-Koeffizient

• equations (1) and (2) have general validity for charged and uncharged superfluids

− 𝑞 = −𝑒, 𝑘 = 2: classical superconductor with Cooper pairs with 𝑞𝑠 = −2𝑒,𝑚𝑠 = 2𝑚 und 𝑛𝑠 = 𝑛/2
− 𝑞 = 0, 𝑘 = 1: neutral Bose superfluid with 𝑛𝑠 = 𝑛,𝑚𝑠 = 𝑚 (e.g. superfluid 4He)
− 𝑞 = 0, 𝑘 = 2: neutral Fermi superfluid with 𝑛𝑠 = 𝑛/2, 𝑚𝑠 = 2𝑚 (superfluid 3He)

𝑞𝑠 = 𝑘 ⋅ 𝑞 𝑚𝑠 = 𝑘 ⋅ 𝑚 𝑛𝑠 = 𝑛/𝑘

note that in Λ =
𝑚𝑠

𝑞𝑠
2𝑛𝑠

=
𝑘⋅𝑚

𝑛/𝑘 𝑘𝑞 2 the factor 𝑘 drops out ➔ 𝒌 cannot be determined by measuring 𝜦

➔ we can use equations       and  to to derive London equations and other important relations!
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• taking the curl yields

or

• describes Meißner-Ochsenfeld effect: 
applied field decays exponentially inside superconductor 

 decay length

with Maxwell´s equations:
𝛁 × 𝐁 = 𝜇0𝐉𝑠
𝛁 × 𝛁 × 𝐁 = 𝛁 × 𝜇0𝐉𝑠
𝛁 × 𝛁 × 𝐁 = 𝛁 𝛁 ⋅ 𝐁 − 𝛁𝟐𝐁
𝛁 ⋅ 𝐁 = 𝟎
𝛁 × 𝜇0𝐉𝑠 = − 𝛁𝟐𝐁

London penetration depth

2nd London equation and the Meißner-Ochsenfeld effect:

3.2.1 Derivation of London Equations

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎

𝛁𝟐𝐁 −
𝜇0
Λ
𝐁 = 𝛁𝟐𝐁 −

1

𝜆L
2 𝐁 = 𝟎

𝜆L =
𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2

2nd London equation

𝛁 × Λ𝐉𝑠 𝐫, 𝑡 + 𝛁 × 𝐀 𝐫, 𝑡 = 𝛁 ×
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡 = 0
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1st London equation and perfect conductivity:

• take the time derivative →

1st London equation

− neglecting 2nd term yields:
      (see below)

• interpretation: 
for a time-independent  supercurrent the electric field inside the superconductor vanishes 

→ dissipationless dc current

linearized 1st London equation

• inserting −ℏ
𝜕𝜃 𝐫,𝑡

𝜕𝑡
=

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡   

    

and substituting 𝐄 𝐫, 𝑡 = −
𝜕𝐀 𝐫,𝑡

𝜕𝑡
− 𝛁𝜙el 𝐫, 𝑡   yields       (for 𝜇 𝐫, 𝑡 = 𝑐𝑜𝑛𝑠𝑡.)

  

3.2.1 Derivation of London Equations

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = −

𝜕𝐀 𝐫, 𝑡

𝜕𝑡
−
ℏ

𝑞𝑠
𝛁

𝜕𝜃 𝐫, 𝑡

𝜕𝑡

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 −

1

𝑛𝑠𝑞𝑠
𝛁

1

2
Λ𝐉𝑠

2

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄
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• energy-phase relation

• supercurrent density-phase relation

• take the curl →

• 2nd London equation and the Meißner-Ochsenfeld effect:

• 1st London equation and perfect conductivity: 

• take the time derivative →

what leads to:

3.2.1 Derivation of London Equations – Summary 

1

2

−ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
=

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡 Λ =

𝑚𝑠

𝑞𝑠
2𝑛𝑠

= London-Koeffizient

or

𝛁 × Λ𝐉𝑠 = 𝛁 × 𝐀 = −𝐁

𝛁𝟐𝐁 −
𝜇0
Λ
𝐁 = 𝛁𝟐𝐁 −

1

𝜆L
2 𝐁 = 𝟎

2nd London equation

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 −

1

𝑛𝑠𝑞𝑠
𝛁

1

2
Λ𝐉𝑠

2

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = −

𝜕𝐀 𝐫, 𝑡

𝜕𝑡
−
ℏ

𝑞𝑠
𝛁

𝜕𝜃 𝐫, 𝑡

𝜕𝑡

1st London equation
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WMI

• the assumption that the superconducting state can be described by a macroscopic wave function leads to a 

general expression for the supercurrent density 𝐉𝒔

• London equations can be directly derived from the general expression for the supercurrent density 𝐉𝒔 for

spatially constant 𝒏𝒔 𝐫, 𝒕 = 𝒏𝒔(𝒕)

→ London approximation

• London equations together with Maxwell‘s equations describe the behavior of superconductors in electric

and magnetic fields

• London equations cannot be used for the description of spatially inhomogeneous situations

→ Ginzburg-Landau theory

• London equations can be used for the description of time-dependent situations

→ Josephson equations

3.2.1 Derivation of London Equations – Summary 
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Processes that could cause a decay of 𝐉𝒔 (plausibility consideration) 

example: consider two-dimensional Fermi circle in 𝑘𝑥𝑘𝑦– plane

− 𝑇 = 0: all states inside the Fermi circle are occupied
− electric field in 𝑥-direction→ shift of Fermi circle along 𝑘𝑥 by  ±𝛿𝑘𝑥

− normal state: relaxation into states with lower energy (obeying Pauli principle)
→ centered Fermi circle, current relaxes if 𝐸𝑥 is switched off

− superconducting state: Cooper pairs with the same center of mass moment (discussion later)

→ only scattering around the sphere→ no decay of supercurrent

normal state superconducting state

3.2.1 Derivation of London Equations – Summary 
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𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 −

1

𝑛𝑠𝑞𝑠
𝛁

1

2
Λ𝐉𝑠

2

when can we neglect this term?

• the 1. London equation can be linearized in most cases

→ we show that this is allowed for 𝐄 ≫ 𝐯𝐬 𝐁 and that this condition is valid in most situations
(force on charge carriers by electric field large compared to Lorentz force due to magnetic field)

3.2.1 Additional Topic: Linearized 1. London Equation

• in order to discuss the origin of the extra term (nonlinearity) we use the vector identity

  𝐚 × 𝛁 × 𝐚 =
𝟏

𝟐
𝛁 𝐚 ⋅ 𝐚 − 𝐚 ⋅ 𝛁 𝐚 to write 

1

2
𝛁 𝐉𝑠

2 = 𝐉𝐬 × 𝛁 × 𝐉𝐬 + 𝐉𝐬 ⋅ 𝛁 𝐉𝐬 

• then, by using the second London equation, we can rewrite the 1. London equation as

• with  
d

d𝑡
Λ𝐉𝑠 𝐫, 𝑡 =

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 + 𝐯𝐬 ⋅ 𝛁 Λ𝐉𝑠 𝐫, 𝑡    and    𝐉𝑠 𝐫, 𝑡 = 𝑛𝑠𝑞𝑠𝐯𝑠 𝐫, 𝑡   we obtain 

(Lorentz law)

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 −

1

𝑛𝑠𝑞𝑠
𝐉𝐬 ⋅ 𝛁 Λ𝐉𝐬 +

1

𝑛𝑠𝑞𝑠
𝐉𝐬 × 𝐁

𝑚𝑠

d𝐯s
d𝑡

= 𝑞𝑠𝐄 + 𝑞𝑠𝐯𝑠 × 𝐁
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• the nonlinear first London equation results from the Lorentz's law and the second London equation

→ exact form of the expression describing the phenomenon of zero dc resistance in superconductors

• the first London equation is derived by using the second London equation

→ Meißner-Ochsenfeld effect is the more fundamental property of superconductors than the vanishing dc 

     resistance

• we can neglect the nonlinear term if

• as variations of 𝐉𝑠 occur on length scale ∼ 𝜆L, we have 𝛁𝐉𝑠 ∼ 𝐉𝑠/𝜆L and obtain the condition

with 2. London equation: 𝛁 × Λ𝐉𝑠 = 𝛁 × 𝐀 = −𝐁,

𝐽c = 𝑛𝑠𝑞𝑠𝑣𝑐 ≃ 𝐻cth/𝜆L and Λ = 𝜇0𝜆𝐿
2

typically, 𝑣𝑐 < 1 m/s even at very high 𝐽𝑐 values of the order of 1010 A/cm² due to the large 𝑛𝑠 values

3.2.1 Additional Topic: Linearized 1. London Equation

important conclusion:

𝐄 ≫
1

𝑛𝑠𝑞𝑠
𝛁

1

2
Λ𝐉𝑠

2

𝐄 ≫ 𝐯𝑠
Λ𝐉𝑠
𝜆L

𝐄 ≫ 𝐯𝐜 𝐁𝐜𝐭𝐡

➔ 𝐄 ≫ 0.01 V/m @ 𝐵cth ≃ 0.1 T
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3.2.1 Additional Topic: Gauge Invariance

gauge invariance of the current-phase relation

• physical variables such as 𝐀,𝜙 or 𝜃 are no observable quantities
− they can be transformed without any influence on observable quantities such as 𝐄, 𝐁 or 𝐉s 
− we call such transformations gauge transformations 

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

• we see that the observable quantity 𝐉sis determined by 𝐀 and 𝜃, that is, by two quantities that are no observables

• since 𝐁 = 𝛁 × 𝐀 = 𝛁 × 𝐀 + 𝛁𝝌 = 𝛁 × 𝐀′ for any scalar function 𝜒, there is an infinite number of possible
vector potentials giving the correct flux density 𝐁

• solution: 

− there is a fixed relation between 𝜃 and 𝐀 such that we can measure 𝐉𝑠 without being able to
measure 𝜃 and 𝐀

− we have to demand that the expression for 𝐉𝑠 is independent of the special choice of 𝐀
➔ gauge invarant expression
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3.2.1 Additional Topic: Gauge Invariance

gauge invariance of the current phase relation

• we define

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

correspondingly, the electrical field is given by 𝐄 = −
𝜕𝐀

𝜕𝑡
− 𝛁𝜙 = −

𝜕𝐀′

𝜕𝑡
− 𝛁𝜙′ 𝜙′ 𝐫, 𝑡 ≡ 𝜙 𝐫, 𝑡 −

𝜕𝜒 𝐫, 𝑡

𝜕𝑡

• Schrödinger equation for new potentials (with 𝜓′ 𝐫, 𝑡 = 𝜓0 e
𝚤𝜃′ 𝐫,𝑡 )

1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀

′ 𝐫, 𝑡

2

𝜓′ 𝐫, 𝑡 + 𝑞𝑠𝜙
′ 𝐫, 𝑡 + 𝜇 𝐫, 𝑡 𝜓′ 𝐫, 𝑡 = 𝚤ℏ

𝜕𝜓′ 𝐫, 𝑡

𝜕𝑡

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀′ 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃′ 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −

ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

𝐀′ 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃′ 𝐫, 𝑡 = 𝐀 𝐫, 𝑡 + 𝛁𝝌 𝐫, 𝑡 −

ℏ

𝑞𝑠
𝛁𝜃′ 𝐫, 𝑡 = 𝐀 𝐫, 𝑡 −

ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

𝛁𝜃′ 𝐫, 𝑡 = 𝛁𝜃 𝐫, 𝑡 +
𝑞𝑠
ℏ
𝛁𝝌 𝐫, 𝑡 ⇒ 𝜓′ 𝐫, 𝑡 = 𝜓 𝐫, 𝑡 e𝚤 𝑞𝑠/ℏ 𝜒 𝐫,𝑡

𝜸 𝐫, 𝑡 = 𝛁𝜃′ 𝐫, 𝑡 −
𝑞𝑠
ℏ
𝐀′ 𝐫, 𝑡 = 𝛁𝜃 𝐫, 𝑡 +

𝑞𝑠
ℏ
𝛁𝝌 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝛁𝝌 𝐫, 𝑡 = 𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡

gauge invariant phase gradient

𝐀′ 𝐫, 𝑡 ≡ 𝐀 𝐫, 𝑡 + 𝛁𝝌 𝐫, 𝑡
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WMI
3.2.1 Additional Topic: The London Gauge

• 1. London equation: 

• frequently, we have no conversion of 𝐉𝑠 in 𝐉𝑛 at interfaces or no supercurrent flow throuh sample surface

• in some cases it is convenient to choose a special gauge
→ often used: London Gauge 

• if the macroscopic wavefunction is single valued (this is the case for a simply connected 
superconductor containing no flux) we can choose 𝜒(𝐫, 𝑡) such that

a vector potential that satisfies 𝛁 ⋅ 𝐀 𝐫, 𝑡 = 0 is said to be in the London gauge

everywhere𝜃 𝐫, 𝑡 = 𝜃′ 𝐫, 𝑡 −
𝑞𝑠
ℏ
𝛁𝜒 𝐫, 𝑡 = 0

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡 = −𝐀 𝐫, 𝑡

𝛁 ⋅ 𝐉𝑠 𝐫, 𝑡 = 0 ⇒ 𝛁 ⋅ 𝐀 𝐫, 𝑡 = 0

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 𝐫, 𝑡 = −

𝜕𝐀 𝐫, 𝑡

𝜕𝑡
𝐄 = −

𝜕𝐀

𝜕𝑡
− 𝛁𝜙 =

𝜕𝐀

𝜕𝑡

𝛁𝜙 = 0
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• Stoke‘s theorem
(path C in simply or multiply connected region)

• integration of expression for supercurrent density around a closed contour

3.2.2 Fluxoid Quantization

• integral of phase gradient:

derivation of fluxoid quantization from current-phase relation Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

Λ =
𝑚𝑠

𝑞𝑠
2𝑛𝑠

= London-Koeffizientර

𝐶

Λ𝐉𝑠 ⋅ dℓ + ර

𝐶

𝐀 ⋅ dℓ =
ℏ

𝑞𝑠
ර

𝐶

𝛁𝜃 𝐫, 𝑡 ⋅ dℓ

ර

𝐶

𝐀 ⋅ dℓ = න

𝑆

𝛁 × 𝐀 ⋅ ෝ𝐧 d𝑆 = න

𝑆

𝐁 ⋅ ෝ𝐧 d𝑆 = Φ

ර

𝐶

𝛁𝜃 𝐫, 𝑡 ⋅ dℓ = lim
𝑟2→𝑟1

𝜃 𝐫2, 𝑡 − 𝜃(𝐫1, 𝑡) = 2𝜋 ⋅ 𝑛

ර

𝐶

Λ𝐉𝑠 ⋅ dℓ + න

𝑆

𝐁 ⋅ ෝ𝐧 d𝑆 = 𝑛 ⋅
ℎ

𝑞𝑠
= 𝑛 ⋅ Φ0

fluxoid

fluxoid quantization

flux quantum: Φ0 = ℎ/ 𝑞𝑠  = ℎ/2𝑒 = 2.067 833 831 13 × 10−15 Vs 
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• quantization condition holds for all contour lines

including contour that can be shrunk to single point

→

• contour line can no longer be shrunk to single point

→ inclusion of non-superconducting region in contour

→ 𝑟1 = 𝑟2: we have built in „memory“ in integration path: 𝑛 ≠ 0 possible

→

3.2.2 Fluxoid Quantization

𝑟1 = 𝑟2: න
𝑟1

𝑟2

𝛁𝜃 ⋅ dℓ = 0

𝑟1 = 𝑟2: න
𝑟1

𝑟2

𝛁𝜃 ⋅ dℓ = 𝑛 ⋅ 2𝜋

closed contour path C

S

closed contour path C

S
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physical origin of fluxoid quantization in multiply connected superconductors

− direct consequence of the fact that superconductor can be represented by a macroscopic wave function 𝝍

➢ phase is allowed to change only by interger multiples of 2𝜋 along a closed path in order to obtain a stationary
state (constructive interference of the wave funtion)

➢ analogy to Bohr-Sommerfeld quantization in atomic physics

3.2.2 Fluxoid Quantization
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screening
current on
inner wall

magnetic
flux

screening
current on
outer wall

3.2.2 Flux vs. Fluxoid Quantization

𝒓 𝒓

𝐉𝒔

𝑩𝐞𝐱𝐭

𝐉𝒔
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• fluxoid quantization:

− 𝐶ׯ Λ𝐉𝑠 ⋅ dℓ + Φ = 𝑛 ⋅ Φ0  ➔ trapped flux + contribution from 𝐉𝑠 must have discrete values 𝑛 ⋅ Φ0

• flux quantization:

− superconducting cylinder with wall much thicker than 𝜆L

− application of small magnetic field at 𝑇 < 𝑇𝑐

→ screening currents, no flux inside

− application of 𝐵cool during cool down: screening current on outer and inner wall

− amount of flux trapped in cylinder: satisfies fluxoid quantization condition

− wall thickness ≫ 𝜆L: ׯ𝐶 Λ𝐉𝑠 ⋅ dℓ can be taken along closed contour deep inside where 𝐽𝑠 = 0

− then:

− remove field after cooling down → trapped flux = integer multiple of flux quantum

flux quantizationන

𝑆

𝐁 ⋅ ෝ𝐧 d𝑆 = Φ = 𝑛 ⋅ Φ0

3.2.2 Flux vs. Fluxoid Quantization
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• flux trapping: why is flux not expelled after switching off external field?

𝜕𝐉𝑠

𝜕𝑡
= 0 according to 1st London equation, since 𝐄 = 0 in superconductor

• with 𝐄 = −
𝜕𝐀

𝜕𝑡
− 𝛁𝜙 = 0 we get:

contour deep inside the superconductor: 𝐄 = 0 and therefore
𝜕Φ

𝜕𝑡
= 0

→ flux enclosed in superconducting cylinder stays constant

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄

ර

𝐶

𝐄 ⋅ dℓ = −
𝜕

𝜕𝑡
ර

𝐶

𝐀 ⋅ dℓ − ර

𝐶

𝛁𝜙 ⋅ dℓ = −
𝜕

𝜕𝑡
න

𝑆

𝐁 ⋅ ෝ𝐧 d𝑆 = −
𝜕Φ

𝜕𝑡
Φ: magnetic flux enclosed in loop

3.2.2 Flux vs. Fluxoid Quantization
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• discoverd 1961 by
- Robert Doll and Martin Näbauer (WMI)
- B.S. Deaver and W.M. Fairbanks (Stanford University)

• experiment by Doll and Näbauer (WMI)

− cylinder with wall thickness ≫ 𝜆𝐿
− different amounts of flux are frozen in during cooling 

down in 𝐵cool
− trapping of magnetic flux in hollow cylinder
− apply torque 𝐃 = 𝛍 × 𝐁𝐩 by probing field 𝐁𝐩
− increase sensitivity by resonance technique

d ≈ 10 µm

Pb

quartz-
cylinder

Bp

quartz-
thread

• number of trapped flux quanta:

𝑁 = 𝐵cool 𝜋 𝑑/2 2

𝑁 ≃ 1
@ 𝐵cool = 10−5 T, 𝑑 = 10 μm

3.2.2 Flux Quantization - Experiment

→ quantization of magnetic flux in a hollow cylinder
→ Cooper pairs with 𝒒𝒔 = −𝟐𝒆
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(a) (b)

R. Doll, M. Näbauer
Phys. Rev. Lett. 7, 51 (1961)

B.S. Deaver, W.M. Fairbank
Phys. Rev. Lett. 7, 43 (1961)

-0.1 0.0 0.1 0.2 0.3 0.4
-1

0

1

2

3

4

 

 

re
s
o

n
a

n
c
e

 a
m

p
li
tu

d
e

 (
m

m
/G

a
u

s
s
)

B
cool

  (Gauss)

0.0 0.1 0.2 0.3 0.4
0

1

2

3

4

 

 

tr
a

p
p

e
d

 m
a

g
n

e
ti
c
 f

lu
x
 (

h
/2

e
)

B
cool

  (Gauss)

 F0

prediction by F. London: ℎ/𝑒
→ experimental proof for existence of Cooper pairs

Paarweise im Fluss 
D. Einzel, R. Gross, Physik Journal 10, No. 6, 45-48 (2011) 

Φ0 =
ℎ

2𝑒

3.2.2 Flux Quantization - Experiment

http://www.pro-physik.de/Phy/pjtoc/84681/3
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Brian David Josephson (born 1940)

3.2.3 Josephson Effect (1962)

Brian D. Josephson: Possible New Effects in Superconducting Tunnelling, 
Physics Letters 1, 251–253 (1962), doi:10.1016/0031-9163(62)91369-0.

(together with Leo Esaki and Ivar Giaever)

Nobel Prize in Physics 1973

"for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, 
in particular those phenomena which are generally known as the Josephson effects"

https://de.wikipedia.org/wiki/Digital_Object_Identifier
https://doi.org/10.1016/0031-9163%2862%2991369-0
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• what happens if we weakly couple two superconductors?

− coupling by tunneling barriers, point contacts, normal conducting layers, etc.

− do they form a bound state such as a molecule?

− if yes, what is the binding energy?

• B.D. Josephson in 1962 
(Nobel Prize in physics with Esaki and Giaever in 1973)

predictions: 

➢ finite supercurrent at zero applied voltage

➢ oscillation of supercurrent at constant applied voltage

➢ finite binding energy of coupled SCs = Josephson coupling energy

Josephson effects

→ Cooper pairs can tunnel through thin insulating barrier (𝑇 = transmission amplitude for single charge carriers)

expectation: tunneling probability for pairs ∝ 𝑇 2 2
➔ extremely small ∼ 10−4 2

Josephson: tunneling probability for pairs ∝ 𝑇 2

coherent tunneling of pairs („tunneling of macroscopic wave function“)

3.2.3 Josephson Effect (1962)

I

𝑺𝟏, 𝜽𝟏 𝑺𝟐, 𝜽𝟐
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• coupling is weak→ supercurrent density between 𝑆1 and 𝑆2 is small→ 𝜓 2 = 𝑛𝑠 is not changed in 𝑆1 and 𝑆2

• supercurrent density depends on gauge invariant phase gradient:

• simplifying assumptions:

− current density is spatially homogeneous

− 𝛾 𝐫, 𝑡 varies negligibly in 𝑆1 and 𝑆2

− 𝐉𝑠 is equal in electrodes and junction area
→ 𝛾 in 𝑆1 and 𝑆2 much smaller than in insulator I

3.2.3 Josephson Effect (1962)

𝐉𝑠 𝐫, 𝑡 =
𝑞𝑠𝑛𝑠 𝐫, 𝑡 ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡 =

𝑞𝑠𝑛𝑠 𝐫, 𝑡 ℏ

𝑚𝑠
𝛾 𝐫, 𝑡

• approximation:

− replace gauge invariant phase gradient 𝛾
by gauge invariant phase difference 𝝋:

𝜑 𝐫, 𝑡 = න

1

2

𝛾 𝐫, 𝑡 ⋅ dℓ = න

1

2

𝛁𝜃 𝐫, 𝑡 −
𝑞𝑠
ℏ
𝐀 𝐫, 𝑡 ⋅ dℓ = 𝜃2 𝐫, 𝑡 − 𝜃1 𝐫, 𝑡 −

2𝜋

Φ0
න

1

2

𝐀 𝐫, 𝑡 ⋅ dℓ 

-6 -4 -2 0 2 4 6

-1.0

-0.5

0.0

0.5

1.0

n s /
n

x (arb. units)

׬ 𝛾 𝑥 d𝑥

𝑛𝑠(𝑥)

𝛾(𝑥)

׬
𝛾
𝑥
d
𝑥

,
𝛾
(𝑥
)

(a
rb

. u
n

it
s)

S1 S2I𝑛
𝑠
(𝑥
)/
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• we expect:

𝐽𝑐 = crititical or maximum Josephson current density

• in most cases: we have to keep only 1st term (especially for weak coupling):

𝐽𝑠 𝜑 = 𝐽𝑐 sin 𝜑

• generalization to spatially inhomogeneous supercurrent density:

derived by Josephson for SIS junctions

supercurrent density 𝑱𝒔 varies
sinusoidally with

phase difference 𝝋 = 𝜽𝟐 − 𝜽𝟏
w/o external potentials

general formulation of 1st Josephson equation: current-phase relation

first Josephson equation:

3.2.3 Josephson Effect (1962)

𝒚

𝒅

0 𝒙

𝒛

1 2

I

𝑾

𝑳
𝑺𝟏, 𝜽𝟏 𝑺𝟐, 𝜽𝟐

𝐽𝑠 = 𝐽𝑠 𝜑

𝐽𝑠 𝜑 = 𝐽𝑠 𝜑 + 𝑛 ⋅ 2𝜋

• for 𝐽𝑠 = 0: phase difference must be zero:

𝐽𝑠 0 = 𝐽𝑠 𝑛 ⋅ 2𝜋 = 0

𝐽𝑠 𝜑 = 𝐽𝑐 sin𝜑 + ෍

𝑚=2

∞

𝐽𝑐,𝑚 sin 𝑚𝜑

𝐽𝑠 𝑦, 𝑧 = 𝐽𝑐 𝑦, 𝑧 sin 𝜑 𝑦, 𝑧

1. Josephson equation
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• other argument why there are only „sin“ contributions to the Josephson current density

time reversal symmetry

• if we reverse time, the Josephson current should flow in opposite direction:

𝑡 → −𝑡 ⇒ 𝐽𝑠 → −𝐽𝑠

• the time evolution of the macroscopic wave functions is ∝ exp[𝑖𝜃 𝑡 ]

− if we reverse time, we have

𝑡 → −𝑡

• if the Josephson effect stays unchanged under time reversal, we have to demand

satisfied only by sin-terms

3.2.3 Josephson Effect (1962)

𝐽𝑠 𝜑 = 𝐽𝑐 sin 𝜑 + ෍

𝑚=2

∞

𝐽𝑐,𝑚 sin 𝑚𝜑

𝜑 𝐫, 𝑡 = 𝜃2 𝐫, 𝑡 − 𝜃1 𝐫, 𝑡 𝜑 𝐫, −𝑡 = 𝜃2 𝐫, −𝑡 − 𝜃1 𝐫, −𝑡 = − 𝜃2 𝐫, 𝑡 − 𝜃1 𝐫, 𝑡 = −𝜑 𝐫, 𝑡

𝐽𝑠 𝜑 = −𝐽𝑠 −𝜑
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• take time derivative of the gauge invariant phase difference  𝜑 𝑡 = 𝜃2 𝑡 − 𝜃1 𝑡 −
2𝜋

Φ0
1׬
2
𝐀 𝑡 ⋅ dℓ 

• substitution of the energy-phase relation ℏ
𝜕𝜃 𝑡

𝜕𝑡
= −

1

2𝑛𝑠
Λ𝐉𝑠

2 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡  gives:

• supercurrent density across the junction is continuous (𝐉𝑠 1 = 𝐉𝑠 2 ):

2nd Josephson equation: voltage – phase relation

(term in parentheses = electric field)

second Josephson equation (for spatially homogeneous junction)

voltage drop 𝑽

3.2.3 Josephson Effect (1962)

𝜕𝜑 𝑡

𝜕𝑡
=
𝜕𝜃2 𝑡

𝜕𝑡
−
𝜕𝜃1 𝑡

𝜕𝑡
−
2𝜋

Φ0

𝜕

𝜕𝑡
න

1

2

𝐀 𝑡 ⋅ dℓ 

𝜕𝜑 𝑡

𝜕𝑡
= −

1

ℏ

Λ

2𝑛𝑠
𝐉𝑠
2 2 − 𝐉𝑠

2 1 + 𝑞𝑠 𝜙el 2 − 𝜙el 1 −
2𝜋

Φ0

𝜕

𝜕𝑡
න

1

2

𝐀 𝑡 ⋅ dℓ 

𝜕𝜑 𝑡

𝜕𝑡
=
2𝜋

Φ0
න

1

2

−𝛁𝜙el −
𝜕𝐀 𝑡

𝜕𝑡
⋅ dℓ 

𝜕𝜑 𝑡

𝜕𝑡
=
2𝜋

Φ0
න

1

2

𝐄 𝑡 ⋅ dℓ =
2𝜋

Φ0
𝑉(𝑡) =

𝑞𝑠𝑉(𝑡)

ℏ
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• for a constant voltage 𝑉 across the junction:

• supercurrent density 𝐽𝑠 oscillates at the Josephson frequency 𝜈 = 𝑉/Φ0:

➔ Josephson junction = voltage controlled oscillator

• applications:

− Josephson voltage standard

− microwave sources

− ….

3.2.3 Josephson Effect (1962)

𝜕𝜑 𝑡

𝜕𝑡
=
2𝜋

Φ0
𝑉 =

𝑞𝑠𝑉

ℏ
𝜑 𝑡 = 𝜑0 +

2𝜋

Φ0
𝑉 ⋅ 𝑡 = 𝜑0 +

𝑞𝑠
ℏ
𝑉 ⋅ 𝑡

phase difference increases linearly in time

integration yields:

𝐽𝑠 𝜑(𝑡) = 𝐽𝑐 sin 𝜑 𝑡 = 𝐽𝑐 sin
2𝜋

Φ0
𝑉 ⋅ 𝑡

𝜈

𝑉
=
𝜔/2𝜋

𝑉
=

1

Φ0
= 483.597 9

MHz

μV
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integration yields:

Josephson coupling energy (per junction area)

3.2.3 Josephson Effect (1962)
Josephson coupling energy 𝑬𝑱: binding energy of two coupled superconductors

𝐸𝐽
𝐴
= න

0

𝑡0

𝐽𝑠 𝑉 d𝑡 =න

0

𝑡0

𝐽𝑐 sin 𝜑
Φ0

2𝜋

𝜕𝜑

𝜕𝑡
d𝑡 =

Φ0𝐽𝑐
2𝜋

න

0

𝜑

sin𝜑′ d𝜑′ with 𝜑 0 = 0 and 𝜑 𝑡0 = 𝜑
𝐴 = junction area

𝐸𝐽
𝐴
=
Φ0𝐽𝑐
2𝜋

1 − cos𝜑
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Macroscopic wave function 𝝍: 
 describes ensemble of a macroscopic number of superconducting electrons,

𝜓 2 = 𝑛𝑠 is given by density of superconducting electrons

Current density in a superconductor:

Gauge invariant phase gradient:

Phenomenological London equations:

Fluxoid quantization:

3.2 Summary

𝐉𝑠 𝐫, 𝑡 =
𝑞𝑠𝑛𝑠 𝐫, 𝑡 ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡 =

𝑞𝑠𝑛𝑠 𝐫, 𝑡 ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

2𝜋

Φ0
𝐀 𝐫, 𝑡

𝛾 𝐫, 𝑡 = 𝛁𝜃 𝐫, 𝑡 −
𝑞𝑠
ℏ
𝐀 𝐫, 𝑡 = 𝛁𝜃 𝐫, 𝑡 −

2𝜋

Φ0
𝐀 𝐫, 𝑡

𝟐 𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎𝟏
𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 Λ =

𝑚𝑠

𝑞𝑠
2𝑛𝑠

= 𝜇0𝜆L
2

ර

𝐶

Λ𝐉𝑠 ⋅ dℓ + න

𝑆

𝐁 ⋅ ෝ𝐧 d𝑆 = 𝑛 ⋅
ℎ

𝑞𝑠
= 𝑛 ⋅ Φ0
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maximum Josephson current density 𝐉𝒄:

can be calculated by e.g. wave matching method

Josephson equations:

➔more details later

3.2 Summary

𝐉𝑠 𝐫, 𝑡 = 𝐉𝑐 𝐫, 𝑡 sin𝜑 𝐫, 𝑡

𝜕𝜑 𝑡

𝜕𝑡
=
2𝜋

Φ0
𝑉(𝑡) =

𝑞𝑠𝑉(𝑡)

ℏ

𝜔/2𝜋

𝑉
=

1

Φ0
= 483.597 9

MHz

μV

𝐉𝑐 = −
𝑞𝑠ℏ𝜅

𝑚𝑠
2 𝑛𝑠,1𝑛𝑠,2 exp −2𝜅𝑑 +𝒅/𝟐 𝒙

𝑽(𝒙)

𝒙

− 𝒅/𝟐

𝝍 𝒙

𝑺𝟏, 𝜽𝟏

𝑽𝟎
𝑺𝟐, 𝜽𝟐

𝝍𝟐 𝒙𝝍𝟏 𝒙

+𝒅/𝟐− 𝒅/𝟐

Josephson coupling energy:
𝐸𝐽
𝐴
=
Φ0𝐽𝑐
2𝜋

1 − cos𝜑
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Summary of Lecture No. 4  (1)

• derivation of 1st and 2nd London equation from current-phase and
energy-phase relation

• current-phase and energy-phase relations are gauge invariant

−ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
=

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡

Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

or       with
London penetration 
depth𝛁 × Λ𝐉𝑠 + 𝐁 = 𝟎 𝛁𝟐𝐁 −

1

𝜆L
2 𝐁 = 𝟎 𝜆L =

𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2

2nd London equation: 𝛁 × Λ𝐉𝑠 𝐫, 𝑡 + 𝛁 × 𝐀 𝐫, 𝑡 = 𝛁 ×
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡 = 0

1st London equation

linearized 1st London equation

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = −

𝜕𝐀 𝐫, 𝑡

𝜕𝑡
−
ℏ

𝑞𝑠
𝛁

𝜕𝜃 𝐫, 𝑡

𝜕𝑡

𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄 −

1

𝑛𝑠𝑞𝑠
𝛁

1

2
Λ𝐉𝑠

2 𝜕

𝜕𝑡
Λ𝐉𝑠 𝐫, 𝑡 = 𝐄or

Meißner-Ochsenfeld 
effect

perfect conductivity

London equations together with Maxwell equations describe behavior of superconductors on electromagnetic fields

𝐉𝑠 𝐫, 𝑡 =
𝑛𝑠𝑞𝑠ℏ

𝑚𝑠
𝛁𝜃′ 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀′ 𝐫, 𝑡 =

𝑛𝑠𝑞𝑠ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
ℏ
𝐀 𝐫, 𝑡

gauge-invariant phase gradient

𝜙′ 𝐫, 𝑡 ⇒ 𝜙 𝐫, 𝑡 −
𝜕𝜒 𝐫, 𝑡

𝜕𝑡

𝛁𝜃′ 𝐫, 𝑡 ⇒ 𝛁𝜃 𝐫, 𝑡 +
𝑞𝑠
ℏ
𝛁𝝌 𝐫, 𝑡

𝜓′ 𝐫, 𝑡 ⇒ 𝜓 𝐫, 𝑡 e𝚤 𝑞𝑠/ℏ 𝜒 𝐫,𝑡

𝐀′ 𝐫, 𝑡 ⇒ 𝐀 𝐫, 𝑡 + 𝛁𝝌 𝐫, 𝑡
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WMI
Summary of Lecture No. 4  (2)

• derivation of fluxoid quantization from current-phase relation Λ𝐉𝑠 𝐫, 𝑡 = − 𝐀 𝐫, 𝑡 −
ℏ

𝑞𝑠
𝛁𝜃 𝐫, 𝑡

Stoke‘s theorem
ර

𝐶

Λ𝐉𝑠 ⋅ dℓ + ර

𝐶

𝐀 ⋅ dℓ =
ℏ

𝑞𝑠
ර

𝐶

𝛁𝜃 𝐫, 𝑡 ⋅ dℓ ර

𝐶

Λ𝐉𝑠 ⋅ dℓ + න

𝑆

𝐁 ⋅ ෝ𝐧 d𝑆 = 𝑛 ⋅
ℎ

𝑞𝑠
= 𝑛 ⋅ Φ0

fluxoidflux quantum: Φ0 = ℎ/ 𝑞𝑠  = ℎ/2𝑒 = 2.067 833 831 13 × 10−15 Vs 

• Josephson effects (weakly coupled superconductors)

replace gauge invariant phase gradient 𝛾 by gauge invariant phase difference 𝝋:

𝜑 𝐫, 𝑡 = න

1

2

𝛾 𝐫, 𝑡 ⋅ dℓ = න

1

2

𝛁𝜃 𝐫, 𝑡 −
𝑞𝑠
ℏ
𝐀 𝐫, 𝑡 ⋅ dℓ = 𝜃2 𝐫, 𝑡 − 𝜃1 𝐫, 𝑡 −

2𝜋

Φ0
න

1

2

𝐀 𝐫, 𝑡 ⋅ dℓ 

𝐽𝑠 𝜑 = 𝐽𝑐 sin 𝜑 + ෍

𝑚=2

∞

𝐽𝑐,𝑚 sin 𝑚𝜑

Josephson equations:

1st Josephson equation: 
current – phase relation

𝜕𝜑 𝑡

𝜕𝑡
=
2𝜋

Φ0
න

1

2

𝐄 𝑡 ⋅ dℓ =
2𝜋

Φ0
𝑉(𝑡) 2nd Josephson equation: 

voltage – phase relation
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WMI
Summary of Lecture No. 4  (3)

• Josephson coupling energy (binding energy of two coupled superconductors)

Josephson coupling
energy
(per junction area)

𝐸𝐽
𝐴
= න

0

𝑡0

𝐽𝑠 𝑉 d𝑡 =න

0

𝑡0

𝐽𝑐 sin 𝜑
Φ0

2𝜋

𝜕𝜑

𝜕𝑡
d𝑡 =

Φ0𝐽𝑐
2𝜋

න

0

𝜑

sin 𝜑′ d𝜑′ 𝐸𝐽
𝐴
=
Φ0𝐽𝑐
2𝜋

1 − cos𝜑
integration

𝐽𝑠 oscillates at frequency 𝜈:

Josephson junction = voltage controlled oscillator

𝜕𝜑 𝑡

𝜕𝑡
=
2𝜋

Φ0
𝑉 =

𝑞𝑠𝑉

ℏ
𝜑 𝑡 = 𝜑0 +

2𝜋

Φ0
𝑉 ⋅ 𝑡 = 𝜑0 +

𝑞𝑠
ℏ
𝑉 ⋅ 𝑡

𝐽𝑠 𝜑(𝑡) = 𝐽𝑐 sin 𝜑 𝑡 = 𝐽𝑐 sin
2𝜋

Φ0
𝑉 ⋅ 𝑡

𝜈

𝑉
=
𝜔/2𝜋

𝑉
=

1

Φ0
= 483.597 9

MHz

μV

• Josephson junction biased by constant voltrage

integration
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Chapter 3

3. Phenomenological Models of Superconductivity

3.1 London Theory

3.1.1 The London Equations

3.2 Macroscopic Quantum Model of Superconductivity

3.2.1 Derivation of the London Equations

3.2.2 Fluxoid Quantization

3.2.3 Josephson Effect

3.3 Ginzburg-Landau Theory

3.3.1 Type-I and Type-II Superconductors

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice

 3.3.4 Type-II Superconductors: Flux Lines
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WMI
3.3 Ginzburg-Landau Theory

➢ V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950). English translation in: L. D. Landau, Collected papers (Oxford: Pergamon Press, 1965) p. 546
➢ A.A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957). English translation: Sov. Phys. JETP 5 1174 (1957)
➢ L.P. Gor'kov, Sov. Phys. JETP 36, 1364 (1959)

Lev Landau Vitaly Ginzburg

Nobel Prize 2003Nobel Prize 1962
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WMI
3.3 Ginzburg-Landau Theory

• London theory: suitable for situations with spatially homogeneous 𝑛𝑠(𝐫) = 𝑐𝑜𝑛𝑠𝑡.
→ how to treat spatially inhomogeneous systems?

example: step-like change of wave function at surfaces and interfaces
→ associated with large energy
→ gradual change on characteristic length scale expected

• Vitaly Lasarevich Ginzburg and Lew Davidovich Landau (1950)

→ phenomenological description of superconductor by (based on extension of Landau theory of phase transitions) 

➢ complex, spatially varying order parameter 𝚿 𝐫 = |𝚿 𝐫 | 𝐞𝒊𝜽 𝐫 (pair field)
with 𝚿 𝐫 𝟐 = 𝒏𝒔 𝐫
𝑛𝑠 𝐫 = density of superconducting electrons (note that Ψ 𝐫 2 = 𝑛𝑠 𝐫 /2, if Ψ 𝐫 2 = pair density)

➢ no time dependence (→ GL approach cannot be used to describe Josephson effects)

• Alexei Alexeyevich Abrikosov (1957)

➢ prediction of flux line lattice for type-II superconductors

• Lev Petrovich Gor'kov (1959)

➢ Ginzburg-Landau (GL) theory can be inferred from BCS theory for 𝑇 ≈ 𝑇𝑐

➔ Ginzburg-Landau- Abrikosov-Gor'kov (GLAG) theory
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A: Spatially homogeneous superconductor in zero magnetic field

• develop free enthalpy density ℊ𝑠 of superconductor into a power series of Ψ 2

free entalpy density
of normal state

higher order terms can be
neglected for 𝑇 ∼ 𝑇𝑐 as Ψ is very small

• discussion of coefficients 𝛼 and 𝛽:

− 𝛼 must change sign at phase transition

→ 𝑇 > 𝑇𝑐: 𝛼 > 0, since ℊ𝑠 > ℊ𝑛
→ 𝑇 < 𝑇𝑐: 𝛼 < 0, since ℊ𝑠 < ℊ𝑛

3.3 Ginzburg-Landau Theory

Ψ 𝐫 2 = Ψ0 𝐫 2 = 𝑛𝑠 𝐫 = 𝑐𝑜𝑛𝑠𝑡.

ℊ𝑠 = ℊ𝑛 + 𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯

describe transition into superconducting state as a phase transition

using the complex order parameter Ψ r = |Ψ0| e
𝑖𝜃 = 𝑐𝑜𝑛𝑠𝑡.

Ansatz: 

𝛼 𝑇 = ത𝛼
𝑇

𝑇𝑐
− 1 = −ത𝛼 1 −

𝑇

𝑇𝑐
with ത𝛼 > 0

− 𝛽 > 0, as 𝛽 < 0 would always results in ℊ𝑠 < 𝑔𝑛 for large |Ψ|

→minimum of ℊ𝑠 always for Ψ → ∞
Ansatz: 
𝛽 𝑇 = 𝑐𝑜𝑛𝑠𝑡. > 0
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WMI

• the enthalpy density ℊ𝑠 must be minimum in thermal equilibrium

𝜕ℊ𝑠
𝜕 Ψ

= 0 = 2𝛼 𝑇 Ψ + 2𝛽 Ψ 3 +⋯ ⇒ Ψ0(𝑇)
2 = −

𝛼(𝑇)

𝛽

𝑛𝑠 𝑇 = Ψ0 𝑇 2 = −
𝛼 𝑇

𝛽
=
ത𝛼

𝛽
1 −

𝑇

𝑇𝑐

• physical meaning of coefficients 𝛼 and 𝛽

ℊ𝑠 − ℊ𝑛 = −
𝐵cth
2 𝑇

2𝜇0
= 𝛼 𝑇 Ψ0 T 2 +

1

2
𝛽 Ψ0 𝑇 4 +⋯ = −

1

2

𝛼2 𝑇

𝛽
= −

ത𝛼2

2𝛽
1 −

𝑇

𝑇𝑐

2

= −
𝑛𝑠 0

2
ത𝛼 1 −

𝑇

𝑇𝑐

2

condensation energy

➔ −
ഥ𝛼

2
= −

𝐵cth
2 0

2𝜇0
/𝑛𝑠 0   corresponds to condensation energy per charge carrier at 𝑇 = 0

3.3 Ginzburg-Landau Theory

A: Spatially homogeneous superconductor in zero magnetic field

order parameter in thermal equilibrium

describes homogeneous equilibrium state at 𝑇 ≤ 𝑇𝑐

➔ 𝛽 =
𝐵cth
2 𝑇

2𝜇0

2

𝑛𝑠
2 𝑇

≃ 𝑐𝑜𝑛𝑠𝑡. as 𝐵cth and 𝑛𝑠 have similar 𝑇-dependence close to 𝑇𝑐   

𝛼 𝑇 = −ത𝛼 1 −
𝑇

𝑇𝑐



Chapter 3/RG   - 65www.wmi.badw.de Superconductivity and Low Temperature Physics I

R
. G

ro
ss

an
d

A
. M

ar
x 

, ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

 2
0

2
3

)

WMI

ℊ𝑠 − ℊ𝑛 = 𝛼 𝑇 Ψ0 T 2 +
1

2
𝛽 Ψ0 𝑇 4 +⋯

3.3 Ginzburg-Landau Theory

Note:
➢ only the amplitude Ψ is important for finding

the minimum and the phase can be chosen
arbitrarily

➢ this changes when 𝐵 ≠ 0 and 𝐽𝑠 ≠ 0
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𝑩𝐜𝐭𝐡
𝟐 /𝟐𝝁𝟎

𝚿𝟎

𝜶 < 𝟎
𝑻 < 𝑻𝒄

𝜶 > 𝟎
𝑻 > 𝑻𝒄
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WMI

𝜶 < 𝟎
𝑻 < 𝑻𝒄

|𝚿|

𝜽

• complex order parameter Ψ 𝐫 = |Ψ0(𝐫)| e
𝑖𝜃 𝐫

ℊ𝒔 − ℊ𝒏

𝑩𝐜𝐭𝐡
𝟐

𝟐𝝁𝟎

Ψ0
2 = −𝛼(𝑇)/𝛽

3.3 Ginzburg-Landau Theory
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• temperature dependence of Δℊ(𝑇) = ℊ𝑛(𝑇) − ℊ𝑠(𝑇)

Δℊ 𝑇 = ℊ𝑛(𝑇) − ℊ𝑠 𝑇 =
ത𝛼2

2𝛽
1 −

𝑇

𝑇𝑐

2

=
𝑛𝑠 0

2
ത𝛼 1 −

𝑇

𝑇𝑐

2

=
𝐵c,GL
2 0

2𝜇0
1 −

𝑇

𝑇𝑐

2

• experimental observation

Δℊ 𝑇 = ℊ𝑛(𝑇) − ℊ𝑠 𝑇 =
𝐵cth
2 0

2𝜇0
1 −

𝑇

𝑇𝑐

2 2

➔ experimental observed temperature dependence does not agree with GLAG prediction, 
since GLAG theory is only valid close to 𝑻𝒄

Δℊ 𝑇 = ℊ𝑛 − ℊ𝑠 𝑇 =
𝐵cth
2 0

2𝜇0
1 −

𝑇

𝑇𝑐

2 2

≃
𝐵cth
2 0

2𝜇0
2 1 −

𝑇

𝑇𝑐

2

=
4𝐵cth

2 0

2𝜇0
1 −

𝑇

𝑇𝑐

2

for 𝑇 ≃ 𝑇𝑐:

➔ good agreement for 𝑇 ≃ 𝑇𝑐 with 𝐵c,GL 0 = 2𝐵cth 0

1 −
𝑇

𝑇𝑐

2

= 1 −
𝑇

𝑇𝑐
⋅ 1 +

𝑇

𝑇𝑐
≃ 2 1 −

𝑇

𝑇𝑐

3.3 Ginzburg-Landau Theory
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entropy density and specific heat for the spatially homogeneous case:

ℊ𝑠 𝑇 = ℊ𝑛 𝑇 + 𝛼 𝑇 Ψ 𝑇 2 +
1

2
𝛽 Ψ 𝑇 4 Ψ 𝑇 2 = −𝛼(𝑇)/𝛽

ℊ𝑠 𝑇 = ℊ𝑛 𝑇 −
1

2
ത𝛼 𝑛𝑠 0 1 −

𝑇

𝑇𝑐

2

𝛼 𝑇 = −ത𝛼 1 −
𝑇

𝑇𝑐

• entropy density 𝓈𝑛,𝑠 = −
𝜕ℊ𝑛,𝑠

𝜕𝑇 𝐵ext,𝑝

𝓈𝑠 𝑇 = 𝓈𝑛 𝑇 −
ത𝛼 𝑛𝑠 0

𝑇𝑐
1 −

𝑇

𝑇𝑐

• specific heat 𝑐𝑝,𝑛𝑠 = 𝑇
𝜕𝓈𝑛,𝑠

𝜕𝑇 𝐵ext,𝑝

𝑐𝑝,𝑠 𝑇 = 𝑐𝑝,𝑛 𝑇 +
ത𝛼 𝑛𝑠 0

𝑇𝑐
2 𝑇

for 𝑇 → 𝑇𝑐:   Δ𝑐𝑝 = 𝑐𝑝,𝑠 𝑇𝑐 − 𝑐𝑝,𝑛 𝑇𝑐 =
ഥ𝛼 𝑛𝑠 0

𝑇𝑐

3.3 Ginzburg-Landau Theory
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comparison to BCS result (derived later)

• BCS prediction for specific heat jump at 𝑇𝑐:

• GLAG result for specific heat jump at 𝑇𝑐:

with 𝑐𝑛,𝑝(𝑇 = 𝑇𝑐) =
𝜋2

3

𝐷 𝐸F

𝑉
𝑘B
2𝑇𝑐 we obtain by using BCS result

Δ 0

𝑘B𝑇𝑐
= 1.764

Δ𝑐𝑝
𝑐𝑛,𝑝

=
ത𝛼 𝑛𝑠 0

𝜋2

3
𝐷 𝐸F
𝑉 𝑘B

2𝑇𝑐
2
=
3 ⋅ 1.7642

𝜋2
ത𝛼 𝑛𝑠(0)

1
4
𝐷 𝐸F
𝑉 Δ2(0)

➔ GLAG result agrees with the BCS prediction, if or

since ത
𝛼

2
𝑛𝑠 (0) is the GLAG condensation energy density, this is in good approximation the case

1

4

𝐷 𝐸F

𝑉
Δ2 0 : BCS condensation energy density

3.3 Ginzburg-Landau Theory

ത𝛼 𝑛𝑠(0)

1
4
𝐷 𝐸F
𝑉

Δ2(0)
= 1.51

ത𝛼 𝑛𝑠(0)/2

1
4
𝐷 𝐸F
𝑉

Δ2(0)
=
1.51

2

Δ𝑐𝑝 𝑇 = 𝑇𝑐
𝑐𝑛,𝑝

= 1.43

Δ𝑐𝑝 𝑇 = 𝑇𝑐
𝑐𝑛,𝑝

=
ത𝛼 𝑛𝑠 0

𝑐𝑛,𝑝 𝑇𝑐
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3.3 Ginzburg-Landau Theory

Ehrenfest relations for 2nd order phase transition (see e.g. textbook of Landau & Lifshitz)

Δ
d𝑉

d𝑇
=

d𝑉2

d𝑇
−

d𝑉1

d𝑇
= 0 = Δ

d𝑉

d𝑇 𝑝
+ Δ

d𝑉

d𝑝 𝑇

d𝑝

d𝑇
for 𝑇 = 𝑇𝑐

Δ
d𝓈

d𝑇
=

d𝓈2

d𝑇
−

d𝓈1

d𝑇
= 0 = Δ

d𝓈

d𝑇 𝑝
+ Δ

d𝓈

d𝑝 𝑇

d𝑝

d𝑇
= Δ

d𝓈

d𝑇 𝑝
− Δ

d𝑉

d𝑇 𝑝

d𝑝

d𝑇
for 𝑇 = 𝑇𝑐

with Maxwell relation:
d𝑆

d𝑝 𝑇
= −

d𝑉

d𝑇 𝑝

• Ehrenfest relations connect the discontinuities in 

specific heat: Δ𝑐𝑝 = 𝑇
d𝓈

d𝑇 𝑝

thermal expansion: Δ𝛼𝑝 =
d𝑉

d𝑇 𝑝

compressibility: Δ𝜅𝑇 =
d𝑉

d𝑝 𝑇

0 = Δ
d𝑉

d𝑇
𝑝

+ Δ
d𝑉

d𝑝
𝑇

d𝑝

d𝑇
⇒ ቚΔ𝛼𝑝

𝑇𝑐
= − ቤ

d𝑝

d𝑇
𝑇𝑐

ቚΔ𝜅𝑇
𝑇𝑐

0 = Δ
d𝓈

d𝑇
𝑝

− Δ
d𝑉

d𝑇
𝑝

d𝑝

d𝑇
⇒ ቤ

Δ𝑐𝑝
𝑇𝑐 𝑇𝑐

= − ቤ
d𝑝

d𝑇
𝑇𝑐

ቚΔ𝛼𝑝
𝑇𝑐

since
Δ𝑐𝑝

𝑇𝑐
and หΔ𝛼𝑝 𝑇𝑐

are experimentally accessible, we can determine the pressure dependence of 𝑇𝑐
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WMI

B: Spatially inhomogeneous superconductor in external magnetic field 𝐁ext = 𝜇0𝐇ext

3.3 Ginzburg-Landau Theory

• as soon as there are finite currents and fields, we have to take into account the kinetic energy of the
superelectrons and the field energy; furthermore, spatial variations of order parameter increase energy: stiffness

• kinetic energy density
1

2
𝑛𝑠𝑚𝑠𝑣𝑠

2 =
1

2
Ψ 𝐫 2𝑚𝑠

ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫

2
𝐯𝑠 𝐫 =

ℏ

𝑚𝑠
𝛁𝜃 𝐫 −

𝑞𝑠

𝑚𝑠
𝐀 𝐫

𝑛𝑠 = Ψ 𝐫 2

• field energy density
𝐛 𝐫 − 𝐁ext

2

2𝜇0

➢ 𝐛 𝐫 is the local flux density, 𝐁ext the spatially homogeneous applied flux density

➢ in the Meißner state: 𝐛 𝐫 = 𝐁ext + 𝜇0𝐌 𝐫 = 𝟎 inside the superconductor and the integral over the sample 
volume just gives the additional field expulsion work

➢ in normal state: 𝐛 𝐫 = 𝐁ext + 𝜇0𝐌 𝐫 = 𝐁ext as 𝐌 𝐫 = 𝟎 and there is no extra energy contribution

𝐛 𝐫 −𝐁ext
2

2𝜇0
=

1

2
𝜇0𝐌

2(𝐫) inside SC where 𝐛 𝐫 = 𝐁ext + 𝜇0𝐌 𝐫

• stiffness energy of OP 𝑛𝑠
ℏ2𝑘2

2𝑚𝑠
= Ψ 𝐫 2

ℏ2 𝛁 Ψ / Ψ 2

2𝑚𝑠
=
ℏ2 𝛁 Ψ 2

2𝑚𝑠
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WMI

B: Spatially inhomogeneous superconductor in external magnetic field 𝐁ext = 𝜇0𝐇ext

3.3 Ginzburg-Landau Theory

• sum of kinetic energy and stiffness energy

1

2
Ψ 𝐫 2𝑚𝑠

ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫

2

+
ℏ2 𝛁 Ψ 2

2𝑚𝑠
=

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

• additional contribution in free enthalpy density
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WMI

ℊ𝑠 = ℊ𝑛 + 𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯+

𝐛 𝐫 − 𝐁ext
2

2𝜇0
+

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

• additional terms in free enthalpy density for finite 𝐉𝑠 and 𝐁ext = 𝜇0𝐇ext

kinetic energy of the supercurrents:
finite gauge invariant phase gradient results in 

supercurrent density and increase in kinetic energy 
 

finite stiffness of order parameter: 
→ spatial variations of Ψ  cost additional energy

with Ψ r = |Ψ r | e𝑖𝜃 r  → 

gradient of 
amplitude

gradient of 
phase

ℏ𝟐 𝛁 Ψ 2

2𝑚𝑠
+
1

2
𝑚𝑠

ℏ

𝑚𝑠
𝛁𝜃 −

𝑞𝑠
𝑚𝑠

𝐀

2

Ψ 2

additional field energy density:
e.g. due to work required for

field expulsion
∝ 𝐛 𝐫 − 𝐁ext

2

3.3 Ginzburg-Landau Theory

B: Spatially inhomogeneous superconductor in external magnetic field 𝐁ext = 𝜇0𝐇ext

𝐯𝑠
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WMI
3.3 Ginzburg-Landau Theory

• minimization of free enthalpy 𝒢𝑠:

       → integration of enthalpy density ℊ𝑠 over whole volume 𝑉 of superconductor

𝒢𝑠 = 𝒢𝑛 + න

sample

𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯+

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

d3𝑟 +
1

2𝜇0
ම

−∞

∞

𝐛 𝐫 − 𝐁ext
2d3𝑟

variational calculation:

𝛿𝒢𝑠 =
𝜕𝒢𝑠
𝜕Ψ

𝛿Ψ +
𝜕𝒢𝑠
𝜕Ψ⋆ 𝛿Ψ⋆ = 0 𝛿𝒢𝑠 =

𝜕𝒢𝑠
𝜕𝐀

𝛿𝐀 = 0
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WMI
3.3 Ginzburg-Landau Theory

𝒢𝑠 = 𝒢𝑛 + න

sample

𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯+

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

d3𝑟 +
1

2𝜇0
ම

−∞

∞

𝐛 𝐫 − 𝐁ext
2d3𝑟

ℏ2

2𝑚𝑠
න

sample

𝛁Ψ 𝐫 +
𝑞𝑠
𝚤ℏ

𝐀 𝐫 Ψ 𝐫
2

d3𝑟

=
1

2𝑚𝑠
න

sample

Ψ⋆ 𝐫
ℏ

𝚤
𝛁 − 𝑞𝑠𝐀 𝐫

2

Ψ 𝐫 d3𝑟 +
𝚤ℏ

2𝑚𝑠
ඵ

surface

Ψ⋆ 𝐫
ℏ

𝚤
𝛁 − 𝑞𝑠𝐀 𝐫 Ψ 𝐫 ⋅ ෝ𝐧 d𝑆

• rewriting the kinetic energy/stiffness contribution using the Gauss (divergence) theorem

takes into account currents flowing through the sample surface
 → vanishes, if there is no current density flowing through surface of superconductor

𝐯𝒔 surface normal

• Gauss theorem:
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WMI

• minimization of  𝒢𝑠 with respect to variations 𝛿Ψ, 𝛿Ψ⋆ (field term has not to be considered) 

= 0
since equation must be satisfied for all 𝛿Ψ, 𝛿Ψ⋆

3.3 Ginzburg-Landau Theory

𝛿𝒢𝑠 =
𝜕𝒢𝑠
𝜕Ψ

𝛿Ψ +
𝜕𝒢𝑠
𝜕Ψ⋆ 𝛿Ψ⋆ = 0

𝛿𝒢𝑠 = න

sample

𝛼Ψ + 𝛽Ψ Ψ 2 +⋯+
1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠 𝐀 𝐫

2

Ψ 𝛿Ψ⋆ + 𝑐. 𝑐. d3𝑟 +
𝚤ℏ

2𝑚𝑠
ඵ

surface

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀 𝐫 Ψ 𝐫 𝛿Ψ⋆ + 𝑐. 𝑐. ⋅ ෝ𝐧 d𝑆

1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠 𝐀 𝐫

2

Ψ 𝐫 + 𝛼Ψ 𝐫 +
1

2
𝛽 Ψ 𝐫 2Ψ 𝐫 = 0

1st Ginzburg-Landau equation

ℏ

𝚤
𝛁ෝ𝐧 − 𝑞𝑠𝐀ෝ𝐧 𝐫 Ψ 𝐫 = 0

ℏ

𝚤
𝛁ෝ𝐧 − 𝑞𝑠𝐀ෝ𝐧 𝐫 Ψ 𝐫 = −

𝚤ℏ

𝑏
Ψ 𝐫

SC/insulator interface:

SC/metal interface:

𝑏 = real constant
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WMI

• minimization of  𝒢𝑠 with respect to variation 𝛿𝐀  

3.3 Ginzburg-Landau Theory

𝛿𝒢𝑠 =
𝜕𝒢𝑠
𝜕𝐀

𝛿𝐀 = 0

• we first derive 𝛿ℊ𝑠 𝐀 = ℊ𝑠 𝐫, 𝐀 + 𝛿𝐀 − ℊ𝑠(𝐫, 𝐀) and then calculated 𝛿𝒢𝑠 = ׬ 𝛿ℊ𝑠d
3𝑟   (contains only 𝐀-dependent part)

𝛿ℊ𝑠 𝐀 =
1

2𝜇0
𝛁 × 𝐀 + 𝛿𝐀 2 − 𝛁 × 𝐀 2

+
1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠 𝐀 + 𝛿𝑨 Ψ −

ℏ

𝚤
𝛁 − 𝑞𝑠 𝐀 + 𝛿𝑨 Ψ⋆ −

1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀 Ψ −

ℏ

𝚤
𝛁 − 𝑞𝑠𝐀 Ψ⋆

𝛿ℊ𝑠 𝐀 =
1

𝜇0
𝛁 × 𝛿𝐀 ⋅ 𝛁 × 𝐀

+
𝑞𝑠
2𝑚𝑠

ℏ

𝚤
Ψ⋆𝛁Ψ−

ℏ

𝚤
Ψ𝛁Ψ⋆ − 2𝑞𝑠 Ψ

2𝐀 ⋅ 𝛿𝑨

neglecting terms in 𝛿𝑨2

𝒢𝑠 = 𝒢𝑛 + න

sample

𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯+

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

d3𝑟 +
1

2𝜇0
ම

−∞

∞

𝐛 𝐫 − 𝐁ext
2d3𝑟
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WMI
3.3 Ginzburg-Landau Theory

𝛿𝒢𝑠 = න

sample

𝛿ℊ𝑠 d
3𝑟 = න

sample

1

𝜇0
𝛁 × 𝛿𝐀 𝛁 × 𝐀 +

𝑞𝑠
2𝑚𝑠

ℏ

𝚤
Ψ⋆𝛁Ψ −

ℏ

𝚤
Ψ𝛁Ψ⋆ − 2𝑞𝑠 Ψ

2𝐀 ⋅ 𝛿𝑨 d3𝑟

• integration of the contributions over the sample volume

1

𝜇0
න

sample

𝛁 × 𝛿𝐀 𝛁 × 𝐀 d3𝑟 =
1

𝜇0
න

sample

𝛁2𝐀 ⋅ 𝛿𝐀 d3𝑟

𝛿𝒢𝑠 = න

sample

𝑞𝑠
2𝑚𝑠

ℏ

𝚤
Ψ⋆𝛁Ψ−

ℏ

𝚤
Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀 +

1

𝜇0
𝛁2𝐀 ⋅ 𝛿𝐀 d3𝑟 = 0

• rewriting of term
1

𝜇0
𝛁2𝐀 making use of Maxwell‘s equation 𝜇0𝐉𝑠 = 𝛁 × 𝐁 and London gauge 𝛁 ⋅ 𝐀 = 𝟎

𝜇0𝐉𝑠 = 𝛁 × 𝐁 = 𝛁 × 𝛁 × 𝐀 = 𝛁 𝛁 ⋅ 𝐀 − 𝛁𝟐𝐀 = −𝛁𝟐𝐀 ⇒
1

𝜇0
𝛁2𝐀 = −𝐉𝐬

𝛿𝒢𝑠 = න

sample

𝑞𝑠
2𝑚𝑠

ℏ

𝚤
Ψ⋆𝛁Ψ−

ℏ

𝚤
Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀 − 𝐉𝑠 ⋅ 𝛿𝐀 d3𝑟 = 0

= 0, since equation must be satisfied for all 𝛿𝐀
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WMI

𝑞𝑠
2𝑚𝑠

ℏ

𝚤
Ψ⋆𝛁Ψ −

ℏ

𝚤
Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀 − 𝐉𝑠 = 0

• minimization of  𝒢𝑠 with respect to variation 𝛿𝐀 results in  

𝐉𝑠 =
𝑞𝑠ℏ

2𝑚𝑠𝚤
Ψ⋆𝛁Ψ − Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀 2nd Ginzburg-Landau equation

3.3 Ginzburg-Landau Theory

• Summary:
minimization of  𝒢𝑠 with respect to variation 𝛿Ψ, 𝛿Ψ⋆ and  𝛿𝐀 results in two differential equations 

𝐉𝑠 =
𝑞𝑠ℏ

2𝑚𝑠𝚤
Ψ⋆𝛁Ψ − Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀 2nd Ginzburg-Landau equation

1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠 𝐀 𝐫

2

Ψ 𝐫 + 𝛼Ψ 𝐫 +
1

2
𝛽 Ψ 𝐫 2Ψ 𝐫 = 0 1st Ginzburg-Landau equation
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WMI
3.3 GL-Theory vs. Macroscopic Quantum Model 

comparison of the results provided by GLAG theory and the macroscopic quantum model

macroscopic quantum model GLAG theory 

𝐉𝑠 𝐫, 𝑡 = 𝑞𝑠𝑛𝑠 𝐫, 𝑡
ℏ

𝑚𝑠
𝛁𝜃 𝐫, 𝑡 −

𝑞𝑠
𝑚𝑠

𝐀 𝐫, 𝑡 𝐉𝑠 =
𝑞𝑠ℏ

2𝑚𝑠𝑖
Ψ⋆𝛁Ψ − Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀

i. current-phase relation i. 2nd Ginzburg-Landau equation

assumption: 𝜓 𝐫 2 = 𝑛𝑠 𝐫 = 𝑐𝑜𝑛𝑠𝑡. note that for Ψ 𝐫 2 = 𝑛𝑠 𝐫 = 𝑐𝑜𝑛𝑠𝑡. this equation is 
equivalent to the current-phase relation

ii. energy-phase relation

ℏ
𝜕𝜃 𝐫, 𝑡

𝜕𝑡
= −

1

2𝑛𝑠
Λ𝐉𝑠

2 𝐫, 𝑡 + 𝑞𝑠𝜙el 𝐫, 𝑡 + 𝜇 𝐫, 𝑡
no corresponding equation as Ψ 𝐫  is assumed to depend only 

on 𝐫 and not on 𝑡

iii. 1st Ginzburg-Landau equation

0 =
1

2𝑚𝑠

ℏ

𝑖
𝛁 − 𝑞𝑠𝐀

2

Ψ+ 𝛼Ψ+ 𝛽 Ψ 2Ψ
no corresponding equation as 𝜓 𝐫 2 = 𝑛𝑠 𝐫 =

𝑐𝑜𝑛𝑠𝑡. is assumed

ii. ………………………………………….

iii. ………………………………………..

Note: extensions of GLAG theory to describe time-dependent processes have been formulated

• can well describe spatially inhomogeneous situations
• cannot account for time-dependent phenomena

• cannot account for spatially inhomogeneous situations
• can describe time-dependent phenomena

(e.g. Josephson effect)
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WMI
3.3 GL Theory: Length Scales

Characteristic length scales – penetration depth: 

• 2nd GL equation:

allows to derive
➢ 1st and 2nd London equation
➢ characteristic screening length for 𝐵ext ➔ GL penetration depth 𝝀GL

with Ψ 2 = 𝑛𝑠

• GL penetration depth agrees with London penetration depth as equilibrium superfluid density
is 𝑛𝑠 = Ψ 2 = 𝛼 /𝛽

𝐉𝑠 =
𝑞𝑠ℏ

2𝑚𝑠𝚤
Ψ⋆𝛁Ψ −Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀

for Ψ 𝐫 2 = 𝑛𝑠 𝐫 = 𝑐𝑜𝑛𝑠𝑡. 𝐉𝑠 =
𝑞𝑠ℏ

2𝑚𝑠𝚤
𝚤 Ψ 2𝛁𝜃 + 𝚤 Ψ 2𝛁𝜃 −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀

𝐉𝑠(𝐫, 𝑡) = 𝑛𝑠𝑞𝑠
ℏ

𝑚𝑠
𝛁𝜃(𝐫, 𝑡) −

𝑞𝑠
𝑚𝑠

𝐀(𝐫, 𝑡)
exactly corresponds to current-phase 
relation derived from macroscopic
quantum model

𝜆GL =
𝑚𝑠

𝜇0𝑛𝑠𝑞𝑠
2 =

𝑚𝑠𝛽

𝜇0 𝛼 𝑞𝑠
2
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WMI

Characteristic length scales – coherence length:

• 1st GL equation:

2nd characteristic length scale GL coherence length

3.3 GL Theory: Length Scales

normalization 

and use of 1st GL equation

෩Ψ = Ψ/ Ψ0 ,    𝑛𝑠 = Ψ 2 = − 𝛼 /𝛽

0 =
1

2𝑚𝑠

ℏ

𝑖
𝛁 − 𝑞𝑠𝐀

2

Ψ+ 𝛼Ψ + 𝛽 Ψ 2Ψ =
1

2𝑚𝑠

ℏ

𝑖
𝛁 − 𝑞𝑠𝐀

2

෩Ψ + 𝛼෩Ψ + 𝛼 ෩Ψ
2෩Ψ

0 =
ℏ2

2𝑚𝑠 𝛼

1

𝑖
𝛁 − 𝑞𝑠𝐀

2

෩Ψ + ෩Ψ+ ෩Ψ
2෩Ψ

𝜉GL =
ℏ2

2𝑚𝑠 𝛼

• for 𝐴 = 0 and small deviations 𝛿𝑓 = Ψ − Ψ0 we obtain (neglecting higher oder terms)

𝛁2𝛿𝑓 =
1

𝜉GL
2 𝛿𝑓 ➔ deviations 𝛿𝑓 from homogeneous state decay exponentially on characteristic scale 𝜉GL

( Ψ0 = homogeneous value)

0 =
1

2𝑚𝑠

ℏ

𝑖
𝛁 − 𝑞𝑠𝐀

2

Ψ+ 𝛼Ψ+ 𝛽 Ψ 2Ψ
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Temperature dependence of characteristic length scales:

• Ansatz for 𝛼 and 𝛽:   𝛼 𝑇 = ത𝛼
𝑇

𝑇𝑐
− 1 = −ത𝛼 1 −

𝑇

𝑇𝑐
with ത𝛼 > 0;  𝛽 𝑇 = 𝛽 = 𝑐𝑜𝑛𝑠𝑡.

• with   𝜉GL =
ℏ2

2𝑚𝑠 𝛼(𝑇)
     and  𝜆GL =

𝑚𝑠𝛽

𝜇0 𝛼(𝑇) 𝑞𝑠
2   GL theory predicts

both length scales 
diverge for 𝑻 → 𝑻𝒄

𝑛𝑠 𝑇 = Ψ 𝑇 2 = −
𝛼 𝑇

𝛽
=
ത𝛼

𝛽
1 −

𝑇

𝑇𝑐
= 𝑛𝑠 0 1 −

𝑇

𝑇𝑐

𝜉GL(0) =
ℏ2

2𝑚𝑠 ത𝛼

𝜆GL(0) =
𝑚𝑠

𝜇0𝑛𝑠 0 𝑞𝑠
2

𝜆GL 𝑇 =
𝜆GL 0

1 −
𝑇
𝑇𝑐

𝜉GL 𝑇 =
𝜉GL 0

1 −
𝑇
𝑇𝑐

3.3 GL Theory: Length Scales
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• experimentally measured 𝑇-dependence:

that is, measured dependence agrees reasonably well with GL 
prediction close to 𝑇𝑐, but we have to use 𝜆GL 0 = 𝜆L 0 /2

we use 1 −
𝑇

𝑇𝑐

4

= 1 −
𝑇

𝑇𝑐

2

⋅ 1 +
𝑇

𝑇𝑐

2

≃ 2 1 −
𝑇

𝑇𝑐

2

≃ 4 1 −
𝑇

𝑇𝑐
for 𝑇 ≃ 𝑇𝑐

𝜆L 𝑇 ≃
𝜆L 0

2 1 −
𝑇
𝑇𝑐

=
𝜆GL 0

1 −
𝑇
𝑇𝑐

= 𝜆GL(𝑇)

3.3 GL Theory: Length Scales

𝜆L 𝑇 =
𝜆L 0

1 −
𝑇
𝑇𝑐

4

discrepancy expected as GL theory is
valid only close to 𝑇𝑐
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3.3 GL Theory: GL Parameter

Ginzburg-Landau parameter:

• solve for 𝐵cth

relation between GL and BCS coherence length:

- 𝛼/2 = condensation energy per superconducting electron

➔  𝜉GL(0) =
4ℏ2𝐸F

6𝑚𝑠Δ2 0
ณ=

𝐸F=
1

2
𝑚𝑣F

2=
1

4
𝑚𝑠𝑣F

2

ℏ2𝑣F
2

6Δ2 0
=

ℏ𝑣F

6 Δ 0
 agrees well with correct BCS result:  𝜉0 = ℏ𝑣F/𝜋Δ 0

- BCS: average condensation energy per superconducting electron at 𝑇 = 0:

      ≃
1

4
𝐷 𝐸F Δ2 0 /𝑁 = 3Δ2(0)/8𝐸F  with 𝐸F = 3𝑁/2𝐷(𝐸F)

→ 𝛼 corresponds to ≈ −3Δ2(0)/4𝐸F 

𝜉GL =
ℏ2

2𝑚𝑠 𝛼(𝑇)

𝜅 ≡
𝜆GL
𝜉GL

=
2𝛽

𝜇0

𝑚𝑠

ℏ𝑞𝑠
=

2 𝑚𝑠

𝜇0𝑞𝑠ℏ𝑛𝑠 𝑇
𝐵cth(𝑇)

𝜆GL(𝑇) =
𝑚𝑠

𝜇0𝑛𝑠(𝑇)𝑞𝑠
2 =

𝑚𝑠𝛽

𝜇0 𝛼(𝑇) 𝑞𝑠
2

𝜉GL(𝑇) =
ℏ2

2𝑚𝑠 𝛼(𝑇)

𝛼(𝑇) =
𝐵cth
2 𝑇

2𝜇0

2

𝑛𝑠(𝑇)

𝐵cth(𝑇) =
Φ0

2𝜋 2 𝜉GL 𝑇 𝜆GL(𝑇)

(weak 𝑇 dependence via 𝛽)
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3.3 GL Theory: Length Scales
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3.3 GL Theory: S/N Interface

Superconductor-normal metal interface:

• boundary conditions:

• solution:

• assumptions: superconductor extends in 𝑥-direction from 𝑥 > 0,  no applied magnetic field: 𝐀 = 0

0 =
ℏ2

2𝑚𝑠𝛼

1

𝑖
𝛁 −

𝑞𝑠
ℏ
𝐀

2

෩Ψ + ෩Ψ + ෩Ψ
2෩Ψ 0 = 𝜉GL

2 𝜕2෩Ψ

𝜕𝑥2
+ ෩Ψ + ෩Ψ

2෩Ψ

෩Ψ 𝑥 = 0 = 0, ෩Ψ 𝑥 → ∞ = 1

lim
𝑥→∞

𝜕෩Ψ/𝜕𝑥 = 0

෩Ψ 𝑥 = tanh
𝑥

2 𝜉GL

෩Ψ 𝑥
2
=
𝑛𝑠 𝑥

𝑛𝑠 ∞
= tanh2

𝑥

2 𝜉GL

important: 

෩Ψ 𝑥  increases on characteristic length scale 𝜉GL from 0 to 1 (for 𝐵ext,z = 0)

𝐵ext,z decays in SC on characteristic length scale 𝜆GL (for ෩Ψ 𝑥 = 𝑐𝑜𝑛𝑠𝑡.)

0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

 

|


,  
 B

z(x
)/

B
ex

t

x / L 

N S𝝀𝐋

𝝃𝐆𝐋

෩𝚿
𝟐
𝒙

𝑩𝒛 𝒙

෩ 𝚿
𝟐

(෩Ψ = Ψ/ Ψ0 , with Ψ0 = Ψ∞ )
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Summary of Lecture No. 5  (1)

• Ginzburg-Landau Theory (1950)

→ phenomenological description of superconductor by a complex, spatially varying order parameter 𝚿 𝐫 = |𝚿 𝐫 | 𝐞𝒊𝜽 𝐫 with
𝚿 𝐫 𝟐 = 𝒏𝒔 𝐫 (based on extension of Landau theory of phase transitions) 

• Ginzburg-Landau Theory: spatially homogeneous case, no applied magnetic field ( Ψ 𝐫 2 = 𝑛𝑠 𝐫 = 𝑐𝑜𝑛𝑠𝑡.)

develop free enthalpy density ℊ𝑠 of superconductor into a power series of Ψ 2

ℊ𝑠 = ℊ𝑛 + 𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯

Ansatz: 𝛼 𝑇 = ത𝛼
𝑇

𝑇𝑐
− 1 = −ത𝛼 1 −

𝑇

𝑇𝑐
with ത𝛼 > 0

𝛽 𝑇 = 𝑐𝑜𝑛𝑠𝑡. > 0

minumum of ℊ𝑠 for

𝑛𝑠 𝑇 = Ψ0 𝑇 2 = −
𝛼 𝑇

𝛽
=
ത𝛼

𝛽
1 −

𝑇

𝑇𝑐

ഥ𝛼

2
=

𝐵cth
2 0

2𝜇0
/𝑛𝑠 0   = 

condensation energy per charge carrier at 𝑇 = 0
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Summary of Lecture No. 5  (2)

• Ginzburg-Landau Theory: spatially inhomogeneous case ( Ψ 𝐫 2 = 𝑛𝑠 𝐫 ≠ 𝑐𝑜𝑛𝑠𝑡.), finite magnetic field 𝐁ext = 𝜇0𝐇ext

ℊ𝑠 = ℊ𝑛 + 𝛼 Ψ 2 +
1

2
𝛽 Ψ 4 +⋯+

𝐛 𝐫 − 𝐁ext
2

2𝜇0
+

1

2𝑚𝑠

ℏ

𝚤
𝛁Ψ 𝐫 − 𝑞𝑠 𝐀 𝐫 Ψ 𝐫

2

additional terms in free enthalpy density due to finite 𝐉𝑠 and 𝐁ext = 𝜇0𝐇ext

kinetic energy of the supercurrents:
finite gauge invariant phase gradient results in 

supercurrent density and increase in kinetic energy 
 

finite stiffness of order parameter: 
→ spatial variations of Ψ  cost additional energy

additional field energy density:
e.g. due to work required for

field expulsion
∝ 𝐛 𝐫 − 𝐁ext

2

• minimization of total free enthalpy by variational approach yields Ginzburg-Landau equations

𝐉𝑠 =
𝑞𝑠ℏ

2𝑚𝑠𝚤
Ψ⋆𝛁Ψ− Ψ𝛁Ψ⋆ −

𝑞𝑠
2

𝑚𝑠
Ψ 2𝐀 2nd GL equation

1

2𝑚𝑠

ℏ

𝚤
𝛁 − 𝑞𝑠 𝐀 𝐫

2

Ψ 𝐫 + 𝛼Ψ 𝐫 +
1

2
𝛽 Ψ 𝐫 2Ψ 𝐫 = 0 1st GL equation

𝜆GL =
𝑚𝑠𝛽

𝜇0 𝛼 𝑞𝑠
2

𝜉GL =
ℏ2

2𝑚𝑠 𝛼
coherence length

field screening length

𝜆GL 𝑇 = 𝜆GL 0 / 1 −
𝑇

𝑇𝑐
𝜉GL 𝑇 = 𝜉GL 0 / 1 −

𝑇

𝑇𝑐
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Summary of Lecture No. 5  (3)

• Ginzburg-Landau parameter

• application of GL equation: calculate variation of order parameter and flux density at N/S boundary

𝜅 ≡
𝜆GL
𝜉GL

=
2𝛽

𝜇0

𝑚𝑠

ℏ𝑞𝑠
=

2 𝑚𝑠

𝜇0𝑞𝑠ℏ𝑛𝑠 𝑇
𝐵cth(𝑇) 𝐵cth(𝑇) =

Φ0

2𝜋 2 𝜉GL 𝑇 𝜆GL(𝑇)

෩Ψ 𝑥
2
=
𝑛𝑠 𝑥

𝑛𝑠 ∞
= tanh2

𝑥

2 𝜉GL

key result: 

෩Ψ 𝑥  increases ∝ tanh2 in SC on characteristic length scale 𝜉GL from 0 to 1 

𝐵z(𝑥) decays exponentially in SC on characteristic length scale 𝜆GL

𝐵𝑧 𝑥 = 𝐵𝑧 0 exp −
𝑥

𝜆GL

calculated for 𝐵z = 0

calculated for ෩Ψ 𝑥 = 𝑐𝑜𝑛𝑠𝑡.
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Chapter 3

3. Phenomenological Models of Superconductivity

3.1 London Theory

3.1.1 The London Equations

3.2 Macroscopic Quantum Model of Superconductivity

3.2.1 Derivation of the London Equations

3.2.2 Fluxoid Quantization

3.2.3 Josephson Effect

3.3 Ginzburg-Landau Theory

3.3.1 Type-I and Type-II Superconductors

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice

 3.3.4 Type-II Superconductors: Flux Lines
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𝜇
0
𝐻
e
x
t

3.3.1 Type-I and Type-II Superconductors 

• type-I superconductors:

expel magnetic field until 𝐵cth: 𝐵𝑖 = 0 

→ only Meißner phase

→ single critical field 𝑩𝐜𝐭𝐡

• type-II superconductors:

partial field penetration above 𝐵𝑐1
 → 𝐵𝑖 > 0 for 𝐵ext > 𝐵𝑐1 

 → Shubnikov phase between 𝐵𝑐1 ≤ 𝐵ext ≤ 𝐵𝑐2
 → upper and lower critical fields 𝑩𝒄𝟏 and 𝑩𝒄𝟐 

experimental facts:
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WMI

• thermodynamic critical field defined as:
(for type-I and type-II superconductors)

• area under 𝑀 𝐻ext  curve is the same for type-I and type-II superconductor with the 
same condensation energy:

condensation energy

3.3.1 Type-I and Type-II Superconductors 

𝝁𝟎𝑯𝐞𝐱𝐭𝑩𝐜𝐭𝐡𝟎

𝑩
𝒊

−
𝝁
𝟎
𝑴

𝑩𝒄𝟏 𝑩𝒄𝟐

type I superconductor

type II superconductor

type I superconductor

type II 
superconductor

𝝁𝟎𝑯𝐞𝐱𝐭𝑩𝐜𝐭𝐡𝟎 𝑩𝒄𝟏 𝑩𝒄𝟐

ℊ𝑠 − ℊ𝑛 = −
𝐵cth
2 𝑇

2𝜇0

ℊ𝑠 𝑇 − ℊ𝑛 𝑇 = −
𝐵cth
2 𝑇

2𝜇0
= න

0

𝐵cth

𝐌 ⋅ d𝐁ext = න

0

𝐵𝑐2

𝐌 ⋅ d𝐁ext
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difference between type-I and type-II superconductors:  determined by sign of N/S boundary energy

• lowering of energy due to savings in field expulsion work (per area) 

• increase of energy due to loss in condensation energy 
(per area)

• resulting boundary energy

3.3.1 Type-I and Type-II Superconductors 

Δ𝐸𝐵
𝐹

= −න

0

∞
𝐵𝑧 𝑥 2

2𝜇0
d𝑥 ≃ −

𝐵ext
2

2𝜇0
𝜆L

Δ𝐸𝐶
𝐹

=
𝐵cth
2

2𝜇0
න

0

∞

෩Ψ
2
d𝑥 ≃

𝐵cth
2

2𝜇0
𝜉GL

Δ𝐸𝐶
𝐹

+
Δ𝐸𝐵
𝐹

≃
𝐵cth
2

2𝜇0
𝜉GL −

𝐵ext
2

2𝜇0
𝜆L =

𝐵cth
2

2𝜇0
𝜉GL −

𝐵ext
𝐵cth

2

𝜆L
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WMI
3.3.1 Type-I and Type-II Superconductors 

normalized bounday energy per unit length (≡ energy density)

𝜀𝐵 ≃ −
𝑏2(𝑥)/2𝜇0

𝐵ext
2 /2𝜇0

= − e−𝑥/𝜆L
2

𝜀𝐶 ≃
𝐵cth
2 /2𝜇0 𝑛𝑠 ∞ − 𝑛𝑠 𝑥

𝐵cth
2 /2𝜇0 𝑛𝑠(∞)

= 1 −
𝑛𝑠 𝑥

𝑛𝑠 ∞

𝜀𝐶 ≃ 1 − tanh2
𝑥

2 𝜉GL

𝜀Grenz ≃ 1 − tanh2
𝑥

2 𝜉GL
− e−𝑥/𝜆L

2
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WMI
3.3.1 Type-I and Type-II Superconductors 

discussion of boundary energy at superconductor/normal metal interface

Δ𝐸boundary = Δ𝐸𝐶 + Δ𝐸𝐵 ≃
𝐵cth
2

2𝜇0
𝜉GL −

𝐵ext
𝐵cth

2

𝜆GL

I. Type I superconductor: 𝝃𝐆𝐋 ≥ 𝝀𝐆𝐋

➢ boundary energy is always positive for 𝐵ext ≤ 𝐵cth
➔ formation of boundary is avoided→ perfect flux expulsion (Meißner state) up to 𝐵ext = 𝐵cth

II. Type II superconductor: 𝝃𝐆𝐋 < 𝝀𝐆𝐋

➢ boundary energy is always positive for 𝐵ext ≤ 𝐵𝑐1 < 𝐵cth
➔ formation of boundary is avoided→ perfect flux expulsion (Meißner state) up to 𝐵ext = 𝐵c1

➢ boundary energy becomes negative for 𝐵ext > 𝐵𝑐1
➔ formation of mixed state, as energy can be lowered by formation of N/S-boundaries
➔ N-regions are made as small as possible to maximize bounday→ lower limit is set by flux quantization
➔ type II SC can expel field and stay in superconducting state up to 𝐵𝑐2 > 𝐵cth, as field expulsion work is lowered

• exact calculation yields
𝜅 = 𝜆GL/𝜉GL ≤ 1/ 2 type I superconductor

𝜅 = 𝜆GL/𝜉GL ≥ 1/ 2 type II superconductor
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3.3.1 Type-I and Type-II Superconductors: 
             Demagnetization Effects and Intermediate State 

• ideal 𝐵𝑖 𝐻ext  dependence valid only for
vanishing demagnetization effects
- e.g. for long cylinder or slab with 𝐻ext|| cylinder

• for finite demagnetization (characterized by demagnetization factor 𝑁)

with  𝐌 = 𝝌𝐇mac = −𝐇mac (perfect diamagnetism)

long cylinder: 𝑁 ≃ 0 𝐻mac ≃ 𝐻ext
flat disk:  𝑁 ≃ 1 𝐻mac → ∞
sphere:  𝑁 ≃ 1/3 𝐻mac → 1.5 𝐻ext

sphere:
𝐻mac = 1.5 𝐻ext 
@ equator

𝜇0𝐻mac = 𝐵cth 

@ 𝜇0𝐻ext =
2

3
𝐵cth  

• formation of intermediate state in Meißner regime by 
demagnetization effects
➔ intermediate state can have complex structure

𝝁𝟎𝑯𝐞𝐱𝐭𝑩𝐜𝐭𝐡𝟎

𝑩
𝒊

𝑩𝒄𝟏 𝑩𝒄𝟐

type I superconductor

type II 
superconductor

𝐇mac = 𝐇ext − 𝑁 ⋅ 𝐌

𝐇mac =
𝐇ext

1 − 𝑁

𝝁𝟎𝑯𝐞𝐱𝐭𝑩𝐜𝐭𝐡𝟎

𝚽
th

ro
u

g
h

eq
u

a
to

ri
a

lp
la

n
e

Τ𝟐 𝟑𝑩𝐜𝐭𝐡

(macroscopic field)
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WMI

magneto-optical image

of the intermediate state of In 
(type I superconductor)

bright: normal regions

(from Buckel)

3.3.1 Type-I and Type-II Superconductors: 
             Demagnetization Effects and Intermediate State 

intermediate state of Al 
plate

(type I superconductor)

intermediate state of Ta foil

(type II superconductor)
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WMI
3.3.2 Type-II Superconductors: Upper and Lower Critical Field

Task: derive expression for 𝑩𝒄𝟐 from GLAG-equations (Abrikosov, 1957)

• further approximations:  𝐁 ≃ 𝜇0𝐇ext, since 𝐌 → 0 for 𝜇0𝐇ext → 𝐁𝑐2

    𝐇ext = (0,0, 𝐻𝑧)  → 𝐀 = (0, 𝐴𝑦 , 0)  with  𝐴𝑦 = 𝜇0𝐻𝑧𝑥 = 𝐵𝑧𝑥

• we use the 1st GL equation and linearize it as Ψ 𝑟 2 → 0 for large 𝐵ext → 𝐵𝑐2

0 =
1

2𝑚𝑠

ℏ

𝑖
𝛁 − 𝑞𝑠𝐀

2

Ψ+ 𝛼Ψ + 𝛽 Ψ 2Ψ
1

2𝑚𝑠

ℏ

𝑖
𝛁 − 𝑞𝑠𝐀

2

Ψ = −𝛼Ψ

corresponds to Schrödinger equation of free particle with charge 𝑞𝑠, 
mass 𝑚𝑠 and total energy −𝛼 in an applied magetic field 𝐵𝑧

→ solution and eigenenergies are known: Landau levels

𝜕2Ψ

𝜕𝑥2
+

𝜕

𝜕𝑦
−
𝚤𝑞𝑠𝐵𝑧
ℏ

𝑥

2

Ψ+
𝜕2Ψ

𝜕𝑧2
=
2𝑚𝑠𝛼

ℏ2
Ψ = −

1

𝜉GL
2 Ψ
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WMI
3.3.2 Type-II Superconductors: Upper and Lower Critical Field

• energy eigenvalues of the Landau levels for motion in plane perpendicular to 𝐵ext,𝑧:

𝜀𝑛 = ℏ𝜔𝑐 𝑛 +
1

2
= ℏ

𝑞𝑠𝐵ext,𝑧
𝑚𝑠

𝑛 +
1

2
= −𝛼 −

ℏ2𝑘𝑧
2

2𝑚𝑠
=

ℏ2

2𝑚𝑠

1

𝜉GL
2 − 𝑘𝑧

2 with  𝛼(𝑇) = −
ℏ2

2𝑚𝑠𝜉GL
2 (𝑇)

• resolving for 𝐵ext,𝑧 yields:

𝐵ext,𝑧 =
ℏ

2𝑞𝑠

1

𝜉GL
2 − 𝑘𝑧

2 𝑛 +
1

2

−1

• lowest level for 𝑛 = 0, 𝑘𝑧 = 0 yields solution for maximum field:

𝐵ext,𝑧 =
ℏ

𝑞𝑠𝜉GL
2 =

ℎ

𝑞𝑠

1

2𝜋𝜉GL
2 =

Φ0

2𝜋𝜉GL
2

interpretation of 𝐵𝑐2:

➢ as 𝑛𝑠(𝑟) is allowed to vary on length scale not 
smaller than 𝑟 ≃ 𝜉GL, the minimum size of a N-

region in the superconductor is ≃ 𝜋𝜉GL
2

➢ for 𝐵ext = 𝐵𝑐2, the areal density of the flux quanta 

is just 𝐵𝑐2/Φ0 ≃ 1/𝜋𝜉GL
2 , that is, for 𝐵ext = 𝐵𝑐2 the 

N-regions completely fill the superconductor

𝐵c2 𝑇 =
Φ0

2𝜋𝜉GL
2 𝑇

=
Φ0

2𝜋𝜉GL
2 0

1 −
𝑇

𝑇𝑐

with 𝐵cth =
Φ0

2𝜋 2 𝜉GL 𝜆GL

➔ 𝐵𝑐2 ≥ 𝐵cth for 𝜅 > 1/ 2

𝐵c2(𝑇) = 2 𝜅 𝐵cth(𝑇)



Chapter 3/RG   - 112www.wmi.badw.de Superconductivity and Low Temperature Physics I

R
. G

ro
ss

an
d

A
. M

ar
x 

, ©
 W

al
th

e
r-

M
e

iß
n

e
r-

In
st

it
u

t 
(2

0
0

4
 -

 2
0

2
3

)

WMI

𝑩cth and 𝝀L of type-I superconductors

𝑩𝒄𝟐 and 𝝀L of type-II superconductors

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

𝜅 = 𝜆GL/𝜉GL ≤ 1/ 2 type I superconductor

𝜅 = 𝜆GL/𝜉GL ≥ 1/ 2 type II superconductor
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WMI

𝑩𝒄𝟐 of type II superconductors

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

0 5 10 15 20
0

10

20

30

40

50

B
c2

 (
T)

 

T  (K)

Nb3Ge

Nb3Sn

Nb3(Al0.7Ge0.3)

PbMo5.1S6

NbTi
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WMI

• derivation of lower critical field 𝑩𝒄𝟏 is more difficult (no linearization of GL equations possible)

• more precise result based on solution of GL equations:

→ we use simple argument, that flux generated by 𝐵𝑐1 in area 𝜋𝜆L
2 must be at least equal to Φ0

here, we have assumed Ψ 𝑟 2 = 𝑛𝑠 𝑟 = 𝑐𝑜𝑛𝑠𝑡. (London approximation)

3.3.2 Type-II Superconductors: Upper and Lower Critical Field

Task: derive the expression for 𝑩𝒄𝟏 from GLAG-equations

න

0

∞

𝐵𝑐1 exp −
𝑟

𝜆L
2𝜋𝑟 d𝑟 = Φ0

𝐵𝑐1 =
Φ0

2𝜋𝜆L
2

𝐵𝑐1 =
Φ0

2𝜋𝜆L
2 ln 𝜅 + 0.08 𝐵𝑐1 =

1

2 𝜅
ln 𝜅 + 0.08 𝐵cth with 𝐵cth =

Φ0

2𝜋 2 𝜉GL 𝜆GL

➔ 𝐵𝑐1 ≤ 𝐵cth for 𝜅 > 1/ 2
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WMI

• solution of the GL-equations in the intermediate field regime
𝐵𝑐1 < 𝐵ext < 𝐵𝑐2 is in general complicated

➢ linearization of GL-equations is no longer a good approximation 
→ numerical solotion of GL equations

➢ here: only qualitative discussion

How is the magnetic flux arranged in Shubnikov phase above 𝑩𝒄𝟏? 

➢ due to negative N/S boundary energy for 𝐵𝑐1 ≤ 𝐵ext ≤ 𝐵𝑐2, 
magnetic flux is split into smallest possible portions to maximize N/S interface

➢ lower bound for flux portions is flux quantum Φ0

➢ flux quanta behave like permanent magnets with parallel magnetic moment

→ flux lines repel each other

→ prefer arrangement with maximum separation between flux quanta

→ optimum configuration is hexagonal flux line lattice➔ Abrikosov Vortex Lattice

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice
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WMI

• distance between flux lines is maximum in hexagonal lattice

 ➔ energetically most favorable state

 ➔ square lattice also often observed, since other effects (e.g. Fermi surface    
      topology) play a significant role

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice

𝑎∎ = Φ0/𝐵ext 𝑎▲ = 1.075 Φ0/𝐵ext

𝐴6 =
3 3

2
𝑑2 =

3 3

2
𝑎▲ tan 30°

2 =
Φ0

𝐵ext

tan 30° =
𝑑/2

𝑎▲/2
=

𝑑

𝑎▲
⇒ 𝑑 = 𝑎▲ tan 30°

𝒂■
𝒂▲

𝒅

30°
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WMI

How does the spatial distribution of the magnetic flux density and the superfluid density look like in the Shubnikov-phase?

sketch of the flux line
lattice in a type II SC

calculated contour lines 
of 𝑛𝑠(𝐫) = Ψ 2(𝐫) in the 
hexagonal Abrikosov 
vortex lattice 

calculated radial  
distribution of 𝑛𝑠(𝑟) and 
𝐵(𝑟)/𝐵𝑐1 for an isolated
flux line

(E. H. Brandt, Phys. Rev. Lett. 
78, 2208 (1997))

image of the flux line 
lattice in a NbSe2-single 
crystal (type II SC) 
obtained by scanning 
tunneling microscopy @ 
𝐵ext = 1 T

(H. F. Hess et al., Phys. Rev. Lett. 
62, 214 (1989), © (2012) 
American Physical Society)

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice

flux line, vortex
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WMI

Right: STM-images showing the flux line lattice of ion irradiated NbSe2 (T=3 K, I=40 pA, V=0.5 mV) taken during increasing the applied
magnetic filed to 70, 100, 200, 300 mT. The images always show the same sample area of 2 x 2 µm (source: University of Basel)

200 nm

NbSe2: flux-line lattice of non-irradiated 
single crystal at 1 T

distortion of ideal flux line
lattice by defects

→ flux line pinning

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice
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WMI

Bitter technique:
decoration of flux-line lattice by „Fe
smoke“
→ imaging by SEM

U. Essmann, H. Träuble (1968) 
MPI Metallforschung
Nb,  𝑇 = 4 K
disk: 1mm thick, 4 mm ø 
𝐵ext = 985 G,  𝑎 = 170 nm

D. Bishop, P. Gammel (1987 )
AT&T Bell Labs 
YBCO, 𝑇 = 77 K  
𝐵ext = 20 G, 𝑎 = 1 200 nm

similar work:
- L. Ya. Vinnikov, ISSP Moscow
- G. J. Dolan,  IBM NY 

3.3.3 Type-II Superconductors: Shubnikov Phase and Flux Line Lattice
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WMI
3.3.4 Type-II Superconductors: Flux Lines

• radial dependence of 𝚿 (requires numerical solution of GL equations):

we use the Ansatz

insertion into the nonlinear GL equations yields equation for 𝑓 𝑟 :

with 𝑐 ≈ 1 and 𝑛s 𝑟 = ෩Ψ 𝑟
2
= 𝑓2(𝑟)

Radial dependence of 𝒏𝒔 𝑟 and 𝐛 𝑟 across a single flux line

෩Ψ 𝑟 =
Ψ 𝑟

Ψ0
= ෩Ψ∞ 𝑓 𝑟 e𝚤𝜃(𝑟) with ෩Ψ∞ = ෩Ψ 𝑟 → ∞ and the radial function 𝑓(𝑟)

solution: 𝑓 𝑟 = tanh 𝑐
𝑟

𝜉GL
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WMI

for simplicity we only calculate the London vortex by using the approximation ෩Ψ(𝑟) ≃ 1
➔ good approximation for 𝜆L ≫ 𝜉GL or 𝜅 ≫ 1: extreme type II superconductors

2nd London equation

accounts for the presence of vortex core

interpretation: 

with Maxwell eqn. 𝛁 × 𝐛 𝑟 = 𝜇0𝐉𝑠 𝑟 we obtain 𝜆L
2 𝛁 × 𝛁 × 𝐛 + 𝐛 = ො𝐳 Φ0𝛿2 𝑟

integration over circular area 𝑆 with 𝑟 ≫ 𝜆L perpendicular to ො𝐳 yields  

න
𝑆

𝐛 ⋅ d𝑆 + 𝜆L
2ර

𝜕𝑆

(𝛁 × 𝐛) ⋅ dℓ = ො𝐳 Φ0 ⇒ Φ = Φ0

Φ = 0 since 𝛁 × 𝐛 = 𝜇0𝐉𝒔 and 𝐉𝑠 ≃ 0 for 𝑟 ≫ 𝜆𝐿

3.3.4 Type-II Superconductors: Flux Lines
• radial dependence of 𝐛(𝒓)

𝛁 × Λ𝐉𝑠(𝑟) + 𝐛 𝑟 = ො𝐳 Φ0𝛿2 𝑟 𝛿2 𝑟 = 2D delta-function

𝛁𝟐𝐛 𝑟 −
1

𝜆L
2 𝐛 𝑟 = −

Φ0

𝜆L
2 ො𝐳 𝛿2 𝑟

we use
𝛁 × 𝛁 × 𝐛 = 𝛁 𝛁 ⋅ 𝐛 − 𝛁𝟐𝐛
𝛁 ⋅ 𝐛 = 𝟎
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𝒦𝑖: i
th order modified Bessel 

function of 2nd kind

is exact result only if we assume 𝜉GL → 0 ➔ London solution

3.3.4 Type-II Superconductors: Flux Lines

• solution of 𝛁𝟐𝐛 𝑟 −
1

𝜆L
2 𝐛 𝑟 = −

Φ0

𝜆L
2 ො𝐳 𝛿2 𝑟

𝑏 𝑟 =
Φ0

2𝜋𝜆L
2𝒦0

𝑟

𝜆L
𝒦
𝑖
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• solution of becomes more complicated if we assume finite 𝜉GL

we have to take into account spatial variation of ෩Ψ 𝑟

3.3.4 Type-II Superconductors: Flux Lines

𝛁𝟐𝐛 𝑟 −
1

𝜆L
2 𝐛 𝑟 = −

Φ0

𝜆L
2 ො𝐳 𝛿2 𝑟

-4 -3 -2 -1 0 1 2 3 4
0.0

0.4

0.8
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1.6
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 b

z 
/ 

B
c1

r / 
L
 

-4 -3 -2 -1 0 1 2 3 4
0.0
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2

,  
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෩ Ψ
2
,

𝑏
𝑧
/𝐵

𝑐
1

෩ Ψ
2
,

𝑏
𝑧
/𝐵

𝑐
1

single flux line
𝜆L = 10 𝜉GL

flux line lattice
𝐵ext = 0.6 𝐵𝑐2
𝜆L = 10 𝜉GL

numerical solution of GL equations
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3.3.4 Type-II Superconductors

Further applications of the GL equations

• calculation of the energy per unit length of a flux line (London approximation: only field energy and kinetic energy of supercurrents )

𝜖L =
Φ0
2

4𝜋𝜇0𝜆L
2 ln 𝜅 =

𝐵cth
2

2𝜇0
4𝜋𝜉GL

2 ln 𝜅 =
𝐵cth
2

2𝜇0
𝜋𝜉GL

2 ⋅ 4 ln 𝜅 with 𝐵cth =
Φ0

2𝜋 2 𝜉GL 𝜆GL

𝜖L corresponds to 4 ln 𝜅 times the loss of condensation in vortex core

• calculation of nucleation field at surface of superconductor

(in finite-size superconductors the boundary conditions at the surface have to be taken into account )

𝐵𝑐3 = 1.695 𝐵𝑐2

• depairing critical current density (cf. 6.2.1)   (note that Ψ 2 decreases with increasing superfluid velocity)

𝐽𝑐,GL(𝑇) =
Φ0

3𝜋 3 𝜇0 𝜉GL 𝑇 𝜆GL
2 (𝑇)

= 0.544
𝐵cth(𝑇)

𝜇0𝜆L(𝑇)
with 𝐵cth =

Φ0

2𝜋 2 𝜉GL 𝜆GL
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3.3 Summary – GLAG Theory

Literature:

The Ginzburg-Landau Theory explains:

• all London results

• type-II superconductivity (Shubnikov or vortex state): 𝜅 =
𝜆L

𝜉GL
> 1/ 2

• behavior at surface of superconductors and interfaces to non-superconducting materials

The Ginzburg-Landau Theory does not explain:

• 𝑞𝑠 = − 2𝑒

• microscopic origin of superconductivity

• not applicable for T << Tc

• non-local effects

• P.G. De Gennes, Superconductivity of Metals and Alloys
• M. Tinkham, Introduction to Superconductivity
• N.R. Werthamer in Superconductivity, edited by R.D. Parks
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Summary of Lecture No. 6  (1)

• normal metal/superconductor interface: boundary energy

Δ𝐸boundary = Δ𝐸𝐶 + Δ𝐸𝐵 ≃
𝐵cth
2

2𝜇0
𝜉GL −

𝐵ext
𝐵cth

2

𝜆GL

I. Type I superconductor: 𝝃𝐆𝐋 ≳ 𝝀𝐆𝐋
➢ boundary energy is always positive for 𝐵ext ≤ 𝐵cth→Meißner state up to 𝐵ext =

𝐵cth

II. Type II superconductor: 𝝃𝐆𝐋 ≲ 𝝀𝐆𝐋
➢ boundary energy is always positive for 𝐵ext ≤ 𝐵𝑐1→Meißner state up to 𝐵ext = 𝐵c1

➢ boundary energy becomes negative for 𝐵ext > 𝐵𝑐1
→ formation of mixed state
→ type II SC can expel field 𝐵𝑐2 > 𝐵cth, as field expulsion work is lowered

𝜅 = 𝜆GL/𝜉GL ≤ 1/ 2 type I superconductor

𝜅 = 𝜆GL/𝜉GL ≥ 1/ 2 type II superconductor

• formation of intermediate state in type-I and type-II SCs below 𝑩𝒄𝟏 due to finite demagnetization effects

𝐵c2 =
Φ0

2𝜋𝜉GL
2

with 𝐵cth =
Φ0

2𝜋 2 𝜉GL 𝜆GL

➔ 𝐵𝑐2 ≥ 𝐵cth for 𝜅 > 1/ 2𝐵c2 𝑇 = 2 𝜅 𝐵cth 𝑇

• upper and lower critical field of type-II superconductors

𝐵𝑐1 =
Φ0

2𝜋𝜆L
2 ln 𝜅 + 0.08 𝐵𝑐1 =

1

2 𝜅
ln 𝜅 + 0.08 𝐵cth ➔ 𝐵𝑐1 ≲ 𝐵cth for 𝜅 < 1/ 2

𝐵𝑐1: flux density generates flux Φ0 in area 𝜋𝜆L
2,   𝐵𝑐2: normal cores of flux lines with area 𝜋𝜉GL

2 fill superconductor completely
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Summary of Lecture No. 6  (2)

• flux line lattice 𝑎∎ = Φ0/𝐵ext 𝑎▲ = 1.075 Φ0/𝐵ext

➢ flux quanta behave like permanent magnets with parallel 
magnetic moment

→ flux lines repel each other

→ arrangement with maximum separation between flux quanta

→ optimum configuration is hexagonal (Abrikosov) flux line lattice

➢ spatial distribution of flux density 𝐛(𝐫) and order
parameter 𝑛𝑠(𝐫) = Ψ 2(𝐫) by numerical solution
of GL equations

• single flux line: radial dependence of 𝐛(𝒓)

𝛁𝟐𝐛 𝑟 −
1

𝜆L
2 𝐛 𝑟 = −

Φ0

𝜆L
2 ො𝐳 𝛿2 𝑟

➢ solution (with assumption 𝜉GL → 0 ➔ London approximation)

𝒦0: 0th order modified Bessel function of 2nd kind𝐛 𝑟 =
Φ0

2𝜋𝜆L
2𝒦0

𝑟

𝜆L

calculated contour lines of 
𝑛𝑠(𝐫) = Ψ 2(𝐫) radial  distribution of 𝑛𝑠(𝑟) and 

𝐵(𝑟)/𝐵𝑐1 for an isolated flux line
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Summary of Lecture No. 6  (3)

• imaging of flux line lattice

➢ scanning tunneling microscopy (Hess, 1989)
contrast by different DOS in vortex cores

200 nm

NbSe2: flux-line lattice of non-irradiated 
single crystal at 1 T

➢ Bitter technique (Träuble & Essmann, 1968)
decoration of vortex core by paramegnatic iron
smoke (nanoparticles) and imaging by SEM

Nb,  𝑇 = 4 K, disk: 1mm thick, 4 mm ø 
𝐵ext = 985 G,  𝑎 = 170 nm
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