

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Technische Universität München

Superconductivity and Low Temperature Physics I

Lecture Notes Winter Semester 2021/2022

R. Gross © Walther-Meißner-Institut

Chapter 4

Microscopic Theory

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Technische Universität München

Superconductivity and Low Temperature Physics I

Lecture No. 7 02 December 2021

R. Gross © Walther-Meißner-Institut

4. Microscopic Theory

- 4.1 Attractive Electron-Electron Interaction
 - **4.1.1 Phonon Mediated Interaction**
 - 4.1.2 Cooper Pairs
 - 4.1.3 Symmetry of Pair Wavefunction
- 4.2 BCS Ground State
 - 4.2.1 The BCS Gap Equation
 - 4.2.2 Ground State Energy
 - 4.2.3 Bogoliubov-Valatin Transformation and Quasiparticle Excitations
- 4.3 Thermodynamic Quantities
- 4.4 Determination of the Energy Gap
 - 4.4.1 Specific Heat
 - 4.4.2 Tunneling Spectroscopy
- 4.5 Coherence Effects

Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

ц

4. BCS Theory

- after discovery of superconductivity, initially many phenomenological theories have been developed
 - \rightarrow London theory (1935)
 - \rightarrow macroscopic quantum model of superconductivity (1948)
 - \rightarrow Ginzburg-Landau-Abrikosov-Gorkov theory (early 1950s)
- problem:
 - → phenomenological theories do not provide insight into the microscopic processes responsible for superconductivity
 - \rightarrow impossible to engineer materials to increase T_c , if mechanisms are not known
- superconductivity originates from interactions among conduction electrons
 - ightarrow theoretical models for the description of *interacting electrons* are required
 - very complicated: kinetic energy of conduction electrons ~ 5 eV, while interaction energy $\sim meV$
 - → find attractive interaction which causes ordering in electron system despite high kinetic energy
 - go beyond single electron (quasiparticle) models
 - not available at the time of discovery of superconductivity

BCS Theory

- development of BCS theory by J. Bardeen, L.N. Cooper and J.R. Schrieffer in 1957
 - key element is *attractive interaction* among conduction electrons
 - 1956: Cooper shows that attractive interaction results in *pair formation* and in turn in an instability of the Fermi sea
 - 1957: Bardeen, Cooper and Schrieffer develop self-consistent formulation of the superconducting state: condensation of pairs in coherent ground state
 - > paired electrons are denoted as *Cooper pairs*
- general description of interactions by exchange bosons
 - Bardeen, Cooper and Schrieffer identify *phonons* as the relevant exchange bosons
 - suggested by experimental observation

 $T_c \propto 1/\sqrt{M} \propto \omega_{ph}$ isotope effect

- in general, detailed nature of exchange boson does not play any role in BCS theory
- many possible exchange bosons:

magnons, polarons, plasmons, polaritons, spin fluctuations,

 $k_{1} + q, \sigma_{1}$ $k_{2} - q, \sigma_{2}$ $k_{1}, \sigma_{1} \quad q$ k_{2}, σ_{2}

4.

BCS Theory

isotop effect yields hint on type of exchange boson:

data from:

E. Maxwell, Phys. Rev. 86, 235 (1952)

B. Serin, C.A. Reynolds, C. Lohman, Phys. Rev. 86, 162 (1952)

J.M. Lock, A.B. Pippard, D. Shoenberg, Proc. Cambridge Phil. Soc. 47, 811 (1951)

in general: $T_c \propto 1/M^{\beta^*}$

Element	Hg	Sn	Pb	Cd	Tl	Мо	Os	Ru	1425
Isotopen- exponent β^*	0,50	0,47	0,48	0,5	0,5	0,33	0,2	0,0	

4.1 Attractive Electron–Electron Interaction

intuitive assumption:

superconductivity results from *ordering phenomenon of conduction electrons*

- problem:
 - conduction electrons have *large (Fermi) velocity* due to Pauli exclusion principle: $\approx 10^6$ m/s ≈ 0.01 c
 - corresponding (Fermi) temperature is above 10 000 K
 - in contrast: transition to superconductivity occurs at $\approx 1 10$ K (\approx meV)

• task:

> find *interaction mechanism* that results in ordering of conduction electrons despite their high kinetic energy

initial attempts fail:

 \rightarrow Coulomb interaction (Heisenberg, 1947)

 \rightarrow magnetic interaction (Welker, 1929)

 $\rightarrow \dots$

4.1.1 Phonon Mediated Interaction

- known fact since 1950:
 - T_c depends on isotope mass
- conclusion:
 - lattice plays an important role for superconductivity
 - initial proposals for phonon mediated e-e interaction (1950):

H. Fröhlich, J. Bardeen

- static model of lattice mediated e-e interaction:
 - one electron causes elastic distortion of lattice: attractive interaction with positive ions results in positive charge accumulation
 - second electron is attracted by this positive charge accumulation: effective binding energy

intuitive picture, but has to be taken with care

wrong suggestion:

- Cooper pairs are stable in time such as hydrogen molecule
- pairing in real space

4.1.1 Phonon Mediated Interaction

- dynamic model of lattice mediated e-e interaction:
 - moving electrons distort lattice, causing temporary positive charge accumulation along their path
 - \rightarrow track of positive charge cloud
 - ightarrow positive charge cloud can attract second electron
 - important: positive charge cloud rapidly relaxes again \rightarrow dynamic model

- important question: How fast relaxes positive charge cloud when electron moves through the lattice ?
- characteristic time scale τ:

$$\rightarrow$$
 frequency ω_q of lattice vibrations (phonons): $\tau = 1/\omega_q$

 $\rightarrow \omega_{\rm q} \simeq 10^{12} - 10^{13}$ 1/s (maximum frequency: Debye frequency $\omega_{\rm D}$)

4.1.1 Phonon Mediated Interaction

- resulting range of interaction (order of magnitude estimate)
 - how far can a second electron be, to attracted by the positive space charge before it relaxes
 - characteristic velocity of conduction electrons: $v_{\rm F} \simeq$ few 10⁶ m/s

→ interaction range: $v_{\rm F} \cdot \tau \simeq 10^6 \frac{\rm m}{\rm s} \cdot 10^{-13} \rm s \simeq 0.1 \, \mu m$ (is related to GL coherence length)

- important fact:
 - retarded reaction of slow ions results in large interaction range
 - ➔ retarded interaction
 - retarded interaction is essential for achieving attractive interaction
 - → without any retardation: short interaction range
 - Coulomb repulsion between electrons dominates
- retarded interaction has been addressed during discussion of screening of phonons in metals

→ retarded interaction potential:

$$V(\mathbf{q},\boldsymbol{\omega}) = \frac{e^2}{\epsilon(\mathbf{q},\boldsymbol{\omega})\epsilon_0 q^2} = \left(\frac{e^2}{\epsilon_0(q^2 + k_s^2)}\right) \left(1 + \frac{\widetilde{\Omega}_p^2(\mathbf{q})}{\boldsymbol{\omega}^2 - \widetilde{\Omega}_p^2(\mathbf{q})}\right)$$

$$\widetilde{\Omega}_p^2(\mathbf{q}) = \Omega_p^2(\mathbf{q}) / \left[1 + \frac{k_s^2}{q^2} \right]$$

q-dependent plasma frequency of the screened ions

screened Coulomb potential $1/k_s =$ Thomas-Fermi screening length

correction term is negative for $\omega < \widetilde{\Omega}_p(\mathbf{q}) \rightarrow \text{overscreening}$

- *Question*: How can we formally describe the pairing interaction?
- starting point: free electron gas at T = 0 (all states occupied up to $E_F = \hbar^2 k_F^2 / 2m$)
- Gedanken experiment:
 - add two further electrons, which can interact via the lattice
 - describe the interaction by exchange of virtual phonon

virtual phonon: is generated and reabsorbed again within time $\Delta t \lesssim 1/\omega_q$

wave vectors of electrons after exchange of virtual phonon with wave vector **q**:

electron 1:
$$\mathbf{k}_1' = \mathbf{k}_1 + \mathbf{q}$$
 electron 2: $\mathbf{k}_2' = \mathbf{k}_2 - \mathbf{q}$

- total momentum is conserved: $\mathbf{K} = \mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_1' + \mathbf{k}_2' = \mathbf{K}'$
- note: since at T = 0 all states are occupied below E_F , additional states have to be at $E > E_F$
 - maximum phonon energy: $\hbar\omega_q = \hbar\omega_D$ (Debye energy)
 - → accessible energy interval: $[E_{\rm F}, E_{\rm F} + \hbar \omega_{\rm D}]$
 - \rightarrow interaction takes place in a spherical shell with radius $k_{\rm F}$ and thickness $\Delta k \simeq m\omega_{\rm D}/\hbar k_{\rm F}$
 - \rightarrow for given K only specific wave vectors $\mathbf{k}_1, \mathbf{k}_2$ are allowed for interaction process

possible phase space for interaction

possible phase space is complete spherical shell

• *important conclusion*: available phase space for interaction is maximum for K = 0 or equivalently $k_1 = -k_2$

Cooper pairs with zero total momentum: (k, -k)

$$\boxed{\frac{\hbar^2 k_{\rm F}^2}{2m} + \hbar\omega_{\rm D} = \frac{\hbar^2 (k + \Delta k)^2}{2m} \simeq \frac{\hbar^2 \left(k_{\rm F}^2 + 2k_{\rm F}\Delta k\right)}{2m} = \frac{\hbar^2 k_{\rm F}^2}{2m} + \frac{\hbar^2 k_{\rm F}\Delta k}{m}} \qquad \Longrightarrow \quad \Delta k = \frac{m\omega_{\rm D}}{\hbar k_{\rm F}}}$$

wave function of Cooper pairs and corresponding energy eigenvalues:

two-particle wave function is chosen as product of two plane waves

 $\psi(\mathbf{r}_1, \mathbf{r}_2) = a \exp(\iota \mathbf{k}_1 \cdot \mathbf{r}_1) \exp(\iota \mathbf{k}_2 \cdot \mathbf{r}_2) = a \exp(\iota \mathbf{k} \cdot \mathbf{r}) \quad \text{with } \mathbf{k} = \mathbf{k}_1 = -\mathbf{k}_2, \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$

Since pair-correlated electrons are permanently scattered into new states in interval $[k_F, k_F + \Delta k]$ \rightarrow pair wave function = superposition of product wave functions

$$\psi(\mathbf{r_1},\mathbf{r_2}) = \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} a_k \,\,{\rm e}^{\imath\mathbf{k}\cdot\mathbf{r}}$$

with $k_{\rm F} < k < k_{\rm F} + \Delta k$, since restriction to energies $E_{\rm F} < E < E_{\rm F} + \hbar \omega_{\rm D}$

 $|a_k|^2$: probability for realization of pair (k, -k)

note:

- \blacktriangleright electron with $k < k_{\rm F}$ cannot participate in interaction since all states are occupied
- \blacktriangleright we will see later that superconductor overcomes this problem by rounding-off f(E) even at T = 0
 - superconductor first have to pay (kinetic) energy for rounding-off f(E)
 - energy is obtained back by pairing interaction (potential energy)
 - net energy gain

wave function of Cooper pairs and corresponding energy eigenvalues:

- we assume that pairing interaction only depends on relative coordinate $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$
- Schrödinger equation:

$$-\frac{\hbar^2}{2m} \left(\nabla_1^2 + \nabla_2^2 \right) \psi(\mathbf{r_1}, \mathbf{r_2}) + V(\mathbf{r}) \psi(\mathbf{r_1}, \mathbf{r_2}) = E \psi(\mathbf{r_1}, \mathbf{r_2})$$

- insert $\psi(\mathbf{r_1}, \mathbf{r_2}) = \sum_{k=k_F}^{k_F + \Delta k} a_k e^{i\mathbf{k}\cdot\mathbf{r}}$, multiply by $e^{-i\mathbf{k}'\cdot\mathbf{r}}$ and integrate over sample volume Ω

$$\int_{\Omega} \frac{\hbar^2 k^2}{m} \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} a_k \exp(i\mathbf{k}\cdot\mathbf{r}) \exp[-i(\mathbf{k}'\cdot\mathbf{r})] \,\mathrm{d}V + \int_{\Omega} V(\mathbf{r}) \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} a_k \exp(i\mathbf{k}\cdot\mathbf{r}) \exp[-i(\mathbf{k}'\cdot\mathbf{r})] \,\mathrm{d}V = \int_{\Omega} E \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} a_k \exp(i\mathbf{k}\cdot\mathbf{r}) \exp[-i(\mathbf{k}'\cdot\mathbf{r})] \,\mathrm{d}V$$

- integration over sample volume
$$\Omega$$
:
$$\int_{\Omega} \exp[\iota(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}] \, dV = \begin{cases} 0 & \text{for } \mathbf{k} \neq \mathbf{k}' \\ \Omega & \text{for } \mathbf{k} = \mathbf{k}' \end{cases}$$

$$\int_{\Omega} \frac{\hbar^2 k^2}{m} \sum_{k=k_F}^{k_F + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k'} \cdot \mathbf{r})] \, dV + \int_{\Omega} V(\mathbf{r}) \sum_{k=k_F}^{k_F + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k'} \cdot \mathbf{r})] \, dV = \int_{\Omega} E \sum_{k=k_F}^{k_F + \Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \exp[-i(\mathbf{k'} \cdot \mathbf{r})] \, dV$$

$$\frac{\hbar^2 k^2}{m} a_k \Omega$$

$$\sum_{k'=k_F}^{k_F + \Delta k} a_{k'} \int V(\mathbf{r}) \exp[i(\mathbf{k} - \mathbf{k'}) \cdot \mathbf{r}] \, dV$$

$$E a_k \Omega$$

$$E a_k \Omega$$

WM

we use abbreviation

$$V_{\mathbf{k},\mathbf{k}'} = V_{\mathbf{k}_1,\mathbf{k}_2,\mathbf{q}} = V(\mathbf{k} - \mathbf{k}') = V(\mathbf{q}) = \frac{1}{\Omega} \int_{\Omega} V(\mathbf{r}) \, \mathrm{e}^{\iota(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}} \mathrm{d}V = \frac{1}{\Omega} \int_{\Omega} V(\mathbf{r}) \, \mathrm{e}^{\iota \mathbf{q} \cdot \mathbf{r}} \mathrm{d}V \qquad \text{with } \mathbf{k}_1 = \mathbf{k}, \mathbf{k}_2 = -\mathbf{k}, \mathbf{q} = \mathbf{k} - \mathbf{k}'$$

result

problem:

we have to know all matrix elements $V_{\mathbf{k},\mathbf{k}'}$!!!

simplifying assumption to solve the problem:

$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -V_0 & \text{for } k' > k_{\mathrm{F}}, k < k_{\mathrm{F}} + \Delta k \\ 0 & \text{else} \end{cases} \quad \text{with } \Delta k = \frac{m\omega_{\mathrm{D}}}{\hbar k_{\mathrm{F}}}$$
$$\left(E - \frac{\hbar^2 k^2}{m}\right) a_k = \sum_{k'=k_{\mathrm{F}}}^{k_{\mathrm{F}} + \Delta k} a_{k'} V_{\mathbf{k},\mathbf{k}'} \quad \blacksquare \quad \mathbf{k} = \frac{-V_0}{E - (\hbar^2 k^2/m)} \sum_{k'=k_{\mathrm{F}}}^{k_{\mathrm{F}} + \Delta k} a_{k'}$$

- summing up over all k using
$$\sum_k a_k = \sum_{k'} a_{k'}$$
 yields:

- we introduce pair density of states $\tilde{D}(E) = D(E)/2$: sum \Rightarrow integral (D(E) = DOS for both spin directions)

$$1 = V_0 \frac{D(E_{\rm F})}{2} \int_{E_{\rm F}}^{E_{\rm F} + \hbar\omega_{\rm D}} \frac{\mathrm{d}\epsilon}{2\epsilon - E} \qquad \text{with} \quad \epsilon = \frac{\hbar^2 k^2}{2m}$$

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

4.1.2 Cooper-Pairs

integration and resolving for *E* results in

$$1 = V_0 \frac{D(E_F)}{2} \int_{E_F}^{E_F + \hbar\omega_D} \frac{d\varepsilon}{(2\varepsilon - E)} = V_0 \frac{D(E_F)}{2} \cdot \frac{1}{2} \ln|2\varepsilon - E| \Big|_{E_F}^{E_F + \hbar\omega_D} \quad \text{with } \int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b|$$

$$\frac{4}{V_0 D(E_F)} = \ln|2E_F + 2\hbar\omega_D - E| - \ln|2E_F - E| \qquad \Longrightarrow -\frac{4}{V_0 D(E_F)} = \ln\frac{|2E_F - E|}{|2E_F + 2\hbar\omega_D - E|}$$

$$\exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right) = \frac{|2E_{\rm F} - E|}{|2E_{\rm F} + 2\hbar\omega_{\rm D} - E|} \implies |2E_{\rm F} + 2\hbar\omega_{\rm D} - E| \exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right) = |2E_{\rm F} - E|$$

$$E = 2E_{\rm F} - 2\hbar\omega_{\rm D} \frac{\exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right)}{1 - \exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right)} = 2\hbar\omega_{\rm D} \exp\left(-\frac{1}{V_0 D(E_{\rm F})}\right)$$

– for weak interaction $V_0 D(E_F) \ll 1$ we obtain:

$$E \simeq 2E_{\rm F} - 2\hbar\omega_{\rm D}\exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right)$$

binding energy of Cooper pairs:

$$E \simeq 2E_{\rm F} - 2\hbar\omega_{\rm D}\exp\left(-\frac{4}{V_0 D(E_{\rm F})}\right)$$

important result:

- \rightarrow energy of interacting electron pair is smaller than $2E_{\rm F}$
- → bound pair state (Cooper pair)
- \rightarrow binding energy depends on V_0 and maximum phonon energy $\hbar\omega_{\rm D}$

Note 1:

- \blacktriangleright electrons with $k < k_{\rm F}$ cannot participate in interactions as all states for $E < E_{\rm F}$ are occupied (no free scattering state)
- \blacktriangleright superconductor solves this problem by smearing out Fermi distribution even at T = 0
 - \succ superconductor first has to pay kinetic energy to occupy state above $E_{\rm F}$
 - ➢ increase of kinetic energy is overcompensated by pairing energy (potential energy)
 - ➤ total energy I reduced → condensation energy

Note 2:

- \succ in Gedanken experiment we have considered only two additional electrons above $E_{\rm F}$
- \succ in real superconductor: interaction of all electrons in energy interval around $E_{\rm F}$
- electron gas becomes instable against pairing
 - → instability causes transition into new ground state: *BCS ground state*

estimate of the interaction range from the uncertainty relation

$$\Delta k = \frac{m\omega_{\rm D}}{\hbar k_{\rm F}} = \frac{\omega_{\rm D}}{v_{\rm F}} \implies \Delta x = \frac{1}{\Delta k} = \frac{v_{\rm F}}{\omega_{\rm D}} \qquad \text{with } v_{\rm F} \sim 10^6 \text{ m/s and } \omega_{\rm D} \sim 10^{13} \text{ s}^{-1} \Rightarrow \text{ interaction range } R \sim 100 \text{ nm}$$

how many Cooper pairs do we find in volume $\frac{4}{3}\pi R^3$ defined by interaction range

 $\begin{array}{l} & \succ \text{ electron density in metal: } D(E_{\rm F})/V \sim 10^{28} \, {\rm eV^{-1}m^{-3}} \\ & \succ \text{ relevant energy interval: } \hbar \omega_{\rm D} \sim 0.01 \, - 0.1 \, {\rm eV} \end{array} \right\} \quad N = 10^{28} \cdot 0.1 \cdot \frac{4}{3} \pi \, (10^{-7})^3 \sim 10^6 \\ \end{array}$

→ formation of *coherent many body state*

attactive interaction via exchange of virtual phonons: how does the matrix element $V_{k,k'} = V_{k_1,k_2,q}$ look like?

pure Coulomb interaction

$$V(\mathbf{q}) = \frac{e^2}{\epsilon_0 q^2} = \int \left(\frac{e^2}{4\pi\epsilon_0 r}\right) \mathrm{e}^{-\iota \mathbf{q} \cdot \mathbf{r}} \,\mathrm{d}^3 r$$

positive matrix element \rightarrow repulsive interaction

screened Coulomb interaction

$$V(\mathbf{q},\boldsymbol{\omega}) = \frac{e^2}{\epsilon_0(q^2 + k_s^2)} = \int \left(\frac{e^2}{4\pi\epsilon_0 r} e^{-\iota k_s r}\right) e^{-\iota \mathbf{q} \cdot \mathbf{r}} d^3 r$$

positive matrix element \rightarrow repulsive interaction (k_s = Thomas-Fermi wave number, $k_s \sim \pi/a$)

screened Coulomb interaction in metals:

 $V(\mathbf{q}, \boldsymbol{\omega}) = \frac{e^2}{\epsilon(\mathbf{q}, \boldsymbol{\omega})\epsilon_0 q^2} = \left(\frac{e^2}{\epsilon_0(q^2 + k_s^2)}\right) \left(1 + \frac{\widetilde{\Omega}_p^2(\mathbf{q})}{\boldsymbol{\omega}^2 - \widetilde{\Omega}_p^2(\mathbf{q})}\right) \qquad \text{negative matrix element if } \epsilon(\mathbf{q}, \boldsymbol{\omega}) < 0$ $\Rightarrow \text{ attractive interaction}$ Thomas-Fermiwave vector q-dependent plasma frequency of screened ions in metal $\widetilde{\Omega}_p^2(\mathbf{q}) = \frac{\Omega_p^2}{\left[1 + \frac{k_s^2}{q^2}\right]}$ for small energy differences $(E_k - E_{k'})/\hbar = \boldsymbol{\omega} < \widetilde{\Omega}_p(\mathbf{q})$ of the participating electrons $\Rightarrow \text{ demoninator gets negative} \qquad \Rightarrow \text{ attractive interaction}$ $\Rightarrow \text{ cut-off frequency: } \boldsymbol{\omega} = \widetilde{\Omega}_p \simeq \boldsymbol{\omega}_D \text{ (Debye-Frequenz)}$

What is the symmetry of the pair wavefunction?

important: pair consistst of two fermions -> total wavefunction must be antisymmetric: minus sign for particle exchange

$$\Psi(\mathbf{r}_{1}, \boldsymbol{\sigma}_{1}, \mathbf{r}_{2}, \boldsymbol{\sigma}_{2}) = \frac{1}{\sqrt{V}} e^{i \, \mathbf{K}_{s} \cdot \mathbf{R}_{s}} f(\mathbf{k}, \mathbf{r}) \, \chi(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}) = -\Psi(\mathbf{r}_{2}, \boldsymbol{\sigma}_{2}, \mathbf{r}_{1}, \boldsymbol{\sigma}_{1}) \qquad \qquad \mathbf{R}_{s} = (\mathbf{r}_{1} + \mathbf{r}_{2})/2 \\ \mathbf{r} = (\mathbf{r}_{1} - \mathbf{r}_{2}) \\ \mathbf{K}_{s} = (\mathbf{k}_{1} + \mathbf{k}_{2})/2 \\ \mathbf{k} = (\mathbf{k}_{1} - \mathbf{k}_{2}) \\ \mathbf{k} = (\mathbf{k}_{1} - \mathbf{k}_{2} - \mathbf{k$$

possible *spin wavefunctions* $\chi(\sigma_1, \sigma_2)$ for electron pairs

$$S = \begin{cases} 0 \quad m_s = 0 \qquad \chi^a = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow) \qquad \Rightarrow \text{singlet pairing,} \quad \text{antisymmetric spin wavefunction} \\ 1 \quad m_s = \begin{cases} -1 \quad \chi^s = \downarrow \downarrow \\ 0 \quad \chi^s = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow) \\ +1 \quad \chi^s = \uparrow \uparrow \end{cases} \qquad \Rightarrow \text{triplet pairing,} \quad \text{antisymmetric spin wavefunction} \\ 1 \quad m_s = \begin{cases} 1 \quad \chi^s = \downarrow \downarrow \\ \chi^s = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow) \\ \chi^s = \uparrow \uparrow \end{cases} \qquad \Rightarrow \text{triplet pairing,} \quad \text{symmetric spin wavefunction} \\ 1 \quad \chi^s = \uparrow \uparrow \end{cases}$$

_

What is the symmetry of the pair wavefunction?

Singlet-Pairing	S = 0	L = 0, 2, 4,	
Triplet-Pairing	<i>S</i> = 1	L = 1, 3, 5,	

symmetric orbital wavefunction antisymmetric orbital wavefunction

metallic superconductors:

S = 0, L = 0

suprafluid ³He:
$$S = 1, L = 1$$

L = 0 s-wave superconductor L = 1 p-wave superconductor

▶ isotropic interaction: $V_{\mathbf{k},\mathbf{k}'} = -V_0$

 \rightarrow interaction only depends on $|\mathbf{k}|$

 \rightarrow in agreement with angular momentum L = 0 (s – wave superconductor)

corresponding spin wavefunction must by antisymmetric

 \rightarrow spin singlet Cooper pairs (S = 0)

- resulting Cooper pair: $(\mathbf{k}\uparrow,-\mathbf{k}\downarrow)$ spin singlet Cooper pair (L=0,S=0)

- L = 0, S = 0 is realized in metallic superconductors (s wave superconductor)
- higher orbital momentum wavefunction in cuprate superconductors (HTS):

L = 2, S = 0 (*d* – wave superconductor)

spin triplet Cooper pairs (S = 1):

- realized in superfluid ³He: L = 1, S = 1 (*p* wave pairing)
- evidence for L = 1, S = 1 also for some heavy Fermion superconductors (e.g. UPt₃)

Example: *iron-based superconductors* – *iron pnictides*

A. Marx , © Walther-Meißner-Institut (2004 - 2021) R. Gross and

Example: UPt₃

Michael R. Norman, Science 332, 196-200 (2011)

f-wave (E_{2u}) Cooper pair wavefunction in three-dimensional momentum space

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Technische Universität München

Superconductivity and Low Temperature Physics I

Lecture No. 8 09 December 2021

R. Gross © Walther-Meißner-Institut

Summary of Lecture No. 7 (1)

microscopic theory of superconductivity

- problem: (i) high kinetic energy of conduction electrons: E_{kin} ~ eV (corresponding to T ~ 10 000 K)
 (ii) small interaction strength: E_{int} ~ meV (corresponding to T ~ 10 K)
 → find interaction resulting in ordering of conduction electrons despite high E_{kin}
- Cooper (1956): even weak attractive interaction results in instability of free electron gas
 → pair formation: Cooper pairs
- general description of interaction by Feynman diagram:
 - \rightarrow which *exchange boson* results in attractive interaction of conduction electrons?
 - → many candidates: *phonon, magnon, polariton, plasmon, polaron, bipolaron,*

isotope effect as "smoking gun" experiment (1951/1952)

- transition temperature of different isotopes: $T_c \propto 1/\sqrt{M}$
 - \rightarrow as phonon frequency $\omega_{\rm ph} \propto 1/\sqrt{M} \rightarrow T_c \propto \omega_{\rm ph}$

strong evidence for attractive interaction by exchange of virtuell phonons

BCS-Theorie (1957)

- qualitative discussion of attractive interaction: slow reaction of positive ions
 → retarded interaction
- estimate of interaction range $R\simeq v_{\rm F}\tau\simeq v_{\rm F}/\omega_{\rm D}\,$ ($\omega_{\rm D}$ = Debye frequency)

 $v_{\rm F} \simeq 10^6 {\rm m/s}$, $\omega_{\rm D} \simeq 10^{13} {\rm s}^{-1}$ \rightarrow $R \simeq 100 {\rm nm}$

 $- R \gg$ interaction range of screened Coulomb interaction of conduction electrons

(a)

Summary of Lecture No. 7 (2)

attractive electron-electron interaction

- attractive interaction via lattice vibrations (exchange of virtual phonons: Fröhlich, Bardeen)
- scattering matrix element

(i) pure Coulomb interaction:

(ii) screened Coulomb interaction:

$$V(\mathbf{q}) = \frac{e^2}{\epsilon_0 q^2} \qquad \text{(always positive } \rightarrow \text{repulsive interaction)}$$
$$V(\mathbf{q}, \boldsymbol{\omega}) = \frac{e^2}{\epsilon(\mathbf{q}, \omega)\epsilon_0 q^2} = \left(\frac{e^2}{k_s^2 + q^2}\right) \left(1 + \frac{\widetilde{\Omega}_p^2(\mathbf{q})}{\omega^2 - \widetilde{\Omega}_p^2(\mathbf{q})}\right)$$

Thomas-Fermi-

wave vector

- ▶ for $E_k E_{k'} = \hbar \omega < \hbar \widetilde{\Omega}_p(\mathbf{q})$ of involved electrons: denominator becomes negative \rightarrow negative matrix element \rightarrow attractive interaction
- > cut-off frequency: $\omega = \widetilde{\Omega}_p \simeq \omega_D$ (Debye frequency)
- **Cooper pairs**
 - "Gedanken" experiment:

we add 2 additional electrons to Fermi sea at T = 0 and let them interact via exchange of phonons with wave number q

 $\mathbf{k_1} \rightarrow \mathbf{k_1'} = \mathbf{k_1} + \mathbf{q}$ electron 1: scattering process: $\mathbf{k}_2 \rightarrow \mathbf{k}_2' = \mathbf{k}_2 - \mathbf{q}$ electron 2: $K = k_1 + k_2 = k'_1 + k'_2 = K'$ total momentum:

(a) (b)

q-dep. plasma frequency of

screened ions in metal

- only states with $E > E_F$ are accessible due to full Fermi sea
- as $\omega_{\rm ph} < \omega_{\rm D}$, interaction takes place in energy interval $[E_{\rm F}, E_{\rm F} + \hbar\omega_{\rm D}]$ corresponding to $k_{\rm F} \le k \le k_{\rm F} + \frac{m\omega_{\rm D}}{\hbar k_{\rm F}} = k_{\rm F} + \Delta k$
- conservation of total momentum \rightarrow wave vectors of scattering electron must be within cut surface of two intersecting circular rings of thickness Δk \rightarrow maximum cut surface (phase space) is obtained for K = 0 or k₁ = -k₂ \rightarrow Cooper pairs (k, -k)

 ρ^2

 $V(\mathbf{q}) =$

Summary of Lecture No. 7 (3)

- Cooper pair interaction
 - Ansatz: pair wave function = superposition of product wave functions: $\Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k=1}^{m} a_k \exp(i\mathbf{k} \cdot \mathbf{r})$
- $\Psi(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k=k_{\rm F}}^{k_{\rm F}+\Delta k} a_k \exp(i\mathbf{k} \cdot \mathbf{r}) \qquad \mathbf{r} = \mathbf{r}_2 \mathbf{r}_1$
 - Schrödinger equation: $-\frac{\hbar^2}{2m} (\nabla_1^2 + \nabla_2^2) \Psi(\mathbf{r}_1, \mathbf{r}_2) + V(\mathbf{r}) \Psi(\mathbf{r}_1, \mathbf{r}_2) = E \Psi(\mathbf{r}_1, \mathbf{r}_2)$
 - Vereinfachung:

$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -V_0 & \text{for } k' > k_{\mathrm{F}}, k < k_{\mathrm{F}} + \Delta k \\ 0 & \text{else} \end{cases} \quad \text{with } \Delta k = \frac{m\omega_{\mathrm{D}}}{\hbar k_{\mathrm{F}}}$$

– total energy:

$$E \simeq 2E_{\rm F} - 2\hbar\omega_{\rm D}\exp\left(-\frac{1}{V_0 D(E_{\rm F})}\right)$$
 for weak interaction: $V_0 D(E_{\rm F}) \ll 1$)

binding energy: $E - 2E_{\rm F} \propto \hbar \omega_{\rm D}$ (phonon energy)

- uncertainty relation: $\Delta k \ \Delta x \ge 1$ $\Rightarrow \Delta x \le \frac{1}{\Delta k} = \frac{v_F}{\omega_D} \simeq 100 \text{ nm}$
- symmetry of the pair wave function
 - two fermions → total wave function must be antisymmetric

Singlet Pairing
$$S = 0$$
 $L = 0, 2, 4, ...$ $S = \begin{cases} 0 \quad m_s = 0 \\ 1 \quad m_s = \end{cases}$ $\chi^a = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow)$ singlet pairingTriplet Pairing $S = 1$ $L = 1, 3, 5, ...$ $S = \begin{cases} 1 \quad m_s = \begin{cases} -1 \quad \chi^s = \downarrow \downarrow \\ 0 \quad \chi^s = \frac{1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow) \\ +1 \quad \chi^s = \uparrow \uparrow \end{cases}$ triplet pairing

- **examples**: metalic superconductors: S = 0, L = 0, high-temperature cuprate superconductors: S = 0, L = 2, superfluid ³He: S = 1, L = 1

4. Microscopic Theory

- 4.1 Attractive Electron-Electron Interaction
 - **4.1.1 Phonon Mediated Interaction**
 - 4.1.2 Cooper Pairs
 - 4.1.3 Symmetry of Pair Wavefunction
- 4.2 BCS Ground State
 - 4.2.1 The BCS Gap Equation
 - 4.2.2 Ground State Energy
 - 4.2.3 Bogoliubov-Valatin Transformation and Quasiparticle Excitations
- 4.3 Thermodynamic Quantities
- 4.4 Determination of the Energy Gap
 - 4.4.1 Specific Heat
 - 4.4.2 Tunneling Spectroscopy
- 4.5 Coherence Effects

- discussed so far:
 - nature of the attractive interaction
 - > attractive interaction of conduction electrons by exchange of virtual phonons (only two electrons added to Fermi sea)
 - → pair formation: Cooper pair
 - symmetry of the pair wave function
- not yet discussed:
 - > How does the ground state of the total electron system look like?
 - What is the ground state energy?
- we expect:
 - pairing mechanism goes on until the Fermi sea has changed significantly
 - ➢ if pairing energy goes to zero, pairing process will stop
 - \succ detailed theoretical description is complicated \rightarrow we discuss only basics

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

- 2nd quantization formalism is useful to describe quantum many-body systems
- quantum many-body states are represented in the so-called Fock (number) state basis
 → Fock states are constructed by filling up each single-particle state with a certain number of identical particles
- 2nd quantization formalism introduces the creation and annihilation operators to construct and handle the Fock states
- 2nd quantization formalism is also known as the canonical quantization in quantum field theory, in which the fields are upgraded to field operators
 - \rightarrow analogous to 1st quantization, where the physical quantities are upgraded to operators

conduction electrons can be described by wave pakets

introduction of field operators (2nd quantization of a wave function)

$$\widehat{\Psi}_{\sigma}(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \widehat{c}_{\mathbf{k}\sigma} \ e^{\imath\mathbf{k}\cdot\mathbf{r}} \quad \longleftrightarrow \quad \widehat{c}_{\sigma}(\mathbf{k}) = \widehat{c}_{\mathbf{k}\sigma} = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \widehat{\Psi}_{\sigma} \ e^{-\imath\mathbf{k}\cdot\mathbf{r}}$$
$$\widehat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \widehat{c}_{\mathbf{k}\sigma}^{\dagger} \ e^{-\imath\mathbf{k}\cdot\mathbf{r}} \quad \longleftrightarrow \quad \widehat{c}_{\sigma}^{\dagger}(\mathbf{k}) = \widehat{c}_{\mathbf{k}\sigma}^{\dagger} = \frac{1}{\sqrt{V}} \sum_{\mathbf{k}} \widehat{\Psi}_{\sigma}^{\dagger} \ e^{\imath\mathbf{k}\cdot\mathbf{r}}$$

annihilation operator (destroys state with wave number **k**)

creation operator

(ceates state with wave number k)

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

basic relations (fermionic operators):

$$\hat{c}_{k\sigma}^{\dagger} |0\rangle = |1\rangle \qquad \hat{c}_{k\sigma} |0\rangle = 0 \qquad \hat{c}_{k\sigma}^{\dagger} |1\rangle = 0 \qquad \hat{c}_{k\sigma} |1\rangle = |0\rangle$$

$$\hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma} = n_{k\sigma} \qquad \hat{c}_{k\sigma} \hat{c}_{k\sigma}^{\dagger} = 1 - n_{k\sigma} \quad \langle 0|n_{k\sigma}|0\rangle = 0; \quad \langle 1|n_{k\sigma}|1\rangle = 1 \quad \text{particle number operator}$$

$$\hat{c}_{k\sigma}^{\dagger} \hat{c}_{k\sigma}^{\dagger} = 0 \qquad \hat{c}_{k\sigma} \hat{c}_{k\sigma} = 0 \qquad \qquad \text{Pauli exclusion principle}$$

anti-commutation relations (fermions):

$$\left\{ \hat{\mathbf{c}}_{\mathbf{k}\sigma}, \hat{\mathbf{c}}_{\mathbf{k}'\sigma'}^{\dagger} \right\} \equiv \hat{\mathbf{c}}_{\mathbf{k}\sigma} \hat{\mathbf{c}}_{\mathbf{k}'\sigma'}^{\dagger} + \hat{\mathbf{c}}_{\mathbf{k}'\sigma'}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\sigma} = \delta_{\mathbf{k}\mathbf{k}'} \delta_{\sigma\sigma'}$$
$$\left\{ \hat{\mathbf{c}}_{\mathbf{k}\sigma}, \hat{\mathbf{c}}_{\mathbf{k}'\sigma'}^{\dagger} \right\} = \left\{ \hat{\mathbf{c}}_{\mathbf{k}\sigma}^{\dagger}, \hat{\mathbf{c}}_{\mathbf{k}'\sigma'}^{\dagger} \right\} = 0$$

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

pair creation and annihilation operators:

 $P_{\mathbf{k}}^{\dagger} = \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger}$ pair creation operator

$$P_{\mathbf{k}} = \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}$$
 pair annihilation operator

$$[P_{\mathbf{k}}, P_{\mathbf{k}'}] = \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow} - \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} = 0$$

the last two operators of the first term on the r.h.s. can be moved to the front by an even number of permutations \rightarrow sign is preserved

$$\left[P_{\mathbf{k}}^{\dagger}, P_{\mathbf{k}'}^{\dagger}\right] = \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} - \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} = 0$$

 $\left[P_{\mathbf{k}}, P_{\mathbf{k}'}^{\dagger}\right] = \delta_{\mathbf{k}\mathbf{k}'} (1 - n_{\mathbf{k}\uparrow} - n_{-\mathbf{k}'\downarrow}) \qquad \text{(see next slide)}$

powers of pair operators

$$P_{\mathbf{k}}^{\dagger}P_{\mathbf{k}}^{\dagger} = \left(P_{\mathbf{k}}^{\dagger}\right)^{2} = \hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger}\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = 0$$

antisymmetry of fermionic wavefunction requires that powers of the pair operators disappear

Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021

some of the commutator relations of the pair operators are similar to those of bosons, although the pair operators consist only of electron (fermionic) operators

- pair operators do commute but are no bosonic operators
formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

pair creation and annihilation operators:

$$\begin{split} \left[P_{\mathbf{k}}, P_{\mathbf{k}}^{\dagger}\right] &= \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} - \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ &= \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \left(1 - \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}\right) \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} - \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ &= \left(1 - \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}\right) \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} - \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ &= \left(1 - \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}\right) \left(1 - \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\right) - \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ &= \left(1 - \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}\right) \left(1 - \hat{\mathbf{c}}_{-\mathbf{k}\downarrow\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\right) - \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ &= \delta_{\mathbf{k}\mathbf{k}'} (1 - n_{\mathbf{k}\uparrow}) (1 - n_{-\mathbf{k}\downarrow}) - n_{-\mathbf{k}\downarrow} n_{\mathbf{k}\uparrow} \end{split}$$

$$\left[P_{\mathbf{k}}, P_{\mathbf{k}}^{\dagger}\right] = \delta_{\mathbf{k}\mathbf{k}'}(1 - n_{\mathbf{k}\uparrow} - n_{-\mathbf{k}\downarrow})$$

WMI

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

BCS Hamiltonian for N interacting electrons

formalism of second quantization is used (>1927, Dirac, Fock, Jordan et al.)

BCS Hamiltonian for N interacting electrons

simplification of interaction term for pairs with $\mathbf{k}_1 = \mathbf{k}$, $\mathbf{k}_2 = -\mathbf{k}$, $\sigma_1 = \uparrow$, $\sigma_2 = \downarrow$ and $V_{\mathbf{q}} = V_{\mathbf{k},\mathbf{k}'}$ with $\mathbf{q} = \mathbf{k} - \mathbf{k}'$

$$\frac{1}{2} \sum_{\sigma_1,\sigma_2} \sum_{\mathbf{k}_1,\mathbf{k}_2,\mathbf{q}}^N V_{\mathbf{q}} \, \hat{\mathbf{c}}_{\mathbf{k}_1+\mathbf{q},\sigma_1}^\dagger \hat{\mathbf{c}}_{\mathbf{k}_2-\mathbf{q},\sigma_2}^\dagger \hat{\mathbf{c}}_{\mathbf{k}_2,\sigma_2} \hat{\mathbf{c}}_{\mathbf{k}_1,\sigma_1} \Rightarrow \sum_{\mathbf{k},\mathbf{k'}}^N V_{\mathbf{k},\mathbf{k'}} \underbrace{\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^\dagger \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^\dagger \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^\dagger \hat{\mathbf{c}}_{\mathbf{k}\uparrow\uparrow}}_{P_{\mathbf{k}'}}_{P_{\mathbf{k}'}}$$
two particle interaction potential

summation over spin yields factor 2

pair creation and annihilation operators

often the energy is given with respect to chemical potential μ

→
$$\varepsilon_{\mathbf{k}} = \frac{\hbar^2 \mathbf{k}^2}{2m}$$
 is replaced by $\xi_{\mathbf{k}} = \varepsilon_{\mathbf{k}} - \mu$

basic definitions, abreviations, assumptions,

1. weak isotropic interaction:
$$V_{\mathbf{k},\mathbf{k}'} = \begin{cases} -V_0 & \text{for } |\xi_{\mathbf{k}}|, |\xi_{\mathbf{k}'}| < \hbar\omega_{\mathrm{D}} \\ 0 & \text{else} \end{cases}$$
 $V_0 D(E_{\mathrm{F}}) \ll 1$
2. pairing (Gorkov) amplitude: $g_{\mathbf{k}\sigma_1\sigma_2} \equiv \langle c_{-\mathbf{k}\sigma_1}c_{\mathbf{k}\sigma_2} \rangle \neq 0$
 $g_{\mathbf{k}\sigma_1\sigma_2}^* \equiv \langle c_{-\mathbf{k}\sigma_1}^\dagger c_{\mathbf{k}\sigma_2}^\dagger \rangle \neq 0$ $\langle \cdots \rangle = \text{statistical average}$

3. Pauli principle: pairing amplitude is antisymmetric for interchanging spins and wave vector:

$$g_{\mathbf{k}\sigma_1\sigma_2} = -g_{-\mathbf{k}\sigma_2\sigma_1}$$

4. spin part allows to distinguish between singlet and triplet pairing:

$$S = \begin{cases} 0 & m_s = 0 & \text{singlet pairing} \\ 1 & m_s = -1, 0, +1 & \text{triplet pairing} \end{cases}$$

5. pairing potential:

$$\Delta_{\mathbf{k}\sigma_{1}\sigma_{2}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k}'\sigma_{1}\sigma_{2}}$$
$$\Delta_{\mathbf{k}'\sigma_{1}\sigma_{2}}^{*} \equiv -\sum_{\mathbf{k}} V_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k}\sigma_{1}\sigma_{2}}^{*}$$

statistical average of pairing interaction

calculation of the ground state energy

• Hamilton operator: $\mathcal{H}_{BCS} = \sum_{\sigma} \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} \, \hat{\mathbf{c}}_{\mathbf{k}\sigma}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \, \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}$

$$\varepsilon_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} = \xi_{\mathbf{k}} + \mu$$

• how to solve the *Schrödinger equation* ?

 \rightarrow most general form of *N*-electron wave function:

of possibilities to place
$$N/2$$
 particles on M sites:

$$\Psi_N \rangle = \sum g(\mathbf{k}_i, \dots, \mathbf{k}_l) \, \hat{\mathbf{c}}_{\mathbf{k}_l \uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}_l \downarrow}^{\dagger} \dots \, \hat{\mathbf{c}}_{\mathbf{k}_l \uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}_l \downarrow}^{\dagger} | 0 \rangle \qquad \frac{M!}{[M - (N/2)]! \, (N/2)!}$$

problem: huge number of possible realizations, typically 10^{10²⁰}

mean field approach: occupation probability of state **k** only depends only on **average occupation probability** of other states

 $n_{\mathbf{k}\sigma}$ = particle number operator

→ Bardeen, Cooper and Schrieffer used the following Ansatz (mean-field approach):

$$|\Psi_{\rm BCS}\rangle = \prod_{\mathbf{k}=\mathbf{k}_1,\dots,\mathbf{k}_M} \left(u_{\mathbf{k}} + v_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \right) |0\rangle$$

 $|u_{\mathbf{k}}|^2$: probability that pair state $(\mathbf{k} \uparrow, -\mathbf{k} \downarrow)$ is empty $|v_{\mathbf{k}}|^2$: probability that pair state $(\mathbf{k} \uparrow, -\mathbf{k} \downarrow)$ is occupied $|u_{\mathbf{k}}|^2 + |v_{\mathbf{k}}|^2 = 1$

How to guess the BCS many particle wavefunction?

$$|\Psi_{\rm BCS}\rangle = \prod_{\mathbf{k}=\mathbf{k}_1,\dots,\mathbf{k}_M} \left(u_{\mathbf{k}} + v_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \right) |0\rangle$$

wave function assumed by Bardeen, Cooper and Schrieffer

→ assume that the macroscopic wave function $\psi(\mathbf{r}, t) = \psi_0(\mathbf{r}, t)e^{i\theta(\mathbf{r}, t)}$ can be described by a *coherent many particle state of fermions* (motivated by strong overlap of Cooper pairs)

coherent state of bosons

discussed first by *Erwin Schrödinger* in 1926 when searching for a state of the quantum mechanical harmonic oscillator approximating best the behavior of a classical harmonic oscillator

E. Schrödinger, Der stetige Übergang von der Mikro- zur Makromechanik, Die Naturwissenschaften 14, 664-666 (1926).

transferred later by Roy J. Glauber to Fock state

R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131, 2766-2788 (1963).

Nobel Prize in Physics 2005 "*for his contribution to the quantum theory of optical coherence*", with the other half shared by John L. Hall and Theodor W. Hänsch.

• Fock state representation of coherent state of bosons

coherent state $|\alpha\rangle$ is expressed as an infinite linear combination of number (Fock) states

$$|\phi_n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle$$
boson creation operator vacuum state
$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |\phi_n\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{(\alpha a^{\dagger})^n}{n!} |0\rangle = e^{-|\alpha|^2/2} e^{(\alpha a^{\dagger})} |0\rangle$$
Schrödinger (1926)
$$\alpha = |\alpha| e^{i\varphi} \text{ is complex number}$$

probability for occupation of n particles is given by Poisson distribution

$$P(n) = |\langle \phi_n | \alpha \rangle|^2 = \frac{|\alpha|^{2n}}{n!} e^{-|\alpha|^2}$$

- expectation value of number operator:
- relative standard deviation:
- uncertainty relation

$$\begin{split} N &= |\alpha|^2, \quad \Delta N = |\alpha| = \sqrt{N} \gg 1\\ \frac{\Delta N}{N} &= \frac{1}{\sqrt{N}} \ll 1 \quad (\text{as } N \gg 1)\\ \Delta N \; \Delta \varphi \geq \frac{1}{2}, \quad \Delta \varphi \ll 1 \end{split}$$

application: coherent photonic state generated by laser

WMI

• Poisson distribution

WM

100

• Fock state representation of coherent state of fermions

starting point: coherent bosonic state

$$|\alpha\rangle = e^{-|\alpha|^2/2} \exp(\alpha a^{\dagger}) |0\rangle$$

$$|\Psi_{\rm BCS}\rangle = c_1 \exp\left(\sum_{\mathbf{k}} \alpha_{\mathbf{k}} P_{\mathbf{k}}^{\dagger}\right)|0\rangle$$

summation over \mathbf{k} since we have many fermionic modes

 we make use of the fact that higher powers of fermionic creation operators disappear due to *Pauli principle* (key difference to bosonic system):

$$P_{\mathbf{k}}^{\dagger}P_{\mathbf{k}}^{\dagger} = \left(P_{\mathbf{k}}^{\dagger}\right)^{2} = \hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger}\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger}\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = 0$$

normalization: $\langle \Psi_{BCS}^{\star} | \Psi_{BCS} \rangle = c_1^2 \langle 0 | \prod_{\mathbf{k}} (1 + \alpha_{\mathbf{k}}^* P_{\mathbf{k}}) (1 + \alpha_{\mathbf{k}} P_{\mathbf{k}}^{\dagger}) | 0 \rangle = 1$ satisfied if all factors = 1

$$1 = c_1^2 \Big\langle 0 \Big| \Big(1 + \alpha_{\mathbf{k}}^* P_{\mathbf{k}} \Big) \Big(1 + \alpha_{\mathbf{k}} P_{\mathbf{k}}^{\dagger} \Big) | 0 \Big\rangle = c_1^2 (1 + |\alpha_{\mathbf{k}}|^2) \qquad \Longrightarrow \qquad c_1 = \frac{1}{\sqrt{(1 + |\alpha_{\mathbf{k}}|^2)}}$$

• BCS ground state as coherent state of fermions

$$|\Psi_{BCS}\rangle = c_1 \prod_{\mathbf{k}} (1 + \alpha_{\mathbf{k}} P_{\mathbf{k}}^{\dagger}) |0\rangle = \frac{1}{\sqrt{(1 + |\alpha_{\mathbf{k}}|^2)}} \prod_{\mathbf{k}} (1 + \alpha_{\mathbf{k}} P_{\mathbf{k}}^{\dagger}) |0\rangle$$

$$u_{\mathbf{k}} = \frac{1}{\sqrt{(1 + |\alpha_{\mathbf{k}}|^2)}}$$

$$v_{\mathbf{k}} = \frac{\alpha_{\mathbf{k}}}{\sqrt{(1 + |\alpha_{\mathbf{k}}|^2)}}$$
coherence factors

coherent superposition of pair states \rightarrow only average pair number is fixed

$$\Delta N = \sqrt{N} \gg 1$$
 $\frac{\Delta N}{N} = \frac{1}{\sqrt{N}} \ll 1$ $\Delta N \Delta \varphi \ge \frac{1}{2} \Rightarrow \Delta \varphi \ll 1$

 \rightarrow uncertainties $\Delta N/N$ and $\Delta \varphi/2\pi$ are very small for large average pair numer \overline{N}

 $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ are complex probability amplitudes:

 $|u_{\mathbf{k}}|^2$: probability that pair state $(\mathbf{k} \uparrow, -\mathbf{k} \downarrow)$ is empty $|v_{\mathbf{k}}|^2$: probability that pair state $(\mathbf{k} \uparrow, -\mathbf{k} \downarrow)$ is occupied $|u_{\mathbf{k}}|^2 + |v_{\mathbf{k}}|^2 = 1$

• some expectation values (1):

$$|\Psi_{\rm BCS}\rangle = \prod_{\mathbf{k}=\mathbf{k}_1,\dots,\mathbf{k}_M} \left(u_{\mathbf{k}} + v_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \right) |0\rangle$$

we use the identities:

 $\langle \mathcal{O}\phi|\Psi
angle = \left\langle \phi \Big| \mathcal{O}^{\dagger}\Psi \right
angle$

$$- \langle \phi | (\mathcal{AB})^{\dagger} | \Psi \rangle = \langle \phi | \mathcal{B}^{\dagger} \mathcal{A}^{\dagger} | \Psi \rangle$$

(see exercise sheets

single spin particle number

 $\langle n_{{f k}\uparrow}
angle = |v_{f k}|^2$

average total pair number

$$\overline{N} = \langle \mathcal{N} \rangle = \sum_{\mathbf{k}\sigma} \langle n_{\mathbf{k}\sigma} \rangle = \sum_{\mathbf{k}\sigma} |v_{\mathbf{k}}|^2 = 2\sum_{\mathbf{k}} |v_{\mathbf{k}}|^2 = \sum_{\mathbf{k}} |v_{\mathbf{k}}|^2 - |u_{\mathbf{k}}|^2 + 1$$

WMI

• some expectation values (2):

statistical fluctuation of averge particle number

$$\Delta N = \left\langle \mathcal{N} - \left\langle \mathcal{N} \right\rangle \right\rangle^2 = \left\langle \mathcal{N}^2 \right\rangle - \left\langle \mathcal{N} \right\rangle^2$$

(see exercise sheets for detailed derivation)

$$\overline{N} = \langle \mathcal{N} \rangle = \sum_{\mathbf{k}\sigma} \langle n_{\mathbf{k}\sigma} \rangle = \sum_{\mathbf{k}\sigma} |v_{\mathbf{k}}|^2 = 2 \sum_{\mathbf{k}} |v_{\mathbf{k}}|^2$$

$$\Delta N = \sqrt{4\sum_{\mathbf{k}} |u_{\mathbf{k}}|^2 |v_{\mathbf{k}}|^2} \propto \overline{N}$$

note that $\sum_{\mathbf{k}} \propto \text{volume} \propto \overline{N}$, as sum over \mathbf{k} values in specific energy interval scales with volume at constant particle density

 ΔN gets very large for large \overline{N} , but relative fluctuation $\Delta N/\overline{N}$ becomes vanishingly small

• some expectation values (3):

pairing or Gorkov amplitude

$$g_{\mathbf{k}\sigma_{1}\sigma_{2}} \equiv \langle \Psi_{\mathrm{BCS}} | c_{-\mathbf{k}\sigma_{1}} c_{\mathbf{k}\sigma_{2}} | \Psi_{\mathrm{BCS}} \rangle = u_{\mathbf{k}} v_{\mathbf{k}}^{\star}$$

$$g_{\mathbf{k}\sigma_{1}\sigma_{2}}^{\dagger} \equiv \left\langle \Psi_{\mathrm{BCS}} \left| c_{-\mathbf{k}\sigma_{1}}^{\dagger} c_{\mathbf{k}\sigma_{2}}^{\dagger} \right| \Psi_{\mathrm{BCS}} \right\rangle = u_{\mathbf{k}}^{\star} v_{\mathbf{k}}$$

BCS Hamiltonian

miltonian
$$\mathcal{H}_{BCS} = \sum_{\sigma} \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} \, \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \, \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{c}_{\mathbf{k}'\uparrow}^{\dagger}$$
$$\left\langle \Psi_{BCS} \left| \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} \right| \Psi_{BCS} \right\rangle = |v_{\mathbf{k}}|^{2}$$

$$\left\langle \Psi_{\rm BCS} \Big| \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow} \Big| \Psi_{\rm BCS} \right\rangle = v_{\mathbf{k}} v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}'}^{\star}$$

$$\langle \Psi_{\rm BCS} | \mathcal{H}_{\rm BCS} | \Psi_{\rm BCS} \rangle = \underbrace{2 \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} | v_{\mathbf{k}} |^2}_{= \overline{N} \varepsilon_{\mathbf{k}}} + \underbrace{\sum_{\mathbf{k}, \mathbf{k}'} V_{\mathbf{k}, \mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}}^{\star}}_{\text{interaction energy}}$$

(see exercise sheets for detailed derivation)

task: find the minimum of the expectation value $\langle \Psi_{BCS} | \mathcal{H}_{BCS} | \Psi_{BCS} \rangle$ by variational method (T = 0)

we take the energy relative to the chemical potential μ

$$\langle E_{\text{BCS}} - \overline{N} \, \mu \rangle = \langle \Psi_{\text{BCS}} | \mathcal{H}_{\text{BCS}} - \overline{N} \, \mu \, | \Psi_{\text{BCS}} \rangle = 2 \sum_{\mathbf{k}} (\xi_{\mathbf{k}} + \mu) \, |v_{\mathbf{k}}|^2 - \overline{N} \, \mu + \sum_{\mathbf{k}, \mathbf{k}'} V_{\mathbf{k}, \mathbf{k}'} \, v_{\mathbf{k}} \, v_{\mathbf{k}'}^* u_{\mathbf{k}'} u_{\mathbf{k}'}^* u_{\mathbf{k}'} u_{\mathbf{k}'}^* u_{\mathbf{k}'} u_$$

$$\langle E_{\text{BCS}} - \overline{N} \, \mu \rangle = \langle \Psi_{\text{BCS}} | \mathcal{H}_{\text{BCS}} - \overline{N} \, \mu \, | \Psi_{\text{BCS}} \rangle = 2 \sum_{\mathbf{k}} \xi_{\mathbf{k}} \, |v_{\mathbf{k}}|^2 - \overline{N} \, \mu + \overline{N} \, \mu + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \, v_{\mathbf{k}} \, v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}'}^{\star} u_{\mathbf{k}'}^{$$

$$\delta \left\{ 2\sum_{\mathbf{k}} \xi_{\mathbf{k}} |v_{\mathbf{k}}|^2 + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}}^{\star} \right\} = 0$$

minimization of expectation value by variation of the probability amplitudes yields expressions for $|u_{\rm k}|^2$ and $|v_{\rm k}|^2$

$$\varepsilon_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} = \xi_{\mathbf{k}} + \mu$$
$$\overline{N} = 2\sum_{\mathbf{k}} |v_{\mathbf{k}}|^2$$

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

4.2 The BCS Ground State

Method 1: we assume that u_k and v_k are real and satisfy $|u_k|^2 + |v_k|^2 = 1$ (Bardeen, Cooper, Schrieffer: 1957)

$$u_{\mathbf{k}} = \sin \theta_{\mathbf{k}}$$
, $v_{\mathbf{k}} = \cos \theta_{\mathbf{k}}$, and $2 \sin \theta_{\mathbf{k}} \cos \theta_{\mathbf{k}} = \sin 2\theta_{\mathbf{k}}$

$$\langle E_{\rm BCS} - \bar{N} \, \mu \rangle = 2 \sum_{\mathbf{k}} \xi_{\mathbf{k}} \, |v_{\mathbf{k}}|^2 + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \, v_{\mathbf{k}} \, v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}}^{\star} = 2 \sum_{\mathbf{k}} \xi_{\mathbf{k}} \cos^2 \theta_{\mathbf{k}} + \frac{1}{4} \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \sin 2\theta_{\mathbf{k}} \sin 2\theta_{\mathbf{k}'} u_{\mathbf{k}'} u_{\mathbf{k}'}$$

minimization
$$\frac{\partial \langle E_{BCS} - \overline{N} \mu \rangle}{\partial \theta_{I}} = 0$$

$$\frac{\partial \langle E_{BCS} - \overline{N} \mu \rangle}{\partial \theta_{I}} = 0 = 2\xi_{I} \underbrace{(-2\cos\theta_{I}\sin\theta_{I})}_{=-\sin 2\theta_{I}} + \underbrace{\frac{1}{4} \frac{\partial}{\partial \theta_{I}} \sum_{\mathbf{k}} \sin 2\theta_{\mathbf{k}} \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \sin 2\theta_{\mathbf{k}'}}_{\frac{1}{4}(2\cos 2\theta_{I}) \sum_{\mathbf{k}'} V_{\mathbf{l},\mathbf{k}'} \sin 2\theta_{\mathbf{k}'} + \sum_{\mathbf{k}} \sin 2\theta_{\mathbf{k}} \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \sin 2\theta_{\mathbf{k}'}}_{\gamma_{\mathbf{k},\mathbf{k}'} \sin 2\theta_{\mathbf{k}'} + \sum_{\mathbf{k}} \sin 2\theta_{\mathbf{k}} \sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \sin 2\theta_{\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k},\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k},\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k},\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}'} \sum_{\mathbf{k}'} \nabla_{\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}'} \sum_{\mathbf{k}'} \sum_{\mathbf{k}',\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}'} \sum_{\mathbf{k}'} \sum_{\mathbf{k}',\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}'} \sum_{\mathbf{k}',\mathbf{k}',\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}',\mathbf{k}',\mathbf{k}'} \sum_{\mathbf{k}',\mathbf$$

• we switch back to old summation $(\mathbf{l} \rightarrow \mathbf{k})$ and restore $u_{\mathbf{k}} = \sin \theta_{\mathbf{k}}$, $v_{\mathbf{k}} = \cos \theta_{\mathbf{k}}$:

• we further use the pairing strength $\Delta_{\mathbf{k}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} u_{\mathbf{k}'} v_{\mathbf{k}'}$ $\tan 2\theta_{\mathbf{k}} = -\frac{\Delta_{\mathbf{k}}}{\xi_{\mathbf{k}}}$

with
$$\tan 2\theta_{\mathbf{k}} = \frac{\sin 2\theta_{\mathbf{k}}}{\cos 2\theta_{\mathbf{k}}} = \frac{2\sin \theta_{\mathbf{k}} \cos \theta_{\mathbf{k}}}{\underbrace{\cos^2 \theta_{\mathbf{k}}}_{\frac{1}{2} + \frac{1}{2}\cos 2\theta_{\mathbf{k}}} - \underbrace{\sin^2 \theta_{\mathbf{k}}}_{\frac{1}{2} - \frac{1}{2}\cos 2\theta_{\mathbf{k}}}} = \frac{2u_{\mathbf{k}}v_{\mathbf{k}}}{u_{\mathbf{k}}^2 - v_{\mathbf{k}}^2} \text{ we obtain } \longrightarrow \frac{2u_{\mathbf{k}}v_{\mathbf{k}}}{u_{\mathbf{k}}^2 - v_{\mathbf{k}}^2} = -\frac{\Delta_{\mathbf{k}}}{\xi_{\mathbf{k}}}$$

• we define $E_{\mathbf{k}} \equiv \sqrt{\xi_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$

and obtain the following expressions for $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ minimizing the energy

$$|u_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 + \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right] \qquad |v_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right]$$
$$u_{\mathbf{k}}v_{\mathbf{k}} = g_{\mathbf{k}} = \frac{\Delta_{\mathbf{k}}}{2E_{\mathbf{k}}} \qquad \Delta_{\mathbf{k}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}}$$

pairing amplitude

self-consistent gap equation

for k-independent $\Delta_{\mathbf{k}}$: minimum energy is $E_{\mathbf{k}} = \Delta$

we will see later that $E_{\mathbf{k}}$ is the energy required to add a single excitation to the ground state

→ minimum excitation energy is required, therefore Δ represents an energy gap in the excitation spectrum

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

4.2 The BCS Ground State

 $|u_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 + \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right]$ $|v_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right]$ $u_{\mathbf{k}}v_{\mathbf{k}} = g_{\mathbf{k}} = \frac{\Delta_{\mathbf{k}}}{2E_{\mathbf{k}}}$

 $|v_{\mathbf{k}}|^2$: probability that \mathbf{k} is occupied \rightarrow probability $|v_{\mathbf{k}}|^2$ is smeared out around Fermi level even at T = 0: *increase of kinetic energy*

 \rightarrow smearing is required to allow for pairing interaction:

reduction of potential energy > increase of kinetic energy

$$\rightarrow |v_{\mathbf{k}}|^2 \simeq f(T = T_c)$$

Method 2: we use the method of Lagrangian multipliers

• we use the following two constraints:

$$\phi_1 = 0 = \langle \mathcal{N} \rangle - 2\sum_{\mathbf{k}} |v_{\mathbf{k}}|^2 = \langle \mathcal{N} \rangle - \sum_{\mathbf{k}} |v_{\mathbf{k}}|^2 - |u_{\mathbf{k}}|^2 + 1$$

$$\phi_2 = 0 = |u_{\mathbf{k}}|^2 + |v_{\mathbf{k}}|^2 - 1 = u_{\mathbf{k}}u_{\mathbf{k}}^* + v_{\mathbf{k}}v_{\mathbf{k}}^* - 1$$

 $\mathcal{L}(u_{\mathbf{k}}^{\star}, v_{\mathbf{k}}^{\star}, \lambda_{1}, \lambda_{2}) = \langle E_{\mathrm{BCS}} \rangle - \lambda_{1} \phi_{1} - \lambda_{2} \phi_{2}$

 λ_1, λ_2 : Lagrangian multipliers

with $\langle E_{BCS} \rangle = 2 \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} |v_{\mathbf{k}}|^2 + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^* u_{\mathbf{k}'} u_{\mathbf{k}} = 2 \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} (|v_{\mathbf{k}}|^2 - |u_{\mathbf{k}}|^2 + 1) + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^* u_{\mathbf{k}'} u$

• by setting the partial derivative of the Lagrangian function \mathcal{L} with respect to $u_{\mathbf{k}}^{\star}$ and $v_{\mathbf{k}}^{\star}$ to zero we obtain the eigenvalue eqns:

$$(\varepsilon_{\mathbf{k}} - \lambda_{1})u_{\mathbf{k}} + \Delta_{\mathbf{k}}v_{\mathbf{k}} - \lambda_{2}u_{\mathbf{k}} = 0$$

$$\Delta_{\mathbf{k}}^{\dagger}u_{\mathbf{k}} - (\varepsilon_{\mathbf{k}} - \lambda_{1})v_{\mathbf{k}} - \lambda_{2}v_{\mathbf{k}} = 0$$

$$(\varepsilon_{\mathbf{k}} - \lambda_{1}) \Delta_{\mathbf{k}} - (\varepsilon_{\mathbf{k}} - \lambda_{1}) (u_{\mathbf{k}}) = \lambda_{2} \begin{pmatrix} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{pmatrix}$$

$$with \Delta_{\mathbf{k}} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k}'} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} u_{\mathbf{k}'} v_{\mathbf{k}'}^{\star}$$

$$= -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} u_{\mathbf{k}'} v_{\mathbf{k}'}^{\star}$$

- physical meaning of the Lagrangian multipliers
- i. λ₁ shifts the energy and corresponds the the chemical potential μ
 ii. λ₂ corresponds to the eigenvalue of the the vector (u_k, v_k) and is given by the energy ±E_k of the quasiparticles excited out of the condensate

• solving the eigenvalue eqns yields
$$E_{\mathbf{k}} \equiv \sqrt{\xi_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$$
, $|u_{\mathbf{k}}|^2 = \frac{1}{2} \left[1 + \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right]$, $|v_{\mathbf{k}}|^2 = \frac{1}{2} \left[1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right]$, $u_{\mathbf{k}}v_{\mathbf{k}}^{\star} = g_{\mathbf{k}} = \frac{\Delta_{\mathbf{k}}}{2E_{\mathbf{k}}}$

4.2.1 The BCS Gap Equation

solution of the self-consistent gap equation (T = 0)

$$\Delta_{\mathbf{k}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2\sqrt{\xi_{\mathbf{k}'}^2 + |\Delta_{\mathbf{k}'}|^2}}$$

cannot be solved analytically in the general case

simple solution only if the gap Δ_k and the interaction potential $V_{k,k'}$ are assumed k-independent: $\Delta_k = \Delta$, $V_{k,k'} = -V_0$

$$1 = V_0 \sum_{\mathbf{k}'} \frac{1}{2\sqrt{\xi_{\mathbf{k}'}^2 + |\Delta|^2}} \qquad \text{transforming sum into integration} \\ \text{with pair density } \widetilde{D}(E) \simeq D(E_F)/2 \qquad 1 = \frac{V_0 D(E_F)}{2} \int_{-\hbar\omega_D}^{\hbar\omega_D} \frac{d\xi}{2\sqrt{\xi^2 + |\Delta|^2}}$$

with
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \operatorname{arcsinh}\left(\frac{x}{a}\right)$$
 we obtain

$$1 = \frac{V_0 D(E_{\rm F})}{4} \int_{-\hbar\omega_{\rm D}}^{\hbar\omega_{\rm D}} \frac{\mathrm{d}\xi}{\sqrt{\xi^2 + |\Delta|^2}} = \frac{V_0 D(E_{\rm F})}{4} \operatorname{arcsinh}\left(\frac{\hbar\omega_{\rm D}}{\Delta}\right) \Big|_{-\hbar\omega_{\rm D}}^{+\hbar\omega_{\rm D}} = \frac{V_0 D(E_{\rm F})}{2} \operatorname{arcsinh}\left(\frac{\hbar\omega_{\rm D}}{\Delta}\right)$$

$$\Delta = \frac{\hbar\omega_{\rm D}}{\sinh(2/V_0 D(E_{\rm F}))} \simeq 2\hbar\omega_{\rm D} \ {\rm e}^{-2/V_0 D(E_{\rm F})}$$

energy gap corresponds to binding energy estimated for single Cooper pair

factor 2 in argument of exp. function since we have assumed that the two additional electrons are in the $[E_{\rm F}, E_{\rm F} + \hbar\omega_{\rm D}]$ and not between $[E_{\rm F} - \hbar\omega_{\rm D}, E_{\rm F} + \hbar\omega_{\rm D}]$

 $V_0 D(E_{\rm F}) \ll 1$: weak coupling approximation, $\sinh x \simeq \frac{1}{2} \exp x$

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

calculation of the BCS condensation energy

• calculate expectation value of BCS Hamiltonian for T = 0

$$E_{\rm BCS} = \langle \Psi_{\rm BCS} | \mathcal{H}_{\rm BCS} - \mu \mathcal{N} | \Psi_{\rm BCS} \rangle = 2 \sum_{\mathbf{k}} \xi_{\mathbf{k}} |v_{\mathbf{k}}|^2 + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^* u_{\mathbf{k}'} u_{\mathbf{k}}^*$$

energy relative to chemical potential $\xi_{\bf k} = \varepsilon_{\bf k} - {\pmb \mu}$

• we plug in the results for the coherence factors and the pair amplitude

$$|u_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 + \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right], \quad |v_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right], \quad u_{\mathbf{k}}v_{\mathbf{k}}^{\star} = g_{\mathbf{k}}^{\star} = \frac{\Delta_{\mathbf{k}}^{\star}}{2E_{\mathbf{k}}}, \quad u_{\mathbf{k}}^{\star}v_{\mathbf{k}} = g_{\mathbf{k}} = \frac{\Delta_{\mathbf{k}}}{2E_{\mathbf{k}}}$$

$$E_{\mathrm{BCS}} = \sum_{\mathbf{k}} \left(\xi_{\mathbf{k}} - \frac{\xi_{\mathbf{k}}^{2}}{E_{\mathbf{k}}} \right) - \sum_{\mathbf{k}} g_{\mathbf{k}}^{\star} \Delta_{\mathbf{k}} = \sum_{\mathbf{k}} \left(\xi_{\mathbf{k}} - \frac{\xi_{\mathbf{k}}^{2}}{E_{\mathbf{k}}} \right) - 2\sum_{\mathbf{k}} g_{\mathbf{k}}^{\star} \Delta_{\mathbf{k}} + \sum_{\mathbf{k}} g_{\mathbf{k}}^{\star} \Delta_{\mathbf{k}}$$

$$E_{\mathbf{k}} \equiv \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}}, \quad E_{\mathbf{k}} \equiv \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}},$$

$$E_{\rm BCS} = \sum_{\mathbf{k}} (\xi_{\mathbf{k}} - E_{\mathbf{k}}) + \sum_{\mathbf{k}} g_{\mathbf{k}}^* \Delta_{\mathbf{k}}$$

• for simplicity we assume for $V_{\mathbf{k},\mathbf{k}'} = -V_0$ and $\Delta_{\mathbf{k}} = \Delta$)

$$E_{\rm BCS} = \langle \Psi_{\rm BCS} | \mathcal{H}_{\rm BCS} - \mathcal{N}\mu | \Psi_{\rm BCS} \rangle = \sum_{\mathbf{k}} \{ \xi_{\mathbf{k}} - E_{\mathbf{k}} + g_{\mathbf{k}}^* \Delta \}$$

• subtract mean energy of normal state at T = 0 (making use of symmetry around μ)

$$\langle \Psi_{BCS} | \mathcal{H}_{n} - \mathcal{N}\mu | \Psi_{BCS} \rangle = \lim_{\Delta \to 0} \langle \Psi_{BCS} | \mathcal{H}_{BCS} - \mathcal{N}\mu | \Psi_{BCS} \rangle = \sum_{\mathbf{k}} \xi_{\mathbf{k}} - |\xi_{\mathbf{k}}| = 2 \sum_{|\mathbf{k}| < \mathbf{k}_{F}} \Delta E = \sum_{|\mathbf{k}| < \mathbf{k}_{F}} \xi_{\mathbf{k}} - E_{\mathbf{k}} + \Delta g_{\mathbf{k}}^{*} - 2\xi_{\mathbf{k}} + \sum_{|\mathbf{k}| \ge \mathbf{k}_{F}} \xi_{\mathbf{k}} - E_{\mathbf{k}} + \Delta g_{\mathbf{k}}^{*}$$

we use
$$-\xi_k = |\xi_k|$$
 for $|k| < k_F$ and $E_k = \sqrt{\xi_k^2 + |\Delta|^2}$

$$\Delta E = 2 \sum_{|\mathbf{k}| \ge \mathbf{k}_{\mathrm{F}}} \left(\xi_{\mathbf{k}} - \sqrt{\xi_{\mathbf{k}}^{2} + |\Delta|^{2}} + \Delta g_{\mathbf{k}}^{*} \right) \underset{\Delta g_{\mathbf{k}}^{\dagger} = \frac{\Delta^{2}}{2\sqrt{\xi_{\mathbf{k}}^{2} + |\Delta|^{2}}}}{= 2} 2 \sum_{|\mathbf{k}| \ge \mathbf{k}_{\mathrm{F}}} \left(\xi_{\mathbf{k}} - \sqrt{\xi_{\mathbf{k}}^{2} + |\Delta|^{2}} + \frac{\Delta^{2}}{2\sqrt{\xi_{\mathbf{k}}^{2} + |\Delta|^{2}}} \right)$$

 $\xi_{\mathbf{k}}$

٠

$$\Delta E = 2 \sum_{|\mathbf{k}| \ge k_{\mathbf{F}}} \left(\xi_{\mathbf{k}} - \sqrt{\xi_{\mathbf{k}}^2 + |\Delta|^2} + \frac{\Delta^2}{2\sqrt{\xi_{\mathbf{k}}^2 + |\Delta|^2}} \right)$$

• replace summation by integration after some algebra (see appendix H.3 in R. Gross, A. Marx, Festkörperphysik, 3. Auflage, de Gruyter (2018)):

$$\Delta E = E_{\text{cond}}(0) = -\frac{1}{4} D(E_{\text{F}}) \Delta^2(0)$$

 $D(E_{\rm F}) = {\rm DOS}$ for both spin directions

interpretation of the result: > number of Cooper pairs: $\frac{D(E_F)}{2} \Delta(0)$ > average energy gain per Cooper pair: $-\frac{\Delta(0)}{2}$

• compare to
$$g_s - g_n = E_{\text{cond}}(0) = -B_{\text{cth}}^2(0)/2\mu_0$$

(thermodynamics)

$$B_{\rm cth}(0) = \sqrt{\frac{\mu_0 D(E_{\rm F}) \Delta^2(0)}{2V}}$$

• condensation energy per volume:

$$\frac{E_{\rm cond}(0)}{V} = -\frac{1}{4} \frac{D(E_{\rm F})}{V} \,\Delta^2(0) = -\frac{1}{4} N(E_{\rm F}) \,\Delta^2(0)$$

with
$$N(E_{\rm F}) = \frac{3n}{2E_{\rm F}}$$
 and $\frac{\Delta(0)}{k_{\rm B}T_c} = \frac{\pi}{{\rm e}^{\gamma}} = 1.7638$... we obtain

$$\frac{E_{\text{cond}}(0)}{V} = -\frac{3}{8} n \frac{\Delta^2(0)}{E_{\text{F}}} = \frac{3}{8} \left(\frac{\pi}{e^{\gamma}}\right)^2 \frac{(k_{\text{B}}T_c)^2}{E_{\text{F}}} = -1.167 n \frac{(k_{\text{B}}T_c)^2}{E_{\text{F}}}$$

 \rightarrow average condensation energy per electron is of the order of $(k_{\rm B}T_c)^2/E_{\rm F}$

→ plausibility:

only a small fraction $k_{\rm B}T_c/E_{\rm F}$ of the electrons is participating in pairing process and the average energy reduction per electron is about $k_{\rm B}T_c$

WM

- so far we have found the BCS ground state wave function and the energy gap at zero temperature
- next step:
 - determine the properties of the superconducting state at finite temperature
 - determine the energy of excitations out of the ground state
- how to proceed?
 - use BCS ground state as reference state
 - discuss effect of small deviations (e.g. by adding a small number of excitations to the ground state)
- we use the identities (with $\delta g_{\mathbf{k}}$, $\delta g_{\mathbf{k}}^{*}$ being small)

$$\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow} = \underbrace{\left\langle \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow} \right\rangle}_{g_{\mathbf{k}}} + \underbrace{\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow} - \left\langle \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow} \right\rangle}_{\delta g_{\mathbf{k}}}$$
$$\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} = \underbrace{\left\langle \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \right\rangle}_{g_{\mathbf{k}}^{\ast}} + \underbrace{\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} - \left\langle \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \right\rangle}_{\delta g_{\mathbf{k}}^{\ast}}$$

with pairing amplitude:

$$g_{\mathbf{k}\sigma_{1}\sigma_{2}} \equiv \left\langle c_{-\mathbf{k}\sigma_{1}}c_{\mathbf{k}\sigma_{2}} \right\rangle \neq 0$$
$$g_{\mathbf{k}\sigma_{1}\sigma_{2}}^{\dagger} \equiv \left\langle c_{-\mathbf{k}\sigma_{1}}^{\dagger}c_{\mathbf{k}\sigma_{2}}^{\dagger} \right\rangle \neq 0$$

as the particle number is usually very large, the fluctuations $\delta g_{f k},\delta g_{f k}^*$ are very small and we can neglect quadratic terms in $\,\delta g_{f k},\,\delta g_{f k}^*$

rewriting of pair creation and annihilation operators in

$$\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow} = \underbrace{\left(\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow}\right)}_{g_{\mathbf{k}}} + \underbrace{\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow} - \left\langle\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}\hat{\mathbf{c}}_{\mathbf{k}\uparrow}\right\rangle}_{\delta g_{\mathbf{k}}}$$

$$\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} = \underbrace{\left(\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger}\right)}_{g_{\mathbf{k}}^{*}} + \underbrace{\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} - \left\langle\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}\hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger}\right\rangle}_{\delta g_{\mathbf{k}}^{*}}$$

$$\mathcal{H}_{BCS} = \sum_{\sigma} \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} \, \hat{\mathbf{c}}_{\mathbf{k}\sigma}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'}^{N} V_{\mathbf{k},\mathbf{k}'} \, \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow}^{\dagger}$$

pairing amplitude:

$$g_{\mathbf{k}\sigma_{1}\sigma_{2}} \equiv \left\langle c_{-\mathbf{k}\sigma_{1}}c_{\mathbf{k}\sigma_{2}} \right\rangle \neq 0$$
$$g_{\mathbf{k}\sigma_{1}\sigma_{2}}^{*} \equiv \left\langle c_{-\mathbf{k}\sigma_{1}}^{\dagger}c_{\mathbf{k}\sigma_{2}}^{\dagger} \right\rangle \neq 0$$

• insert into Hamiltonian and consider only terms linear in $\delta g^{(\dagger)}_{f k}$

$$\mathcal{H}_{\mathrm{BCS}} - \mathcal{N}\mu = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} n_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \left[g_{\mathbf{k}}^* \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow} + g_{\mathbf{k}'} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^\dagger \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^\dagger - g_{\mathbf{k}}^* g_{\mathbf{k}'} \right]$$

• make use of pair potential
$$\Delta_{\mathbf{k}\sigma_1\sigma_2} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k}'\sigma_1\sigma_2} \qquad \Delta^*_{\mathbf{k}\sigma_1\sigma_2} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} g^*_{\mathbf{k}'\sigma_1\sigma_2}$$

$$\blacksquare \mathcal{H}_{\text{BCS}} - \mathcal{N}\mu = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} n_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left[\Delta_{\mathbf{k}}^* \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow} + \Delta_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^\dagger \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^\dagger - \Delta_{\mathbf{k}} g_{\mathbf{k}}^* \right]$$

• we use

$$\sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} n_{\mathbf{k}\sigma} = \sum_{\mathbf{k}} \xi_{\mathbf{k}} \left(\hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{\mathbf{k}\uparrow} + \underbrace{\hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}}_{=1-\hat{c}_{-\mathbf{k}\downarrow}\hat{c}_{-\mathbf{k}}^{\dagger}} \right)$$

$$\sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} n_{\mathbf{k}\sigma} = \sum_{\mathbf{k}} \xi_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} - \xi_{\mathbf{k}} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} + \xi_{\mathbf{k}}$$

$$\mathcal{H}_{\mathrm{BCS}} - \mathcal{N}\mu = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} \, n_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left[\Delta_{\mathbf{k}}^* \hat{\mathbf{c}}_{-\mathbf{k}'\downarrow} \hat{\mathbf{c}}_{\mathbf{k}'\uparrow} + \Delta_{\mathbf{k}} \, \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^\dagger \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^\dagger - \Delta_{\mathbf{k}} \, g_{\mathbf{k}}^* \right]$$

$$\implies \mathcal{H}_{\mathrm{BCS}} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^* + \left(\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}, \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \right) \begin{pmatrix} \xi_{\mathbf{k}} & -\Delta_{\mathbf{k}} \\ -\Delta_{\mathbf{k}}^* & -\xi_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \end{pmatrix} \right\}$$

→ due to finite $\Delta_{\mathbf{k}}, \Delta_{\mathbf{k}}^*$, the Hamiltonian describes interacting electron gas with new quasiparticles consisting of *superposition of electron and hole states*

derive excitation energies by diagonalization of Hamiltonian

→ Bogoliubov-Valatin transformation

 \rightarrow define new fermionic operators $\alpha_{\mathbf{k}}$, $\beta_{\mathbf{k}}^{\dagger}$ and $\alpha_{\mathbf{k}}^{\dagger}$, $\beta_{\mathbf{k}}$ by unitary transformation (rotation)

• use unitarian matrix to rotate the energy matrix into eigenbasis of Bogoliubov quasiparticles

$$\mathcal{H}_{BCS} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} + \underbrace{\left(\hat{c}_{\mathbf{k}\uparrow}^{\dagger}, \hat{c}_{-\mathbf{k}\downarrow}\right)}_{\mathcal{C}_{\mathbf{k}}^{\dagger}} \underbrace{\left(\frac{\xi_{\mathbf{k}}}{-\Delta_{\mathbf{k}}^{*}} - \frac{\xi_{\mathbf{k}}}{-\delta_{\mathbf{k}}}\right)}_{\mathcal{S}_{\mathbf{k}}^{\dagger}} \underbrace{\left(\hat{c}_{\mathbf{k}\uparrow}^{\dagger}\right)}_{\mathcal{C}_{\mathbf{k}}^{\dagger}} \right\}$$
spinors
energy matrix
$$\mathcal{H}_{BCS} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} + \underbrace{\left(\frac{\xi_{\mathbf{k}\uparrow}^{\dagger}}{2} + \frac{\xi_{\mathbf{k}}}{2}\right)}_{\mathcal{B}_{\mathbf{k}}^{\dagger}} \underbrace{\left(\frac{\xi_{\mathbf{k}}}{2} + \frac{\xi_{\mathbf{k}}}{2}\right)}_{\mathcal{B}_{\mathbf{k}}^{\dagger}} = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} + \frac{\xi_{\mathbf{k}}^{\dagger} \mathcal{U}_{\mathbf{k}}}{\mathcal{B}_{\mathbf{k}}^{\dagger}} \underbrace{\left(\frac{\xi_{\mathbf{k}}}{2} + \frac{\xi_{\mathbf{k}}}{2}\right)}_{\mathcal{B}_{\mathbf{k}}^{\dagger}} = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} + \frac{\xi_{\mathbf{k}}}{2} \underbrace{\left(\frac{\xi_{\mathbf{k}}}{2} + \frac{\xi_{\mathbf{k}}}{2}\right)}_{\mathcal{B}_{\mathbf{k}}^{\dagger}} \right\}$$

spinors of Bogoliubov quasiparticle operators: $\mathcal{B}_{\mathbf{k}}^{\dagger} = (\alpha_{\mathbf{k}}^{\dagger}, \beta_{-\mathbf{k}}) = \mathcal{C}_{\mathbf{k}}^{\dagger}\mathcal{U}_{\mathbf{k}}$ $\mathcal{B}_{\mathbf{k}} = (\alpha_{\mathbf{k}}, \beta_{-\mathbf{k}}^{\dagger}) = \mathcal{U}_{\mathbf{k}}^{\dagger}\mathcal{C}_{\mathbf{k}}$

appropriate unitary matrix to make transformed energy matrix $\tilde{\mathcal{E}}_{\mathbf{k}} = \mathcal{U}_{\mathbf{k}}^{\dagger} \mathcal{E}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}}$ diagonal:

$$\mathcal{U}_{\mathbf{k}} = \begin{pmatrix} u_{\mathbf{k}} & v_{\mathbf{k}}^{\star} \\ -v_{\mathbf{k}} & u_{\mathbf{k}}^{\star} \end{pmatrix} \qquad \mathcal{U}_{\mathbf{k}}^{\dagger} = \begin{pmatrix} u_{\mathbf{k}}^{\star} & -v_{\mathbf{k}}^{\star} \\ v_{\mathbf{k}} & u_{\mathbf{k}} \end{pmatrix} \qquad \Longrightarrow \qquad \mathcal{U}_{\mathbf{k}}^{\dagger} \mathcal{E}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}} = \begin{pmatrix} E_{\mathbf{k}} & D_{\mathbf{k}} \\ -D_{\mathbf{k}} & -E_{\mathbf{k}} \end{pmatrix} \qquad \text{choose } u_{\mathbf{k}} \text{ and } v_{\mathbf{k}} \text{ such that}$$

eigenenergies
$$\pm E_{\mathbf{k}}$$

$$\mathcal{B}_{\mathbf{k}}^{\dagger} = (\alpha_{\mathbf{k}}^{\dagger}, \beta_{-\mathbf{k}}) = \mathcal{C}_{\mathbf{k}}^{\dagger} \mathcal{U}_{\mathbf{k}} = \mathcal{U}_{\mathbf{k}}^{\mathsf{T}} \mathcal{C}_{\mathbf{k}}^{\dagger}$$
$$\mathcal{B}_{\mathbf{k}} = (\alpha_{\mathbf{k}}, \beta_{-\mathbf{k}}^{\dagger}) = \mathcal{U}_{\mathbf{k}}^{\dagger} \mathcal{C}_{\mathbf{k}}$$

$$\square \qquad (\alpha_{\mathbf{k}}^{\dagger}, \beta_{-\mathbf{k}}) = \begin{pmatrix} u_{\mathbf{k}} & -v_{\mathbf{k}} \\ v_{\mathbf{k}}^{\star} & u_{\mathbf{k}}^{\star} \end{pmatrix} \begin{pmatrix} \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \\ \hat{c}_{-\mathbf{k}\downarrow} \end{pmatrix}$$
$$\square \qquad (\alpha_{\mathbf{k}}, \beta_{-\mathbf{k}}^{\dagger}) = \begin{pmatrix} u_{\mathbf{k}}^{\star} & -v_{\mathbf{k}}^{\star} \\ v_{\mathbf{k}} & u_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} \hat{c}_{\mathbf{k}\uparrow} \\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \end{pmatrix}$$

$$\alpha_{\mathbf{k}} = u_{\mathbf{k}}^{\star} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} - v_{\mathbf{k}}^{\star} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger}$$
$$\beta_{-\mathbf{k}}^{\dagger} = v_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} + u_{\mathbf{k}} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger}$$
$$\alpha_{\mathbf{k}}^{\dagger} = u_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} - v_{\mathbf{k}} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}$$
$$\beta_{-\mathbf{k}} = v_{\mathbf{k}}^{\star} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} + u_{\mathbf{k}}^{\star} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}$$

creation and annihilation operators for **Bogoliubov quasiparticles**: symmetric and antisymmetric superposition of electron and hole states with opposite momentum and spin - operators satisfy fermionic anti-commutation rules: $\{\alpha_{\mathbf{k}}, \beta_{-\mathbf{k}'}^{\dagger}\} = \delta_{\mathbf{k}\mathbf{k}'}$ and $\{\alpha_{\mathbf{k}}, \alpha_{\mathbf{k}'}^{\dagger}\} = \{\alpha_{\mathbf{k}}^{\dagger}, \alpha_{\mathbf{k}'}^{\dagger}\} = 0$

inverse transformation ٠

$$\mathcal{B}_{\mathbf{k}}^{\dagger} \mathcal{U}_{\mathbf{k}}^{\dagger} = \mathcal{C}_{\mathbf{k}}^{\dagger} \mathcal{U}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}}^{\dagger} = \mathcal{C}_{\mathbf{k}}^{\dagger} \Rightarrow \mathcal{C}_{\mathbf{k}}^{\dagger} = \left(\mathcal{U}_{\mathbf{k}}^{\dagger}\right)^{\mathrm{T}} \mathcal{B}_{\mathbf{k}}^{\dagger} \implies \left(\hat{c}_{\mathbf{k}\uparrow}^{\dagger}, \hat{c}_{-\mathbf{k}\downarrow}\right) = \left(\begin{array}{c}u_{\mathbf{k}}^{\star} & v_{\mathbf{k}}\\-v_{\mathbf{k}}^{\star} & u_{\mathbf{k}}\end{array}\right) \left(\begin{array}{c}\alpha_{\mathbf{k}}^{\dagger}\\\beta_{-\mathbf{k}}\end{array}\right) \\ \hat{c}_{-\mathbf{k}\downarrow} = -v_{\mathbf{k}}^{\star} \alpha_{\mathbf{k}}^{\dagger} + v_{\mathbf{k}} \beta_{-\mathbf{k}}\\ \hat{c}_{-\mathbf{k}\downarrow} = -v_{\mathbf{k}}^{\star} \alpha_{\mathbf{k}}^{\dagger} + u_{\mathbf{k}} \beta_{-\mathbf{k}}\\ \hat{c}_{\mathbf{k}\uparrow} = u_{\mathbf{k}} \alpha_{\mathbf{k}} + v_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{\mathbf{k}\uparrow} = u_{\mathbf{k}} \alpha_{\mathbf{k}} + v_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{\mathbf{k}\uparrow} = u_{\mathbf{k}} \alpha_{\mathbf{k}} + v_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{-\mathbf{k}\downarrow} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + v_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}\\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\dagger}$$

 $\beta_{\mathbf{k}}$

Bogoliubov quasiparticles

→ symmetric and anti-symmetric superposition of electron and hole states with opposite spin direction → $|u_k|^2$ = hole fraction, $|v_k|^2$ = electron fraction

> \rightarrow reduces the total momentum by **k** and the total spin by $\hbar/2$ hole-like excitation

 \rightarrow increases the total momentum by **k** and the total spin by $\hbar/2$ particle-like excitation

excitation spectrum of Bogoliubov quasiparticles and energy gap

excitation energy

$$E_{\mathbf{k}} = \pm \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$$

quasiparticle excitations: superposition of electron and hole states **reason**: single particle excitation with wave vector \mathbf{k} can only exist if at the same time there is a hole with wave vector $-\mathbf{k}$, otherwise there would be a pair state

determine $|u_k|^2$ and $|v_k|^2$ by Bogoliubov-Valatin transformation

BCS Hamiltonian $\mathcal{H}_{BCS} - \mathcal{N}\mu$

$$u = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^* + \left(\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger}, \hat{\mathbf{c}}_{-\mathbf{k}\downarrow} \right) \begin{pmatrix} \xi_{\mathbf{k}} & -\Delta_{\mathbf{k}} \\ -\Delta_{\mathbf{k}}^* & -\xi_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{c}}_{\mathbf{k}\uparrow} \\ \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \end{pmatrix} \right\}$$

replace operators by Bogoliubov quasiparticle operators \rightarrow resulting Hamiltonian:

$$\begin{aligned} \mathcal{H}_{BCS} - \mathcal{N}\mu &= \sum_{\mathbf{k}} \left[2\xi_{\mathbf{k}} v_{\mathbf{k}}^{2} - \Delta_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}^{\star} - \Delta_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{\star} v_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{\dagger} \right] \\ &+ \sum_{\mathbf{k}} \left[\xi_{\mathbf{k}} (u_{\mathbf{k}}^{2} - v_{\mathbf{k}}^{2}) + \Delta_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}^{\star} + \Delta_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{\star} v_{\mathbf{k}} \right] \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} \\ &+ \sum_{\mathbf{k}} \left[\xi_{\mathbf{k}} (u_{\mathbf{k}}^{2} - v_{\mathbf{k}}^{2}) + \Delta_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}^{\star} + \Delta_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{\star} v_{\mathbf{k}} \right] \beta_{-\mathbf{k}}^{-\mathbf{k}} \\ &+ \sum_{\mathbf{k}} \left[2\xi_{\mathbf{k}} u_{\mathbf{k}}^{\star} v_{\mathbf{k}}^{\star} + \Delta_{\mathbf{k}} v_{\mathbf{k}}^{\star^{2}} - \Delta_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{\star^{2}} \right] \beta_{-\mathbf{k}} \alpha_{\mathbf{k}} \\ &+ \sum_{\mathbf{k}} \left[2\xi_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}} + \Delta_{\mathbf{k}}^{\dagger} v_{\mathbf{k}}^{2} - \Delta_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{2} \right] \beta_{-\mathbf{k}} \alpha_{\mathbf{k}} \\ &+ \sum_{\mathbf{k}} \left[2\xi_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}} + \Delta_{\mathbf{k}}^{\dagger} v_{\mathbf{k}}^{2} - \Delta_{\mathbf{k}} u_{\mathbf{k}}^{2} \right] \alpha_{\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}}^{\dagger} \end{aligned} \right\} \qquad \left[\dots \right] = \mathbf{0}$$

> we have to set expressions marked in red to zero to keep only diagonal terms > $\alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}}$ and $\beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}}$ = quasiparticle number operators

 $\hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} = u_{\mathbf{k}}^{\star}\alpha_{\mathbf{k}}^{\dagger} + v_{\mathbf{k}}\beta_{-\mathbf{k}}$

 $\hat{\mathbf{c}}_{-\mathbf{k}\downarrow} = -v_{\mathbf{k}}^{\star} \alpha_{\mathbf{k}}^{\dagger} + u_{\mathbf{k}} \beta_{-\mathbf{k}}$ $\hat{\mathbf{c}}_{\mathbf{k}\uparrow} = u_{\mathbf{k}} \alpha_{\mathbf{k}} + v_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger}$

 $\hat{\mathbf{c}}_{-\mathbf{k}\perp}^{\dagger} = -v_{\mathbf{k}}\alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star}\beta_{-\mathbf{k}}^{\dagger}$

The Bogoliubov-Valatin Transformation 4.2.3 $2\xi_{\mathbf{k}}u_{\mathbf{k}}v_{\mathbf{k}} + \Delta_{\mathbf{k}}^{*}v_{\mathbf{k}}^{2} - \Delta_{\mathbf{k}}u_{\mathbf{k}}^{2} = 0 \quad \text{and} \quad 2\xi_{\mathbf{k}}u_{\mathbf{k}}^{*}v_{\mathbf{k}}^{*} + \Delta_{\mathbf{k}}v_{\mathbf{k}}^{*2} - \Delta_{\mathbf{k}}^{*}u_{\mathbf{k}}^{*2} = 0$ • multiply by $\Delta_{\mathbf{k}}^*/u_{\mathbf{k}}^2 (\Delta_{\mathbf{k}}/u_{\mathbf{k}}^{*2})$, solve the resulting quadratic eqn. for $\Delta_{\mathbf{k}}^* v_{\mathbf{k}}/u_{\mathbf{k}} (\Delta_{\mathbf{k}} v_{\mathbf{k}}^*/u_{\mathbf{k}}^*)$ $2\xi_{\mathbf{k}}u_{\mathbf{k}}v_{\mathbf{k}}\frac{\Delta_{\mathbf{k}}^{*}}{u_{\mathbf{k}}^{2}} + \Delta_{\mathbf{k}}^{*}v_{\mathbf{k}}^{2}\frac{\Delta_{\mathbf{k}}^{*}}{u_{\mathbf{k}}^{2}} - \Delta_{\mathbf{k}}u_{\mathbf{k}}^{2}\frac{\Delta_{\mathbf{k}}^{*}}{u_{\mathbf{k}}^{2}} = \left(\Delta_{\mathbf{k}}^{*}\frac{v_{\mathbf{k}}}{u_{\mathbf{k}}}\right)^{2} + 2\xi_{\mathbf{k}}\left(\Delta_{\mathbf{k}}^{*}\frac{v_{\mathbf{k}}}{u_{\mathbf{k}}}\right) + |\Delta_{\mathbf{k}}|^{2} = 0$

note that the phases of u_k , v_k and Δ_k^* (u_k^* , v_k^* and Δ_k), although arbitrary, are related, since the quantity on the r.h.s. is real

negative sign is unphysical

 \rightarrow corresponds to solution with maximum energy

- \rightarrow the relative phase of $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ must be fixed and must be the phase of $\Delta_{\mathbf{k}}^{*}$
- \rightarrow we can choose $u_{\mathbf{k}}$ real and use $v_{\mathbf{k}} = |v_{\mathbf{k}}| e^{i\varphi}$, the phase of $v_{\mathbf{k}}$ corresponds to that of $\Delta_{\mathbf{k}}^*$

$$\square \qquad \left| \frac{v_{\mathbf{k}}}{u_{\mathbf{k}}} \right| = \frac{E_{\mathbf{k}} - \xi_{\mathbf{k}}}{|\Delta_{\mathbf{k}}|}$$

• with the condition $\left|\frac{v_{\mathbf{k}}}{u_{\mathbf{k}}}\right| = \frac{E_{\mathbf{k}} - \xi_{\mathbf{k}}}{|\Delta_{\mathbf{k}}|}$ and the normalization condition $|u_{\mathbf{k}}|^2 + |v_{\mathbf{k}}|^2 = 1$ we obtain

$$|u_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 + \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right] \qquad |v_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right]$$
$$u_{\mathbf{k}}v_{\mathbf{k}}^{\star} = g_{\mathbf{k}}^{\star} = \frac{\Delta_{\mathbf{k}}^{\star}}{2E_{\mathbf{k}}} \qquad u_{\mathbf{k}}^{\star}v_{\mathbf{k}} = g_{\mathbf{k}} = \frac{\Delta_{\mathbf{k}}}{2E_{\mathbf{k}}}$$

probability that pair state $(k\uparrow,-k\downarrow)$ is empty/occupied

pairing amplitude

$$\Delta_{\mathbf{k}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k}'} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}}$$
$$\Delta_{\mathbf{k}}^* \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} g_{\mathbf{k}'}^* = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}^*}{2E_{\mathbf{k}'}}$$

self-consistent gap equation

reformulation of the BCS Hamilton operator

• we start from the Hamiltonian
$$\mathcal{H}_{BCS} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^* + \left(\alpha_{\mathbf{k}}^{\dagger}, \beta_{-\mathbf{k}} \right) \begin{pmatrix} E_{\mathbf{k}} & 0\\ 0 & -E_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} \alpha_{\mathbf{k}} \\ \beta_{-\mathbf{k}}^{\dagger} \end{pmatrix} \right\}$$

$$\mathcal{H}_{\mathrm{BCS}} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} \right\} + \sum_{\mathbf{k}} \left\{ E_{\mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} - E_{\mathbf{k}} \underbrace{\beta_{-\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger}}_{=\mathbf{1} - \beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}}} \right\}$$
$$= \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} \right\} + \sum_{\mathbf{k}} \left\{ E_{\mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} - E_{\mathbf{k}} + E_{\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}} \right\}$$

$$\mathcal{H}_{BCS} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} - E_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^* \right\} + \sum_{\mathbf{k}} \left\{ E_{\mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + E_{\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}} \right\}$$

mean-field contribution

differs from the normal state value by the condensation energy (see below) contribution of **spinless Fermion system** with two kind of **quasiparticles** described by operators $\alpha_{\mathbf{k}}^{\dagger}$, $\alpha_{\mathbf{k}}$ and $\beta_{-\mathbf{k}}^{\dagger}$, $\beta_{-\mathbf{k}}$ and excitation energies $\pm E_{\mathbf{k}}$

spinless **quasiparticles** since they consist of superposition of spin-↑ and spin-↓ electrons
4.2.3 The Bogoliubov-Valatin Transformation

note that the Bogoliubov quasiparticles are not part of the BCS ground state, as is evident from

 $\alpha_{\mathbf{k}} | \Psi_{\text{BCS}} \rangle = 0$ $\beta_{-\mathbf{k}} | \Psi_{\text{BCS}} \rangle = 0$

the occupation probability of the Bogoliubov particles is given by the Fermi-Dirac distribition

$$\left\langle \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} \right\rangle = \left\langle \beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}} \right\rangle = f(E_{\mathbf{k}}) = \frac{1}{\exp(E_{\mathbf{k}}/k_{\mathrm{B}}T) + 1}$$

Summary of Lecture No. 8 (1)

BCS Hamilton operator:

$$\mathcal{H}_{BCS} = \sum_{\sigma} \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} \, \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} + \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \, \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{-\mathbf{k}'\downarrow}^{\dagger} \hat{c}_{\mathbf{k}'\uparrow}^{\dagger}$$

Bardeen, Cooper and **Schrieffer** used the following Ansatz for the ground state wave function (mean-field approach):

$$|\Psi_{\rm BCS}\rangle = \prod_{\mathbf{k}=\mathbf{k}_1,\dots,\mathbf{k}_M} \left(u_{\mathbf{k}} + v_{\mathbf{k}} \hat{\mathbf{c}}_{\mathbf{k}\uparrow}^{\dagger} \hat{\mathbf{c}}_{-\mathbf{k}\downarrow}^{\dagger} \right) |0\rangle$$

 $|u_{\mathbf{k}}|^2$: probability that pair state $(\mathbf{k} \uparrow, -\mathbf{k} \downarrow)$ is empty $|v_{\mathbf{k}}|^2$: probability that pair state $(\mathbf{k} \uparrow, -\mathbf{k} \downarrow)$ is occupied $|u_{\mathbf{k}}|^2 + |v_{\mathbf{k}}|^2 = 1$

 $\varepsilon_{\mathbf{k}} = \xi_{\mathbf{k}} + \mu = \frac{\hbar^2 \mathbf{k}^2}{2m}$

 $\hat{c}^{\dagger}_{\mathbf{k}\sigma}\hat{c}_{\mathbf{k}\sigma} = n_{\mathbf{k}\sigma}$ = particle number operator

coherent fermionic state

 $expectation \ values: \quad \left\langle \Psi_{\rm BCS} | \hat{c}_{\mathbf{k}\sigma}^{\dagger} \hat{c}_{\mathbf{k}\sigma} | \Psi_{\rm BCS} \right\rangle = |v_{\mathbf{k}}|^2 \qquad \left\langle \Psi_{\rm BCS} | \hat{c}_{\mathbf{k}\uparrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} \hat{c}_{\mathbf{k}\uparrow\uparrow}^{\dagger} | \Psi_{\rm BCS} \right\rangle = v_{\mathbf{k}} \ v_{\mathbf{k}\prime}^{\star} u_{\mathbf{k}\prime}^{\star} u_{\mathbf{k}}^{\star}$

$$\langle \Psi_{\rm BCS} | \mathcal{H}_{\rm BCS} | \Psi_{\rm BCS} \rangle = \underbrace{2 \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} | v_{\mathbf{k}} |^2}_{=\bar{N} \varepsilon_{\mathbf{k}}} + \underbrace{\sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}}^{\star}}_{\text{interaction energy}} - \underbrace{2 \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} | v_{\mathbf{k}} |^2}_{(\text{kinetic energy})} + \underbrace{2 \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}'}^{\star}}_{\text{interaction energy}} - \underbrace{2 \sum_{\mathbf{k},\mathbf{k}'} \varepsilon_{\mathbf{k}} | v_{\mathbf{k}} |^2}_{(\text{kinetic energy})} + \underbrace{2 \sum_{\mathbf{k},\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}} v_{\mathbf{k}'}^{\star} u_{\mathbf{k}'} u_{\mathbf{k}'}^{\star}}_{\text{interaction energy}} - \underbrace{2 \sum_{\mathbf{k},\mathbf{k}'} \varepsilon_{\mathbf{k}} | v_{\mathbf{k}} |^2}_{(\text{kinetic energy})} + \underbrace{2 \sum_{\mathbf{k},\mathbf{k}'} v_{\mathbf{k}'} v_{\mathbf{k}'} v_{\mathbf{k}'} v_{\mathbf{k}'} v_{\mathbf{k}'} v_{\mathbf{k}'} u_{\mathbf{k}'}^{\star}}_{\text{interaction energy}} - \underbrace{2 \sum_{\mathbf{k},\mathbf{k}'} \varepsilon_{\mathbf{k}'} v_{\mathbf{k}'} v_{\mathbf{k$$

determination of $u_{\mathbf{k}}$, $v_{\mathbf{k}}$ by minimization of expectation value

Summary of Lecture No. 8 (2)

• minimization of expectation value

$$|u_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 + \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right] \qquad |v_{\mathbf{k}}|^{2} = \frac{1}{2} \left[1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right] \qquad \text{probability that pair state } (\mathbf{k} \uparrow, -\mathbf{k} \downarrow) \text{ is empty/occupied}$$

$$u_{\mathbf{k}}v_{\mathbf{k}}^{*} = g_{\mathbf{k}}^{*} = \frac{\Delta_{\mathbf{k}}^{*}}{2E_{\mathbf{k}}} \qquad u_{\mathbf{k}}^{*}v_{\mathbf{k}} = g_{\mathbf{k}} = \frac{\Delta_{\mathbf{k}}}{2E_{\mathbf{k}}} \qquad \text{pairing amplitude}$$

$$\Delta_{\mathbf{k}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'}g_{\mathbf{k}'} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'}\frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}} \qquad \Delta_{\mathbf{k}}^{\dagger} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'}\frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}} \qquad \text{self-consistent gap equation}$$

gap equation for T=0

$$\Delta = \frac{\hbar\omega_{\rm D}}{\sinh(2/V_0 D(E_{\rm F}))} \simeq 2\hbar\omega_{\rm D} \, {\rm e}^{-2/V_0 D(E_{\rm F})}$$

energy gap corresponds to binding energy estimated for single Cooper pair

 $V_0 D(E_{\rm F}) \ll 1$: weak coupling approximation, $\sinh x \simeq \frac{1}{2} \exp x$

۲

Summary of Lecture No. 8 (3)

• Bogoliubov-Valatin transformation \rightarrow BCS Gap Equation and Excitation Spectrum

$$\mathcal{H}_{BCS} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} + \underbrace{\left(\hat{c}_{\mathbf{k}\uparrow}^{\dagger}, \hat{c}_{-\mathbf{k}\downarrow}\right) \mathcal{U}_{\mathbf{k}}}_{\mathcal{B}_{\mathbf{k}}^{\dagger}} \mathcal{U}_{\mathbf{k}}^{\dagger} \underbrace{\left(\frac{\xi_{\mathbf{k}}}{-\Delta_{\mathbf{k}}^{*}} - \Delta_{\mathbf{k}}\right)}_{\mathcal{E}_{\mathbf{k}}} \mathcal{U}_{\mathbf{k}} \underbrace{\left(\frac{\hat{c}_{\mathbf{k}\uparrow}}{\hat{c}_{-\mathbf{k}\downarrow}}\right)}_{\mathcal{B}_{\mathbf{k}}}\right\} = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{\dagger} + \mathcal{B}_{\mathbf{k}}^{\dagger} \mathcal{U}_{\mathbf{k}}^{\dagger} \mathcal{E}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}} \mathcal{B}_{\mathbf{k}} \right\}$$
$$\mathcal{B}_{\mathbf{k}}^{\dagger} = \left(\alpha_{\mathbf{k}}^{\dagger}, \beta_{-\mathbf{k}}\right) = \left(\hat{c}_{\mathbf{k}\uparrow}^{\dagger}, \hat{c}_{-\mathbf{k}\downarrow}\right) \mathcal{U}_{\mathbf{k}} \qquad \mathcal{B}_{\mathbf{k}} = \left(\alpha_{\mathbf{k}}, \beta_{-\mathbf{k}}^{\dagger}\right) = \mathcal{U}_{\mathbf{k}}^{\dagger} \left(\hat{c}_{\mathbf{k}\uparrow}\right)$$

Bogoliubov quasiparticles: \rightarrow superposition of electron and hole states with opposite momentum and spin Task: find unitary matrix ($\mathcal{U}_{\mathbf{k}}\mathcal{U}_{\mathbf{k}}^{\dagger} = 1$) that makes the transformed energy matrix $\tilde{\mathcal{E}}_{\mathbf{k}} = \mathcal{U}_{\mathbf{k}}^{\dagger} \mathcal{E}_{\mathbf{k}} \mathcal{U}_{\mathbf{k}}$ diagonal:

$$\mathcal{U}_{\mathbf{k}} = \begin{pmatrix} u_{\mathbf{k}} & v_{\mathbf{k}}^{\star} \\ -v_{\mathbf{k}} & u_{\mathbf{k}}^{\star} \end{pmatrix} \qquad \mathcal{U}_{\mathbf{k}}^{\dagger} = \begin{pmatrix} u_{\mathbf{k}}^{\star} & -v_{\mathbf{k}}^{\star} \\ v_{\mathbf{k}} & u_{\mathbf{k}} \end{pmatrix} \qquad \Longrightarrow \qquad \mathcal{U}_{\mathbf{k}}^{\dagger} \, \mathcal{E}_{\mathbf{k}} \, \mathcal{U}_{\mathbf{k}} = \begin{pmatrix} E_{\mathbf{k}} & D_{\mathbf{k}} \\ -D_{\mathbf{k}} & -E_{\mathbf{k}} \end{pmatrix} \qquad \Rightarrow D_{\mathbf{k}} = \mathbf{0}$$

reformulation of the BCS Hamilton operator

$$\mathcal{H}_{BCS} - \mathcal{N}\mu = \underbrace{\sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} - E_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*} \right\}}_{\mathbf{k}} + \underbrace{\sum_{\mathbf{k}} \left\{ E_{\mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + E_{\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}} \right\}}_{\mathbf{k}}$$

minimization of free energy yields BCS gap equation for finite T

mean-field contribution

differs from the normal state value by the condensation energy (see below)

contribution of **spinless Fermion system** with two kind of **quasiparticles** described by operators $\alpha_{\mathbf{k}}^{\dagger}$, $\alpha_{\mathbf{k}}$ and $\beta_{-\mathbf{k}}^{\dagger}$, $\beta_{-\mathbf{k}}$ and excitation energies $\pm E_{\mathbf{k}}$

spinless **quasiparticles** since they consist of superposition of spin- \uparrow and spin- \downarrow electrons

BAYERISCHE AKADEMIE DER WISSENSCHAFTEN Technische Universität München

Superconductivity and Low Temperature Physics I

Lecture No. 9 16 December 2021

R. Gross © Walther-Meißner-Institut

4. Microscopic Theory

- 4.1 Attractive Electron-Electron Interaction
 - **4.1.1 Phonon Mediated Interaction**
 - 4.1.2 Cooper Pairs
 - 4.1.3 Symmetry of Pair Wavefunction
- 4.2 BCS Ground State
 - 4.2.1 The BCS Gap Equation
 - 4.2.2 Ground State Energy
 - 4.2.3 Bogoliubov-Valatin Transformation and Quasiparticle Excitations
- 4.3 Thermodynamic Quantities
- 4.4 Determination of the Energy Gap
 - 4.4.1 Specific Heat
 - 4.4.2 Tunneling Spectroscopy
- 4.5 Coherence Effects

determination of temperature dependence of Δ by minimization of free energy

• Hamiltonian has two terms: $\mathcal{H}_{BCS} - \mathcal{N}\mu = \sum_{\mathbf{k}} \left\{ \xi_{\mathbf{k}} - E_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^* \right\} + \sum_{\mathbf{k}} \left\{ E_{\mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + E_{\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}} \right\}$

constant term \mathcal{H}_0

term of free Fermi gas composed of two kind of fermions with energy $E_{\mathbf{k}}$

• grand canonical partition function:

$$Z = e^{-\mathcal{H}_0/k_BT} \prod_{\mathbf{k}} (1 + e^{-E_{\mathbf{k}}/k_BT}) (1 + e^{E_{\mathbf{k}}/k_BT}) = e^{-\mathcal{F}/Nk_BT}$$
(since $\mathcal{F} = -Nk_BT \ln Z$)

$$Z = \prod_{k} \sum_{n_{k}=0,1} \exp\left(-n_{k}(\epsilon_{k}-\mu)/k_{B}T\right)$$
$$= \prod_{k} \left[1 + \exp\left(-(\epsilon_{k}-\mu)/k_{B}T\right)\right]$$

• solve for free energy \mathcal{F} :

$$\frac{\mathcal{F}}{N} = \mathcal{H}_0 - k_{\mathrm{B}}T \sum_{\mathbf{k}} \left[\ln\left(1 + \mathrm{e}^{-E_{\mathbf{k}}/k_{\mathrm{B}}T}\right) + \ln\left(1 + \mathrm{e}^{E_{\mathbf{k}}/k_{\mathrm{B}}T}\right) \right]$$

• minimize free energy regarding variation of $\Delta_{\mathbf{k}}$:

$$\frac{\partial \mathcal{F}}{\partial \Delta_{\mathbf{k}}} = 0, \qquad \frac{\partial \mathcal{F}}{\partial \Delta_{\mathbf{k}}^{\dagger}} = 0$$

www.wmi.badw.de

$$\frac{\partial (\mathcal{F}/N)}{\partial \Delta_{\mathbf{k}}} = 0 = \frac{\partial}{\partial \Delta_{\mathbf{k}}} \left\{ \mathcal{H}_{0} - k_{\mathrm{B}}T \sum_{\mathbf{k}} \left[\ln(1 + \mathrm{e}^{-E_{\mathbf{k}}/k_{\mathrm{B}}T}) + \ln(1 + \mathrm{e}^{E_{\mathbf{k}}/k_{\mathrm{B}}T}) \right] \right\} \qquad \qquad \mathcal{H}_{0} = \xi_{\mathbf{k}} - E_{\mathbf{k}} + \Delta_{\mathbf{k}} g_{\mathbf{k}}^{*}$$

$$g_{\mathbf{k}}^{*} + \underbrace{\frac{\partial E_{\mathbf{k}}}{\partial \Delta_{\mathbf{k}}}}_{=\Delta_{\mathbf{k}}^{*}/2E_{\mathbf{k}}} \underbrace{\left[\underbrace{\frac{e^{-E_{\mathbf{k}}/k_{\mathrm{B}}T}}{1 + e^{-E_{\mathbf{k}}/k_{\mathrm{B}}T}} - \frac{e^{E_{\mathbf{k}}/k_{\mathrm{B}}T}}{1 + e^{E_{\mathbf{k}}/k_{\mathrm{B}}T}} \right]}_{=-\operatorname{tanh}(E_{\mathbf{k}}/2k_{\mathrm{B}}T)} = 0 \qquad \Delta_{\mathbf{k}} \equiv -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{g_{\mathbf{k}'}}{g_{\mathbf{k}'}} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}}$$

$$g_{\mathbf{k}}^{*} = \frac{\Delta_{\mathbf{k}}^{*}}{2E_{\mathbf{k}}} \tanh\left(\frac{E_{\mathbf{k}}}{2k_{\mathrm{B}}T}\right) = u_{\mathbf{k}}v_{\mathbf{k}}^{*} \tanh\left(\frac{E_{\mathbf{k}}}{2k_{\mathrm{B}}T}\right)$$

$$u_{\mathbf{k}}v_{\mathbf{k}}^{\star} = \frac{\Delta_{\mathbf{k}}^{*}}{2E_{\mathbf{k}}}$$

pairing susceptibility/amplitude: ability of the electron system to form pairs

we use
$$\Delta^*_{f k}\equiv -\sum_{f k'}V_{f k,f k'}g^*_{f k'}$$
 and obtain:

$$\Delta_{\mathbf{k}}^{*} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}^{*}}{2E_{\mathbf{k}'}} \tanh\left(\frac{E_{\mathbf{k}'}}{2k_{\mathrm{B}}T}\right)$$

BCS gap equation

- \succ set of equations for variables $\Delta_{\mathbf{k}}$
- \succ equations are nonlinear, since $E_{\mathbf{k}}$ depends on $\Delta_{\mathbf{k}}$
- solve numerically, analytical solutions in limiting cases

energy gap Δ and transition temperature T_c

• trivial solution: $\Delta_{\mathbf{k}} = 0$, results in $v_{\mathbf{k}} = 1$ for $\xi_{\mathbf{k}} < 0$ and $v_{\mathbf{k}} = 0$ for $\xi_{\mathbf{k}} > 0$

 \rightarrow intuitive expectation for normal state

• non-trivial solution: we use approximations $V_{\mathbf{k},\mathbf{k}'} = -V_0$ and $\Delta_{\mathbf{k}} = \Delta$

$$\Delta_{\mathbf{k}}^{*} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}^{*}}{2E_{\mathbf{k}'}} \tanh\left(\frac{E_{\mathbf{k}'}}{2k_{\mathrm{B}}T}\right) \quad \Longrightarrow \quad 1 = V_{0} \sum_{\mathbf{k}'} \frac{1}{2E_{\mathbf{k}'}} \tanh\left(\frac{E_{\mathbf{k}'}}{2k_{\mathrm{B}}T}\right)$$

• we use pair density of states $\widetilde{D}(E) = D(E)/2$ and change from summation to integration

simple solutions for (i) $T \rightarrow 0$ (ii) $T \rightarrow T_c$

i. solution for $T \to 0$: (already discussed above for $V_{\mathbf{k},\mathbf{k}'} = -V_0$ and $\Delta_{\mathbf{k}} = \Delta$)

$$1 = V_0 \sum_{\mathbf{k}'} \frac{1}{2E_{\mathbf{k}'}} \underbrace{\tanh\left(\frac{E_{\mathbf{k}'}}{2k_{\mathrm{B}}T}\right)}_{=1 \text{ for } T \to 0} \quad \text{transforming sum into integration} \quad 1 = \frac{V_0 D(E_{\mathrm{F}})}{2} \int_{-\hbar\omega_{\mathrm{D}}}^{\hbar\omega_{\mathrm{D}}} \frac{\mathrm{d}\xi}{2\sqrt{\xi_{\mathbf{k}}^2 + |\Delta(0)|^2}} \quad \text{with } \widetilde{D}(E) \simeq D(E_{\mathrm{F}})/2$$
$$1 = \frac{V_0 D(E_{\mathrm{F}})}{4} \int_{-\hbar\omega_{\mathrm{D}}}^{\hbar\omega_{\mathrm{D}}} \frac{\mathrm{d}\xi}{\sqrt{\xi_{\mathbf{k}}^2 + |\Delta(0)|^2}} = \frac{V_0 D(E_{\mathrm{F}})}{4} \operatorname{arcsinh}\left(\frac{\hbar\omega_{\mathrm{D}}}{\Delta(0)}\right) \Big|_{-\hbar\omega_{\mathrm{D}}}^{+\hbar\omega_{\mathrm{D}}} = \frac{V_0 D(E_{\mathrm{F}})}{2} \operatorname{arcsinh}\left(\frac{\hbar\omega_{\mathrm{D}}}{\Delta(0)}\right)$$

solve for Δ :

$$\Delta(0) = \frac{\hbar\omega_{\rm D}}{\sinh(2/V_0 D(E_{\rm F}))} \simeq 2\hbar\omega_{\rm D} \, {\rm e}^{-2/V_0 D(E_{\rm F})}$$

$$V_0 D(E_{\rm F}) \ll 1: \text{ weak coupling approximation}$$

• compare to expression derived for energy of two interacting electrons ("Gedanken" experiment):

$$E \simeq 2E_{\rm F} - 2\hbar\omega_{\rm D} \,\mathrm{e}^{-4/V_0 D(E_{\rm F})}$$

factor 2 in argument of exponential function since we have assumed that the two additional electrons are in interval between $E_{\rm F}$ and $E_{\rm F} + \hbar\omega_{\rm D}$ and not between $E_{\rm F} - \hbar\omega_{\rm D}$ and $E_{\rm F} + \hbar\omega_{\rm D}$

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

ii. solution for
$$T \to T_c$$
: $E_k \to |\xi_k|$ since $\Delta_k \to 0$

$$1 = V_0 \sum_{\mathbf{k}'} \frac{1}{2E_{\mathbf{k}'}} \tanh\left(\frac{E_{\mathbf{k}'}}{2k_{\mathrm{B}}T}\right) \implies 1 = V_0 \sum_{\mathbf{k}'} \frac{1}{2\xi_{\mathbf{k}'}} \tanh\left(\frac{\xi_{\mathbf{k}'}}{2k_{\mathrm{B}}T}\right)$$

$$1 = \frac{V_0 D(E_{\mathrm{F}})}{4} \int_{-\hbar\omega_{\mathrm{D}}}^{\hbar\omega_{\mathrm{D}}} \frac{1}{\xi_{\mathbf{k}'}} \tanh\left(\frac{\xi_{\mathbf{k}'}}{2k_{\mathrm{B}}T_c}\right) \mathrm{d}\xi = \frac{V_0 D(E_{\mathrm{F}})}{4} \int_{-\hbar\omega_{\mathrm{D}}/2k_{\mathrm{B}}T_c}^{\hbar\omega_{\mathrm{D}}/2k_{\mathrm{B}}T_c} \frac{\tanh x}{x} \mathrm{d}x \qquad \text{with } x = \xi_{\mathbf{k}}/2k_{\mathrm{B}}T_c$$

• integral gives
$$2\ln(p \hbar \omega_D/2k_BT_c)$$
 with $p = \frac{2e^{\gamma}}{\pi} \simeq 1.13$ and $\gamma = 0.577$... (Euler constant)

$$k_{\rm B}T_c = 1.13 \ \hbar \omega_{\rm D} \ {\rm e}^{-2/V_0 D(E_{\rm F})}$$

critical temperature is proportional to Debye frequency $\omega_D \propto 1/\sqrt{M}$ **→** explains isotope effect !!

relation between energy gap at zero temperature and critical temperature

	T _c (K)	$2\Delta(0)$ (meV)	$2\Delta(0)/k_{\text{B}}T_{c}$		T _c (K)	$2\Delta(0)$ (meV)	$2\Delta(0)/k_{\rm H}$
Al	1.19	0.36	3.5 ± 0.1	In	3.4	1.05	$3.5\pm0.$
Nb	9.2	2.90	3.6	Hg	4.15	1.65	$4.6\pm0.$
Pb	7.2	2.70	4.3 ± 0.05	Sn	3.72	1.15	$3.5\pm0.$
Ta	4.29	1.30	3.5 ± 0.1	Tl	2.39	0.75	$3.6\pm0.$
NbN	15	4.65	3.6	Nb ₃ Sn	18	6.55	4.2
NbSe ₂	7	2.2	3.7	MgB ₂	40	3.6-15	1.1 - 4.

considerable deviations for "strong-coupling" superconductors:

→ $V_0 D(E_F) \ll 1$ is no longer a good approximation

solution for $0 < T < T_c$ (numerical solution of integral)

strong electron-phonon coupling

- > BCS results are valid only for weak coupling: $V_0 D(E_F) \ll 1$
- ▶ for $V_0 D(E_F) \gtrsim 0.2$ a more elaborate treatment is required

phonons have influence on electrons but also electrons change e.g. phonon frequencies

 \blacktriangleright several attempts have been made to improve predition for T_c using strong coupling theory, e.g. by McMillan:

• Eliashberg theory

 \succ replace couling constant $\lambda = V_0 D(E_F)$ by

$$\lambda(\omega) = 2 \int_{0}^{\infty} \frac{\alpha^{2}(\omega)F(\omega)}{\omega} d\omega$$

 $F(\omega)$: phonon density of states $\alpha(\omega)$: matrix element of the electron-phonon interaction

G. M. Eliashberg, *Interactions Between Electrons and Lattice Vibrations in a Superconductor*, Zh. Éksp. Teor. Fiz. 38, 966 (1960) [Sov. Phys. JETP 11, 696-702 (1960)].

• McMillan approximation

 $T_{c} = \frac{\hbar\omega_{\rm D}}{1.45} \exp\left(\frac{1.04(1+\lambda)}{\lambda - \mu^{\star}(1+0.62\,\lambda)}\right)$

 μ^{\star} : matrix element of the short-range screened Coulomb repulsion

W. L. McMillan, *Transition Temperature of Strong-Coupled Superconductors*, Phys. Rev. 167, 331 (1968).

W MI

4.2.3 Energy Gap and Excitation Spectrum

dispersion of excitations (Bogoliubov quasiparticles) from the superconducting ground state

- \rightarrow excitations represent superpositions of electron- and hole-type single particle states
 - (reason: single particle excitation with **k** can only exist if there is hole with **k**, if not, Cooper pair would form)

excitation energy

$$E_{\mathbf{k}} = E_{-\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$$

- break up of Cooper pair requires energy 2E_k
- Δ represents energy gap for quasiparticle excitation from ground state
 - → minimum excitation energy

equal superposition of electron with wave vector ${\boldsymbol k}$ and hole with wave vector $-{\boldsymbol k}$

4.2.3 Energy Gap and Excitation Spectrum

density of states

> conservation of states on transition to sc state requires $D_s(E_k)dE_k = D_n(\xi_k)d\xi_k$

• occupation probability of qp-excitations is given by $f(E_k) = [\exp(E_k/k_BT) + 1]^{-1}$

 \rightarrow i.e. by $\Delta_{\mathbf{k}}(T)$, which is contained in $\mathbf{E}_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2(T)}$

• *entropy of electronic system* (determined only by the occupation probability \rightarrow is fixed by $\Delta_{\mathbf{k}}$)

$$S_{s} = -2k_{B}\sum_{k} \left\{ \underbrace{\left[1 - f(E_{k})\right] \ln\left[1 - f(E_{k})\right]}_{\text{hole like}} + \underbrace{f(E_{k}) \ln\left[f(E_{k})\right]}_{\text{electron like}} \right\}$$

$$S = -k_{B}\sum_{n} p_{n} \ln p_{n}$$
• heat capacity: $C_{s} = T\left(\frac{\partial S_{s}}{\partial T}\right)_{p,B}$ after some math:
$$C_{s} = \frac{2}{T}\sum_{k} -\frac{\partial f(E_{k})}{\partial E_{k}} \left(E_{k}^{2} - \frac{1}{2}T\frac{d\Delta_{k}^{2}(T)}{dT}\right)$$
results from redistribution results from *T*-dependence of qp on available energy levels of energy gap

Yosida function:
$$Y(T) = \frac{1}{D(E_{F})}\sum_{k} -\frac{\partial f(E_{k},T)}{\partial E_{k}} = \frac{1}{4k_{B}T}\int_{-\mu}^{\infty} \frac{d\xi_{k}}{\cosh^{2}(\xi_{k}/2k_{B}T)}$$
 appears in many thermodynamic properties
$$Y(T)$$
 describes the *T*-dependence of the qp excitations (normal fluid density): $n_{n}(T) = n Y(T)$

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

discussion of limiting cases

- i. $T \ll T_c$:
 - since $\Delta_{\mathbf{k}}(T) \simeq \Delta_{\mathbf{k}}(0) \gg k_{\mathrm{B}}T$, there are only a few thermally excited qp
 - we use approximations $d\Delta_{\mathbf{k}}^2(T)/dT \simeq 0$ and $f(E_{\mathbf{k}}) = [\exp(E_{\mathbf{k}}/k_BT) + 1]^{-1} \simeq \exp(-E_{\mathbf{k}}/k_BT)$
 - we assume $\Delta_{\mathbf{k}} = \Delta$ for simplicity and transfer sum into an integration (we use $\Delta^2 + \xi_{\mathbf{k}}^2 = \Delta^2 (1 + \xi_{\mathbf{k}}^2 / \Delta^2) \simeq \Delta^2$ and $\sqrt{\Delta^2 + \xi_{\mathbf{k}}^2} = \Delta \sqrt{1 + \xi_{\mathbf{k}}^2 / \Delta^2} \simeq \Delta + \xi_{\mathbf{k}}^2 / 2\Delta$, as $\partial f(E_{\mathbf{k}}) / \partial E_{\mathbf{k}}$ has significant weight only for small values of $\xi_{\mathbf{k}} / \Delta$)

$$C_{s} = \frac{2}{T} \sum_{\mathbf{k}} -\frac{\partial f(E_{\mathbf{k}})}{\partial E_{\mathbf{k}}} \left(E_{\mathbf{k}}^{2} - \frac{1}{2}T \frac{\mathrm{d}\Delta^{2}(T)}{\mathrm{d}T} \right) \simeq \frac{D(E_{\mathrm{F}})}{k_{\mathrm{B}}T^{2}} \Delta^{2}(0) \int_{0}^{\infty} \mathrm{e}^{-\sqrt{\Delta^{2} + \xi_{\mathbf{k}}^{2}}/k_{\mathrm{B}}T} \mathrm{d}\xi_{\mathbf{k}} \qquad \qquad \frac{\Delta(0)}{k_{\mathrm{B}}T_{c}} = 1.76$$

$$C_s \simeq \frac{D(E_{\rm F})}{k_{\rm B}T^2} \,\Delta^2(0) \mathrm{e}^{-\Delta(0)/k_{\rm B}T} \int_{0}^{\infty} \mathrm{e}^{-\xi_{\rm k}^2/2\Delta(0)k_{\rm B}T} \,\mathrm{d}\xi_{\rm k} \qquad \Longrightarrow \qquad C_s \propto T^{-\frac{3}{2}} \mathrm{e}^{-\frac{\Delta(0)}{k_{\rm B}T}} \propto T^{-\frac{3}{2}} \mathrm{e}^{-1.76\frac{T}{T_c}} @ T \ll T_c$$

 $C_{s} = \frac{2}{T} \sum_{\mathbf{k}} -\frac{\partial f(E_{\mathbf{k}})}{\partial E_{\mathbf{k}}} \left(E_{\mathbf{k}}^{2} - \frac{1}{2}T \frac{\mathrm{d}\Delta_{\mathbf{k}}^{2}(T)}{\mathrm{d}T} \right)$

 $\mathbf{E}_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2(T)}$

exponential decrease of C_s with decreasing T:

$$C_s \propto T^{-\frac{3}{2}} e^{-\frac{\Delta(0)}{k_B T}} \propto T^{-\frac{3}{2}} e^{-1.76\frac{T}{T_c}} \quad @ T \ll T_c$$

WM

ii. $0.5 < T/T_c < 1$:

 $\Delta(T)$ decreases with increasing $T \rightarrow$ there is a rapid increase of the number of thermally excited quasiparticles

 $\Rightarrow \frac{\partial S_s}{\partial T} > \frac{\partial S_n}{\partial T} \Rightarrow C_s \text{ is getting larger than } C_n$

iii. $T \simeq T_c$: *jump of specific heat* (we can replace E_k by $|\xi_k|$)

$$\Delta C = (C_s - C_n)_{T=T_c} = \frac{2}{T} \sum_{\mathbf{k}} -\frac{\partial f(\xi_{\mathbf{k}})}{\partial \xi_{\mathbf{k}}} \left(-\frac{1}{2}T \frac{\mathrm{d}\Delta^2(T)}{\mathrm{d}T}\right)_{T=T_c}$$

$$\Delta C = D(E_{\rm F}) \left(-\frac{\mathrm{d}\Delta^2(T)}{\mathrm{d}T} \right)_{T=T_c} \underbrace{\int_{-\infty}^{\infty} -\frac{\partial f(\xi_{\rm k})}{\partial \xi_{\rm k}} \,\mathrm{d}\xi_{\rm k}}_{=1}$$

we use
$$\Delta(T) \simeq 1.74 \left(1 - \frac{T}{T_c}\right)^{1/2}$$
 for T close to T_c and $\Delta(0) = 1.76 k_B T_c$ and obtain
 $\Delta C \simeq 4.7 D(E_F) k_B^2 T_c$

with $C_n(T_c) = \frac{\pi^2}{3} D(E_F) k_B^2 T_c = \gamma T_c$ we finally obtain

 $\left(\frac{\Delta C}{C_n}\right)_{T=T_c} \simeq \frac{4.7}{\pi^2/3} = 1.43$

further key prediction of BCS theory (*in good agreement with experiment*)

Chapter 4/RG 102

result from phenomenological treatment:
$$\left(\frac{\Delta C}{C_n}\right)_{T=T_c} = \frac{1}{C_n} \frac{T_c}{\mu_0} \left(\frac{\partial B_{\text{cth}}}{\partial T}\right)_{T=T_c}^2 = \frac{1}{C_n} \frac{8}{T_c} \frac{B_{\text{cth}}^2(0)}{2\mu_0} = \frac{8}{\gamma T_c^2} \underbrace{\frac{B_{\text{cth}}^2(0)}{2\mu_0}}_{\frac{1}{4}D(E_F)\Delta^2(0)} = \frac{6}{\pi^2} \left(\frac{\Delta(0)}{k_B T_c}\right)^2 = \frac{6}{\pi^2} (1.76)^2 = 1.88$$
(Rutgers formula)

WMI

N.E. Phillips, Phys. Rev. **114**, 676 (1959)

M. A. Biondi et al., Rev. Mod. Phys. **30**, 1109-1136 (1958)

4.4 Determination of the Energy Gap

- energy gap determines excitation spectrum of superconductors
 - ightarrow we can use quantities that depend on excitation spectrum to determine Δ
 - 1. specific heat
 - 2. tunneling conductance
 - 3. microwave and infrared absorption
 - 4. ultrasound attenuation
 - 5.
- we concentrate on tunneling spectroscopy in the following (specific heat already discussed in previous subsection)

tunneling of quasiparticle excitations between two superconductors separated by thin tunneling barrier

SIS tunnel junction:

fabrication by thin film technology and patterning techniques

by shadow masks (≈ mm) by optical lithography (≈ µm) by e-beam lithography (≈ 10 nm)

top view:

• tunneling processes result in finite coupling of SC 1 and SC 2, described by tunneling hamiltonian

$$\mathcal{H}_{\text{tun}} = \sum_{\mathbf{kq}\sigma} T_{\mathbf{kq}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{q}\sigma} + c.c.$$

tunnel matrix element

describes the creation of electron $|\mathbf{k}\sigma\rangle$ in one SC and the annihilation of electron $|\mathbf{q}\sigma\rangle$ in the other

- tunneling into state $|{f k}\sigma
 angle$ only possible if pair state $({f k}\uparrow,-{f k}\downarrow)$ is empty
 - \rightarrow resulting tunneling probability is $\propto |u_{\mathbf{k}}|^2 |T_{\mathbf{kq}}|^2$
- for each state $|\mathbf{k}\sigma\rangle$ there exists a state $|\mathbf{k}'\sigma\rangle$ with $E_{\mathbf{k}} = E_{\mathbf{k}'}$ but with $\xi_{\mathbf{k}'} = -\xi_{\mathbf{k}}$
 - $\rightarrow \text{ resulting tunneling probability is } \propto |u_{\mathbf{k}'}|^2 \left|T_{\mathbf{k}'\mathbf{q}}\right|^2 \underset{|u(-\xi_{\mathbf{k}})|=|v(\xi_{\mathbf{k}})|}{=} |v(\xi_{\mathbf{k}})| \left|T_{\mathbf{k}'\mathbf{q}}\right|^2$

 \rightarrow simple "semiconductor model" for quasiparticle tunneling is applicable

elastic tunneling between two metals (NIN):

$$I_{1\to2} = C \int_{-\infty}^{\infty} |T|^2 \underbrace{D_1(E)f(E)}_{\text{occupied states in } N_1} \underbrace{D_2(E+eV)\left[1-f(E+eV)\right]}_{\text{empty states in } N_2} dE$$

• net tunneling current:

$$I_{nn}(V) = C \int_{-\infty}^{\infty} |T|^2 D_1(E) D_2(E + eV) \left[f(E) - f(E + eV) \right] dE$$

• for $eV \ll \mu$ and $\mu \simeq E_F$ we can use $D_n(E + eV) \simeq D_n(E_F) = const.$

$$I_{nn}(V) = C|T|^2 D_{n1}(E_F) D_{n2}(E_F) \underbrace{\int_{-\infty}^{\infty} [f(E) - f(E + eV)] dE}_{=eV}$$

$$\mu_{1} \qquad \mu_{2} \qquad \mu_{2} \\ e_{V} \qquad N \qquad N \qquad D_{n1} \qquad D_{n2}$$

$$I_{nn}(V) = C|T|^2 D_{n1}(E_F) D_{n2}(E_F) e V = G_{nn} V$$

Chapter 4/RG 109

R. Gross and A. Marx, © Walther-Meißner-Institut (2004 - 2021)

WMI

differential tunneling conductance of NIS junction

$$I_{ns}(V) = \frac{G_{nn}}{e} \int_{-\infty}^{\infty} \frac{D_{s2}(E)}{D_{n2}(E_{\rm F})} [f(E) - f(E + eV)] dE$$

$$G_{ns}(V) = \frac{\partial I_{ns}(V)}{\partial V} = G_{nn} \int_{-\infty}^{\infty} \frac{D_{s2}(E)}{D_{n2}(E_{\rm F})} \left[-\frac{\partial f(E+eV)}{\partial (eV)} \right] dE \qquad dE = e \, dV$$

Bell-shaped weighting function with width $\simeq 4k_BT$ peaked peaked at E = eV \rightarrow approaches δ -function for $T \rightarrow 0$

$$\Box \Rightarrow G_{ns}(V) = G_{nn} \frac{D_{s2}(eV)}{D_{n2}(E_{\rm F})}$$

 $@ T = 0 \qquad \begin{array}{l} \text{measurement of } G_{ns}(V) \text{ allows determination of } D_{s2}(eV) \text{ and } \Delta, \\ \text{for } T > 0, G_{ns}(V) \text{ measures DOS smeared out by } \pm k_{\text{B}}T \end{array}$

• at T > 0: finite conductance at $eV \ll \Delta$ due to smeared Fermi distribution, calculation yields

$$\left. \frac{G_{ns}}{G_{nn}} \right|_{eV \ll \Delta} = \left(\frac{2\pi\Delta}{k_{\rm B}T} \right) \, {\rm e}^{-\Delta/k_{\rm B}T}$$

exponential *T*-dependence can be used for temperature measurement, particle detectors, ...

I. Giaever, K. Megerle, Phys. Rev. <u>122</u>, 1101-1111 (1961)

elastic tunneling between two superconductors: SIS junction

$$D_{s}(V) = \frac{G_{nn}}{e} \int_{-\infty}^{\infty} \frac{D_{s1}(E+eV)}{D_{n1}(E_{\rm F})} \frac{D_{s2}(E)}{D_{n2}(E_{\rm F})} [f(E) - f(E+eV)] \,\mathrm{d}E$$

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

 $\mathbf{\Lambda}$

 μ_2

 μ_2

 $\rightarrow D_{2s}$

 $\rightarrow D_{2s}$

interpretation of tunneling in SIS junction at T = 0

• single electron tunnels from left to right:

• minimal voltage: $eV = \Delta_1 + \Delta_2 = 2\Delta$ for $\Delta_1 = \Delta_2$

current-voltage characteristics of SIS junction at finite temperatures

special case: SIS tunnel junction with $\Delta_1 \neq \Delta_2$

- at $eV = \Delta_2 \Delta_1$ the two singularities in the DOS are facing each other
 - \Rightarrow maximum of the tunneling current
 - \Rightarrow negative differential resistance

4.5 Coherence Effects

• description of an external perturbation on the electrons in a metal

$$\mathcal{H}_{1} = \sum_{\mathbf{k}\sigma,\mathbf{k}'\sigma'} P_{\mathbf{k}'\sigma',\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}'\sigma'} c_{\mathbf{k}\sigma}$$

interaction hamiltonian $|P_{\mathbf{k}'\sigma',\mathbf{k}\sigma}|^2$ corresponds to transition probability

• description of the external perturbation on the electrons in a superconductor

→ more complicated since there is a coherent superposition of occupied one-electron states

$$\hat{c}_{\mathbf{k}\uparrow}^{\dagger} = u_{\mathbf{k}}^{\star} \alpha_{\mathbf{k}}^{\dagger} + v_{\mathbf{k}} \beta_{-\mathbf{k}} \\ \hat{c}_{-\mathbf{k}\downarrow} = -v_{\mathbf{k}}^{\star} \alpha_{\mathbf{k}}^{\dagger} + u_{\mathbf{k}} \beta_{-\mathbf{k}} \\ \hat{c}_{\mathbf{k}\uparrow} = u_{\mathbf{k}} \alpha_{\mathbf{k}} + v_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger} \\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger} \\ \hat{c}_{-\mathbf{k}\downarrow}^{\dagger} = -v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger} \\ \end{pmatrix}$$

$$c_{\mathbf{k}\uparrow\uparrow}^{\dagger} c_{\mathbf{k}\uparrow} = \left(-v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger} \right) \left(-v_{\mathbf{k}\uparrow}^{\star} \alpha_{\mathbf{k}\uparrow}^{\dagger} + u_{\mathbf{k}\uparrow} \beta_{-\mathbf{k}\downarrow}^{\dagger} \right)$$

$$c_{-\mathbf{k}\downarrow}^{\dagger} c_{-\mathbf{k}\downarrow\downarrow} = \left(-v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}}^{\dagger} \right) \left(-v_{\mathbf{k}\uparrow}^{\star} \alpha_{\mathbf{k}\uparrow}^{\dagger} + u_{\mathbf{k}\uparrow} \beta_{-\mathbf{k}\downarrow}^{\dagger} \right)$$

$$c_{-\mathbf{k}\downarrow}^{\dagger} c_{-\mathbf{k}\downarrow\downarrow} = \left(-v_{\mathbf{k}} \alpha_{\mathbf{k}} + u_{\mathbf{k}}^{\star} \beta_{-\mathbf{k}\downarrow}^{\dagger} \right) \left(-v_{\mathbf{k}\uparrow}^{\star} \alpha_{\mathbf{k}\downarrow}^{\dagger} + u_{\mathbf{k}\uparrow} \beta_{-\mathbf{k}\downarrow}^{\dagger} \right)$$

→ matrix elements $|P_{\mathbf{k}'\sigma',\mathbf{k}\sigma}|^2$ have to be multiplied by so-called coherence factors

 $\begin{array}{l} (u_{\mathbf{k}}u_{\mathbf{k}'} \mp v_{\mathbf{k}}v_{\mathbf{k}'})^{2} & \text{for scattering of quasiparticles} \\ (v_{\mathbf{k}}u_{\mathbf{k}'} \pm u_{\mathbf{k}}v_{\mathbf{k}'})^{2} & \text{for creation or annihilation of quasiparticles} \end{array}$

*u*_k, *v*_k are assumed real see e.g.
M. Tinkham
Introduction to Superconductivity

4.5 Coherence Effects

temperature dependence of low-frequency absorption processes in superconductors

4.5 Coherence Effects

Ultrasound Attenuation in Sr₂RuO₄: An Angle-Resolved Study of the Superconducting Gap Function C. Lupien, W. A. MacFarlane, Cyril Proust, Louis Taillefer, Z. Q. Mao, and Y. Maeno Phys. Rev. Lett. **86**, 5986 (2001) A.G. Redfield, Nuclear Spin Relaxation Time in Superconducting Aluminum.
Phys. Rev. Lett. 3, 85–86 (1959)
L.C. Hebel, Theory of Nuclear Spin Relaxation in Superconductors.
Phys. Rev. 116, 79–81 (1959).

R. Gross and A. Marx , © Walther-Meißner-Institut (2004 - 2021)

Superconductivity and Low Temperature Physics I

Summary of Lecture No. 9 (1)

• minimization of free energy yields BCS gap equation:

$$1 = V_0 \sum_{\mathbf{k}'} \frac{1}{2E_{\mathbf{k}'}} \tanh\left(\frac{E_{\mathbf{k}'}}{2k_{\rm B}T}\right) \qquad BCS \ gap \ equation$$

• analytical solution with simplifications: $V_{\mathbf{k},\mathbf{k}'} = -V_0$, $\Delta_{\mathbf{k}} = \Delta$, $V_0 D(E_F) \ll 1$: weak coupling approximation

$$T \ll T_c \qquad \Delta(0) \simeq 2\hbar\omega_{\rm D} \,\mathrm{e}^{-\frac{2}{V_0 D(E_{\rm F})}}$$
$$T \simeq T_c \qquad k_{\rm B} T_c = 1.13 \,\hbar\omega_{\rm D} \,\mathrm{e}^{-\frac{2}{V_0 D(E_{\rm F})}}$$

condensation energy at T = 0

 $V_{{f k},{f k}'}=-V_0,\ \Delta_{f k}=\Delta,\ V_0D(E_{
m F})\ll1$: weak coupling approximation

 $E_{\text{kond}}(0) = \langle \mathcal{H}_{\text{BCS}} \rangle - \langle \mathcal{H}_n \rangle = -D(E_{\text{F}})\Delta^2(0)/4$

comparison to $E_{\text{cond}}(0) = -B_{\text{cth}}^2(0)/2\mu_0$ (thermodynamics) yields B

$$_{\rm cth}(0) = \sqrt{\frac{\mu_0 D(E_{\rm F})\Delta^2(0)}{2V}}$$

Summary of Lecture No. 9 (2)

density of states:

$$D_{s}(E_{\mathbf{k}}) = D_{n}(\xi_{\mathbf{k}}) \frac{\mathrm{d}\xi_{\mathbf{k}}}{\mathrm{d}E_{\mathbf{k}}} = \begin{cases} D_{n}(E_{\mathrm{F}}) \frac{E_{\mathbf{k}}}{\sqrt{E_{\mathbf{k}}^{2} - \Delta^{2}}} & \text{for } E_{\mathbf{k}} > \Delta \\ 0 & \text{for } E_{\mathbf{k}} < \Delta \end{cases}$$

BCS prediction for thermodynamic quantities

 $S_{s} = -2k_{B}\sum_{k} \left\{ \underbrace{\left[1 - f(E_{k})\right]\ln\left[1 - f(E_{k})\right]}_{\text{hole like}} + \underbrace{f(E_{k})\ln\left[f(E_{k})\right]}_{\text{electron like}} \right\} \text{ entropy}$ $C_{s} = \frac{2}{T}\sum_{k} -\frac{\partial f(E_{k})}{\partial E_{k}} \left(E_{k}^{2} - \frac{1}{2}T\frac{d\Delta_{k}^{2}(T)}{dT}\right) \text{ heat capacity}$ exponential decrease of heat capacity at low T

• determination of energy gap and DOS by tunneling spectroscopy

$$I_{ns}(V) = \frac{G_{nn}}{e} \int_{-\infty}^{\infty} \frac{D_{s2}(E)}{D_{n2}(E_{\rm F})} \left[f(E) - f(E + eV) \right] dE \qquad \Longrightarrow \qquad G_{ns}(V) = \frac{\partial I_{ns}(V)}{\partial V} = G_{nn} \frac{D_{s2}(eV)}{D_{n2}(E_{\rm F})} \propto D_{s2}(eV) \qquad @ T = 0$$

л

 T_{c}/T

Summary of Lecture No. 9 (3)

