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4. BCS Theory

» after discovery of superconductivity, initially many phenomenological theories have been developed
- London theory (1935)
- macroscopic quantum model of superconductivity (1948)
- Ginzburg-Landau-Abrikosov-Gorkov theory (early 1950s)

e problem:
- phenomenological theories do not provide insight into the microscopic processes responsible
for superconductivity
—> impossible to engineer materials to increase T,, if mechanisms are not known

e superconductivity originates from interactions among conduction electrons
— theoretical models for the description of interacting electrons are required
- very complicated: kinetic energy of conduction electrons ~ 5 eV, while interaction energy ~ meV
=>» find attractive interaction which causes ordering in electron system despite high kinetic energy
- go beyond single electron (quasiparticle) models
- not available at the time of discovery of superconductivity

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4. BCS Theory

* development of BCS theory by J. Bardeen, L.N. Cooper and J.R. Schrieffer in 1957
» key element is attractive interaction among conduction electrons

» 1956: Cooper shows that attractive interaction results in pair formation and in turn in an instability of the
Fermi sea

» 1957: Bardeen, Cooper and Schrieffer develop self-consistent formulation of the superconducting state:
condensation of pairs in coherent ground state

» paired electrons are denoted as Cooper pairs

» general description of interactions by exchange bosons kl + q,04

» Bardeen, Cooper and Schrieffer identify phonons as the k., —
2 — 4,02
relevant exchange bosons

» suggested by experimental observation €xc.

ha,
' ‘ 79€ bosop,
T, < 1/VM « Wph isotope effect b
» in general, detailed nature of exchange boson does not play k ,
1,01 q

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

any role in BCS theory

» many possible exchange bosons: k2: o-i
magnons, polarons, plasmons, polaritons,
spin fluctuations, .....
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4. BCS Theory

isotop effect yields hint on type of exchange boson:

N ' data from:

=) N, Sn 1 E. Maxwell, Phys. Rev. 86, 235 (1952)

S N

o 0.580 ——8 S B. Serin, C.A. Reynolds, C. Lohman,

g N Phys. Rev. 86, 162 (1952)

g < J.M. Lock, A.B. Pippard, D. Shoenberg,

£ __ 0.575 o . Proc. Cambridge Phil. Soc. 47, 811 (1951)

2 h b&

5 ~ - ; M

z = ¢ Maxwell o Tcx1/vM

s w 05701 o 5

g ke Lock et al. N

© O Serin et al. RN

'ET’ 0.565

i .Q *

& N

6 0.560 - : : : N

z 2.06 2.07 2.08 2.09

log (M / bel. Einh. . *
g(M/ ) in general: T, o< 1/MPB

Element Hg Sn Pb Cd Tl Mo Os Ru
Isotopen-
exponent 8* 0,50 0,47 0,48 0,5 0.5 0,33 0,2 0,0
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4.1 Attractive Electron—Electron Interaction

* intuitive assumption:
superconductivity results from ordering phenomenon of conduction electrons

* problem:

« conduction electrons have large (Fermi) velocity due to Pauli exclusion principle: = 10° m/s = 0.01 ¢
» corresponding (Fermi) temperature is above 10 000 K

* in contrast: transition to superconductivity occurs at = 1 — 10 K (= meV)

e task:

» find interaction mechanism that results in ordering of conduction electrons despite their high kinetic energy

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

» initial attempts fail:
—> Coulomb interaction (Heisenberg, 1947)
- magnetic interaction (Welker, 1929)
2 ...
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4.1.1 Phonon Mediated Interaction

e

* known fact since 1950:
- T, depends on isotope mass

e conclusion:
- lattice plays an important role for superconductivity
- initial proposals for phonon mediated e-e interaction (1950):
H. Frohlich, J. Bardeen

* static model of lattice mediated e-e interaction:
- one electron causes elastic distortion of lattice:
attractive interaction with positive ions results in positive charge accumulation
- second electron is attracted by this positive charge accumulation:
effective binding energy

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

intuitive picture,
but has to be taken with care

EREBUDEL
i §BEES)

http://www.max-wissen.de/

wrong suggestion:
- Cooper pairs are stable in time such as hydrogen molecule
- pairing in real space
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4.1.1 Phonon Mediated Interaction

* dynamic model of lattice mediated e-e interaction:

- moving electrons distort lattice, causing temporary positive charge accumulation along their path
—> track of positive charge cloud
- positive charge cloud can attract second electron

- important: positive charge cloud rapidly relaxes again = dynamic model

$ ® »
> S

\.§~ 2!.'

eIectronZ@ = Vg

"'\ /"' e _i .’

X
yp = @ electron 1 ‘
T Ny o - U .,

"' -— N/
| , +
- @ \

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

* important question: How fast relaxes positive charge cloud when electron moves through the lattice ?
e characteristic time scale t:

= frequency w, of lattice vibrations (phonons): T = 1/w,

> wq = 10*% — 10"3 1/s (maximum frequency: Debye frequency wp)
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4.1.1 Phonon Mediated Interaction

* resulting range of interaction (order of magnitude estimate)
- how far can a second electron be, to attracted by the positive space charge before it relaxes
- characteristic velocity of conduction electrons: vg =~ few 10® m/s

=» interaction range: vy - T = 106? 10713 s =~ 0.1 um (is related to GL coherence length)

e important fact:
- retarded reaction of slow ions results in large interaction range
=>» retarded interaction
- retarded interaction is essential for achieving attractive interaction
=» without any retardation: - short interaction range
- Coulomb repulsion between electrons dominates

* retarded interaction has been addressed during discussion of screening of phonons in metals
=>» retarded interaction potential:

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

kZ
~ 02(a) = 02 ts
Y Y Q%(q)) Qp(‘l) Qp(‘l)/ [1 + qzl
V(g w) = s = —< {1+ —
e(q, w)€pq €o(q* +k3) w? —Q5(q) g-dependent plasma frequency of
' Y J \ Y J the screened ions
screened Coulomb potential correction term is negative for
1/k, = Thomas-Fermi screening length w < ﬁp(q) —> overscreening
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=3 4.1.2 Cooper-Pairs

* Question: How can we formally describe the pairing interaction?
* starting point: free electrongasatT = 0 (all states occupied up to Er = h%k:/2m) k, 1 kp+ Ak
kl
* Gedanken experiment: if/ %
- add two further electrons, which can interact via the lattice >
- describe the interaction by exchange of virtual phonon K k;
virtual phonon: is generated and reabsorbed again within time At < 1/w, k,

* wave vectors of electrons after exchange of virtual phonon with wave vector q:

electron 1: k; = k; + q electron 2: k), =k, — q

* total momentum is conserved: K =Kk; +k, =k; +k;, =K’

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

* note: -since atT = 0 all states are occupied below Ef, additional states have to be at £ > Ef

- maximum phonon energy: hw, = hwp (Debye energy)
=» accessible energy interval: [Eg, Er + hwp]

=» interaction takes place in a spherical shell with radius kg and thickness Ak =~ mwp/hky

=» for given K only specific wave vectors K, K, are allowed for interaction process
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X 4.1.2 Cooper-Pairs

WMI

K:k1+k2>0 K:k1+k2:0

possible phase space for interaction possible phase space is complete spherical shell

* important conclusion: available phase space for interaction is maximum for K = 0 or equivalently k; = —k,

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

Cooper pairs with zero total momentum: (k, —K)

h2 k2 h2(k + Ak)?  h%(k2 + 2kpAk h2k:  h%kpAk _ Mmwp
F+fl = ( ) ~ (F F )= F_|_ F ‘ Ak—

wp hkl:.'

2m 2m 2m 2m m
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4.1.2 Cooper-Pairs

wave function of Cooper pairs and corresponding energy eigenvalues:

» two-particle wave function is chosen as product of two plane waves
Y(ry,ry) = a exp(iky - 1rp) exp(tky - 1p) = a exp(ik - r) withk=k; =-K,, r=r —r,
> since pair-correlated electrons are permanently scattered into new states in interval [kg, kg + Ak]
- pair wave function = superposition of product wave functions

kp+Ak with kg < k < kg + Ak,
. since restriction to energies Er < E < Er + hw
l/J(l'1,l'2) — Z ay elkl‘ F F D

k=kg |a |%: probability for realization of pair (k , —K)
* note:

» electron with k < kg cannot participate in interaction since all states are occupied

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

»> we will see later that superconductor overcomes this problem by rounding-off f(E) evenatT =0
— superconductor first have to pay (kinetic) energy for rounding-off f (E)
— energy is obtained back by pairing interaction (potential energy)

— net energy gain

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 4/RG 14



4.1.2 Cooper-Pairs

wave function of Cooper pairs and corresponding energy eigenvalues:

— we assume that pairing interaction only depends on relative coordinater =r; — r,

- . h?
— Schrodinger equation: — 5 (V12 4+ V22)¢(r1,r2) +V()Y(ry, 1) = EY(ry, rp)
— insert Y(ry,ry) = ’,ﬁ:{ék Ay e'®T multiply by e k' T and integrate over sample volume ()
kp+Ak kp+Ak kp+Ak

QO k=kF QO k=kF (¢} k=kp

0 for k#k’

— inteeration r sampl lume Q: —-Kk')- =
integration over sample volume jexp[l(k K')-r] dV {Q for k = k'

Q
kg+Ak kg+Ak kg+Ak

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

27,2
j hT: Z a, exp(ik - r) exp[—i(k" - r)|dV + f V(r) Z a, exp(ik - r) exp[—i(k" - r)|dV = f E Z a exp(ik - r) exp[—i(k" - r)|dV

21,2
fhnlf Z a; exp(iK - T) exp[—i(k’-r)]dV+jV(r) Z a; exp(ik - 1) exp[—i(K' - 1)] dV=fE Z a; exp(ik - 1) exp[—i(K' - )] dV

Q =k Q k=kg Q k=kg
\ Y J 1 f . '
212 kg+Ak ! T
T 0 > a [ V@ explitk— k)] av EqQ
m k,=kF

scattering integral
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4.1.2 Cooper-Pairs

— we use abbreviation

1 ' 1 , :
Ve = Vieyha = VK= K) = V(@) =& ] V(r) eIy = o f V(r) elardy withk; =k k; = -k, q=k—k
Q Q
— result
h?k? Rk problem:
E — Ay = Z ak/ kal .
m , ’ we have to know all matrix elementsVj j./!!!
k =kF )

— simplifying assumption to solve the problem:

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

-V, fork’ > kg k < kg + Ak
Voo = 0 F» F . _ mwp
kk { 0 else with Ak e
h2 2 gt Ok " kp+Ak
k' =kg E — (A*k*/m)

k'=kp
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4.1.2 Cooper-Pairs

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

www.wmi.badw.de

summing up over all k using )., ax = 2.,r a; Yyields:

kF+Ak kF-I-Ak k]::‘i'Ak

k:kF k=kF k kF

m

Z“"zVOZ(thz )Z“k’ — 1=VOZ h2k21

we introduce pair density of states D(E) = D(E)/2: sum = integral

with € =

D(Eg) J de h2k?
2e — E 2m

Superconductivity and Low Temperature Physics |

kg+Ak

& (B2 )

(D(E) = DOS for both spin directions)

Chapter 4/RG 17



4.1.2 Cooper-Pairs

— integration and resolving for E results in

fl(/)D

_ oD@ Y de . D(E) 1 Bpthop e _a
§ 1—VO 5 m—VO > ElanS—El wit fm—a n|ax+ |
- e B
: In|2Eg + 2A E| — In|2Ep — E| * 1 |2Er — ]
£ — = —E|—1In — S ——
VoD(Ep) AFETAROD F = VDG “2E + 2hop — E|
:
5 4 I2Es — E|
& -] = 2Eg + 2hwp — E| exp| ————=< | = |2Eg — E
: eXp( VOD(EF)> 2Ep + 2hwp — E| = |2k o~ £l p( VOD(EF)> 12Er — |
|2EE|[1 ( 1)]2h ( 1)
— —exp| ———=<]| = 2hwp exp| ————=<
.i exp <— V+@')) f P VOD(EF) P P VOD(EF)
E = 2Ep — 2hwp 0 4F
),
— for weak interaction VD (Ef) <« 1 we obtain:
4 » binding energy of Cooper pairs is X Aiwp (=2 isotope effect as wp « M~1/2))
E ~ 2Fr — 2hwpexp| —————= . :
VoD (EF) » as hwp K Egpandexp|— &S &< 1 =» binding energy is very small
0 F
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=3 4.1.2 Cooper-Pairs

— binding energy of Cooper pairs:

4 important result:

m) =>» energy of interacting electron pair is smaller than 2Eg

=>» bound pair state (Cooper pair)

=>» binding energy depends on V/; and maximum phonon energy hAwp

E ~ 2Er — 2hwp exp (—

Note 1:
» electrons with k < kg cannot participate in interactions as all states for E < Ef are occupied (no free scattering state)
» superconductor solves this problem by smearing out Fermi distribution evenatT = 0

» superconductor first has to pay kinetic energy to occupy state above Ef

» increase of kinetic energy is overcompensated by pairing energy (potential energy)

> total energy | reduced = condensation energy

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

Note 2:

» in Gedanken experiment we have considered only two additional electrons above Ef
» in real superconductor: interaction of all electrons in energy interval around Ex

» electron gas becomes instable against pairing

=>» instability causes transition into new ground state: BCS ground state

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 4/RG 19



—r—
s
=

WMI

=
[}
o
(oY}
[
<
(=}
o
o
e
=]
=4
-
(%]
[=
o
—
]
(=
=
[}
=
L
]
=
=
3
©
x
_
1]
=
<
©
c
©
w
w
o
—
(Y
o

4.1.2 Cooper-Pairs

estimate of the interaction range from the uncertainty relation

mwp Wp 1 43 : 6 13 -1 = - i
Ak = = > Ax=—=— with vg ~ 10° m/s and wp ~ 10-° s~ =» interaction range R ~ 100 nm
hkF Vg Ak wp

how many Cooper pairs do we find in volume gnR3 defined by interaction range

> electron density in metal: D(Eg)/V ~ 1028 eV~ 1m™3

4
_ N=10%%.0.1-=m(1077)3 ~ 10°
> relevant energy interval: Awp ~ 0.01 — 0.1 eV 3

=>» strong overlap of pairs

=>» formation of coherent many body state

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 4/RG 20



4.1.2 Cooper-Pairs

attactive interaction via exchange of virtual phonons: how does the matrix element Vy ./ = Vi, i, q 0ok like?

— pure Coulomb interaction

2 2

e e

V(q) — > = j e~ T d3, positive matrix element =» repulsive interaction
€09 drtegr

— screened Coulomb interaction

| €o(q? + ks) dmegr (ks = Thomas-Fermi wave number, kg ~ /a)

— screened Coulomb interaction in metals:

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

(0.©) g2 ( g2 ) 'ﬂ% (q) negative matrix element if e(q, w) < 0
V q’ w e e — . . .
e(q, w)€gq? €0(q2 + k2) 02 Qf,(q) =» attractive interaction
" \ 2
Thomas-Fermi-  g-dependent plasma frequency B2 (q) = 02 ks
. . p(q) - -Qp/ 1+ )
wave vector of screened ions in metal q
for small energy differences (Ex — Ej/)/h= w < ﬁp (q) of the participating electrons Q2 — n(Ze)*
- demoninator gets negative  =» attractive interaction P &M

~

=> cut-off frequency: w = (), ~ wp (Debye-Frequenz)
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4.1.3 Symmetry of Pair Wavefunction

e

What is the symmetry of the pair wavefunction?

— important: pair consistst of two fermions = total wavefunction must be antisymmetric: minus sign for particle exchange

1 i KR RS=(I‘1+I‘2)/2
‘P(rl, 01, I, GZ) =——=€ s f(k: I‘) X(O-ll 0-2) = —LI—’(I‘Z, 02,I'1,01 )

\/7 ‘ ' r=(r; —ry)
Ks = (k1 + kz)/2

Y T 1
center of mass motion orbital  spin

we assume K, =0 part part k =(ky —ky)

— possible spin wavefunctions y(o4, 0, ) for electron pairs

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

,
0 mg=0 x% = i (=11 —>singlet pairing, antisymmetric spin wavefunction
, . V2 symmetric orbital function:
S — -1 ' =U L=0,2..(sd,...)
1 mg= {0 yx°= i (TL+LT) —>triplet pairing, symmetric spin wavefunction
. V2 antisymmetric orbital function:
\ t1 ¥ =m L=13,..(p,f ..)
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4.1.3 Symmetry of Pair Wavefunction

What is the symmetry of the pair wavefunction?

Singlet-Pairing L=024,.. symmetric orbital wavefunction

§ » metallic superconductors:
: . . S=0,L=0
g » high temperature (cuprate)
3 - - superconductors:
; S=0,L=2
E ' . > suprafluid 3He:
5 S=1L=1
L=0 L=1 L=2:
s-wave p-wave d-wave
superconductor superconductor superconductor
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4.1.3 Symmetry of Pair Wavefunction

» isotropic interaction: Vi ,r = =V

- interaction only depends on |K|
- in agreement with angular momentum L = 0 (s — wave superconductor)

— corresponding spin wavefunction must by antisymmetric

—> spin singlet Cooper pairs (S = 0)

— resulting Cooper pair: [ (kT,-k\l) spin singlet Cooper pair (L =0,5S =0) ]

- L = 0,5 = 0 isrealized in metallic superconductors (s —wave superconductor)
- higher orbital momentum wavefunction in cuprate superconductors (HTS):
L=2,5=0 (d-wavesuperconductor)

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

» spin triplet Cooper pairs (S = 1):
- realized in superfluid3He: L = 1,S =1 (p— wave pairing)
- evidence for L = 1,5 = 1 also for some heavy Fermion superconductors (e.g. UPt;)

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 4/RG 24



4.1.3 Symmetry of Pair Wavefunction

L=0,5=0 L=2,5=0
,E’é A(k) - kex A(K) = == (cosk a— cosk,a)

Superconductivity gets an iron boost
lgor |. Mazin
Nature 464, 183-186(11 March 2010)
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http://www.nature.com/nature/journal/v464/n7286/full/nature08914.html

4.1.3 Symmetry of Pair Wavefunction

Example: iron-based superconductors — iron pnictides

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

www.wmi.badw.de

pnictogens (As, P)

Super-
conducting

Paramagnetic

Temperature

Antiferro-
magnetic

Hole

o)

o

Doping
fraction

a. s-wave, e.g. in aluminium

d-wave, e.g. in copper oxides

Electron

an s,-wave, e.g. in iron-based SC

Paramagnetic

Phase separation

Super-
conducting /

Hole

Temperature
A

Coexistence

Antiferro-
magnetic

Doping Electron

fraction

two-band s-wave with the same sign, e.g. in MgB,

Superconductivity and Low Temperature Physics |
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4.1.3 Symmetry of Pair Wavefunction

Example: UPt,

f-wave (E, ) Cooper pair wavefunction

= hase diagram . ; .

S i 2 2 in three-dimensional momentum space
o D A T e e S S S S T I

(=] -

% Normal phase B

£ phase A
F

<

2

: 3

= g

© -

> 2

g ®

; g

: =

3

&

o

0 0.1 0.2 0.3 0.4 0.5 0.6
Temperature (K)

Michael R. Norman, Science 332, 196-200 (2011)
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* microscopic theory of superconductivity

— problem: (i) high kinetic energy of conduction electrons: Ey;, ~ eV (correspondingto T ~ 10 000 K)

(ii) small interaction strength: Ej,,; ~ meV (correspondingto T ~ 10 K)
=>» find interaction resulting in ordering of conduction electrons despite high Ey;,

— Cooper (1956): even weak attractive interaction results in instability of free electron gas
- pair formation: Cooper pairs

— general description of interaction by Feynman diagram:
- which exchange boson results in atractive interaction of conduction electrons?
- many candidates: phonon, magnon, polariton, plasmon, polaron, bipolaron, ....

* jsotope effect as ,,smoking gun“ experiment (1951/1952)

— transition temperature of different isotopes: T, < 1/VM
- as phonon frequency wpp < 1/VM D T, < wyy,
strong evidence for attractive interaction by exchange of virtuell phonons

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

 BCS-Theorie (1957)

— qualitative discussion of attractive interaction: slow reaction of positive ions
- retarded interaction

— estimate of interaction range R =~ vgt = vg/wp (wp = Debye frequency) ~N

=== @ electron1

vg = 10°m/s, wp = 10*3s™1 & R ~ 100 nm v
— R > interaction range of screened Coulomb interaction of conduction electrons

www.wmi.badw.de

2 Sn
ossof 8
0,
0575t e .
* o8 T~ 1M
:‘ ¥ O Maxwell “o‘,.-"
E‘ S Q Locketal 0.
Q Serinetal /2
0.565 + *
8o
0.56 L !
2.06 2.07 7.08 2.09
log (M / bel. Einh.)
b) O © @
1
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LA ‘@ L% )
. + e +
‘ electron@ ]
A o .
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Summary of Lecture No. 7 (2)

* attractive electron-electron interaction

— attractive interaction via lattice vibrations (exchange of virtual phonons: Fréhlich, Bardeen)

>

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

www.wmi.badw.de

— scattering matrix element (i) pure Coulomb interaction: V(q) =

2

(ii) screened Coulomb interaction:  V(q, w) =

» forEy — E,v = hw < hQl,(q) of involved electrons: denominator becomes negative

- negative matrix element - attractive interaction

~

cut-off frequency: w = (1, = wp (Debye frequency)

* Cooper pairs

»Gedanken” experiment:
we add 2 additional electrons to Fermi sea at T = 0 and let them interact via
exchange of phonons with wave number g

scattering process: electron 1: k; ki =k;+q
electron 2: k, >k, =k, — q
total momentum: K=k; +k;, =k; +Kk; =K’

only states with E > Ef are accessible due to full Fermi sea

as wpp < wp, interaction takes place in energy interval [Ef, Er + hiwp] corresponding to kg < k < kg +

2
€oq

e? B e? ) 14 0% (q)
e(q ®)eoq®  \ki +q? w? = 0@

Thomas-Fermi-
wave vector

(always positive = repulsive interaction)

)

q-dep. plasma frequency of
screened ions in metal

mawp
hkp

conservation of total momentum - wave vectors of scattering electron must be within cut surface of two intersecting circular rings of thickness Ak

-> maximum cut surface (phase space) is obtained for K = 0 or k; = -k,

=> Cooper pairs (k, —K)

Superconductivity and Low Temperature Physics |
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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Summary of Lecture No. 7 (3)

Cooper pair interaction

kp+Ak
— Ansatz: pair wave function = superposition of product wave functions: W¥(ry, 1) = Z a exp(ik - r)

k=k

s : h? F
— Schrédinger equation: —%(Vf + VZZ) W(r, 1)+ V() ¥(r,r,) = E ¥Y(r,r,)

. _ V=V, fork' > kg k < kg + Ak . __ mwp
— Vereinfachung: Vkk' = { 0 else with Ak = e

1 . .
— total energy: E =~ 2Fr — 2hwpexp| ————— for weak interaction: VoD (Ef) < 1)
VoD (Eg)

— uncertainty relation: Ak Ax > 1 = Ax < A—lk = :)—F ~ 100 nm
D

symmetry of the pair wave function
— two fermions - total wave function must be antisymmetric

§
0 ms=0 x* :F(N N singlet pairing
Singlet Pairing L=024,. 1 S =1
1
___ D (R
x° \/E( ) triplet pairing
\ +1 yS=1

binding energy:
E — 2Eg < hwp (phonon energy)

— examples: metalic superconductors: S = 0, L = 0, high-temperature cuprate superconductors: S = 0, L = 2, superfluid3He: S =1, L =1
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Chapter 4

4. Microscopic Theory

4.1 Attractive Electron-Electron Interaction

4.1.1 Phonon Mediated Interaction

4.1.2 Cooper Pairs

4.1.3 Symmetry of Pair Wavefunction

BCS Ground State

4.2.1 The BCS Gap Equation

4.2.2 Ground State Energy

4.2.3 Bogoliubov-Valatin Transformation and Quasiparticle Excitations
4.3 Thermodynamic Quantities

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
:h
N

4.4 Determination of the Energy Gap
4.4.1 Specific Heat
4.4.2 Tunneling Spectroscopy
4.5 Coherence Effects
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% 4.2 The BCS Ground State

* discussed so far:
> nature of the attractive interaction

» attractive interaction of conduction electrons by exchange of virtual phonons (only two electrons added to Fermi sea)
=>» pair formation: Cooper pair

» symmetry of the pair wave function

* not yet discussed:
» How does the ground state of the total electron system look like?

» What is the ground state energy?

° we expect:

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

» pairing mechanism goes on until the Fermi sea has changed significantly
» if pairing energy goes to zero, pairing process will stop

> detailed theoretical description is complicated =2 we discuss only basics
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4.2 The BCS Ground State

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

« 2" quantization formalism is useful to describe quantum many-body systems

e guantum many-body states are represented in the so-called Fock (humber) state basis

- Fock states are constructed by filling up each single-particle state with a certain number of identical particles
« 2" quantization formalism introduces the creation and annihilation operators to construct and handle the Fock states

« 2" quantization formalism is also known as the canonical quantization in quantum field theory, in which the fields are
upgraded to field operators

- analogous to 1%t quantization, where the physical quantities are upgraded to operators

conduction electrons can be described by wave pakets

introduction of field operators (2" quantization of a wave function)

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

- 1 s
P (r) = — z bo €5 (= (K =G =— Y P, et annihilation operator
J( ) V = ko U( ) ko \/7 = 7 (destroys state with wave number k)
_ 1 1 - .
PTpr) = — Z of a—ikr — Tk =l = — Z Pl okr creation operator
J( ) \/7 = ko G( ) ko \/7 = d (ceates state with wave number K)
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4.2 The BCS Ground State

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

basic relations (fermionic operators):

10y = 1) Cko]0) =0 o 11y =0 Cko|1) = 10)

6;;661“, = Nig Ekaﬁf;f =1—-1ny, (0|ngs|0)=0; (1|nks|1) =1 particle number operator
el el =0 Chotio = 0 Pauli exclusion principl
CroCho Cko Cko auli exclusion principle

anti-commutation relations (fermions):

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)
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4.2 The BCS Ground State

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

pair creation and annihilation operators:

Pl:r = E;ET&ikl pair creation operator P, =¢C_g, €t pairannihilation operator

[P Prr] = i1 & @@ C_kr 1€t Gr = 0 > some of the commutator relations of the pair

W ‘ operators are similar to those of bosons,
although the pair operators consist only of
electron (fermionic) operators

- > [Pk, PJ] # 0 but not equal to &,/ as

o+ oF ] At At At ot At At AF At expected for bosons, depends on kand T
P Prer | = CaCoiai b€y = Gy G = 0

the last two operators of the first term on the r.h.s. can be moved to
the front by an even number of permutations = sign is preserved

] _ =» pair operators do commute but are no
Py, Pljr = 5kk’(1 — Nt — n—k’i) (see next slide) bosonic operators

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

powers of pair operators

tpt — (pt)% _ at t _ _atatat At _
PaPy = (P) =70 @ —kl _\CkTCka—le—k}l =0
=0 0
antisymmetry of fermionic wavefunction requires that powers of the pair operators disappear
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4.2 The BCS Ground State

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

pair creation and annihilation operators:

1 _ A o~ At At ot af o 4
[Pk,Pk] _C—lekTCk'TC—k’l k’T k'lc—lekT

= C—kl (1 — Ck'TCkT) C—k’l — C—k’lc—klck’TCkT
= ( k'TCkT) C le_in —k’lc—klck’TCkT
= ( k’TCkT) (1 — C—kIlC—kl) — C—k’lc—klck’TCkT

= O’ (1 — ) (1 —ny) — N My

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

[Prc Plj] = Oy’ (1 — nger — n_iy)
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4.2 The BCS Ground State

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

BCS Hamiltonian for N interacting electrons

Hycs = zz (——v2 + Vext(r)> Y Z Vine(ri = 17)

o L,j=1 y

spin klnetlc potentlal mteractlon
energy energy energy

insertion of field operators and intergation over volume =» FT of Hycg into k-space
(see R. Gross, A. Marx, ,Festkorperphysik®, 3. Auflage, appendix H.2)

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

h?k?
€k = ) Vext(r) =0
:]_[ —_ ’\-l- A V Zm
BCS — Ekao_Ck 2 Ck1+q,01 Ckz —q,02 CkZ %) kl 01 1
k kq Kk —— :
o ’ 01102 1,K2,q , Vg = 0 f V(r)e'9TdV
Y Y Q
1 . .
energy of non-interacting interaction energy factor 7 avoids double counting

free electron gas
operator describes scattering from state

(kq, 07 ;K,,0,) into (K; + q, 07 ; K, —q, 0,) by exchange of phonon with wave vector q
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4.2 The BCS Ground State

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

BCS Hamiltonian for N interacting electrons
simplification of interaction term for pairs with k; = k, k; = =K, 01 =1, 0, =l and Vj = V» withq =k — K’

N

2 Z Z Ck1+q’01Cl-|;2 ~q,0; k2;0'2 Ckl,al = z Vk K’ C;;TCTle k’iCk’T summation over spin yields factor 2

01,02 kl,kz,q y \ .l_ J\ Yy
Pk Pk’

two particle interaction potential

pair creation and annihilation operators

)  Hpes = Z Z EkaaCka + Z Vi’ € CkTC 1k C k1S

k k'

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

often the energy is given with respect to chemical potential u

hZZ

:l is replaced by &, = ¢, —

9€k=
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4.2 The BCS Ground State

basic definitions, abreviations, assumptions, ....

—Vo  for [&kl, [€xr] < hwp
0 else

1. weak isotropic interaction: ¥, ./ ={ VoD(Ep) < 1

2. pairing (Gorkov) amplitude: Gko,0, = (C—kalckaz) # 0

+ (- ) = statistical average
'gk0102 = <C—kalckaz> # 0

3. Pauli principle: pairing amplitude is antisymmetric for interchanging spins and wave vector:
gk0'10'2 = _g—k0'20'1
4. spin part allows to distinguish between singlet and triplet pairing:

S =

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

{0 mg =10 singlet pairing
1 mg=-10,+1 tripletpairing

5. pairing potential: _ E :
p g p AkO'lo'z - Vk,k’gk’O']_O'Z
kl

statistical average of pairing interaction
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4.2 The BCS Ground State

calculation of the ground state energy

h2K?
* Hamilton operator: Hg.s = z z £k Ckacka + z Vik! cchTklc 1/ 1C/ 7 & = =&t u
kK’
H_J

Ny = particle number operator

* how to solve the Schrédinger equation ?

- most general form of N-electron wave function: # of possibilities to place
N /2 particles on M sites:

_ At At At At !

|Wy) = Z g(k;, ..., k) Cie1C g1 = CinCigy |0) M

/ [M — (/2] (N/2)!

= mean field approach: occupation probability of state k only depends only on average occupation probability of other states

problem: huge number of possible realizations, typically 1020%

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

- Bardeen, Cooper and Schrieffer used the following Ansatz (mean-field approach):

|uy |?: probability that pair state (k T, =K 1) is empty
|vi|?: probability that pair state (k T, —k 1) is occupied
lugl® + lvgl? = 1

|Wscs) = 1_[ (uk + Vkem kl) 10)
k=Ko, .. Ky
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4.2 The BCS Ground State

How to guess the BCS many particle wavefunction?

|Wees) = 1_[ (uk + vkcch kl) |0) wave function assumed by Bardeen, Cooper and Schrieffer
k=Kq,...Kp

=> assume that the macroscopic wave function W(r, t) = Y, (r, t)e?(™8 can be described by a
coherent many particle state of fermions (motivated by strong overlap of Cooper pairs)

* coherent state of bosons

discussed first by Erwin Schrédinger in 1926 when searching for a state of the quantum mechanical harmonic
oscillator approximating best the behavior of a classical harmonic oscillator

E. Schrodinger, Der stetige Ubergang von der Mikro- zur Makromechanik, Die Naturwissenschaften 14, 664-666 (1926).

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

transferred later by Roy J. Glauber to Fock state
R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131, 2766-2788 (1963).

Nobel Prize in Physics 2005 "for his contribution to the quantum theory of optical coherence", with the other half shared by John L. Hall
and Theodor W. Hansch.
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4.2 The BCS Ground State

* Fock state representation of coherent state of bosons

coherent state |a) is expressed as an infinite linear combination of number (Fock) states

I6n) = 7 (a)" 10)

boson creation operator/ N\ vacuum state
(00) (00) n
a™ aal
la) = e~lal*/2 z \/——' |pn) = e~lal®/2 z q |0) = e"“'z/ze(““+)|0) Schrodinger (1926)
n.
n=0 n. n=0
normalization a = |ale? is complex number

probability for occupation of n particles is given by Poisson distribution

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

2 |a|2n _|a|2
P(n) = |(gnla)|? = ——e
- expectation value of number operator: N =|al?, AN =|a|=+vN > 1
- relative standard deviation: AV _ L K1 (as N > 1)
N VN
- uncertainty relation AN Ap > %, Ap <1

application: coherent photonic state generated by laser
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4.2 The BCS Ground State

e Poisson distribution

=
8 |a|?™ 2 A
S P(n) = a)|? = ——e"lal =
: () = Knla® =— g
s 5 o™
Tg 0.15 o NZ |a|2 ={10} /&
g 20 v
z >
-GCJ E i 1 1
s S 0.1 - -1 0 1 2 3
© o
: 2 n/<n>
S (a8
<
0.05 o
:
0
0 5 10 15 20 25 30
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4.2 The BCS Ground State

2n
* Poisson and normal distribution | paY)
P(n) = [(ppla)|? = la]

e

e
n!
D_D'El ! ] ! ] ! ] ! ! ] ] !

- Poisson Distribution

Mormal Distribution

0.05
for large N = |a|? the Poisson
distribution apporaches the normal
(Gaussian) distribution: 0.04

R VAY
PN(") — 1 exp <_ M)

2N 2N

0.03 - N =

Probability

0.02

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4.2 The BCS Ground State

* Fock state representation of coherent state of fermions

starting point: coherent bosonic state la) = e—lal?/2 exp(aa*) |0)
. .. summation over K since we have
in analogy: coherent fermionic state |Wgcs) = ¢q exp (Z i PJ) |0) many fermionic modes

Kk

» we make use of the fact that higher powers of fermionic creation operators disappear
due to Pauli principle (key difference to bosonic system):

tpt _ (pt)% — at at At ot _ _at at ot At
PePy = (Pg) =l ety = —tttl el =

I:> |Wgcs) = ¢q exp <Z ak PJ) |0) = ¢4 Hexp(ak Pl:r) |0) = ¢4 1_[(1 + ay PlD |0)
k

k k

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

normalization: (¥Yj.s|Wgcs) = c12<0| M(1 + ag P )(1+ a P |0> =1 satisfied if all factors = 1

1
INGEII D)

1= c12<0|(1 + oy P )(1+ o PJ)|O> =1+ |gld) =) a
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. 4.2 The BCS Ground State

* BCS ground state as coherent state of fermions

1_[(1 + ay Pl |0)

|Wecs) = ¢1 1_[(1 + ay BY) 10) =
k

g Ja+ | a® 1,

L

.:i Uk =

: AA (1 + [axl?)

g |:> |WBcs) = H(uk + el et ) 10) \/ K \ coherence factors
& a

% . Vk = k

£ VA + agl?)

=

° coherent superposition of pair states = only average pair number is fixed
% AN =+/N » 1 AV _ L« ANAp == = Ap <1

° = - = -
71NN v T R

=>» uncertainties AN/N and A@/2m are very small for large average pair numer N

|uy |?: probability that pair state (k T, —k 1) is empty
uy and vy are complex probability amplitudes: |1 |?: probability that pair state (k T, —k |) is occupied

lu|? + | = 1
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4.2 The BCS Ground State

we use the identities:
(0p|W) = (p|oTw)
- (¢|(AB)T|¥) = (¢|BTAT|¥)

* some expectation values (1): |Wecs) = 1_[ (w + viceliety,) 10)
k=k4,... Ky

single spin particle number _
(see exercise sheets

(ngr) = <‘P3cs|el@m|‘1’3cs> for detailed derivation)

_ A~ A \at A At At A A At At
= <O| (ul*( + vﬁc_klcm) ClnCier (i + Vi€l ) X Tl (uf + vl*c—liClT) (w + weyely) |0>

\ J
Y

lwl? + nl? =1

(Nkr) = lugl <0|cchkT|O> + U vk <O|cchchch_kl|O> + vuk <0|C_k¢cchchkT|0> + vkl <O|c_klcchchchch_kl|O>
=0 =0 =0 =1
since ny;|0) = 0]0)  use even number of permutations use anti-commutator
to transform into terms ny;|0) = 0/0) {61«; ’elt’a’} = SOy

(Nger) = |vye|?

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

average total pair number

N = (W)= (o) = ) Il =2 ) Ind? = ) Ionl? = gl +1
ko ko k k
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4.2 The BCS Ground State

e some expectation values (2). (see exercise sheets for

- . , detailed derivation)
statistical fluctuation of averge particle number

AN = (N — (W) = (W) — (V)2 N =)= (o) = ) Ind? =2 ) Inl?

AN=J4Z|uk|2|vk|2 « N
k

note that ). & volume « N, as sum over K values in specific energy interval scales with volume at
constant particle density

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

AN gets very large for large N, but relative fluctuation AN /N becomes vanishingly small
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4.2 The BCS Ground State

* some expectation values (3): (see exercise sheets for

detailed derivation
pairing or Gorkov amplitude )

Ikoi0, = (LPBCS|C—k01Ck62|lPBCS) = ukvl’:

I bt _ s
Ixo, o, <LPBCS|C—ko-1Cko-2|LpBCS> = UgVk

BCS Hamiltonian  #acs = ) D &6, + ) Ve e 1 018y
o k kK’

o _
<LPBCS CkaCka|qJBcs> = vy |?

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

/\'[' /\'l' A A _ * *
<LPBCS CkTC—le—k’le’T|LpBCS> = vk vk/uk/uk

(Wecs|Hpes|Waes) = 2 Z aelvil® + Z Viek! Vi Vior Uge! Ugc
K KK/

=N & interaction energy
(kinetic energy)
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4.2 The BCS Ground State

task: find the minimum of the expectation value (Wgcs|H gcs|Wres) by variational method (T = 0)

we take the energy relative to the chemical potential u

(Egcs — NV 1) = (Waes|Hpes — NV 14 [Waes) = 22(51( + ) [vge|* = N+ z Viek! Vi Vger Ui/ Uig
k! N = ZZWklZ

(Egcs — N 1) = (Wges|Hpes — NV 1t [Wpes) = ZZ Ex |vil® = N+ N+ z Viek! Vk Vye! i Uk
k!

{ ka Vg | +2ka’vk vk’uk’uk} 0

kK’

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

minimization of expectation value by variation of the probability amplitudes yields
expressions for |uy|? and |y |?
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4.2 The BCS Ground State

Method 1: we assume that uy and vy are real and satisfy |u|? + |vk|? = 1 (Bardeen, Cooper, Schrieffer: 1957)

Ui = Sin by, Vx = cos Oy, and 2 sin 0 cos By = sin 20y

_ 1
(Egcs — N p) =2 Z & lvkl* + Z Viek! Vi Vper Ug U = 2 Z & cos? By + ZZ Viex! Sin 26y sin 26,
k kK’ k Kk’

minimization 9{Epcs — N ) =0
26,
0(Egcs — N 10
{Epcs “ =0 =2&(—2cosbysinby) + ——Z sin 291(2 Vi k' SIn 260,/
06, ) 406, ’
=—sin 26, k k'

%(2 cos 26)) Zk’ Vik! Sin 260, r+3, sin 20,V 2 cos 26)

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

1
2§ sin 20) = > cos 26, Z Wik’ sin 260y + Z sin 26y Vx| = cos 26, 2 Wik’ Sin 26y
kl k kl

Vl,k’ =Vk|

Y V1’ sin 8y cos 6y

Sk

tan 20, =
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4.2 The BCS Ground State

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

we switch back to old summation (I = K) and restore uy = sin 8y, vx = cos :

Yoot Vi iUy 1 Uy r
) tan2f, = =~ K X

Sk
. Ay
we further use the pairing strength Ay = — Z Vick! Uk’ Vi’ |:> tan 20y = ——
= $k
. sin 20k 2 sin By cos Oy 2UR VK . 2Uy Vg Ay
with tan 26y = = = W in |::> —_— =
th tan 26, cos 20k cos? B — sin? Gk UR2—VK? @ obta U2 — Vg2 &k

1.1 11
5+5C€0s 20K 5—5 cos 20y

we define £, = ’fﬁ +A12{ and obtain the f.ol!ovyl.ng expressions . _1 . i o é
for ug and v minimizing the energy |uk| -3 + E |Vk| ~— 5 E
k k

for k-independent Ag: minimum energy is Ex, = A - AR A=—DT ,i

. . . . UkVk = 9x = 5@ K kK 2By
we will see later that Ej is the energy required to add a single k Kk’
excitation to the ground state
=» minimum excitation energy is required, therefore A pairing amplitude self-consistent gap equation

represents an energy gap in the excitation spectrum
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. 4.2 The BCS Ground State

1] &l

2 =—_[14+2=

|uk| 5 Ek_

1] &]

2 _ 1 —2=

|Uk| 5 Ek_
A

UkVk = gk = -

2Ey

|vic|?: probability that K is occupied

- probability |v|? is smeared out
around Fermi level even at T = 0:
increase of kinetic energy

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

— smearing is required to allow for
pairing interaction:

reduction of potential energy >
increase of kinetic energy

> w2 = F(T =T)
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4.2 The BCS Ground State

Method 2: we use the method of Lagrangian multipliers
» we use the following two constraints: 1 =0=(N)— zz|vk|2 = (V) — Z"’k'z — Jugl? + 1
K K
¢z =0 = Jug|® + |vg|® — 1 = weug + vvg — 1
L(uy, Uy, A1, A2) = (Egcs) — A1p1 — A, ¢, A1, A,: Lagrangian multipliers
Wlth (EBCS) = sz &k |Uk|2 + Zk,k, Vk,k, vk U;Iuklu,ii = sz &k (|Uk|2 - |uk|2 + 1) + Zk,k, Vk,k, vk vl:IukIul:

* by setting the partial derivative of the Lagrangian function £ with respect to uy, andvy, to zero we obtain the eigenvalue egns:

(ex — A )ug + Ak — Ayug = 0 — ((Ek — ) Ag > (uk) _ 3 (uk) with Ay = — X Ve’ 9x!
— 12

Af{uk — (Sk — /11)1]]( — szk =0 Ai _(Sk _ 2~1) Vk Uk == Zk’ Vk,k'uk'vk’

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

* physical meaning of the Lagrangian multipliers i. A, shifts the energy and corresponds the the chemical potential u
ii. A, corresponds to the eigenvalue of the the vector (uy, vk) and is given by
the energy *Ej of the quasiparticles excited out of the condensate

* solving the eigenvalue eqns yields Ey, = /flf + A%, |wl? = %ll + %], vk |? = %ll — % , UgUg = gk = Sk
k k

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 4/RG 61



4.2.1 The BCS Gap Equation

Ak’ Ak’
= A = _Z View! 2E - _Z Vew! 2 cannot be solved analytically in the general case
] K \/Ek’ + ||
-;; * simple solution only if the gap Ay and the interaction potential V) js are assumed K-independent: Ay = A, Vy r = =V
g . . . . fLO)D
S 1 transforming sum into integration V D(E
g 1=V, z [ > ——— ( o) f = >
2 ) /Eﬁ, + |A? with pair density D(E) = D(Eg)/2 2§+ |A|
2
©
x . dx . x .
g with fm =arcsinh (a) we obtain
<
-rgc +hwp
3 VoD(EF) VoD(EF) ., [hwp _ VoD(Er) . (hwp
s = = = 2 arcsinh [ — = > arcsinh A
X §4+ |A| —hap
hwp energy gap corresponds to binding energy estimated for single Cooper pair
|:> = ~ e—2/VoD(EF)
Sinh(z/VoD(EF)) factor 2 in argument of exp. function since we have assumed that the two additional electrons
are in the [Ex, Ep + hwp] and not between [Er — hwp, Ef + hwp]

VoD (ER) < 1: weak coupling approximation, sinh x ~ %expx
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4.2.2 Ground State Energy

calculation of the BCS condensation energy

* calculate expectation value of BCS Hamiltonian forT = 0

Epcs = (Wrcs|Hpes — UV [Wres) = 2 z Exlvkl® + z Viek! Vk Vg Ui’ U energy relative to chemical potential
i k! Sk =&k~ M

* we plug in the results for the coherence factors and the pair amplitude

1 £ 1 £ N . AL . A _ Ay
|u|® =5l1 +E—ﬂ, vk |® =§l1—E—t ,  UgVk = Gk =2—Ekk, UKVk = Ik =ﬁ Ak=—sz,k’fk,
k’
£ z Ex = & + 4%
EBCS—Z fk—E— —Z fZAk—Z fk—E— —229§Ak+zgkAk
K k K K
— Y A2/2Ey

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

Egcs = z(fk — Ey) + z Jo WAV
X X
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4.2.2 Ground State Energy

» for simplicity we assume for Vy v = =V, and Ag = A)

Egcs = (Wpes|Hpes — NulWpes) = Z{fk — Ex + gyA}
K

* subtract mean energy of normal state at T = 0 (making use of symmetry around u)

(Weesl|Hn — Nu|Wges) = E_%(qucsl}[BCS — Nul|Wges) = Z Sk — &kl = 2 Z ¢k
K IK[<kp

AE = z Sx — Ex + A gy — 28 + Z Sk — Ex + A gy
|K|<kg |k|zkg

e weuse =&, = |&] for |k| < kg and Ey = /Eﬁ + |A|?
AE =2 z (fk— /51% + |A|? +Agf;>

|k|=2Kkp + A?

S e
2 &R +1Al?

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

2
|k

|=

AZ
Sk — /fﬁ + [A]2 +
kr 2 /fﬁ + |A?
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

www.wmi.badw.de

4.2.2 Ground State Energy

|k|zk§

AZ
AE =2 z & — /f§+IAI2+
2 /fﬁ + |A|?

replace summation by integration ....... after some algebra (see appendix H.3 in R. Gross, A. Marx, Festkorperphysik, 3. Auflage, de Gruyter (2018)):
1 . :
AE = Ezynq(0) = -2 D(Eg) A%(0) D(Eg) = DOS for both spin directions
interpretation of the result: » number of Cooper pairs: @ A(0)
» average energy gain per Cooper pair: — @

« compareto gs — gn = Econd(0) = —BZ4,(0)/2, (thermodynamics)

D(Er)AZ(0
= 0= [BEEO
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4.2.2 Ground State Energy

* condensation energy per volume:

Econd(o) . _1 D(EF)
v 4 vV

A2(0) = — = N(Eg) A2(0)
4

with N (Eg) = 23—; and ﬁ;‘;) =~ = 1.7638 ... we obtain

Econd(o) _ _E nAZ(O)
Vv 8 Er

eV

— _1.167
Er "TE;

% (ﬂ )2 (kgT.)? (kgT.)?

=> average condensation energy per electron is of the order of (kgT,.)?/Ex

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

=> plausibility:
only a small fraction kgT,/ER of the electrons is participating in pairing process and
the average energy reduction per electron is about kgT,
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4.2.3 The Bogoliubov-Valatin Transformation

* so far we have found the BCS ground state wave function and the energy gap at zero temperature

* next step:

* determine the properties of the superconducting state at finite temperature

* determine the energy of excitations out of the ground state

* how to proceed?
* use BCS ground state as reference state

* discuss effect of small deviations (e.g. by adding a small number of excitations to the ground state)

* we use the identities (with gy, § gy being small)

A

C_kiCkr = <C—kiCkT> + C_g 1 Ckr — <C—lekT>

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

Iko, 0, = (C—kalckcz) #0

56 : . :
Ik Ik with pairing amplitude:
o[t
At At _ [at At At At At At 010 01%ka;
CrrCopl = <CkTC—ki> T CCop — <CkTC—kl>
i 89

as the particle number is usually very large, the fluctuations §gy, 6 gy are very small and we can neglect quadratic terms in §gy, 0 gk
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4.2.3 The Bogoliubov-Valatin Transformation

* rewriting of pair creation and annihilation operatorsin  Hgcs = ZZ ek & Gy + Z Vi &€T 1 8, Ern

kK’
= C_juC =<C_ C >+c_ C —<c_ C > _
g ki Ck? k'l kT ki Ck? ' ki Ck1 koo, = (Coo, ko) # 0
o Ik 89k pairing amplitude:
S s [t
. t ot t At t At t At Sl ap = <C_k61Ck02> #0
s CrrCokl = <CkTC ki> T CyrCogl <CkTC kl>
: ar Sgy,
«@
2
5 ()
= * insert into Hamiltonian and consider only terms linear in 6 g,
=
©
5 Hpes —Nu = z Sk Mg T z Vik! [gkc—k’lck’T T G CkrCogL — gkgk’]
< Ko k'’
; . . — * — *
8 * make use of pair potential  Ags4, = — Z Vik' 9K’ 6,0, Moo, = — z Vik' 9K/ o0,
o Kk’ [

I:> }[BCS — N‘Ll = z Ek nk(, — z [Akc k’lck’T + Ak CkTC ki Ak gk]
k,o

k
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4.2.3 The Bogoliubov-Valatin Transformation

* Wweuse z Sk Nig = z Sk (CopCip + Ty
k k —1_pn af
? =1-CpiCgy
_ At A A A _ - f ot .
Z ¢k Mg = Z fkc]-!;TCkT — EkC_leiki + & Hyes — Nu = Z Sk ko — z [AkC_k’lck’T + A CpCyy — B gk]
ko k
k,o k '

':> Hpes = Nu = Z {fk + Ak gk + (éltT 'e—kl) < o —Ak> <AC+kT )}
k

_A; —S$k C_ ki

=>» due to finite Ay, A, the Hamiltonian describes interacting electron gas with new
qguasiparticles consisting of superposition of electron and hole states

» derive excitation energies by diagonalization of Hamiltonian

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

- Bogoliubov-Valatin transformation

—> define new fermionic operators ay, ,817; and af:, Pk by unitary transformation (rotation)

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 4/RG 69



4.2.3 The Bogoliubov-Valatin Transformation

e use unitarian matrix to rotate the energy matrix into eigenbasis of Bogoliubov quasiparticles

* ~ ~ —A ekT
}[BCS—NII=2 fk'l'Akgk'l'(CltT»C—kl)(fX* k)(q )
K —r— 1 7Kk K/ \Clyy
Ck g'k

\/Vck
spinors

energy matrix

}[BCS - ]\f,u = 2 Ek + Ak gi: + (;’f:’dk Uf; gk Uk U;:C’;{r = Z{fk + Ak gi: + Bl—l(-ékBk } ‘ukful'l; =1
k Bl &k By k
: : N : t_ (,F _ pt _ Ty = q/t
spinors of Bogoliubov quasiparticle operators: B, = (a,,, f_i) = C Uy By = (ay,Bly) = UiCk

appropriate unitary matrix to make transformed energy matrix £, = u{g Ek Uy diagonal:

o w vk ¥ Uy —Uy :> ¥ " ( Ex Dy ) choose uy and vy such that
U = * f— k k = =
. < > u <vk Uk ) e &1 e = &k —Dy —Eg/ off-diagonal terms vanish

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

. E 0 a : :
I:> Hges — Nu = Z {gk + A, gy + (al”g_k) ( Ok _Ek) (ﬁl; )} eigenenergies T Ey
m —k
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4.2.3 The Bogoliubov-Valatin Transformation

AT\
u el ¥ C _ *A A"'
= (a, p_y) = Gl Uy = ULCH = (af, ) = <V11: u;;k) (A m> T =05 G = % Bl
C A A
*x ok & a, = uk’ém — vke—kl
B, =(a,BT)=1ulc o gt ) = [Ye V|| Gk k
k = (@, BL) = UGy = (ax.p) ALY Bk = Vil + wity

creation and annihilation operators for Bogoliubov quasiparticles: symmetric and anti-
symmetric superposition of electron and hole states with opposite momentum and spin

- operators satisfy fermionic anti-commutation rules: {ak ,Bik,} = §j’ and {ak , ak,} {alt Lal } =0

* inverse transformation

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

* T N " .
Biul = etu,ul =¢f s ¢f = (u) B = (ef e = (_”11; Zk> ( “k) o= wal + vy By
kB Nk . ey = —Vicary, + WPy
t ugy v Ay Crr = Uk, + 171:[)’ Tk
PPN k
UB = U UG =C > C =UyB, = (CkT' C-m) = <—vk uk> (ﬁ* > et = —veay +uiBlL
-k S
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4.2.3 The Bogoliubov-Valatin Transformation

Bogoliubov quasiparticles T d
a, =1/V2 (ekT - eiki) c-@
= Uit — Vil py §k=0 g Lt
Bl = viclir + wiel | > Pru= 12 (CkT * C—kl) L
@y = wlly — Ny 1 af = 1V2 (e;:T _ e_kl) ® - O
By = Victy + upl_yy lug|® = vy |* = > ; (el
k= (em + e—k¢) ® + O

=» symmetric and anti-symmetric superposition of electron and hole states with opposite spin direction

= |u,|?> = hole fraction, |vy|?* = electron fraction

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

c- o —> reduces the total momentum by Kk and the total spin by 2 /2
hole-like excitation
O + @
® - O ) :
—> increases the total momentum by k and the total spin by A/2
® + O particle-like excitation
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excitation spectrum of Bogoliubov quasiparticles and energy gap

4 3 T T T T v
=
o
Q
3 - 20
8 2
S .
x e
2 < 0 . ot
S S~ ’~ S
= 4 °¢' ‘,
£ - "ol */,&
%
© ,° ..
: -2 0\ S
s e )
< \
©
c
m =
4
& 4. R
. -4 -2 0 2 4

(k-k.)°/K: (A JE,)

quasiparticle excitations: superposition of electron and hole states
reason: single particle excitation with wave vector K can only exist if at the same
time there is a hole with wave vector —K, otherwise there would be a pair state

excitation energy

Eyx = i\/fﬁ + | Ay |?
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4.2.3 The Bogoliubov-Valatin Transformation

0.04

RN +Ey | Y R
OIO [ .‘5 . - .
\. quasiparticles
0.02 N / y
) \/f K
-0.2 - holes . ele
0.00 A

. | - ;\
0-4 -0.02 /;"k .

/ . . N
quasiparticles \;

ﬁ/ﬁ’%/ﬁ

-0.6 | -0.04

-0.02 -0.01 0.00 0.01

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4.2.3 The Bogoliubov-Valatin Transformation

determine |uy|* and |vy|? by Bogoliubov-Valatin transformation

oh = ufe) + vy By
A A * -l-
. . — C C_i| = — Vo +ugp_
BCS Hamiltonian  Hp.g — Nu = z Sk + Ay g + (E;ET :e—m) ( fk* Ak) AJrkT e K liﬁ Tk
- —Ax =Sk /\Cly, C};T =  UkOg +vk:8_l_k
Clyy = — k@ + By

* replace operators by Bogoliubov quasiparticle operators = resulting Hamiltonian:
Hecs — Nu= Y [2§vE — A wevg — Al utvy + Ay g1
BCS U kVk k UkVk kUkVk k Yk
k
+ Z[fk(ulz( — vE) + A uvg + Aiul’;vk] af:ak
k

+ E[Sk(ulz{ — Vi) + Ay wevg + A}:uf(vk] ,Bjkﬁ_k

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

k
*_* *2 %2
+ 2 [ngukvk + Ak Uk — A:;uk ] ﬁ_kak
k
+ z[kaukvk + Af(vﬁ — Ay ulz(] aib’jk
k

» we have to set expressions marked in red to zero to keep only diagonal terms
> al‘;ak and ﬁfkﬁ_k = quasiparticle number operators
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4.2.3 The Bogoliubov-Valatin Transformation

— 28UV + AvE — A uf =0 and  2&utvp + A v — Abut’ =0

« multiply by A /ui (A /ui”), solve the resulting quadratic eqn. for Aj vy /uy (A Vi /ug)

2§ *+A i; —A k— A*—k2+2€ Ay, + |A |2—0
uLv u
kY%kVk k kV k k klz{ k N k k Uy k

Vi :
= (Ak F) = —¢g £ \/51% + |Agl? = —§g £ Ex  with Ep = \/fﬁ + |Ak?
1,2 k/ 1,2

\ negative sign is unphysical

—> corresponds to solution with maximum energy

note that the phases of uy, vy and Ay (uy , Vi and Ay ), although arbitrary, are related, since the quantity on the r.h.s. is real

=> the relative phase of uy and v, must be fixed and must be the phase of A}
=» we can choose uy real and use v = |vg|e!®, the phase of vy corresponds to that of Ay

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
~/
>
o %
B
\/
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4.2.3 The Bogoliubov-Valatin Transformation

* with the condition % = ElkA—_s?‘ and the normalization condition |uy|? + |vk|? = 1 we obtain
k k
, 1 Sk , 1 Sk probability that pair state (k T, -k |)
|uk| =—|14+—=— |Uk| ==|ll == . .
2 Ey 2 Ey is empty/occupied
. . Ay, iy tud
kVk = 9k = 2E, UV = J = Z_Ek pairing amplitude

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

/
k k A self-consistent gap equation
A;E—Zka,g*,=—ZV :
: k kk ZEk’
k k
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4.2.3 The Bogoliubov-Valatin Transformation

reformulation of the BCS Hamilton operator

. . . E 0 a
* we start from the Hamiltonian Hgcs — Nu = Z {fk + Ay 9k + (a;i,,[?_k) ( Ok _Ek) ( « )}
K

Hpes — Nu = Z{fk + Ay gﬂ} + Z {Ek“;i“k — Ex ﬂ—kﬁ-—rk }
K

k =1-81, B

= Z{fk + A gﬂ} + Z{Ekaltak —Ex + Ekﬁjkﬁ—k}

k k

|:> Hpes — Nu = Z{fk — Ex + Ak gfi} + Z{Ek“;i“k + Ekﬁikﬁ—k}
K

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

J U K J
v v
mean-field contribution contribution of spinless Fermion system with two kind of
differs from the normal state quasiparticles described by operators a;i, ay and ,Bjk, P_k
value by the condensation and excitation energies +Ey

energy (see below
gy ( ) spinless quasiparticles since they consist of

superposition of spin-T and spin-{ electrons
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4.2.3 The Bogoliubov-Valatin Transformation

* note that the Bogoliubov quasiparticles are not part of the BCS ground state, as is evident from

ak|Wees) = 0

B-_x|Wscs) =0

* the occupation probability of the Bogoliubov particles is given by the Fermi-Dirac distribition

1
exp(Ey/kgT) + 1

(afen ) = (BToi) = B =

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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Summary of Lecture No. 8 (1)

e BCS Hamilton operator:

CksCko = Nk = particle number operator
212
Hpcs = z z &k ckgckJ + z Vik! € cch 1€k’ 1 G’ e = &+ 1 = h*k
kk’ 2m

* Bardeen, Cooper and Schrieffer used the following Ansatz for the ground state wave function (mean-field approach):

|uy |?: probability that pair state (k T, —K 1) is empty
|Wgcs) = 1_[ (e + kach kl) |0) |vi|%: probability that pair state (k T, —Kk 1) is occupied
=100 5 ugl? + vkl = 1

coherent fermionic state

* expectation values: <IPBCS|e}tgaka|IPBCS> = |vkl? <LPBCS|61Teikl6_k'¢€k'T|lpBCS> = Vg Vpr g Uk

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

(Wecs|Hpes|WBes) = 2 Z lvil® + Z Viek! Vi Vg Uge! U
KK/

—N Ek interaction energy
(kinetic energy)

determination of uy, vk by
minimization of expectation value
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Summary of Lecture No. 8 (2)

* minimization of expectation value

lug|? = 1 1 + é v |2 = 1 1— é probability that pair state (k T, =k |) is empty/occupied
5 K721 T E K721 E

g — . §

3 .

S UV = 9k = K U = = A_k pairing amplitude

S 2F) kVk = 9k 2E,

:i’ — _ Ay Al = V. o V. A_*k' . .

< A== ) Wwdw =— ) Wy Kk — kk'IJi = Kk’ self-consistent gap equation
[} ZEk’ ZEkI

= K’ Kk’ k’ k'

S .

° e gap equation forT = 0

3 A= hwp ~ 2hwp —2/VoD(Er) energy gar? corresponds to binding energy estimated for single
E sinh(2/VyD(Eg)) \ Cooper pair

5

VoD (Ep) < 1: weak coupling approximation, sinh x ~ %expx
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* Bogoliubov-Valatin transformation = BCS Gap Equation and Excitation Spectrum

Hpes = Nu = z Sk + Ak gk + (CET »C—kl) Uy U <_€X* _;)uk uf <A+ ) = Z{fk + Dy gy + B UL E Uy By, }
§ ! e
k

By = (af, B-x) = (CkT )uk B = (e, i) = Uy ACJrkT
¢

-kl

Bogoliubov quasiparticles: = superposition of electron and hole states with opposite momentum and spin

Task: find unitary matrix (‘uk‘u* 1) that makes the transformed energy matrix & = U Ek Uy diagonal:
UK Vg —v Ex Dy )

Uy = T — k u Ex Uy = (
: <—vk uﬁ) b < ) = k= Dy B _
=D, =0

* reformulation of the BCS Hamilton operator

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

. + + =» minimization of free energy yields BCS
Hpes —Np = z{fk — Ex + Ay gk} + Z{Ek“k“k + Ekﬁ—kﬁ—k} gap equation for finite T
K K

J \ J
Y Y

mean-field contribution contribution of spinless Fermion system with two kind of quasiparticles described by

differs from the normal state value by the operators “11:»

ay and ﬁjk, PB_k and excitation energies +Ey
condensation energy (see below)

spinless quasiparticles since they consist of superposition of spin-T and spin-| electrons
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Chapter 4

4. Microscopic Theory
4.1 Attractive Electron-Electron Interaction
4.1.1 Phonon Mediated Interaction
4.1.2 Cooper Pairs
4.1.3 Symmetry of Pair Wavefunction
4.2 BCS Ground State
4.2.1 The BCS Gap Equation
4.2.2 Ground State Energy

4.2.3 Bogoliubov-Valatin Transformation and Quasiparticle Excitations

I

4.3 Thermodynamic Quantities

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

4.4 Determination of the Energy Gap
4.4.1 Specific Heat
4.4.2 Tunneling Spectroscopy
4.5 Coherence Effects
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4.2.3 The BCS Gap Equation and QP Excitations

determination of temperature dependence of A by minimization of free energy

Hamiltonian has two terms:  Hgcg — Nu = Z{fk — Ex + Ay gf;} + Z{Eka;iak + Ekﬁjkﬁ—k}
K K

\ J \ J
Y Y

constant term H, term of free Fermi gas composed of two
kind of fermions with energy Ey

* grand canonical partition function: partition function of an ideal
Fermi gas:
7 = e Ho/ksT ‘ ‘(1 + e Ew/kBT)(1 4 eFi/ksT) = g=F/NksT Z = I exp(—nlex—w)/ksT)
k m=0,1
k

(since F = —NkgTInZ) - H[l +exp (—(ex — p)/ ke T)]
k

solve for free energy F :

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

T
== 36, - kBTE[ln(l + e EW/KBT) 4 In(1 + eFw/ksT)]
k
inimize f ding variation of Ay: =0, . _y
minimize tree energy regarding variation o k- aAk =0, aA'll; =
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4.2.3 The BCS Gap Equation and QP Excitations

d(F/N) d _
on, 0T a_Ak{}[o — kgT Z[ln(l + e FW/ksT) +1n(1 + eEk/kBT)]} Ho = §x — Ex + Ay gi
K

i . N aEk e_Ek/kBT eEk/kBT — 0 o Ak’
g = 9t Ga |[T5e Bk T4 ohuker| == Vet = = ) Ve 2Ep
,,5 —_— § 4 kl kl
£ =A/2Ek =—tanh (Ex/2kgT)
2 A E E A
] * k k * k Kk
= = ——tanh = UiV tanh U Vg = ——
g Ik~ 2B, (ZkBT> K <2kBT> 2k,
©
,;é pairing susceptibility/amplitude: ability of the electron system to form pairs
<
§ « weuse Ay = — Y Vi gy and obtain:

" Aik{l Ek’
Ay = —Z ek 5 Ev tanh | 5 kT BCS gap equation

» set of equations for variables Ay
» equations are nonlinear, since Ey depends on Ay
» solve numerically, analytical solutions in limiting cases
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4.2.3 The BCS Gap Equation and QP Excitations

energy gap A and transition temperature T .

* trivial solution: A, = 0, resultsinvy = 1foré&, <0 and v =0for & >0

- intuitive expectation for normal state

* non-trivial solution: we use approximations Vi ,» = =V, and A = A

C LM 2B 2keT) = 1=V Z 2B 0\ 2kgT
kl

* we use pair density of states D(E) = D(E)/2 and change from summation to integration

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

simple solutions for (i) T-0
(i) T-T,
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4.2.3 The BCS Gap Equation and QP Excitations

i. solutionforT — 0:  (already discussed above for Vv = =V, and Ak = A)

= Ey . o . VOD(EF) dé .
S 1= Vo L 2E tanh T transforming sum into integration 1 = with D(E) = D(Eg)/2
; k' B )

% [ =1 for T-0 ~hap \/fk + lA(O)l

'4:; +fl(1)D

5 VOD(EF) VoD(EF) . hwp VoD (Ef) . hwp

5 1= arcsinh = ————arcsinh

& A(0) 2 A(0)

2 ~flop & + [A(0)]2 —hwp

g e solve for A:

s > A0) = 0y a—2/VoD(EF)

< sinh(2/V,D(Eg)) \

§_ VoD (Ep) < 1: weak coupling approximation

* compare to expression derived for energy of two interacting electrons (“Gedanken” experiment):

F ~ ZEF _ Zth e—4/VOD(EF) factor 2 in argument of exponential function since we have assumed that the
two additional electrons are in interval between Ey and Er + hwp and not
between Erx — hwp and Ex + hwp
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4.2.3 The BCS Gap Equation and QP Excitations

ii. solutionforT —» T,: Ey — |&]sinceA;, — 0

1= Vozitanh By = 1= Voz - tanh i
/ i 2 2kgT 281 2kgT

\ VeD(ED) (1 £ VoD(ED) PP anh
1= 2 f » tanh <2kBTc> d¢é = 2 j dx with x = & /2kgT,

2eY

* integral gives 2 In(p hwp/2kgT,) withp = — =113 andy = 0.577 ... (Euler constant)

C—) kgT, = 1.13 hwp e~2/VoP(Er)

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

critical temperature is proportional to Debye frequency wp & 1/\/M
=>» explains isotope effect !!
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4.2.3 The BCS Gap Equation and QP Excitations

relation between energy gap at zero temperature and critical temperature

3 A(0) = 2hwp e~ 2/VoD(EF) < > kgT, = 2_2)/ hwp e~ 2/VoD(Er)

2 h \g g

NONE: .

: =—=1.764 key prediction of BCS theory

g kgT, €Y

é

: T, (K) 2A(0) (meV) 2A(0) /kpT. T (K) 2A(0) (meV) 2A(0)/kpTe

5 Al 119 0.36 35+0.1 ||In 3.4 1.05 3.5+0.1

5 Nb 9.2 2.90 3.6 Hg 4.15 1.65 4.6+0.1

s Pb 7.2 2.70 43+0.05 |[Sn 3.72 1.15 3.5+0.1

Ta 4.29 1.30 35+0.1 ||TI 2.39 0.75 3.6+ 0.1

X NbN 15 4.65 3.6 NbsSn 18 6.55 42
NbSe, 7 2.2 3.7 MgB, 40 3.6-15 11— 45

considerable deviations for ,,strong-coupling” superconductors:
= Vy,D(EER) < 1is no longer a good approximation
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4.2.3 The BCS Gap Equation and QP Excitations

solution for 0 < T < T, (numerical solution of integral)

hw
] 1—Vz L tanh (2K S integral 1 = 2P let h (=) g
5 0 Lo T Q) U T s 2= T ey
§ Kk’ —fle
i 1.0 ——p—0qR0-Q good approximation close to T,:
5 (o)
s ' o '
: 0.8 | o AT o (s 1/2
g o BCS Theorie 7 ' A(0) T,
- Pb 00
< = 06— —
i ~ s O Sn \4 (characteristic result of mean-field theory)
: Y4l ©ln
- 0.2 % //
0.0 : ; ; ! ! B. Muhlschlegel, Die thermodynamischen Funktionen des Supraleiters,
0.0 0.2 0.4 0.6 0.8 1.0 Z. Phys. 115, 313-327 (1959).
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4.2.3 The BCS Gap Equation and QP Excitations

strong electron-phonon coupling

» BCS results are valid only for weak coupling: VoD (Ef) < 1
» for VyD(Ef) = 0.2 a more elaborate treatment is required

phonons have influence on electrons but also electrons change e.g. phonon frequencies

* Eliashberg theory

> replace couling constant A = V,D(Ef) by

o0 F(w): phonon density of states

2
AMw) = 2] @ (WF(w) dw

w
0

a(w): matrix element of the electron-phonon interaction

G. M. Eliashberg, Interactions Between Electrons and Lattice Vibrations in a Superconductor,
Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Sov. Phys. JETP 11, 696-702 (1960)].

* McMillan approximation

R. Gross and A. Marx, © Walther-MeiRner-Institut (2004 - 2021)

» several attempts have been made to improve predition for T, using strong coupling theory, e.g. by McMillan:

Awp 1.04(1 + )
2—p(1+0.622)

) 1*: matrix element of the short-range screened Coulomb repulsion

W. L. McMillan, Transition Temperature of Strong-Coupled Superconductors,
Phys. Rev. 167, 331 (1968).
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4.2.3 Energy Gap and Excitation Spectrum

dispersion of excitations (Bogoliubov quasiparticles) from the superconducting ground state

—> excitations represent superpositions of electron- and hole-type single particle states
(reason: single particle excitation with K can only exist if there is hole with - K, if not, Cooper pair would form)

§ al* ' excitation energy

s T=0

5 Ek=E—k=\/f§+ | Age|?

g 3

: N * break up of Cooper pair requires

] < 2 energy 2E}

2 :x * A represents energy gap for

E quasiparticle excitation from

g 1 ground state

= =>» minimum excitation energy
0

— equal superposition of electron with wave vector k
and hole with wave vector —k
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4.2.3 Energy Gap and Excitation Spectrum

density of states
» conservation of states on transition to sc state requires D, (Ey)dEy = D,,(éi)déx

] » close to Ep: D, (&) = D,,(Eg) = const. ( E,
D D,,(Eg) for Ex > A
: D,(E) = Dy (50 Sk = 2 _ A2
g s(Ex) = Dpn($x) B ) EZ — A
f ] 0 for Ex <A
@ T T T T et S R
z A Pb/MgO/Mg
§ ‘ / I A=1.34 meV
) 3 // 3 T=0.33K .-
< — —_
2 W W
o Q ? Q“ ?
o ~ ~
o Q" | \ Q"
1 R N e — 1 m—
l. Giaever,
Phys. Rev. 126, 941 (1962)
0O | 1 | 2 | 3 | 4 00 | 4 | 8 | 12
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4.3 Thermodynamic Quantities

« occupation probability of gp-excitations is given by f(Ey) = [exp(Ex/kgT) + 1]71

—> i.e. by Ax(T), which is contained in E = \/g‘ﬁ + |Ax|2(T)

* entropy of electronic system (determined only by the occupation probability = is fixed by Ag)

S, = —2kg ) (L= Eolnlt = f(E] + f(Bi) Il (B} S=—ks > pnlnpn
g’ k hole like electron like n
g
° [0S, . b =2 Z _OfED [, 1 dA(D)
5 * heat capacity: C; =T T after some math: s = 7 OE; k™5 dT
< ».B k
E — —
; results from redistribution results from T-dependence
g of gp on available energy levels of energy gap
i ) 1 of (Ex, T) 1 ( déx appears in many thermodynamic
Yosida function: Y(T) = D(EF)Zk: T OB, 4kgT J cosh2(&y/2kgT) properties
—u

Y (T) describes the T-dependence of the gp excitations (normal fluid density): n,,(T) = n Y(T)
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4.3 Thermodynamic Quantities

2
discussion of limiting cases c. TZ af(Ek)< > leAk(T)>

OF, 2 dT

i. T<T,.

B = (& + [82(D)
— since A (T) = A(0) > kgT, there are only a few thermally excited gp

— we use approximations dAZ(T)/dT =~ 0 and f(Ey) = [exp(Ey/kgT) + 1171 = exp(—Ey/kgT)

— we assume Ay = A for simplicity and transfer sum into an integration

(we use A? + & = A?(1 + & /A?) = A? and \/AZ + & = A\/l + &2 /A% = A+ &2 /2N, as Of (Ey) /OEy has significant weight only for small values of & /A )

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

Of (E 1 dA2(T)\ D(E P A0) _
. 2 [ (g Zr LD DO g [ i g, Gl 7
T 0Ey 2 dT kgT? ‘
D(Ey) r 3 A0
Co = kBTFZ AZ(O)e—A(O)/kBTj e—fﬁ/ZA(O)kBT déy I:> C, < T ze kT o T~ 2e e Tc @T KT,
0
\/nkBT'A(O)/Z

exponential decrease of heat capacity at low T
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specific heat of superconductors atT <K T :

exponential decrease of C; with decreasing T':

C. T 2e BT T2 Tc @T < T,

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4.3 Thermodynamic Quantities

A Vanadium

® Zinn

|

2

M. A. Biondi, A. T. Forrester, M. P. Garfunkel, C. B. Satterthwaite, Rev. Mod. Phys. 30, 1109-1136 (1958)

T,
x 9.17 exp | —1. 5?
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4.3 Thermodynamic Quantities

0.5< T/T, < 1:

A(T) decreases with increasing T =» there is a rapid increase of the number of thermally excited quasiparticles

dSg _ 0S ) .
-> 6_’1"S > a—; = C, is getting larger than C,

w
T

60
1

N
I
O
O
L

(W
|l
2]
-~
1

Entropiedichte, AQ/V
B>
<
-
molar specific heat (mJ/mol K)
%o
%O

.oo

T (K)
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4.3 Thermodynamic Quantities

ii. T=T,:
d 1 dA?(T
A(T) —» 0 =>» we can replace Ey by |&k|: C, Z fGk) & — —T—()
2‘ 7/ “ _J
T T
] normal state specific heat C, = —- D(EF)kéT finite for T < T jump of specific heat
2 zero forT > T,
: 24 24
© T
z —~ - « 9.17 exp (—1. 5?C> — I
s o) o)
; 2 16 2 16
: X N
5 = =
. E | e
- ~ 8 ~
B A  Vanadium C A Vanadium (B, = 0)
@ Zinn ' © vanadium (B, > B.y) |
S N S S ol &
0 10 20 0 10 20

2 M. A. Biondi et al.,
(K T (K) Rev. Mod. Phys. 30, 1109-1136 (1958)
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4.3 Thermodynamic Quantities

iii. T = T,_,:jump of specific heat (we can replace Ey by |¢k|)

0f (5 (1 dA*(T)
0§ \ 2 dr ) .

2
AC = (Cs — Cn)T:TC - fz -
k

—iC

(00]

da? (1) J _0f (&)
dT

AC = D(Er) (- dSk

=1, 9 0¢k

=1

1/2
we use A(T) = 1.74 (1 — T1> for T close to T, and A(0) = 1.76 kgT,. and obtain

C

AC ~ 4.7 D(ER)kET,

2
with C,(T,) = % D(Ep)kET, = yT, we finally obtain

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

AC 47 G further key prediction of BCS theory
C, r=T, m2/3 (in good agreement with experiment)
2 2 2 2
result from phenomenological treatment: <£) = ii <aBCth> = iEBCth(O) = 82 Betn(0) = % <A(0)) = % (1.76)* = 1.88
n/p_r, Cotto \ OT T=T. CaTe 21 yT¢ 2o n* \kgT, Tt

(Rutgers formula) %D(EF) A2(0)

difference comes from B, (T)
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

molare Warmekapazitat (mJ/ mol K)

www.wmi.badw.de

4.3 Thermodynamic Quantities

Al o |
@ | 0
c,® .tAc o
|
0 B, = 8 ! 0P
o B ext > B cth 8 Lﬂ)oo
&’ ° |
0 ﬁ@ 1
C, .
|
' T
P
1 7’4 i
0 0.4 0.8 1.2 1.6
T (K)
N.E. Phillips,

Phys. Rev. 114, 676 (1959)
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2.0

M. A. Biondi et al.,

Rev. Mod. Phys. 30, 1109-1136 (1958)

T (K
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4.4 Determination of the Energy Gap

* energy gap determines excitation spectrum of superconductors
=» we can use quantities that depend on excitation spectrum to determine A

specific heat
tunneling conductance
microwave and infrared absorption

ultrasound attenuation

i W NPR

* we concentrate on tunneling spectroscopy in the following
(specific heat already discussed in previous subsection)

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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e

4.4.2 Tunneling Spectroscopy

tunneling of quasiparticle excitations between two superconductors separated by thin tunneling barrier

e SIS tunnel junction: l tunnel junction

e fabrication by thin film technology and patterning techniques

§ by shadow masks (= mm)
g by optical lithography (= um)
: by e-beam lithography (= 10 nm)
: ® sketch: R
2 },I/ , () top view:
: ®
oxide (2nm)

SC1
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4.4.2 Tunneling Spectroscopy

* tunneling processes result in finite coupling of SC 1 and SC 2, described by tunneling hamiltonian

— E T
- ——

2O\
tunnel matrix element describes the creation of electron |Ko) in one SC and

the annihilation of electron |qo) in the other

 tunneling into state |ko) only possible if pair state (K T, =Kk ) is empty

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

5 Skt N BB = 0) = [&
- resulting tunneling probability is « |y |? |qu| Ey
1<kl = —¢k ]
« for each state |ko) there exists a state |K'o) with Ey = Er but with §r = =&, i k. K
o . ope . 2 2 2 2
= resulting tunneling probability is o< |y /| |Tk/q| = | Uk | |Tk/q| 3

lu(=&K)1=lv(&x)l

2 2
——) total tunneling probability o (|uk|2 + |Vk|2)|qu| = |qu| does not depend on coherence factors

- simple ,,semiconductor model” for quasiparticle tunneling is applicable
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4.4.2 Tunneling Spectroscopy

elastic tunneling between two metals (NIN):

L, =C j T2 Dy(E)F(E)  Dy(E +eV)[1—f(E +eV)] d

occupied states in N¢

empty states in N,

net tunneling current:

Lin(V) = C f ITI2Dy (E)D, (E + V) [f(E) — f(E + eV)] dE

foreV <« pand u =~ Er we canuse D,,(E + eV) = D,,(Eg) = const.

Lin(V) = CIT12Dys (Eg) Dz (E) f [F(E) - F(E + V)] dE

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

Inn(V) — C|T|2Dn1(EF)Dn2(EF) elV =

www.wmi.badw.de
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

4.4.2 Tunneling Spectroscopy

elastic tunneling between N and S (NIS junction):

Lns(V) = CIT12 Dy (Ex) Do (Er) f

G
Lis(V) = —=

e

— 00

—Gnn/e

Dgp(E)
n2 (EF)

Ds,(E)
Dy, (Er)

[f(E) — f(E +eV)] dE

[f(E) — f(E +eV)] dE

 analytical solutionforT =0

eV = 2 f R ) — f(E + )] aE

) - {

www.wmi.badw.de

0
~[(eV)? ~

A2]1/2

leV] < A
leV] = A

I 1 (G, /e) A(O)

2.0 T T T T

1.5

0.5

]
e
N /S S
S 7
I,,,, ‘ ]
L4
/’ 7/ ]
/' /4
T>T, ., ,
’
./
l”
/,,
vt
0<T<T, '
4
e /
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1 A r -Z‘VA """ H2
eV Y K’
N S
D\ln D>2
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

4.4.2 Tunneling Spectroscopy

2.0 [ — -/-
NS 7y
L ,' 1
1.5 7
— L ,/, -
=) s
3|
—_ I T>T e
& | C'/ /
4
LDE 1.0 /'
Nagl I /’
~ //'
< | s~
0.5 ¢
L ,'
”
r ,/ T - O
- ,,
L ’,
0.0 0.5 1.0 1.5 2.0
eV / A(0O)
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M posas P2 - My
N S
D\ln D,Zs
| b |
I'll \L' _____ A \.
" 20 Mo
eV N
< S
Dln >

4 I A
251 1\ -ZWA ———— U2
eV /-
N S
Din D,Zs
¥ pocaay
A -ZWA """ K2
eV N (-
< S
D in >
D 2s
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4.4.2 Tunneling Spectroscopy

differential tunneling conductance of NIS junction

_ Gnn [ Dy, (E)
oV = 22 [ S (F(B) — F(E + V)] dE

— 00

(V) stz(m Of (E + V)

G (V) = — dE =edV
ns(V) av 7 D,,, (Ef) d (eV)
A\ v J
Bell-shaped weighting function with width =~ 4kgT peaked peaked at E = eV
- approaches §-function forT — 0
eV tof G,(V) all determinati fD V) and A,
I:> G, (V) = sz( ) @T =0 measurement of G,,(V) allows determination of D, (eV) an

"n Do (EF) forT > 0, G, (V) measures DOS smeared out by +kgT

e at T > 0: finite conductance at el < A due to smeared Fermi distribution, calculation yields

GTLS

(Z”A) o~A/kgT exponential T-dependence can be used for temperature

Gnn o measurement, particle detectors, ...



=
o
o
~N
1
<
(=}
o
o
L d
=]
b=
=]
(%]
c
o
S
()
c
<
()
s
S
]
<
=
g
©

nd A. Marx,

R. Gross a

4.4.2 Tunneling Spectroscopy

1.0 ———0qR-q o

S Ph BCS Theorie” 0o

S o
< O Sn o
S~ L

<

0.0 0.2 0.4 0.6 0.8 1.0
T/ T
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l. Giaever, K. Megerle,
Phys. Rev. 122, 1101-1111 (1961)
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4.4.2 Tunneling Spectroscopy

elastic tunneling between two superconductors: SIS junction

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

www.wmi.badw.de

[x(V) =

I / (G, /e) A(O)

(0]

Gnn stl(E + eV) Dsy(E)

[f(E) = f(E +eV)]dE

* strong increase of I @ eV = 2A

e e Dnl(EF) Dnz (EF)
S/S A
O<T<i‘ c I;s > I, @ eV > 2A

L e I, x e AkBT @ eV < 2A

T=0

Superconductivity and Low Temperature Physics |
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4.4.2 Tunneling Spectroscopy

interpretation of tunneling in SIS junctionatT = 0

e single electron tunnels from left to right:

before tunneling occupied and empty pair state

after tunneling two quasiparticles

e energybalance:  —E{°™ + g“*ft)<+v EEN 4 plrieht Ex = / E2 + A2
e~ moves from left to right generation of two gp

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

® required voltage: el = Elgeft) + Elgright)

* minimal voltage: eV =A; +A, =2A forA; =A,
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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4.4.2 Tunneling Spectroscopy

current-voltage characteristics of SIS junction at finite temperatures

20(T) 24,

Superconductivity and Low Temperature Physics |

el (= few meV)
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4.4.2 Tunneling Spectroscopy

special case: SIS tunnel junction with A; # A,

e ateV = A, — A, the two singularities in the DOS are facing each other

= maximum of the tunneling current

= negative differential resistance

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

El E. 4
2
Isp
/o2
Al -----\ Azh ------------ IIII : /T fm— O
Aq T > 0]
> A, J |
eV DlS(E) II E
'+ ——————————— > i I — eV
D,s(E) Ay — A1 A+ A,
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4.5 Coherence Effects

 description of an external perturbation on the electrons in a metal

_ + interaction hamiltonian
Hy = Pk’a',ka Ck's’ Cko

2 . s
koK' o' |Pkrar,k0 | corresponds to transition probability

» description of the external perturbation on the electrons in a superconductor

=» more complicated since there is a coherent superposition of occupied one-electron states

/\-l- 'I' -~
Cpr = UpQy + vy B
%) k %k k P-k + I .
C_kl = —Ul*(“f: + uxf_k 't k1 = (uk’“k’ t vk’ﬁ—k’) (uxae + viBl) connect the same
c Al gp states
Ckr = Uk + VpP_k + ot .
~T T C_kJ,C_k’L = (_Ukak + ukiB—k) (—Uk/a , + uk/ﬁ_k,)
C g = —Vkayg + upBy k

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

2
=» matrix elements |Pkr0r'k0 | have to be multiplied by so-called coherence factors

Uy, Vi are assumed real

see e.g.

M. Tinkham

Introduction to Superconductivity

(gt + vy vy )” for scattering of quasiparticles

(Vuyr ukvk/)z for creation or annihilation of quasiparticles
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= ar
S case Il coherence factor
2 =» nuclear relaxation, electromagnetic absorption
g (for perturbation which are even under time reversal)
5
&
2 s .
; — 1+ two-fluid model
2 An
=
©
;EZ case | coherence factor
2 =» ultrasound attenuation
2 (for perturbation which are odd under time reversal)
& ] ]
o
0 1
T
T BCS theory makes prediction for coherence factors
(4
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Ultrasound Attenuation in Sr,RuO,:

An Angle-Resolved Study of the Superconducting Gap Function
C. Lupien, W. A. MacFarlane, Cyril Proust, Louis Taillefer, Z. Q. Mao, and Y. Maeno

Phys. Rev. Lett. 86, 5986 (2001)
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Hebel-Slichter peak

1.0~

0.5

X Hebel-Slichter

e Redficld-Anderson

0.2

0.4 0.6 0.8

TIT,

A.G. Redfield, Nuclear Spin Relaxation Time in Superconducting Aluminum.

Phys. Rev. Lett. 3, 85—-86 (1959)
L.C. Hebel, Theory of Nuclear Spin Relaxation in Superconductors.

Phys. Rev. 116, 79-81 (1959).

1.0
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R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)
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Summary of Lecture No. 9 (1)

* minimization of free energy yields BCS gap equation:

1 Ek’
= Z h :
Vo z 2B, tan (2 kBT> BCS gap equation

* analytical solution with simplifications: Vi = =V, Ag = A, VoD (Ep) < 1: weak coupling approximation

2
IF'<Te  A0) = 2hwp e 7oPER)

= 2O0._7_, 6
, kgT, e¥
F=Tc T, =1.13 hwpe PED

* condensation energy atT = 0 Vi’ = —Vo, Ax = A, VoD (Eg) < 1: weak coupling approximation

Exond(0) = (Hpcs) — (Hn) = —D(Er)A*(0)/4

2
comparison to E¢onq(0) = —B&y(0)/2u, (thermodynamics) yields By, (0) = \/”OD(E;)/A ©



Summary of Lecture No. 9 (2)

density of states:

E
/Eﬁ — A2

BCS prediction for thermodynamic quantities

d
= D (&) d_Ell(( =

SS = —ZkB Z

o=
— C, < T 2e kBT oc T~ ze “h7er

[1— f(Ep)] 1'11[1 — f(Ex)] + f(Ex) In[f (E)]

electron like

entropy

148

heat capacity

exponential decrease of

Tc @T KT,

| & Vanadium
® Zinn

R. Gross and A. Marx , © Walther-MeiBner-Institut (2004 - 2021)

heat capacity at low T

determination of energy gap and DOS by tunneling spectroscopy
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NIS and SIS tunnel junctions

BCS coherence factors
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case Il coherence factor

=>» nuclear relaxation, electromagnetic absorption
(for perturbation which are even under time reversal)

two-fluid model

case | coherence factor

=» ultrasound attenuation
{for perturbation which are odd under time reversal)
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