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> 5. Josephson Effects

5.1 Josephson Equations

5.1.1 SIS Josephson Junction

5.1.2 Ambegaokar-Baratoff relation
5.2 Josephson Coupling Energy

5.2.1 Josephson Junction with applied current
5.3 Applications of the Josephson Effect

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)
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Brian David Josephson
born 04.01.1940

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

What happens if we weakly couple two superconductors ?

Possible new effects in superconductive tunnelling, Physics Letters 1(7), 251-253 (1962)
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5.1 Josephson Effects (cf. 3.2.3)

* what happens if we weakly couple two superconductors?

— coupling by tunneling barriers, point contacts, normal conducting layers, etc.
— do they form a bound state such as a molecule?

— if yes, what is the binding energy?

* B.D. Josephson in 1962 (.)
(Nobel Prize in physics with Esaki and Giaever in 1973)

— Cooper pairs can tunnel through thin insulating barrier (T = transmission amplitude for single charge carriers)

expectation: tunneling probability for pairs &< (|T|?)? = extremely small ~ (10™%)?

Josephson: tunneling probability for pairs oc |T|?
coherent tunneling of pairs (,,tunneling of macroscopic wave function”)

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

4 o I
predictions:

» finite supercurrent at zero applied voltage

S , } Josephson effects
» oscillation of supercurrent at constant applied voltage

» finite binding energy of coupled SCs = Josephson coupling energy
\§ J
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5.1 Josephson Effects (cf. 3.2.3)

* coupling is weak = supercurrent density between S; and S, is small = |1)|?> = n, is not changed in S; and S,

* supercurrent density depends on gauge invariant phase gradient:

g n.(r,t)h n.(r,t)h : : : : :
. Js(r,t) = 4571, ) {VH(I‘, t) —%A(r, t)} UL y(r,t) 1.0 | R
§ S mS ns (x) VV ﬂ
5 ' 'c
E 0.5 >
< e simplifying assumptions: ' /\ 5
2 o . S | &
: — current density is spatially homogeneous ~ i M y(x) | <
£ . . . . < 0.0 5/
5 — y(r, t) varies negligibly in S§; and S, \g | <
2 — Js is equal in electrodes and junction area SH | S, -
g = v in §; and S, much smaller than in insulator | -0.5 <
< | / c
(x)dx &~
g * approximation: -1.0 f]/ — . . . —
= — replace gauge invariant phase gradient y -6 -4 -2 0 | 2 4 6
by gauge invariant phase difference ¢ x (arb. units)
2 2 5
ds 2T
o, t)=|yht) df = Vo(r,t) — EA(r, t) ] -df =0,(r,t) —0.(r,t) — - A(r,t) - d?f
0
1 1 1
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5.1 Josephson Effects (cf. 3.2.3)

general formulation of 1%t Josephson equation: current-phase relation

first Josephson equation: Az "1’/’
/I é :"""T

- * weexpect: . =] (¢) :
3 ||| 2 [#Y L
; Js(@) =Js(p + n - 2m) S41,04 Q __771 S,,0, ¢
?3' » for J, = 0: phase difference must be zero: V| [ S
Js(0) = Js(n - 2m) = 0 0 x
2 «>
> % d
g I:> Js(@) = J.sing + z Jem sin(me) J. = crititical or maximum Josephson current density
2 m=2

* in most cases: we have to keep only 15t term (especially for weak coupling):

derived by Josephson for SIS junctions

— 3 st H
Js(@) =Jcsing 1% Josephson equation supercurrent density J; varies

sinusoidally with
phase difference ¢ = 6, — 04

Is (y, Z) =J. (y, Z) sin @ (y, Z) w/o external potentials

* generalization to spatially inhomogeneous supercurrent density:
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5.1 Josephson Effects (cf. 3.2.3)

second Josephson equation (for spatially homogeneous junction)

* take time derivative of the gauge invariant phase difference @(t) = 6,(t) — 6,(t) — CZD_TL' 12 A(t) - df
—_ 2 0
g dp(t) 00,(t) 06,(t) 2m 0
g ot ot ot cpoajA(t) e
o 1
8 - L 000D 1 ey .
=  substitution of the energy-phase relation A P 51\]5 (t) + qsPe (1, t) ¢ gives:
: dp(t) 1 A 2w 0 [
3 P) LA a2y g2 _ __”_J .
: Frane h(Zns [J5(2) = J5 (D] + gs[per(2) ¢e1(1)]> B, Ot A(t) - d¢
@ 1
%  supercurrent density across the junction is continuous (Js(1) = Js(2)):
g 2
dp(t) 2m 0A(t) . _ e
: TR f <—V¢e1 7 ) - df (term in parentheses = electric field)
1
dp(t) 27 [ 2 v
t T T t
I:> PN j E(t)-df =—V(t) = 45V (1) 2"d Josephson equation: voltage — phase relation
ot D, D, h
1

1
voltage drop V
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5.1 Josephson Effects (cf. 3.2.3)

e for a constant voltage V across the junction:

dp(t) 2m qsV 2m qs
= V= integration yields: t) = 4+ —V-t= + 22V -t
5t "~ o, . 8 y @(t) = @q o, Po+~

phase difference increases linearly in time

» supercurrent density J oscillates at the Josephson frequency v =V /®,:

v w/2rm 1 _4835979MHZ
v Vv ®, Y

2
Js(@(t)) = Jcsing(t) = J sin (gn v t>

0

=» Josephson junction = voltage controlled oscillator

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

e applications:
— Josephson voltage standard

— microwave sources
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R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

5.1 Josephson Effects (cf. 3.2.3)

Josephson coupling energy E;: binding energy of two coupled superconductors

to to ®
E ®y e Do/ ith @(0) = 0 and @(t,y) =
] _ _ . ToYY __FoJc . P / with @ ana @(ty Q
Z_f]Sth_,[]CSH“p(Zn 6t> dt = o Jsmgo do A = junction area
0 0 0
integration yields:
E] 0](: . . .
v — > (1 — cos @) Josephson coupling energy (per junction area)
T
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5.1.1 Superconducting Tunnel Junctions

Josephson effect in superconducting tunnel junctions insulating tunneling barrier, A V(x)
thickness d V5

S, 6, S, 0,

* derive the Josephson equations

— starting point is time-dependent Schrodinger equation >
—d/2 d/2 X
oY(r,t A
th lpét ) = EY(r,t)

— S, and S, are described by macroscopic wave functions ¥y (%) P, (x)

P,(r,t) =Py, et01(rt) ng1 = |Po1l?

Y,o(r,t) = Py, ef2(rt) Mgy = [Po2|?

ol

— finite coupling between S; and S, is introduced by small coupling constant C  (tunnel coupling)

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

alpl (r, t) _ _
lhT = E1 ¢(r,t) + Crpo(x,t) = +eAp Py (x,t) + CLrp, (1, t)
vy 1B _Ei—Es 1E—E
o, (r, ) P T2 7 e
lhT = E; Y,(r,t) + Crpp1(r,t) = —eAd P, (r, t) + Crpipy (1, t)
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5.1.1 Superconducting Tunnel Junctions

— by inserting the wave functions 14, 1, into the time-dependent Schhrodinger equation we obtain for the imaginary part:

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

www.wmi.badw.de

091(15) _ C Ngo (t) eA¢
ot R |ng ¢ h

692(1:) C Ngq eA(l)
= —— —_— t —_—
ot n /nszcow(H n

— for the real part we obtain:

ong,(t) 2C _
glt =+ - Vg1 g, Sin @ (t)
ansz (t) _ 2C

at - h Vn’SlnSZ Sln(p(t)

— supercurrent density:

1-2 __ Z_e aNSl(t)
S A 0t
— J,
251 _ % a]VSZ(I:)
S T A ot

— 712 __
— Js

we use Cjg = Cgr,=Cand g =06, — 04,

W h
e see that Y Py

4eC

2-1 __

S

Superconductivity and Low Temperature Physics |

Ong;(rt) _  dng(rt)

= \JNg1 N, sin @(t) = ], sin ¢ (t)

= conservation of particle number

Ns1,sz = V1,2n51,sz

1%t Josephson equation
(current-phase relation)
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R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)
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5.1.1

Superconducting Tunnel Junctions

— the 2" Josephson equation is obtained from the gauge invariant phase difference @(r,t) = 0,(r,t) — 6,(r, t) — —f A(r,t) -df
dp(t) 06,(t) 06,(t) 2ed
at ot ot  hot A(r’ ) - df 0. _ _C nsz (t)—ﬂ
1 ot h |ng
2
dp(t) 2eA¢p 2ed
ot = 7 — 7% A(l‘, t) -df for Ng1 = Ngy aeazt(t) = —%\/::Zcos @(t) +#
1
dp(t
‘p( ) _ ” Vc,b——A(r t)] de
=V
o) ze  Zw 2nd Josephson equation
ot h D, (voltage-phase relation)
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5.1.1 Superconducting Tunnel Junctions

calculation of the maximum Josephson current density: How does T g depend on height and thickness of barrier?

e calculation by the wave matching method

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

www.wmi.badw.de

solve time-independent Schrédinger equation for S;, S,
and barrier region and match solution at interfaces

2

Vzlp(r) = (Ep — Vo)y(r)

2mg

with (1) = 1 (r) e?®

insulating tunneling barrier,
thickness d

ol

Superconductivity and Low Temperature Physics |
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5.1.1 Superconducting Tunnel Junctions

AV
— V() = (B — VOY(T) Vo — Eo I
zms E |
0 L
* assumption:
, —d/2 d/2 X
homogeneous barrier and supercurrent flow = 1D problem
* solutions:
- in superconductors: 1 ,(x) = 1/)01’02e‘91,2(x) = Ms1.s52 e%12(*)  (macrosopic wave function)

- in insulator: sum of decaying and growing exponentials 1/(x) = A cosh(xx) + B sinh(kxx)

- characteristic decay constant: K = \/2ms(V0 _ EO)/hZ for Ey <V,

* coefficients A and B are determined by the boundary conditions at x = +d/2:

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

Ylx = —d/2) = Vg % Y(x = +d/2) = \ng; e'?

N4 2,01 2: Cooper pair density and wave function phase at the boundaries x = + d/2

I:> ng; €91 = A cosh(kd/2) — B sinh(kd/2) ng, e%2 = A cosh(kd/2) + B sinh(xd/2)

www.wmi.badw.de Superconductivity and Low Temperature Physics | Chapter 5/RG 15



5.1.1 Superconducting Tunnel Junctions

191 192 191 — 102
* solving for A and B: o= V1 © + VM2 € _ _ VM1 e. VTts2 € W(x) = Acosh(xx) + B sinh(xx)
cosh(Kd/Z) 2 sinh(xd/2)

(lPV?P — V)

* supercurrent density: Js = Zm
S

* substituting the coefficients A and B (after some lengthy calculation):

Js =Jcsin(@; — 0,) =Jsing current-phase relation
qshK UIURY) qshrc N . |
- J h t densit
Je ms gsmh(;cd/Z) cosh(rcd/Z) mg sinh(2xd) maximum Josephson current density
=sinh(2xd)

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

* real junctions:
V, ~feweV=1/k < 1nm, d = fewnm = kd < 1, then sinh(2kd) = %exp(ZKd), qs = —2e:

* maximum Josephson current density decays exponentially with increasing barrier thickness

d: 2ehk
J. = 2 nng, exp(—2kd) qs = —2e

mge
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R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

5.1.1 Superconducting Tunnel Junctions

Phys. Rev. Lett. 8, 316-318 (1962).

. B. D. Josephson, Possible new effects in superconductive tunnelling,
[ ]
open QUEStIOI‘IS Physics Letters 1(7), 251-253 (1962)

— what is the charge crossing the tunneling barrier when a Bogoliubov quasiparticle tunnels from S, to S,

— what is the role of the coherence factors ?
* only brief description of theoretical approach

Hamiltonian: H=H,+Hg+Hr H7 = tunneling hamiltonian, small extra term

Hy = z Tir gc;(rcq + c;ckz

kq \ transfer electrons from states K on left to q on rhs of the
barrier and vice versa
matrix elements, fall of exponentially with barrier thickness d
determination of the tunneling current by calculation of (NL) = —(NR) by using the equation of motion for ]\TL’R

thINL g = []\/‘L o j—[] — []\/‘L . }[T] as Hy, Hr commute with NV, (conserve particle number)
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5.1.1 Superconducting Tunnel Junctions

more elaborate theory of tunneling between superconductors

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

www.wmi.badw.de

: _ . q
tunneling current: 7 = gV = 7 |V, Hr] g = charge transported per tunneling particle
e
° -1 1 . — T T .
NIN-junction: J = Ez Tkq (Cqu - Cqu) for tunneling between two normal metals
kq
* SIS-junction: we have to replace cf;qck’q by the Bogoliubov quasiparticle excitation and anihilation operators ocf;q, ak,q,ﬁ;{r’q, Br,q
AE * visualization of Josephson tunneling as a 2 step process

— step 1: blue Cooper pairin S, is broken up and one excitation
Q crosses barrier into S,

N O — resulting intermediate state (light blue) is classically forbidden but
‘./’ <" 1 allowed within uncertainty relation
y---- “A-00--- p; |24 - | o
. \ 4 — step 2: second excitation crosses barrier and recombines with the
first forming green Cooper pair
S1 Sz * remark:
Dls & > DZS Josephson tunneling may be viewed as a second order process and « |T|*. However,

Josephson was assuming a constant (and not arbitrary) phase difference between initial and
final states. Then, the quantum mechanical treatment yields a supercurrent « |T|?
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5.1.1 Superconducting Tunnel Junctions

tunneling in SIS junctions at finite voltage — quasiparticle tunneling

evaluation of (]\f) shows that coherence factors are not dropping out (cf. 4.4.2)

2 202

£ Jop o — e|T| uku(l(fk fq) sum has to be taken over electron and hole branches on both sides
5 qp th Ex —Eq+eV =» coherence factors all disappear (see argument given below)

£ kq =» sum — integration: principal part integrals all cancel,

E& only residues at poles are left

. e qualitative argument:

o

- » tunneling from state |qo) into a state |Kka) is only possible if pair state (K T, —Kk |) is empty f‘k

S “k

= - resulting tunneling probability is & |uy|? |qu|2

E . / . . 0 >
< » for each state |ka) there exists a state |K'c) with Ey, = E}/ but with &,.r = =& k
s

E - resulting tunneling probability is o |uy/|? |Tqu|2 = || |Tqu|2

S lu(=&0l=1v(Ew)| Sk

© d

8 . . 2 2

5 total tunneling probability o« (|uk|2 + |vk|2)|qu| = |qu| does not depend on coherence factors

[

-> simple ,,semiconductor model” for quasiparticle tunneling is applicable

M. H. Cohen, L. M. Falicov, and J. C. Phillips, Superconductive Tunneling,
Phys. Rev. Lett. 8, 316-318 (1962).
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5.1.1 Superconducting Tunnel Junctions

tunneling in SIS junctions at zero voltage — Josephson tunneling

evaluation of (N) shows that coherence factors play an important role

]SOC—

e|T|? z ukvkuqvq(fk — fq) e'¥

th ko Ek - Eq

» we have to sum up over electron and hole branches on both sides

A\

sum — integration: principal part integrals do no longer cancel

» leads to a finite Josephson current density J; = ], sin ¢ at zero voltage with

(0.0] (0.0]

_ 2e|T|?

Ay A, f(EVDf(E)
Je=—7

D¢, (Ex)Dg,(Er) P f dé&; f dé, E, L, P = principal part

Ey E;

— 00

for Al == AZ:

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material

_m A(T)
Je = 5o 4 A(T) tanh (ZkBT)
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important result of elaborate tunneling theory

* ratio of maximum Josephson current density . and Jyiy = Jqp(eV > 2A) < 1/R,A = const

< J
S 2 —=]J.R,A=1I.R, = const.
& JNIN
o
g ] T A(T)
3 Ambegaokar-Baratoff relation: I.R, = Z—A(T) tanh T
£ € B
< 1,
g V. Ambegaokar, A. Baratoff, Tunneling Between Superconductors,
o Phys. Rev. Lett. 10, 486-489 (1963).
L
s 8}
©
x
s 6l—  SOLID CURVES: CALCULATION OF
< b AMBEGAOKAR 8 BARATOFF
2 o
© -
N A
O
o

A o

1 | | M.D. Fiske, Rev. Mod. Phys. 36, 221-222 (1964)
0 ' ¢ 3 4 Temperature and Magnetic Field Dependences of
T °K

the Josephson Tunneling Current
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* quasiparticle tunneling (cf. 4.4.2):

atel/ >0

NIN-junction

J5@ =J sin(e(@®) =] sin (57 t) = 0

at el > 2A(T)

1
Jop(V) = Jnin(V) RA exp(—2kd)

I T=0 R, = normal resistance = resistance of NIN tunnel junction

* Cooper pair tunneling:

v

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

2A(T) 2A(0) €V atel =0

(= few meV) Jop(V=0)=0

ehk

Jo((V=0) = Tsz‘mﬂnsz - exp(—2kd)
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5.2 Josephson Coupling Energy

Josephson coupling energy Ej: binding energy of two coupled superconductors (cf. 3.2.3)

* the two weakly coupled superconductors form “molecule” analogous to H, molecule
- what is the binding energy of this molecule ?

* consider a JJ with J; = 0 and then increase junction current from zero to finite value
— phase difference has to change =» phase change corresponds to finite voltage according to voltage-phase relation
— external source has to supply energy (to accelerate the superelectrons)
— stored in kinetic energy of moving superelectrons

— integral of the supplied power I - V to increase currentto I(¢) = I.sin¢g (voltage during increase of current)

t t ©
E Dy 0 P ' = =
Z] = j]s Vdt =f]c sin<p<2—7:a—(f> dt = OJCJ sing’ de’ with 9(0) = 0and ¢(to) = ¢

21T A = junction area
0 0 0

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

0]c E]O . . .
i > (1 —cosg) = i (1 — cos ) Josephson coupling energy (per junction area)
T
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5.2 Josephson Coupling Energy

Josephson coupling energy Ej (cf. 3.2.3)

2

SV

T, n 37 4an
\ /
/‘\ / \ /
\ /’ \ 7
'1_ ]/]c e ”_\‘ . ]/]C . .
0“ junction “TT“ junction

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

* order of magnitude estimate:
— typically: I, = J,A~1mA = E;,=3x10717]
— corresponds to thermal energy kgT for T =~ 20 000 K

— junction with very small critical current: I, =~ 1 uA = thermal energy =~ kg X 20K
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Josephson junction under the action of an external force (applied current)

* potential energy E . of the system under action of external force:  E, .. = E; — F - x
— Ej:intrinsic free energy of the junction
— F: generalized force (F =1)

— x: generalized coordinate

-g = F - dx/0dt = power flowing into subsystem (I - V) 2 : ; :
T = 0x/ot =V: | \ 7 =lo
: —det—h to=0pm o= D
: * T2 $TET Pog e
2
% 2
C:‘ Epot((P) =E;(p) —1 (CDOE + C) |_|Jg _ (pn
s -
< Lué -4 I Y
?U Polc ! 5 - Pn+1 :
8 Epot(go):?(l—cosgo—l—go>+c | = &(pn+1
o —— ¢ -6 N N
EJo | \
tilted washboard potential 8 . . . N
stable minima at ¢,,, unstable maxima at @,,, 0.0 0.5 1.0 1.5 2.0
states for different n are equivalent o/ 2n

* junction dynamics: motion of “phase particle” ¢ in tilted washboard potential (not discussed here)
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|I| < I.: constant phase difference:

|I| > I.: phase difference increases with time: ¢ = @(t)

e,

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

www.wmi.badw.de

@ = @, = arcsin (I/1.) + 2nn

—> zero voltage state / ordinary (S) state

- finite voltage state / running phase state

thermally activated phase slippage

guantum tunneling of phase

Superconductivity and Low Temperature Physics |
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5.3 Applications of the Josephson

large number of applications in analog and digital electronics

=» detailed discussion in lecture ,, Applied Superconductivity”

= 17(B): i
- magnetic field sensors (SQUIDs)

/I,

Bc > 1 (hysteretic IVC)
- bistability: zero/voltage state
— switching devices, Josephson computer, fast DACs

m
S

2"d Josephson equation q)(}q)o
- voltage controlled oscillator, voltage standard

nonlinear IVC
—> mixers up to THz, oscillators

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material

* macroscopic quantum behavior ..l
- superconducting qubits
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5.3 Applications of the Josephson Effect

Josephson junction as fast switching device

e |/ = 0:Josephson current

e IV # 0: quasiparticle current [

R
~ 0

slope=1/R

max ~

S
e hysteresis: S~~~ j

—
v

fast switching device
2A eV

very low power consumption

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material

= Josephson digital electronics
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5.3 Applications of the Josephson Effect

principle of switching element:

e magnetic field dependence of the maximum Josephson current

Imax [

[1ax(0)4 unstable for B > 0

CI)/CDO ‘/
Imax(B)- \\\*\*
magn. field pulse TS~ ll
LN /N N /— o I R
current 2A €V
pulse

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material
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5.3 Applications of the Josephson Effect

SEM micrograph of a universal asynchronous DR RSFQ
(rapid single flux guantum) logic gate

B. Dimov et al.,

Universal asynchronous RSFQ gate for realization of Boolean functions of
dual-rail binary variables

Journal of Physics Conference Series 43(1), 1183 (2006)

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material
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https://www.researchgate.net/journal/Journal-of-Physics-Conference-Series-1742-6596

5.3 Applications of the Josephson Effect

superconductor digital frequency divider operating up to 750 GHz

® o . s
_ Vou Dividers
5 A\l RSFQ | Semi-
£ W
< | | | conductor
E b o1 02 J5 %\1 >\/ :,‘,
5 A Frequency | 750 GHz | 60 GHz
£
- AL g Power 1.5 uW 0.5W
2 J7 1J8 i
2 l VAR EVAN Dissipation
) J1 J2 J3 J4 T P . T : :
S A 800 | F
D los f =7T50GHz —— N
S . max 5
(=]
o
= g 600 [1}]
= =
= "8
g g 400 S
@ O {000 W. Chen, A. Rylyakov, V. Patel, J. Lukens, K.
§¢ - c Likharev,
E 8- 200 _8 “Superconductor digital frequency divider
S Lt ) 'EHE operating up to 750 GHz,"
©) — Appl. Phys. Lett. 73, 2817 (1998)
O
[

Bias Current (mA)

x32000

e problem: integration of large number of JJs (> 10° ) with high yield and small parameter spead
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0 00 RS CIR R CRNE B s

S L L E N5
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R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material

o

www.physics.sunysb.edu/Physics/RSFQ/
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5.3 Applications of the Josephson Effect

superconducting quantum bits

Chao Song et al.,
Science 365, 574-577 (2019)

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material

WMI/MCQST
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5.3 Applications of the Josephson Effect

aluminum evaporation ( - 6)

/&)

b in situ oxidation

I

c aluminum evaporation ( + 6 )
A/
d resist stripping

Josephson junction

||

superconducting flux quantum bits fabricated at WMI
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F. Deppe et al., PRB 76, 214503 (2007)
T. Niemczyk et al., SUST 22, 034009 (2009)




5.3 Applications of the Josephson Effect
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5.3 Quantum Computing Start-ups

Dr Jan Goetz | CEO Co-founder and CEO Jan Goetz
studied physics at TUM and did his
master and Ph.D. thesis at WMI
(2011 -2017)

L 1K I/ 1o vearuses MA’K"I:VC
OpenOcean TESI MATADERO GED SAIVIA
----------------- Tencent Mk » gf_‘l‘l:'%gd -'i‘:f.' -
aaw
VARMA & @ourCrowd Bino
QcIsPy

IQM Finland Oy

2018: starting capital: 11.5 Mio. 4-l |

2019: I1QM raises 71 Mio. € <

2022: 1QM'’s quantum fabrication facility gets a 35 Mio. €
boost from the European Investment Bank

2022: 1QM raises 128 Mio. € led by World Fund

R. Gross © Walther-MeiRRner-Institut (2004 - 2023) - supplementary material

W T e

TUM Venture Lab Quantum
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5.3 Applications of the Josephson Effect

precise definition of the electrical voltage, current and the resistance by using fundamental quantum effects

h
* Josephson effect: V= 2o f=Dy-f (relation between voltage and time/frequency by flux quantum)
° Single electron pump: [ =c¢e- f (relation between current and time by charge quantum)
h
* Quantum Hall effect: V = i I =Rg-1 (relation between voltage and current by quantum resistance, unit = 1 Klitzing)

allows the reproduction of the physical units Volt, Ampéere and Ohm
with a very high precision and largely uninfluenced by environmental
parameters at any place in the world

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

realization of the Ampere by single electron pump not realized so far at
sufficient precision

=» would allow an important experimental test of the consistency of the
relations between the fundamental constants illustrated in the “electrical
triangle”
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R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

www.wmi.badw.de

determination of energy gap and DOS by tunneling spectroscopy

(00)

Ins(V)=GZ" j ) [F(E) — f(E+eV)]dE L) Gp(V) =

Dy (Eg)

— 00

NIS and SIS tunnel junctions

BCS coherence factors

case Il coherence factor

=» nuclear relaxation, electromagnetic absorption
(for perturbation which are even under time reversal)

two-fluid model

case | coherence factor

=» ultrasound attenuation
(for perturbation which are odd under time reversal)

| ]

1

. [/ (G, /e) A)

Superconductivity and Low Temperature Physics |

0l,s(V)

Dg,(eV)

o Dnz (EF)

I, / (G, [fe) AlD)

x Dy, (eV)

@T=0
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Summary of Lecture No. 10 (2)

* derivation of Josephson equations from tunneling theory

oY (r, t) Y1 2(1, ) = Poq op €02200D

— starting point is time-dependent Schrédinger equation 1A = EY(r,t) 2
ot Ng1,52 = |'~/)01,02|

— finite coupling between S; and S, is introduced by small coupling constant C  (tunnel coupling)

alpl(rr t) . —
lhT = Ey Y1(r,t) + CLripa(r, 1) = +eAd 1 (r, t) + Crripo (1, 8)
A(p—El_Ez _El_Ez _lEl_EZ
all)z(l‘, t) |qS| 26 2 €
lhT = EZ 1/)2(1‘, t) + CRLlpl (r, t) = —eA(l) 1/)2(1', t) + CRLlnbl (l', t)

. L, 4eC _ _ 1t Josephson equation Ns1,s2 = Vi2Ms1,62
> Js =Ji? =3 = o Nl sing(8) = Jesing () Con = Car = €

(current-phase relation)

R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

— the 2" Josephson equation is obtained from the gauge invariant phase difference ¢ (r,t) = 0,(r,t) — 6,(r,t) — CZD—” 12 A(r,t) -
0
2
dp(t) 00,(t) 060.(t) 2ed

o) = 2(8) — 1(8) ——— | A(r,t) - d? 00:(t)  C |ng eAd

ot ot ot h ot % - % n—lcosq)(t)—T
1 S

do(t 2e 2T nd :

— o) _ de, B 2" Josephson equation 962() _ _C Imsu oy 4 €09
ot h D, (voltage-phase relation) at h |ng, h
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R. Gross and A. Marx , © Walther-Meiner-Institut (2004 - 2023)

maximum Josephson current density | .

— can be calculated by e.g. wave matching method
B 2ehk

Jc = m, 2\/n5,1ns,2 exp(—2kd)
— Ambegaokar-Baratoff relation:

A(T) )

n_ "
. 1 —zeA(T)tanh(ZkBT

Josephson junction with applied current

I
Epot(@) = Ejg <1 — Ccos @ — I—(p) tilted washboard potential

Cc

many applications in digital and analog electronics

— magnetic field sensors (SQUIDs)

— switching devices, RSFQ logic, fast DACs

— voltage controlled oscillator, voltage standard
— mixers up to THz frequencies

— superconducting qubits
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